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Abstract

Stochastically arriving objects (e.g. transplant organs, public hous-
ing units) often are allocated via waiting lists exhibiting deferral rights:
agents may decline offers, keeping their position in line. We consider
the welfare implications of bestowing or constraining such rights, con-
cluding that their desirability depends—in opposite ways—on agents’
risk-aversion and impatience. Under risk-aversion, uninfluenced de-
ferral rights typically enhance welfare. Under discounting some re-
strictions on deferral rights can benefit all agents joining the list. In
a stylized “organ spoilage” model our results demonstrate that policy
evaluations should not be based solely on throughput metrics (e.g.
organ utilization rates) that ignore such preference characteristics.
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1 Introduction
Waiting lists are used to allocate various kinds of objects that arrive over
time, e.g. transplant organs, public housing units, openings in substance
abuse treatment programs, and vacancies in child care facilities. As objects
become available, they are offered to priority-ordered agents who may not
be obligated to accept the offer. In applications where agents are granted
deferral rights, they may decline offered objects while maintaining their rela-
tive position in the list. A deferred object is offered to the next agent in line,
who also may have deferral rights. We highlight novel welfare implications
that arise from granting or restricting such rights.

Conditional on reaching an early position of the waiting list, an agent
clearly benefits from deferral rights: the freedom to choose whether to
wait for a better offer. For agents in later positions the welfare implica-
tions are ambiguous without further assumptions on preferences. Previous
work shows that welfare can be improved by allowing or even encourag-
ing deferrals when agents have heterogeneous preferences (Bloch and Can-
tala (2013), Leshno (2019)) or have heterogeneous outside options (Arnosti
and Shi (2020). Our contribution is to show that, even when agents are com-
pletely homogeneous, the desirability of influencing deferral rights is tied to
preference characteristics that so far have not been focal in the study of wait
list mechanisms—risk tolerance and discounting.

We consider the following kind of thought experiment. Imagine asking
an agent already occupying some position in a waiting list to selfishly decide
whether, as a matter of policy, deferral rights should be granted to all agents
or to none. How would the agent’s answer depend on her current position
in the queue or on preference characteristics? More generally, would the
agent prefer that deferral rights only be partially granted, e.g. only over
certain types of objects or from certain positions of the list? We capture
this thought experiment via a class of allocation schemes—deemed waiting
list policies—that depart from first-come-first-served allocation systems by
giving the planner a wide range of control over agents’ deferral decisions.
This control can be any arbitrary function of the object type being offered
and/or the agent’s current position in the list.

There are two ways to interpret these controls or restrictions on deferral
decisions: as explicit rules enforced by the planner, or as the planner’s in-
direct influence over an agent’s ability or incentive to make decisions. The
“rules” interpretation is straightforward:,deferrals can be constrained essen-
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tially by force, such as in applications where public housing applicants must
accept the next offered unit or depart the queue.

The “influence” interpretation can encompass various ways that a planner
indirectly alters deferral decisions. Literal examples of influence exist wher-
ever imperfectly informed agents receive advice on their deferral decisions.
A primary example is organ transplant patients whose deferral decisions are
heavily influenced by their health care providers.1 A more subtle example
of influence would be to obscure the quality of offered objects, reducing the
agents’ ability to discriminate amongst them when making deferral decisions.

Our approach captures these direct and indirect forms of “influencing”
deferral decisions, bypassing any specification of how the planner might ac-
complish such outcomes. For the sake of generality, we set aside the question
of what set of waiting list policies might be “implementable” by the planner
since our results would apply to any of them.

1.1 Overview of results
We provide welfare results from both an interim perspective (the welfare
of agents conditional on their current positions in the list) and an ex ante
perspective (the welfare of agents as they arrive to the list). The former
perspective (Sections 3–5) is relevant when the planner is primarily concerned
only with the welfare of agents already present in a waiting list, e.g. if the
political feasibility of a policy change depends mainly on such agents. These
interim welfare results are then used to derive welfare results under an ex
ante perspective (Section 6), e.g. where the planner is primarily concerned
with the long run expected welfare of agents who join the list over time.

In more detail, we start with a benchmark case of risk-neutral, non-
discounting agents where a “payoff equivalence” result (Theorem 1) implies
the following. Any (marginal) influence over deferral decisions in early po-
sitions of the waiting list has no effect on the expected payoffs to agents in
later positions of the list. Later agents face the same expected waiting time
and the same distribution over object consumption as if the planner had
committed not to influence these decisions. Consequently, a “no influence”

1As the Washington Post (Kindy et al. (2018)) reports, “Some transplant centers are
working hard to persuade patients to accept less-than-perfect organs” due to organ short-
ages. In Section 7 illustrates a tradeoff between the welfare gains achievable from such
persuasion and the ethical principal to advise individual patients in their own best interest.
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policy—fully allowing selfish deferral decisions—maximizes expected interim
payoffs starting from any position in the list (Theorem 2).

Under more general preferences this payoff equivalence breaks down since
restricting deferral decisions (at early positions) alters the joint distribution
of waiting time and object type consumption (at later positions). For ex-
ample, deferral restrictions at earlier positions typically reduces the variance
of waiting times for later agents (Corollary 2). Though this effect seems to
benefit risk-averse agents, there is an additional effect. Deferral restrictions
typically reduce the correlation between later agents’ waiting time (a cost)
and object quality (a benefit), harming risk-averse agents. Under CARA pref-
erences we show that this latter effect dominates via an “aligned interests”
result (Theorem 3): agents in consecutive positions of the list have common
preference over (marginal) changes to deferral rights policies. It follows that
uninfluenced deferral rights enhance welfare: a “no influence” policy strictly
maximizes each position’s interim expected utility (Theorem 4).

In contrast, when agents discount future payoffs we obtain an “opposed
interests” result (Theorem 5): a marginal change in deferral rights between
positions k and k+1 lowers position k’s (expected, discounted) interim payoff
if and only if it increases it for all positions k+1 and later. The main takeaway
of this result is that, by committing to influence deferral decisions at some
early position k of the waiting list, we can improve welfare for (typically
many) agents who occupy or join the list at positions k + 1 and beyond.

When considering the (ex-ante) welfare of agents arriving over time, ob-
serve that deferral restrictions benefit those agents by shortening the list
(and hence their average waiting time). In the risk-averse case this creates
a tradeoff with the optimality result of Theorem 4. In Section 6 we show
that this tradeoff is resolved by (partially) restricting deferral decisions only
in later positions of the waiting list, while the “no influence” prescription of
Theorem 4 continues to hold in earlier positions.

In Section 7 we apply our results to a stylized “organ spoilage prob-
lem:” objects with limited shelf life must be discarded after being offered to
and deferred by many agents. In the discounting case, restrictions on early
positions’ deferral rights improve welfare due to both waste reduction and
our opposed interests result (Theorem 5). In the risk-averse case there is
a tradeoff between the benefits of waste reduction and a negative welfare
effect highlighted by our aligned interests result (Theorem 3). Nevertheless
we argue that even in this case, “marginal” restrictions on deferrals typically
enhance welfare at later positions in the list.
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1.2 Related literature
Our environment is related to others studied in operations and economics.
A special case of our model is the parallel processor problem, where jobs
of unknown sizes must be completed using a set of processors of different
speeds. Agrawala et al. (1984) derive the utilization policy minimizing the
expected sum of time to completion across all jobs, which is a special case of
our Equation 2. Interpreting total time of completion as utilitarian welfare,
their result is a corollary of our Theorem 2.2 In a model more similar to ours,
Su and Zenios (2004) also obtain this kind of utilitarian result where wait-
listed agents (with unrestricted deferral rights) are offered randomly arriving
objects of varying quality.

When accounting for the welfare of agents yet to arrive to a waiting list,
it is known that equilibrium behavior in waiting lists need not maximize
utilitarian welfare. Naor (1969) points out that an agent deciding to join a
queue fails to internalize the additional waiting cost he imposes on future
arrivals. The same effect occurs in our setting when agents decide to defer
objects. Hassin (1985) succinctly solves this problem by switching the to
last-come-first-served (LCFS) allocation, forcing agents to internalize the
probabilistic arrival of future agents when making joining decisions. Su and
Zenios (2004) estimate hypothetical welfare gains of using this approach in
kidney allocation, but point out (as does Hassin) that LCFS methods can
be impractical due to manipulability, inequity, inducing excessive risk, and
being politically unacceptable. We do not consider this approach here.

Related work on dynamic matching and assignment has focused on hetero-
geneous preferences and discrete time environments. Leshno (2019) improves
match quality in such a setting via a “buffer policy,” encouraging deferrals
with probabilistically improved waiting list positions. Where agents’ priority
orderings vary over object types, Thakral (2016) proposes a multiple-list pro-
cedure: An arriving object “proposes” to its highest priority agent, requiring
the agent to accept the object or commit to a separate waiting list dedicated
to another object type. Combining this with an idea in Abdulkadiroğlu and
Sönmez (1999) yields a strategy-proof, priority-respecting mechanism with
a desirable efficiency property. Arnosti and Shi (2020) compare multiple
waiting list procedures along with the use of lotteries for horizontally differ-
entiated objects.

2See also Kumar and Walrand (1985). Coffman et al. (1987) derive the optimal “Rawl-
sian” policy of minimizing makespan (time elapsed until all jobs are complete).
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Bloch and Cantala (2017) consider both horizontal (nonpersistent) pref-
erences and vertical preferences. In a constant-sized waiting list (a new agent
replaces any departing one), they consider randomizing the order in which
agents are sequentially offered objects (with unrestricted deferral rights).
One of their results is that agents prefer a fixed priority order mechanism
over any randomized mechanism in their class. This somewhat complements
our (logically distinct) Theorem 2 stating that, in our model with a fixed
priority order, unrestricted deferral rights yield Pareto dominant outcomes.

Distantly related work considers dynamic two-sided matching of randomly
arriving agents. In the kidney exchange model of Ünver (2010), agents and
objects arrive in pairs leading to additional considerations of property rights.
Doval (2018) considers stability in two-sided matching when agents who ar-
rive in different time periods may postpone their arrivals. Akbarpour et
al. (2019) analyze the limit behavior of a two-sided market in which agents
randomly arrive and depart, comparing mechanisms that differ in their degree
of buffering. Baccara et al. (2016) also consider buffering randomly arriving
agents before creating a matching in a setting where assortative matchings
are utilitarian-efficient. Multi-period matching models are studied by Dami-
ano and Lam (2005), Kurino (2019), Pereyra (2013), Kennes et al. (2014),
and Kadam and Kotowski (2018).

2 Model
Agents are waiting to consume an object, where objects arrive randomly over
time and waiting is costly. The agents are ordered, which is interpreted as
their relative positions in a waiting list. Since our results pertain to the
welfare of identical agents who occupy or join some specific position of the
list, we specify notation for the set of potential positions rather than for
individual agents. Denote the set of positions by N = {1, 2, . . .}.

There is a finite set of object types, O = {1, 2, . . . , n}, interpreted as
quality levels. Objects of type i ∈ O arrive according to a Poisson process
with arrival rate µi, i.e. the time between consecutive arrivals is exponentially
distributed with mean 1/µi. Furthermore these arrivals are independent of
the arrival times of objects of any other types.3 It is convenient to denote

3Equivalently, objects are Poisson arrivals with rate
∑
µi, and their types are indepen-

dently determined with probabilities proportional to the µi’s.
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the arrival rate for any set of types Ô ⊆ O as

µÔ ≡
∑
i∈Ô

µi.

An object of type i ∈ O has value vi ∈ R, where v1 > v2 > · · · > vn > 0.4
Agents in the list incur a constant flow of waiting costs normalized to one
unit of cost per unit of time. Therefore a risk-neutral, non-discounting agent
(Section 3) who receives a type i object after waiting t units of time receives
a total payoff of vi − t. We consider risk-aversion and discounting of such
payoffs in Section 4 and Section 5.

2.1 Waiting list policies
We specify how objects are allocated to agents by motivating and then intro-
ducing the concept of a waiting list policy, which is the object of our analysis.
This concept captures settings in which objects are allocated via first-come
first-served (FCFS) waiting lists with deferral rights, but the planner has
some method by which deferral decisions can be systematically influenced or
constrained as a function of an agent’s position in the list. To give a few
examples of such influence, imagine a planner who is deciding amongst the
following approaches.

1. Allow agents to make selfish, unconstrained deferral decisions (“no in-
fluence”).

2. Discourage deferrals in some way so that agents early in the waiting
list make marginally fewer deferrals than they otherwise would.

3. Offer certain object types directly to agents beginning in some posi-
tion k of the list (i.e. require certain deferrals at positions ` < k).

Each of these is an example of a waiting list policy as we define below. Our
full class of policies allows for generalizations of these alternatives, arbitrary
combinations of them, etc. Our objective is to make welfare comparisons
across all such policies.

To further illustrate, consider the first alternative above. For any
(highest-priority) agent occupying position 1 of the waiting list, optimal

4The assumption of strict inequalities simplifies various statements and proofs. The
common value assumption avoids the sorting effect in Leshno (2019); see Section 1.
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selfish behavior is to defer objects that are not of sufficiently high value,
i.e. to accept only object types that belong to some set, say W ∗(1) ⊆ O,
whose values exceed some threshold.5 Any agent in position 2 can foresee
this behavior (both by the preceding agent and by himself were he to reach
position 1). Due to the expected waiting time needed to reach position 1,
however, optimal behavior for a position-2 agent is to accept some set of ob-
ject types W ∗(2) ⊇ W ∗(1) by using a (weakly) lower quality threshold than
in position 1. Similarly, optimal behavior for agents in subsequent positions
is described by some collection of sets W ∗(3) ⊆ W ∗(4) ⊆ · · · that determine
the set of accepted object types at those respective positions.

This function W ∗(k) is one example of a waiting list policy as defined
below. It describes outcomes under a particular set of assumptions: self-
ish, informed agents make (“equilibrium”) decisions in a kind of waiting list
game where they fully observe their positions and the object types being
offered. Under those assumptions W ∗ is the probabilistic social choice func-
tion that describes realized consumption (waiting time and object type) for
any realized sequence of object types and arrival times. Our main definition
generalizes this concept to capture arbitrary deferral decisions rather than
just selfish ones.

For instance, suppose the planner can influence the deferral decisions of
agents who sit in position 1 of the waiting list, so that they accept any
object whose type belongs to some set, W (1) ⊆ O, and defer any other. If
W (1) ⊃ W ∗(1) this represents some restriction in deferrals (e.g. the second of
the three alternatives described above). Likewise W (1) ⊂ W ∗(1) represents
an increase in deferrals; agents in position 1 are influenced to defer certain
object types that they would otherwise accept. In full generality W (1) may
satisfy neither inclusion relation. An arbitrary setW (1) 6= ∅ represents some
systematic way in which a planner has committed to influencing the deferral
decisions of whichever agent currently occupies position 1 of the waiting list.

The idea extends to positions k ≥ 2, though it remains convenient to
express these sets cumulatively. A set W (2) ⊇ W (1) represents types that
are cumulatively accepted by agents within the first two positions, whereas
O \ W (2) are deferred. Given W (1), types in W (2) \ W (1) are the ones
ultimately accepted by agents in position 2. As above, one can imagine
that W (2) is determined by the optimal decisions of agents in position 2

5This set is easily derived from the model’s primitives, as in Subsection 3.2; see also
Su and Zenios (2004).
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(given W (1) as a constraint); more generally W (2) ⊇ W (1) can be arbitrary,
determined by the planner’s influence over position 2’s deferral decisions. A
similar interpretation applies to W (k) ⊇ W (k − 1) for each position k.

Definition 1. A waiting list policy is a correspondence W : N→ 2O that
is monotonic (for all k ∈ N, W (k) ⊆ W (k + 1)) and nonempty (W (1) 6= ∅).

The non-emptiness assumption is innocuous since ifW (1) = ∅, our payoff
expressions would apply after relabeling the positions starting with the first
non-emptyW (k). The restriction to deterministic policies also is not crucial.
Payoffs under randomized policies can be expressed by re-specifying the set
of object types.6

2.1.1 Examples

Two natural classes of waiting list policies further illustrate the concept and
play a role in later discussion. First, when deferrals are not permitted an
agent in position 1 accepts whatever object arrives next. Such a scenario is
described by a policy where W (k) ≡ O. A more general class of policies,
playing a technical role below, represents a planner who first discards some
(possibly empty) set of object types, and disallows deferrals of the remaining
types. Under a no-deferrals policy, object types Ô go to the agent occupying
position 1 and the rest are discarded.

Definition 2. Policy W is a no-deferrals policy if for some Ô ⊆ O we
have W (k) ≡ Ô.

Second, when agents are unconstrained in their (selfish) deferral decisions,
we described the resulting outcomes via a policy W ∗ discussed in Subsec-
tion 2.1. Each set W ∗(k) contains some set of object types i whose values vi
exceed some “sufficiently good” threshold from the perspective of position k.
More generally imagine that agents defer objects based on such a threshold
but that the planner can influence (only) this threshold itself. In this case
the planner’s set of implementable policies is contained in the following class.

Definition 3. Policy W is a threshold policy when, for any position k,
i ∈ W (k), and j ∈ O, if vj > vi (i.e. j < i) then j ∈ W (k).

6E.g., a policy where position 1 agents defer type i objects with probability 50% can
be considered by splitting i ∈ O into types {i′, i′′}, each with values vi and arrival rates
µi/2. Resplitting allows position 2 to randomize, etc., and our payoff expressions apply.
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Many of our results have their most natural interpretation when a plan-
ner has “marginal” influence over threshold policies. That is, we imagine a
planner who can encourage or discourage deferrals when agents are making
“close” decisions. Nevertheless our results apply to arbitrary policies beyond
these two classes; in fact the organ spoilage problem in Section 7 is modeled
as a constraint on policies that fits neither of these classes.

2.1.2 Comments

Since we model influence through the abstraction of Definition 1, a few clar-
ifying comments are in order. First, we do not explicitly model how the
planner influences deferral decisions, instead leaving this as a black box. We
do this in the interest of generality, since any feasibility or implementability
constraints (including ethical ones) on the set of achievable policies can be
imposed after the fact.

Despite our generality in this sense, our approach also has limitations.
One is that we allow a planner to influence agents’ decisions only anony-
mously, i.e. solely as a function of an agent’s position in the queue, and
not the agent’s identity or history. In one sense this good: we rule out sce-
narios in which a planner gives different treatment to agents with identical
priorities. On the other hand we set aside the planner’s ability to punish or
reward agents as a function of their previous deferral decisions.7 Our poli-
cies also ignore other “state of the world” information such as the current
queue length, thus ruling out last-come-first-served methods. Such meth-
ods can overcome certain inefficiencies but suffer from practical difficulties
as discussed in Subsection 1.2.

3 Risk-neutral, patient agents

3.1 Equivalence results
We start by showing that the expected payoff starting from some position k
of the waiting list is invariant to certain restrictions on deferrals at positions
` < k. Specifically, this expected payoff under a policy W depends only

7In this vein, Chen et al. (2018) and Arnosti and Shi (2020) consider waiting lists in
which agents lose their positions after making a certain number of deferrals. Abstractly,
Leshno (2019) and Thakral (2016) utilize histories by placing deferring agents into sec-
ondary waiting lists.
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on the set W (k). This result implies that a “no-influence” policy Pareto
dominates all other policies from the perspective of non-discounting, risk-
neutral agents already present in the list. Furthermore the set of achievable
payoffs at position k can be deduced by considering only the simple class of
no-deferrals policies.

To establish intuition, contrast two policies W and W ′ satisfying

W (1) ( W (2) = O (position 1 defers some objects)
W ′(1) = W ′(2) = O (position 1 defers no objects)

Under W , object types O \W (1) are deferred by agents in position 1 and
accepted at position 2. UnderW ′, all object types are accepted at position 1.
Under either policy there is positive probability that an agent in position 2
ultimately receives some object type in the set W (1). Our first observation
is that this probability is the same under both policies.

Under W this event happens when the first object to arrive has a type in
W (1). This arrival moves the agent in position 2 to position 1, guaranteeing
she eventually receives some type inW (1). UnderW ′ this agent is guaranteed
to move into position 1, hence the event happens when the second object to
arrive has a type in W (1). Thus in both cases the probability she consumes
a type in W (1) is µW (1)/µO.

This idea extends to individual object types and to later positions. An
agent in position k consumes type i ∈ W (k) \W (k − 1) only when the next
arrival from the set W (k) is i, which has probability µi/µW (k). Since this is
true for all types and positions, the probabilities of consuming different object
types remain proportional to their arrival rates. Hence if W (k) = W ′(k),
policies W and W ′ induce equivalent distributions over object types to an
agent starting in position k. Omitted proofs are in the Appendix.

Proposition 1 (Object equivalence). For any policy W , the probability that
an agent in position k ultimately consumes object type i ∈ W (k) is µi/µW (k).

A similar reasoning applies to expected waiting times. Under W ′ in the
above example, an agent starting in position 2 consumes the second object
to arrive regardless of type, for an expected waiting time of 2/µO. Under W ,
the arrival of the first object (expected wait of 1/µO) leads to two cases. If its
type is in W (1) (probability µW (1)/µO), the agent waits for a second arrival
from W (1), adding 1/µW (1) of expected waiting time. Otherwise the agent
departs immediately. Total expected waiting time under W is thus 2/µO.
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Proposition 2 generalizes this observation and more broadly can be seen
as a consequence of Little’s Law (Little (1961)).8 This fundamental queueing
result states that the average time agents spend in a “system” (the first k
positions of the waiting list) is the average number of agents in that system
divided by the rate at which they are served (by receiving an object).

Henceforth we let random variable tWk denote the waiting time for an
agent starting from position k under policy W .

Proposition 2 (Expected-waiting-time equivalence). For any policy W , an
agent in position k ∈ N has an expected waiting time of E(tWk ) = k/µW (k).

Combining these propositions, an agent’s expected payoff starting from
position k (henceforth denoted Π(k;W )) depends only on the set W (k).

Theorem 1 (Expected-payoff equivalence). For any policy W , the expected
payoff to an agent starting in position k ∈ N is

Π(k;W ) =
∑
i∈W (k) µivi − k

µW (k)
(1)

As a consequence, the expected payoffs achievable from some position k
can be determined by considering only the class of no-deferrals policies.

Corollary 1. For any policy W , the expected payoff to an agent in position
k is the same as the expected payoff under the no-deferrals policy W ′ defined
as W ′(`) = W (k) for all ` ∈ N.

3.2 Dominance of the no-influence policy
The main implication of Theorem 1 is that, once we fix a set of typesW (k) to
be consumed by agents through position k, position k’s payoff is unaffected
by varying the sets W (`) ⊆ W (k) for earlier positions ` < k. Consequently
we can show that, in the baseline case of risk-neutral, non-discounting agents,
a policy which allows agents to make uninfluenced deferral decisions in their
own self interest is a Pareto dominant policy for agents already present in
the list, in that it simultaneously maximizes Π(k; ·) for each k.9

Specifically, the “no-influence” policy defined below is not only dominant
in this sense but also corresponds to equilibrium behavior in a naturally

8Little’s Law is applied in a related way by Bloch and Cantala (2017).
9We account for the payoffs of future agent arrivals in Section 6.
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defined game where agents in our model make rational, uninfluenced accep-
tance/deferral decisions. Formally we construct a policy that maximizes a
single position’s payoff (Lemma 1), then observe that this construction can
be accomplished simultaneously across all positions yielding the dominance
result (Theorem 2). We conclude with a straightforward argument relating
this construction to selfish, unrestricted deferral decisions.

To construct a policy that maximizes Π(k, ·) for some k, it is sufficient to
specify a set W ∗

0 (k) that maximizes the right-hand side of Equation 1. Not
surprisingly, such a set is a “threshold set” of the form W ∗

0 (k) = {1, 2, . . . , i},
where i is the highest index (i.e. lowest quality type) for which vi exceeds the
expected payoff with respect to W ∗

0 (k).

Lemma 1 (k’s favorite policy). For any k ∈ N, the expected payoff Π(k; ·)
is maximized by any policy W for which W (k) = {1, 2, . . . , i∗(k)}, where

i∗(k) ≡ max
{
i ∈ O : vi ≥

∑i−1
j=1 µjvj − k∑i−1

j=1 µj

}
. (2)

Furthermore i∗(k) is a weakly increasing function of k.

The monotonicity of the thresholds i∗(k) reflects the fact that agents in
later positions are willing to accept lower valued objects in order to avoid
greater expected wait times. It also means that it is feasible to simultaneously
provide each position k with its favorite policy.

Definition 4. The no-influence policy, W ∗
0 , is the threshold policy where,

for each k, W ∗
0 (k) = {1, 2, . . . , i∗(k)} as defined in Lemma 1.

In a related model, Su and Zenios (2004) show that such a policy is
utilitarian-optimal, maximizing total expected payoffs to agents currently in
the list.10 Lemma 1 leads to the stronger conclusion that W ∗

0 dominates any
other policy under any Pareto-consistent welfare objective applied to agents
currently in the list.

Theorem 2 (Dominance). The no-influence policy maximizes each position’s
payoff: For any policy W and position k, Π(k;W ∗

0 ) ≥ Π(k;W ).

Though W ∗
0 maximizes welfare for agents already present in the list, it

is known that the expected welfare of agents yet to arrive to the list can be
improved by constraining deferrals, as we address in Section 6.

10Agrawala et al. (1984) prove an analogous result in a special case of our model.
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Finally we observe that W ∗
0 represents equilibrium behavior in a “wait-

ing list game” where the agents in our model make rational, unconstrained
deferral decisions.11 As is clear from Equation 2, W ∗

0 (1) describes an op-
timal stopping policy for any agent in position 1: the agent should accept
any object whose value would exceed the continuation value of waiting for a
better one. An agent in position 2 also should accept any object whose value
would exceed the continuation value of waiting for a better one. Clearly such
objects form a threshold set. Furthermore the threshold set W ∗

0 (2) yields the
maximum feasible payoff to position 2 among all threshold sets (Theorem 2).
Thus, even taking W ∗

0 (1) ⊆ W ∗
0 (2) as given, an agent in position 2 obtains

the highest feasible payoff by accepting only object types in W ∗
0 (2); this set

describes optimal (equilibrium) behavior at position 2. The same argument
applies iteratively to all later positions.

3.3 Waiting time distributions
By Proposition 2, the expected waiting time E(tWk ) depends only on W (k).
Nevertheless the distribution of tWk depends on the sets W (`) for ` < k. The
distribution of waiting times can be relevant for reasons outside the scope of
our model. In organ waiting lists, for example, waiting time variability can
hinder doctors’ choices of treatment (Bandi et al. (2018)). Third parties may
desire lower variability in waiting costs (e.g. insurance companies reimbursing
dialysis costs).

Though the distribution of tWk is difficult to describe in general, in this
section we derive its variance for an arbitrary policy W . We then show that
certain restrictions on deferrals reduce variance in waiting times while keeping
average waiting times constant (Proposition 2). First we observe that the
distribution of tWk can be described in the special case of no-deferrals policies.

Lemma 2 (Waiting time distributions for no-deferrals). Consider a no-
deferrals policy W , where W (k) = Ô ⊆ O for all k ∈ N. For any k ∈ N, the
waiting time tWk has an Erlang distribution with mean E(tWk ) = k/µÔ and
variance Var(tWk ) = k/µ2

Ô
.

Proof. An agent in position k departs after k arrivals from Ô, the wait for
each arrival being exponentially distributed with parameter µÔ. The sum

11We omit formalities since a related idea appears in Su and Zenios (2004); see also
Agrawala et al. (1984).
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of k (i.i.d.) exponential distributions yields an Erlang distribution, and the
mean and variance calculations follow directly.

The derivation of Var(tWk ) is easily explained in the case of two object
types O = {1, 2} for a policy with W (1) = {1} and W (2) = {1, 2}. Decom-
pose position 2’s waiting time into tW2 = t′ + t′′ as follows. First an agent in
position 2 waits t′ units of time for an arrival of a type fromW (2) = {1, 2}, so
t′ ∼ Exp(µ1+µ2). Conditional on that object being type 1 ∈ W (1), the agent
waits t′′ ∼ Exp(µ1) additional units of time for a second arrival of a type 1
object. Conditional on it being type 2 ∈ W (2) \ W (1), the agent departs
immediately (waiting t′′ = 0 additional units of time). The (unconditional)
variance of t′′ thus can be shown to be

Var(t′′) = 2
µ1(µ1 + µ2) −

1
(µ1 + µ2)2

Since t′ and t′′ are independent we have

Var(tW2 ) = Var(t′ + t′′) = 1
(µ1 + µ2)2 +

(
2

µ1(µ1 + µ2) −
1

(µ1 + µ2)2

)

= 2
µ1(µ1 + µ2)

Note that this variance exceeds that of a policy W ′ satisfying W ′(1) =
W ′(2) = {1, 2}, which is Var(tW ′2 ) = 2/(µ1 +µ2)2 by Lemma 2. Even though
W and W ′ yield the same expected waiting time from position 2, the one
exhibiting deferrals (W ) has higher variance. This idea extends to the general
case. Proposition 3 is proven recursively in k, replacing the above object
types {1, 2} with sets W (k − 1) and W (k) \W (k − 1). There, t′ is the wait
for an arrival from W (k) and t′′ is the entire (continuation) waiting time.12

Proposition 3 (Waiting time variance). For any policy W , the waiting time
from position k has a variance of

Var(tWk ) = 1
µW (k)

((
k∑
`=1

2`
µW (`)

)
− k2

µW (k)

)
. (3)

12In the special case k = 2, t′′ has a hyper-exponential distribution with known expres-
sion for variance. Since this does not extend to k > 2, we use our recursive approach.
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The expression shows that waiting time variance decreases as deferral
rights are restricted. Precisely, Var(tWk ) decreases if we expand any set W (`)
with ` < k. In words, if agents in position ` < k no longer defer an object
type i ∈ W (k) that otherwise would be accepted in some position `′ ≤ k,
then Var(tWk ) necessarily decreases. This establishes a tradeoff between the
dominance of “no-influence” (Theorem 2) and any concern a planner or third
party may have for waiting time predictability.

Corollary 2 (Restricting earlier deferrals reduces waiting time variance).
Fix position k ∈ N and policies W and W ′ satisfying (i) W ′(k) = W (k) and
(ii) for all ` < k, W (`) ⊆ W ′(`). Then V ar(tW ′k ) ≤ V ar(tWk ). Hence subject
to any constraint that W (k) = Ô for some Ô ⊆ O, Var(tWk ) is minimized by
the no-deferrals policy W (`) ≡ Ô.

Finally we note that, at position k, expanding the set W (k) itself has
ambiguous effects on Var(tWk ). Intuitively, adding a type i 6∈ W (k) to W (k)
lowers variance through an increased object arrival rate; but could increase
variance by increasing the chance that an agent in position k makes a quick
exit from the list. Simple examples show that either effect can dominate.

4 Risk-averse agents
Deferral rights impact the welfare of risk-averse agents by altering both the
distribution of waiting time (Subsection 3.3) and its correlation with ob-
ject consumption. Under the assumption of constant absolute risk-aversion
we extend the idea behind Theorem 2: no-influence policies simultaneously
maximize each position’s expected utility. More strongly, expected utility
maximization for any single position k requires the use of a no-influence pol-
icy at all earlier positions ` < k. This follows from an “aligned interests”
result that is interesting in its own right: agents in any two consecutive
positions must agree on whether any “marginal” policy change is desirable.

Intuitively, risk-averse agents in later positions of the list might seem
to benefit from deferral restrictions at earlier positions since waiting time
variability decreases (Corollary 2) while its expectation remains constant
(Proposition 2). However this change also alters the relationship between
an agent’s two payoff components, waiting time and object value. Typically,
payoff variability is reduced by increasing the correlation between these two
(cost and benefit) components. Fixing a set W (k), a risk-averse agent in
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position k might prefer that W (1) ⊆ W (k) contain only the highest-value
types in W (k) rather than only the lowest-value types, since the former
increases this correlation. While no-influence policies obviously correlate
higher value types with longer waiting times to some degree, we show there
is a sense in which they do so Pareto-optimally.

Formally we consider agents with constant absolute risk-aversion: an
agent’s utility from a payoff of v − t is u(v − t) = −e−α(v−t), fixing the
risk parameter α > 0. We assume that α < µi for each i ∈ O, which is
innocuous under realistic assumptions on parameters.13

We use the following two facts. First, if a random variable t (e.g. waiting
time) is exponentially distributed with parameter µ > α, then

E(u(−t)) =
∫ ∞

0
−e−α(−t)df(t) = − µ

µ− α
(4)

Second, if (payoff components) x1,. . . , xk are independent, then

E
(
u
(∑

xi
))

=
∫
· · ·

∫
−e−α(

∑
xi)df(x1) · · · df(xk)

= −
∏∫

e−α(xi)df(xi) = −
∏
−E(u(xi)) (5)

For the remainder of this section we let UW
k denote the expected util-

ity for an agent starting in position k under policy W (suppressing the
dependence on α). It is simple to derive UW

1 since an agent in position 1 re-
ceives some object type fromW (1) after waiting an exponentially distributed
amount of time. From the two facts above,

UW
1 ≡ E(u(v − t)) = −(−E(u(−t)))(−E(u(v)))

= µW (1)

µW (1) − α
∑

i∈W (1)

µi
µW (1)

(−e−αvi)

It is more tedious to describe UW
k for k > 1 since the distribution of wait-

ing time is tied to the possible sequences of object type arrivals. Nevertheless
Equations (4) and (5) lead to a recursion relation (Equation 6) that in turn
yields Equation 7.

13This assumption bounds expected (dis)utility. Our results hold whenever µW (1) > α.
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Proposition 4. Suppose agents have CARA utility with parameter α. For
any policy W and position k ∈ N we have

UW
k+1 = µW (k+1)

µW (k+1) − α

 µW (k)

µW (k+1)
UW
k +

∑
i∈W (k+1)\W (k)

µi
µW (k+1)

(−e−αvi)
 . (6)

The expected utility under W starting from position k is

UW
k =

∑
i∈W (k)

µi
µW (k)

(−e−αvi) ·
∏

`≤k:W (`)3i

µW (`)

µW (`) − α
. (7)

Proposition 4 allows us to see how a “marginal” influence in deferral
decisions impacts UW

k as follows. Fix policy W and position k, and consider
an object type j ∈ W (k)\W (k−1), i.e. j is deferred by agents in positions 1
through k− 1 and accepted by agents in position k. Holding everything else
constant, imagine that we change the policy so that agents in position k− 1
now accept type j objects rather than defer them. How does this change
affect the expected utility of an agent in position k? Equation 7 indicates
two opposite effects.

• Since j now belongs to W (k − 1), the summation term corresponding
to j ∈ W (k) is now multiplied by a product that contains an additional
“penalty term” µW (k−1)/(µW (k−1) − α) > 1, decreasing UW

k . The inter-
pretation is that an agent in position k is worse off due to a relatively
longer expected wait for an object of type j.

• Adding j toW (k−1) decreases this “penalty term” µW (k−1)/(µW (k−1)−
α), which is applied to each of the summation terms for each other type
i ∈ W (k− 1) \ {j}. The interpretation is that an agent in position k is
better off due to a relatively shorter expected wait for each such type i.

Which effect dominates depends on the relative magnitude of vj. When vj
is sufficiently high, the second (positive) effect outweighs the first; an agent
in position k benefits from the restriction placed on position k − 1’s deferral
rights. This captures the idea discussed above that risk-averse agents want
to correlate high object values with long waiting times. Since placing type j
into the set W (k − 1) changes neither the distribution of objects received
(Proposition 1) nor the average waiting time from position k (Proposition 2),
this effect entirely drives the conclusion. When vj is sufficiently low the
reverse arguments apply.
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It is more straightforward to see how this policy change affects the ex-
pected utility of an agent in position k − 1. Requiring such an agent now
to accept type j objects is beneficial only when vj is sufficiently high. That
is, we reach the same qualitative conclusion as we did for position k; their
interests are somewhat aligned.

It turns out that this “alignment of interests” is sharp. If we change a
policy W by allocating type j objects to position k − 1 rather than position
k, this change benefits position k if and only if it harms position k − 1.

Theorem 3 (Aligned interests). Suppose agents have CARA utility with
parameter α. Fix a policy W , a position k ≥ 2, and an object type j ∈
W (k) \ W (k − 1). Let W ′ be obtained from W by allocating j to position
k− 1 instead of to k, that is W ′(k− 1) = W (k− 1)∪{j}, and W ′(`) = W (`)
for all ` 6= k − 1, Then UW

k ≥ UW ′
k if and only if UW

k−1 ≥ UW ′
k−1.

Two agents occupying positions k−1 and k would agree on whether type j
objects should be accepted by whomever occupies position k or occupies
position k − 1. This leads us to generalize Theorem 2 to the case of CARA
utility. Namely, a policy in which agents make unrestricted, selfish deferral
decisions simultaneously maximizes each position’s expected utility.

Definition 5. Given α > 0, define the no-influence policy,W ∗
α, as follows.

For k = 1, let W ∗
α(1) be the set of types that maximizes the RHS of Equa-

tion 7.14 For k = 2, subject to the constraint that W (1) = W ∗
α(1), choose

W ∗
α(2) to maximize the RHS of Equation 7. Continuing for k > 2, taking

sets W ∗
α(1), . . . ,W ∗

α(k − 1) as fixed, let W ∗
α(k) maximize Equation 7.

Theorem 4 (Dominance). Suppose agents have CARA utility functions with
parameter α. The no-influence policy W ∗

α maximizes each position’s expected
utility: For any policy W and position k, UW ∗α

k ≥ UW
k .

5 Discounted payoffs
Discounting reverses the conclusions obtained under risk-aversion. Mirroring
Theorem 3, our opposed interests result states that agents in the two consec-
utive positions impacted by a “marginal” policy change necessarily disagree
on the desirability of the change. Since what is good for the earlier agent is

14Ties can be broken arbitrarily.
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bad for the later one, there is no dominance result in the discounting case
analogous to Theorem 4. More significantly, the welfare of (many) agents
starting in later positions of the list can be improved by influencing deferral
decisions made in (few) earlier positions.

The underlying idea is that, unlike in the risk-averse case, discounting
agents prefer to correlate short waiting times with high object values. More
generally, discounting agents can gain by receiving offers more quickly (par-
ticularly high-value ones) even at the cost of delaying other potential offers.
As an analogy, compare (i) receiving two gifts tomorrow to (ii) receiving one
gift today and another in two days. The discounting agent prefers (ii) unless
today’s gift is of sufficiently low relative value. Similarly, an agent in our set-
ting benefits when an earlier position defers “today’s gift” unless its value is
too low. So for example, influencing an earlier position to accept marginally
lower-valued objects than they otherwise would can benefit agents starting
in all later positions. We show that this benefit accrues precisely when the
earlier position is harmed by this influence.

Formally we consider (risk-neutral) agents who continuously discount the
future at rate r: the present value of a payoff x received t units of time in the
future is x · e−rt. If an agent incurs (unit flow) waiting costs for t ∼ Exp(µ)
units of time, then the expected present value of this total cost is

1/(r + µ). (8)

If an agent is to receive an object of value v at t ∼ Exp(µ) units of time in
the future, then the expected present value of this object is

vµ/(r + µ). (9)

We let EPV W
k denote the expected present value (EPV) of an

agent’s payoff starting in position k under policy W (suppressing depen-
dence on r). Under policy W , EPV W

1 is the EPV of the next arrival from
W (1) minus the EPV of its associated waiting cost.

EPV W
1 =

 ∑
i∈W (1)

µi
µW (1)

·
viµW (1)

r + µW (1)

− 1
r + µW (1)

= 1
r + µW (1)

 ∑
i∈W (1)

µivi

− 1
 (10)
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The simplest way to think of EPV W
2 is to imagine that an agent in

position 2 waits for the next arrival from i ∈ W (2) and either consumes it (if
i ∈ W (2) \W (1)), or otherwise immediately receives a pseudo-object worth
v = EPV W

1 . That is, analogously to Equation 10 we have

EPV W
2 = 1

r + µW (2)

µW (1) · EPV W
1 +

∑
i∈W (2)\W (1)

µivi

− 1


Repeating the argument yields the following recursive relationship.

EPV W
k = 1

r + µW (k)

µW (k−1) · EPV W
k−1 +

∑
i∈W (k)\W (k−1)

µivi − 1
 (11)

This yields the following generalization of Equation 1.

Proposition 5 (Discounted payoffs). Suppose agents discount payoffs at
rate r, and fix a policy W . The expected present value of the payoff to an
agent starting in position k is

EPV W
k = 1

µW (k)

k∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1
 k∏
m=`

µW (m)

r + µW (m)

 (12)

Equation 12 decomposes EPV W
k into k components, each corresponding

to the possible positions ` = 1, . . . , k at which the agent ultimately accepts
an object. Each `th component has both

• a “value part”, ∑i∈W (`)\W (`−1) µivi, which is the expected value of ob-
jects assigned to that position, and

• a “cost part”, −1, of passing through that position.

Both parts are multiplied by a more subtle product term, ∏k
m=` µW (m)/(r +

µW (m)), whose interpretation differs across these two parts. Applied to the
value part, this product is the amount by which the future object value
is discounted to the present (as in Equation 9). Applied to the cost part,
the product term’s denominator is the amount by which future flow costs are
discounted to the present (as in Equation 8), while its numerator corresponds
to the probability of reaching a position ` ≤ k.

We use Equation 12 to prove the main result of this section.

21



Theorem 5 (Opposed interests). Suppose agents discount payoffs at rate r.
Let policies W,W ′, position k ≥ 2 and object type j ∈ W (k) \ W (k − 1)
be defined as in Theorem 3, i.e. W ′ is obtained from W by allocating j to
position k − 1 instead of to k. Then

EPV W
k > EPV W ′

k ⇐⇒ EPV W
k−1 < EPV W ′

k−1 (13)

The result illustrates a welfare tradeoff between earlier and later positions.
A “marginal” restriction in deferrals—in the sense of limiting position k−1’s
ability to defer a type otherwise accepted at position k—benefits position k
precisely when it harms position k−1. Due to the recursive nature of payoffs
in Equation 11, this benefit to position k extends to all positions ` ≥ k. In
other words, Equation 13 can be strengthened to state

∀` ≥ k + 1, [EPV W ′

` > EPV W
` ⇐⇒ EPV W ′

k < EPV W
k ] (14)

Thus while positions k and k + 1 have “opposed interests” over W vs. W ′,
all positions ` ≥ k + 1 have common preferences over the two policies.

Finally Theorem 5 shows that there is no dominance result in the sense of
Theorem 2: any marginal policy change of the kind described in the theorem
must benefit exactly one of the two affected positions. On the other hand,
for a (e.g. utilitarian) planner wishing to favor a large number of agents
joining later positions of the list, the result provides an argument for (at least
marginally) suppressing deferral rights in earlier positions. The following two
sections further highlight this idea.

6 Agent arrivals and long-run welfare
Theorems 2 and 4 show that, in the benchmark and risk-averse cases, no-
influence policies are Pareto-dominant from the perspective of agents already
present in the waiting list. However such policies need not maximize the ex-
pected welfare of agents yet to join the list, since restrictions on deferral
rights can reduce their expected waiting time upon arrival by shortening
queue lengths. From the ex ante perspective of agents joining a waiting list,
we consider the tradeoff between these two ideas in the non-discounting cases.
Most notably we show that the desirability of “no-influence” is strictly pre-
served across earlier positions of the list, even when arriving agents’ welfare
can be improved by suppressing deferrals at the latest positions of the list.
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To do this concisely we focus on the following objective: maximize the
(long run) expected welfare of agents who randomly join a waiting list over
time. Consider extending our model so that agents randomly arrive (at Pois-
son rate λ > 0) and expire (at rate γ > 0, departing with a “null object” with
value zero). The resulting length of a waiting list under policyW would then
be a random variableK whose (steady state) distribution depends onW . The
expected payoff of joining the list would be obtained by combining this dis-
tribution with our earlier payoff expressions, e.g. Equation 7. Unfortunately
this distribution is easily specified only in special cases.15

At the same time, the uncertainty in queue length K is not what drives
our main point. Furthermore we can approximate this length via the (fluid)
limit of our model: when agents and (sufficiently scarce) objects arrive con-
tinuously, the length of the list under policy W is the constant K > 0 at
which the total arrival rate (λ) equals the total departure rate (µW (K) depart
with objects, γK expire). That is, λ = µW (K) + γK. This motivates the fol-
lowing natural approximation to our objective above: choose W to maximize
the welfare of agents who join the list at “position” K = (λ− µW (K))/γ.

In the risk-neutral, non-discounting case this is formalized as

max
W

Π(K;W ) where K = (λ− µW (K))/γ (15)

That is, choose W to maximize the payoff of joining “position” K, where
K is the (fluid limit) queue length endogenously determined by W . This
exercise is easily solved by substituting for K in Equation 1.16

Proposition 6. Equation 15 is solved by the no-influence until the end
policy, W̃ , constructed as follows.

1. Let Ô = W ∗
0 (λ/γ) be the set of types that would be accepted through

position λ/γ under the no-influence policy W ∗
0 .

2. Determine position K ≡ (λ− µÔ)/γ.
3. Set W̃ (K) = Ô, i.e. deferrals of types i ∈ Ô are disallowed at position

K.
4. For all ` < K set W̃ (`) = W ∗

0 (`), i.e. use no-influence in “early”
positions.

15E.g. when W is a no-deferrals policy and γ = 0, K has a geometric distribution. Su
and Zenios (2004) consider some other cases via Bellman equations.

16Equation 1 is robust to K being non-integer.
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As expected, W̃ restricts deferrals at position K (W ∗
0 (K) ⊆ W̃ (K) since

K < λ/γ) so that arriving agents enjoy a shorter average wait, but for objects
of lower average quality. Steps 1–3 of the construction of W̃ are sufficient to
solve Equation 15. The “no-influence” specification of Step 4 is not necessary
under risk-neutrality (by Theorem 1) but guarantees that interim expected
payoffs at positions ` < K also are maximized.

Under risk-aversion, however, this kind of no-influence specification is
required to maximize the expected-utility analog of Equation 15. Proposi-
tion 7 states that, even if we restrict deferrals at position k (W (k) ⊇ W ∗

α(k)),
expected utility at that position is maximized by allowing uninfluenced de-
ferral decisions at all earlier positions ` < k. The proof is similar to that of
Theorem 4 and is available upon request.

Proposition 7. Suppose agents have CARA utility functions with α > 0.
For any position k and set Ô ⊇W ∗

α(k), if policy W ′ solves

max
W

UW
k s.t. W (k) = Ô

then for all ` < k we have UW ′
` = U

W ∗α
` . That is, up to indifference, W ′

applies “no-influence” to positions ` < k.

Hence the solution to the risk-averse analog of Equation 15 requires a
“no-influence until the end” policy, W̃α, analogous to the one in Proposi-
tion 6. It (i) restricts deferrals at some position K = (λ − µW̃α(K))/γ so
that W̃α ⊇ W ∗

α(K), and (ii) applies the no-influence policy of Definition 5
(up to indifference) at positions ` < K. In summary, restrictions in deferral
rights can improve the welfare of arriving, risk-averse agents by reducing the
length of their wait, but ideally these restrictions should take place only at
relatively later positions of the waiting list.

In contrast we observe that when payoffs are discounted, arriving agents
benefit when these deferral restrictions occur earlier in the list. Requiring
earlier positions to accept (marginally) lower quality objects than they other-
wise would can simultaneously shorten the length of the list while increasing
(later positions’) discounted payoffs via Theorem 5. Since this idea resurfaces
in the following section so we omit further formalities in the discounting case.
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7 Application: Organ spoilage
We consider some practical implications of our results within a stylized model
of “organ spoilage.” Transplant organ waiting lists prioritize patients us-
ing various characteristics (e.g. health status, geographic location, join date,
physical characteristics). The prioritized agents sequentially accept or defer
arriving organs with the advice of health care providers.17 However the or-
gans’ limited shelf life can lead to waste: Lower quality organs (acceptable
to low-priority patients) can spoil in the time it takes to process their of-
fer to (and deferral by) high-priority patients (Sack (2012)). In this sense,
unrestricted deferral rights create inefficiency.

Abstracting away from the finer details of such environments, our results
shed light on the tradeoff between this inefficiency and the potential wel-
fare benefits of deferrals. Start from a scenario with unrestricted deferral
rights (a “no-influence” policy), but where some desirable objects spoil due
to an excessive number of deferrals. Consider a planner who can influence
agents to (marginally) lower their threshold of acceptance, reducing the rate
of deferrals (and of spoilage). This affects the welfare of agents in (or join-
ing) later positions of the list in two ways. The positive resource effect is
the increased consumption rate of desirable objects and the accompanying
reduction in average waiting times. The preference effect, resulting from a
change in the relative timing of various quality offers, depends on the position
being considered, the positions being influenced, and the agents’ preference
characteristics as we have shown.

In the discounting case the preference effect here tends to be positive
for agents in later positions. As in our opposed interests result, marginal
deferral restrictions that harm earlier positions benefit later positions. Since
the resource effect is also positive, the kind of influence described above tends
to be beneficial to agents in (or joining) later positions.

In the risk-averse case, our aligned interests result suggests the opposite:
marginal policy changes that harm earlier positions also harm later ones.
Whether this outweighs the positive resource effect is ambiguous. We explic-
itly consider this tradeoff by modeling the above spoilage phenomenon as a
simple “spoilage constraint” on policies.

17A growing empirical literature studies these decisions; see Arikan et al. (2017), Ata et
al. (2017), Agarwal et al. (2019).
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7.1 A spoilage constraint
To illustrate the main idea it is sufficient to consider two object types, O =
{1, 2}, with v1 > v2 and arbitrarily arrival rates µ1, µ2 > 0. In the context
of transplant organs, type 1 represents high quality organs that would be
rarely (or never) deferred, and hence rarely spoil. Type 2 represents organs
of acceptable quality, deferred by agents in early positions but acceptable to
agents in much later ones. Inefficiency arises when type 2 objects spoil before
being offered to those later positions.

We model spoilage by assuming that objects can be offered only to the
first κ positions of the waiting list for some fixed κ. To motivate this, imagine
it takes a small amount of processing time (ε) for an agent to receive and
defer an offer. If an object’s shelf-life is some value κε, the object spoils after
κ deferrals. Since organ shelf-lives are small relative to other parameters,18

our approximation captures the notion of limited numbers of offers even while
ignoring the actual (relatively negligible) transaction times.

Fixing κ, we say that W satisfies the spoilage constraint when

∀` ∈ N, ` > κ =⇒ W (`) = W (κ). (16)

That is, agents in positions ` > κ must “defer” any type i 6∈ W (κ) by virtue
of the fact that the object has spoiled before they can receive an offer.

For spoilage to be a cause of inefficiency, it must be that (i) agents in ear-
lier positions do in fact defer lower-quality objects, and (ii) these objects are
considered acceptable by agents in later positions. We formalize these condi-
tions without (yet) specifying preference characteristics; they are considered
separately further below. For now, letW ∗ refer to the “no-influence” policies
we have discussed earlier in the absence of a spoilage constraint. That is, in
the non-discounting cases W ∗ refers to the policies in Definitions 4 or 5, and
in the discounting case W ∗ refers to the obvious analog19 of Definition 5.

Under the assumptions of our model we clearly have 1 ∈ W ∗(1) (agents
in first position accept the best object type). The condition that spoilage
creates inefficiency is the following assumption that type 2 objects would be
accepted by agents in sufficiently later positions, had they not spoiled.

Assumption 1 (spoilage creates inefficiency). There exists k̂ > κ such that
2 ∈ W ∗(k̂) \W ∗(k̂ − 1).

18E.g. kidneys last roughly a day whereas patients can spend years on the list.
19That is, each W ∗(k) maximizes Equation 12 given W ∗(1), . . . ,W ∗(k − 1).
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In other words, agents in position k̂ (but no earlier) would prefer to
accept type 2 objects when offered. However these offers are prevented from
happening due to spoilage, i.e. W ∗ fails Equation 16 because k̂ > κ.

7.2 Restricting deferrals
We consider mitigating the spoilage problem by influencing agents at some
(sufficiently early) position j to accept rather than defer type 2 objects. For
any j ∈ N define policy W Ij as follows.

W Ij(k) =

{1}, k ≤ j − 1
{1, 2}, k ≥ j.

Policy W Ij satisfies the spoilage constraint (16) only when j ≤ κ, but the
cases j > κ also play a role in some arguments below.

If objects were immune to spoilage, unrestricted deferral decisions would
lead to the outcomes described by policy W ∗. In the presence of spoilage,
however, unrestricted deferral decisions would cause type 2 objects to go
to waste under Assumption 1. Let W S be the policy that describes such
outcomes, i.e.

∀k ∈ N, W S(k) = {1}.
We make welfare comparisons between W S and W Ij ; in other words,

would an agent prefer allowing spoilage to occur as a result of unrestricted
deferral decisions, or to prevent it by eliminating deferrals at position j ≤ κ?
By construction, an agent already occupying position j ≤ κ prefers policyW S

to W Ij . The more important comparison is for the (typically large number
of) agents who occupy or join later positions k ≥ k̂ of the list. We first
address the simpler discounting case, which includes the risk-neutral, non-
discounting benchmark as a special case.

7.2.1 Risk-neutral agents

Following our earlier intuition, discounting agents in later positions of the
list benefit when acceptable objects are no longer deferred at some earlier
position j. Here such agents benefit from (i) increased utilization of type 2
objects, (ii) decreased waiting times, and (iii) the opposed interests effect of
Theorem 5. We further show that these benefits are decreasing in j: earlier
restrictions are better.
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Proposition 8 (later positions prefer earlier deferral restrictions). Under
Assumption 1, consider risk-neutral agents who discount with rate r ≥ 0,
and let j, k satisfy j ≤ κ < k̂ ≤ k. The expected, discounted payoff to
position k is strictly greater under W Ij than under W S. If r > 0 then for
any ` < j this payoff is strictly greater under W I` than under W Ij .

The argument is simplest in the non-discounting case (r = 0). Since
W Ij(k) = W ∗(k) by construction, an agent in position k is indifferent be-
tween those policies (Theorem 1); that is under W Ij(k), the agent receives
an expected payoff as if deferral rights were unrestricted and objects did not
spoil. By Assumption 1 this is strictly preferred to W S.

Discounting (r > 0) amplifies this argument due to Theorem 5. Since
agents in an early position j ≤ κ prefer to defer type 2 objects, agents
in later position k ≥ k̂ benefit from eliminating such deferrals. Repeating
the argument as j decreases implies that earlier restrictions are increasingly
beneficial.

7.2.2 Risk-averse agents

As above, restricting an early position j’s (k ≤ κ) ability to defer type 2
objects impacts risk-averse agents in later positions in multiple ways. They
benefit from (i) increased utilization of type 2 objects and (ii) decreased
waiting times, but suffer (iii) the aligned interests effect of Theorem 3.

It follows from Proposition 7 that effect (iii) is minimized by setting j = κ.
That is, among all policiesW Ij with 1 ≤ j ≤ κ, W Iκ maximizes the expected
utility to positions k ≥ κ: later restrictions are better.20

It is possible, however, that an agent in some later position k ≥ κ would
prefer not to reduce spoilage in this way at all. That is, even under W Iκ ,
the negative effect (iii) may dominate the positive ones. To avoid tedious
expressions, we demonstrate this in the simplest case where κ = 1 (objects
spoil after one deferral) and Assumption 1 holds at k̂ = 2 (position 2 would
have accepted a type 2 object had it not spoiled). Equation 17 characterizes
the parameters under which an agent in some position k ≥ 2 would prefer
policy W I1 (preventing spoilage by restricting deferrals) to W S (allowing
deferrals, resulting in spoilage). We interpret it below.

20By Proposition 7, subject to the constraintW (κ) = {1, 2}, position κ’s expected utility
is maximized when there is “no-influence” to positions 1 through (κ− 1). This conclusion
recursively extends to any position k ≥ κ by Equation 6.
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Proposition 9 (later positions may or may not prefer earlier deferral restric-
tions). Suppose that κ = 1, and that Assumption 1 holds at k̂ = 2. Consider
(non-discounting) risk-averse agents with parameter 0 < α < µ1. For any
k ≥ 2 we have UW I1

k > UWS

k (position k benefits from restricting position 1’s
deferrals) if and only if

v1 − v2 < Lα,k ≡
1
α

ln
µ1 + µ2

µ2

[
µ1(µ1 + µ2 − α)

(µ1 + µ2)(µ1 − α)

]k
− µ1

µ2

 (17)

Furthermore Lα,k > 0 is increasing (without bound) in k.

The result tells us two things. First, position k benefits from the deferral
restriction whenever v2 is sufficiently close to v1 (since Lα,k > 0). The inter-
pretation is that later position in the list must benefit from a “sufficiently
marginal” restriction in deferral rights. Second, regardless of object values,
position k benefits whenever k is sufficiently large (since Lα,k is unbounded).
Hence under risk-aversion, deferral restrictions that reduce spoilage of desir-
able objects must benefit all agents in sufficiently late positions of the list.

On the other hand when inequality (17) fails, a reduction position j’s in
deferral rights increases the utilization of desirable (type 2) objects, decreases
waiting times, and yet reduces expected welfare at later positions. This find-
ing has implications in the application of organ waiting lists, where policy
changes are evaluated in part using organ utilization rates (Sack (2012)). A
policy that increases organ utilization rates (via restricted deferrals) never-
theless can decrease welfare for risk-averse agents (at any k where (17) fails).
Of course this finding does not establish the plausibility of such a scenario,
which is left as an empirical question.21

8 Conclusion
We have considered the welfare implications of arbitrarily constraining defer-
ral decisions in first-come-first-served waiting list environments, interpreting
these constraints as nudges or “influence” over agents’ behavior. Our conclu-
sions are driven by the fact that the exercise of deferrals gives later-position
agents faster access to low quality offers and slower access to high quality

21In addition, this perverse outcome becomes less plausible when a reduction in deferrals
(and spoilage) reduces the average waiting time of arriving agents as in Section 6.
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ones. That is, uninfluenced deferral rights increase correlation in elapsed
waiting time and offer quality.

This increase in correlation reduces payoff variability, benefitting risk-
averse agents. Under CARA preferences we show that uninfluenced deferral
rights maximize welfare starting from any given position of the list. For
discounting agents, the gains from earlier access to a large reward exceeds the
loss from postponing a small one. Deferral restrictions at earlier positions
of the list—particularly over lower-quality offers—can benefit discounting
agents at all later positions.

These principles extend to settings where deferral restrictions reduce the
length of the waiting list (Section 6) or reduce waste when objects (e.g. donor
organs) “spoil” after repeated deferrals (Section 7). Even when deferrals are
restricted at some position k, risk-averse agents would prefer there to be
unrestricted deferrals at all earlier positions, whereas discounting agents do
not. Due to the effects of these preference characteristics we conclude that
policy evaluations (e.g. for transplant organ waiting lists) should depend on
more than simple throughput measurements (e.g. organ utilization rates).

While our model is sufficient to demonstrate these conclusions, its sim-
plicity sets aside other relevant factors. Our formulation rules out history-
dependent policies, e.g. those allowing an agent to make at most d defer-
rals before being expelled. Though such policies do not fit directly within
our framework our results suggest welfare implications nonetheless. Starting
from d = ∞ (“no-influence”), a reduction in d makes strategic agents less
choosy—deferral rates are reduced across all positions. Under risk-aversion
such reductions create negative welfare effects (Theorem 4) that may or may
not be offset by any positive effects (e.g. shorter list length as in Section 6).
Under discounting, on the other hand, such reductions can benefit agents
starting in later positions (e.g. Proposition 8).

We also set aside the potential efficiency gains achieved by encouraging
deferrals when agents have heterogeneous preferences. Leshno (2019) rewards
deferrals of “mismatched” objects by reducing the agent’s expected waiting
time for a better match. To the extent that this approach gives agents faster
access to better offers and slower access to worse ones, our results suggests
that discounting would enhance the benefits of this approach while risk-
aversion might mitigate them. Of course the tradeoffs between these various
effects are dependent on the underlying primitives. Formal analysis is left to
future work on specific applications where such primitives can be specified
precisely.
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9 Appendix: proofs
Proof of Proposition 1. The statement is obviously true when k = 1. Induc-
tively, fix a k and suppose that the statement is true for any k′ < k. Nothing hap-
pens for the agent in position k until the arrival of some object type inW (k). Upon
the arrival of such an object, the probability it is of type i ∈W (k) is µi/µW (k). If
i ∈ W (k) \W (k − 1) then the agent consumes that object (and otherwise cannot
consume that object type), proving the claim for i ∈W (k) \W (k − 1).

Otherwise i ∈W (k−1), so the agent moves into position k−1; that is, the total
probability of moving into position k−1 is

∑
j∈W (k−1) µj/µW (k). By the induction

assumption, the probability of eventually consuming any i ∈W (k − 1) given that
that the agent starts in position k − 1 is µi/µW (k−1). Hence the probability of
ultimately consuming i ∈W (k − 1) conditional on starting in position k is

µW (k−1)
µW (k)

· µi
µW (k−1)

= µi
µW (k)

proving the claim for i ∈W (k − 1).

Proof of Proposition 2. The result is a consequence of Little’s Law. Alterna-
tively it follows from combining Proposition 1 with Theorem 1 proven indepen-
dently below.

Proof of Theorem 1. The proof is by induction. For k = 1, the agent consumes
the first arrival fromW (1), so the expected object value minus the expected waiting
time is

Π(1;W ) =
∑
i∈W (1) µivi

µW (1)
− 1
µW (1)

=
∑
i∈W (1) µivi − 1

µW (1)

consistent with Equation 1.
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Fix k ∈ N and suppose that Equation 1 holds for k − 1. The next object-type
to arrive that belongs to W (k) either belongs to W (k− 1) or to W (k) \W (k− 1).
In the former case the agent in position k moves to position k − 1 and continues
with an additional expected continuation payoff Π(k − 1;W ). In the latter case
the agent is assigned the object, receiving payoff vi. Accounting for these two
possibilities, along with the expected waiting time for the arrival from W (k), we
have the following.

Π(k;W ) =
µW (k−1) ·Π(k − 1;W )

µW (k)
+
∑
W (k)\W (k−1) µivi

µW (k)
− 1
µW (k)

=
µW (k−1) ·

(∑
W (k−1) µivi−(k−1)

µW (k−1)

)
+
∑
W (k)\W (k−1) µivi − 1

µW (k)

=
∑
W (k−1) µivi − (k − 1) +

∑
W (k)\W (k−1) µivi − 1

µW (k)

=
∑
W (k) µivi − k
µW (k)

proving the result.

Proof of Lemma 1. Fix k, and for any subset of types C ⊆ O, consider the
no-deferrals policy W defined by W (`) ≡ C 6= ∅. Rather than writing Π(k;W ),
let π(C) denote the expected payoff to position k under such a policy, since we
consider varying C.

From Theorem 1,
π(C) =

∑
i∈C µivi − k

µC

and for any j ∈ O \ C, adding j to C yields a payoff of

π(C ∪ {j}) =
∑
i∈C µivi − k + µjvj

µC + µj

which (weakly) improves on π(C) if and only if vj ≥ (
∑
i∈C µivi − k) /µC . Since

object types are in decreasing order of the vi’s, any W ∗ defined via Equation 2
maximizes Π(k; ·).22

Since the right-hand side of the inequality within Equation 2 is decreasing in
k, the type index i∗(k) is increasing in the position index k.

22Ties are irrelevant: In the nongeneric case that vi∗(k) = π(W ∗(k)), it is easy to see
that W ′(k) ≡W ∗(k) \ {i∗(k)} also maximizes k’s payoff. This impacts neither the lemma
nor any other results of the paper.
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Proof of Proposition 3. The wait time tWk is the sum of two independent ran-
dom variables: the initial wait t′ until the arrival of the next object i ∈ W (k),
and the remaining wait t′′, which either has the same distribution as tWk−1 (if
i ∈W (k − 1)) or is degenerately t′′ = 0 (if i ∈W (k) \W (k − 1)).

Since t′ is exponentially distributed,

Var(t′) = 1/µ2
W (k).

To consider the variance of t′′, we first recall the following easily proven fact.
Let a random variable Y equal the value of some r.v. X with probability p and be
degenerately Y = 0 with probability 1− p. Then

Var(Y ) = pVar(X) + (p− p2)E(X)2

Here,

Var(t′′) =
µW (k−1)
µW (k)

Var(tWk−1) +

µW (k−1)
µW (k)

−
(
µW (k−1)
µW (k)

)2
E(tWk−1)2

By Proposition 2, E(tWk−1) = (k − 1)/µW (k−1). Therefore

Var(tWk ) = Var(t′) + Var(t′′)

= 1
µ2
W (k)

+
µW (k−1)
µW (k)

Var(tWk−1) +
(
µW (k−1)
µW (k)

−
µ2
W (k−1)
µ2
W (k)

)
(k − 1)2

µ2
W (k−1)

=
µW (k−1)
µW (k)

Var(tWk−1) + (k − 1)2

µW (k)µW (k−1)
− (k − 1)2 − 1

µ2
W (k)

(18)

which we can solve recursively.
For any policy, tW1 is exponentially distributed with variance of 1/µ2

W (1) which
coincides with Equation 3. We show that if Equation 3 holds for some arbitrary
k − 1 then it holds for k. Substituting into Equation 18,

Var(tWk ) =
µW (k−1)
µW (k)

Var(tWk−1) + (k − 1)2

µW (k−1)µW (k)
− k2 − 2k

µ2
W (k)

=
µW (k−1)
µW (k)

1
µW (k−1)

(
k−2∑
`=1

2`
µW (`)

+ 2(k − 1)− (k − 1)2

µW (k−1)

)
+ (k − 1)2

µW (k−1)µW (k)
− k2 − 2k

µ2
W (k)

= 1
µW (k)

(
k−2∑
`=1

2`
µW (`)

+ 2(k − 1)
µW (k−1)

− k2 − 2k
µW (k)

)

= 1
µW (k)

(
k−1∑
`=1

2`
µW (`)

+ 2k − k2

µW (k)

)
= 1
µW (k)

(
k∑
`=1

2`
µW (`)

+ −k2

µW (k)

)
proving the result.
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Proof of Proposition 4. FixW , α, and a position k. To prove Equation 6, note
that an agent in position k+1 must (i) endure the waiting time for an object from
W (k + 1), and then (ii) either experience the additional (continuation) payoff of
being in position k, or immediately receive an object from W (k+ 1)\W (k). Since
the waiting time in (i) is independent of the uncertainties in (ii), the total expected
utility of (i) and (ii) is a product of two terms (see Equation 5). The first term is
given by Equation 4, while the second term (in parentheses) is the expected utility
of the payoffs described in (ii).

To prove Equation 7, recall by Proposition 1 an agent in position k consumes
object i ∈ W (k) with probability µi/µW (k). Conditional on consuming i ∈ W (k),
the agent’s waiting time is tk + tk−1 + · · ·+ t`, where ` satisfies i ∈W (`)\W (`−1)
and where tj is exponentially distributed with parameter µW (j). This is because,
in order to consume such an i, the agent must first advance to position ` in the
queue and then receive an object, requiring waits for arrivals fromW (k),W (k−1),
. . . , W (`).

Denoting t as the total (unconditional) waiting time and v as the value of the
received object, we have

UWk ≡ E(u(v − t)) =
k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

E(u(vi − τi))

=
k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

E(u(vi))(−E(u(−τi)))

=
k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

u(vi)
k∏
j=`
−E(u(−tj))

=
k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

(−e−αvi)
k∏
j=`

µW (j)
µW (j) − α

where the second and third lines follow from Equation 5, and the last from Equa-
tion 4. For each i, the µW (j)/(µW (j) − α) term appears for each position j ≤ k
satisfying i ∈W (j), so the last line yields Equation 7.

Proof of Theorem 3. Observe that UWk−1 ≥ UW
′

k−1 if and only if UWk−1 ≥ u(vi) =
−e−αvi , i.e. k − 1 prefers to defer i whenever the utility from vi does not exceed
the expected utility of continuing to wait. This follows intuitively but can also be
derived from Equation 7. Therefore we need to show that UWk ≥ UW

′
k if and only

if UWk−1 ≥ u(vi) = −e−αvi .
Observe that µW ′(k) = µW (k) and thatW (k)\W (k−1) = {i}∪(W ′(k)\W ′(k−
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1)). This cancels some terms in Equation 6, so that

UWk ≥ UW
′

k ⇔
µW (k−1)
µW (k)

UWk−1 + µi
µW (k)

u(vi) ≥
µW ′(k−1)
µW ′(k)

UW
′

k−1

Since µW ′(k−1) = µW (k−1) + µi the latter inequality becomes

µW (k−1)
µW (k)

UWk−1 + µi
µW (k)

u(vi) ≥
µW (k−1) + µi

µW (k)
UW

′
k−1, or

µW (k−1)
µW (k−1) + µi

UWk−1 + µi
µW (k−1) + µi

u(vi) ≥ UW
′

k−1 (19)

Next we express UW ′k−1 in terms of UWk−1. The following equation can be de-
rived (tediously) from Equation 7; however it can be understood as follows. After
adding i to W (k − 1), with probability µW (k−1)

µW (k−1)+µi the agent receives the payoff
he would have received under W , and with the remaining probability he receives
u(vi). In both cases the term µW (k−1)+µi

µW (k−1)+µi−α represents the waiting cost utility as
in Equation 4. However in the former case, UWk−1 is corrected for the fact that the
waiting cost utility µW (k−1)

µW (k−1)−α
no longer applies. In summary, we have

UW
′

k−1 =
µW (k−1)

µW (k−1) + µi
UWk−1

[
µW (k−1) − α
µW (k−1)

µW (k−1) + µi

µW (k−1) + µi − α

]

+ µi
µW (k−1) + µi

u(vi)
µW (k−1) + µi

µW (k−1) + µi − α

=
µW (k−1) − α

µW (k−1) + µi − α
UWk−1 + µi

µW (k−1) + µi − α
u(vi)

Now Equation 19 becomes
µW (k−1)

µW (k−1) + µi
UWk−1 + µi

µW (k−1) + µi
u(vi)

≥
µW (k−1) − α

µW (k−1) + µi − α
UWk−1 + µi

µW (k−1) + µi − α
u(vi) (20)

which is true precisely when UWk−1 ≥ u(vi).

Proof of Theorem 4. We show that for any position k, no policy W ′ provides
higher expected utility than W ∗α. For k = 1, this follows immediately from the
construction of W ∗α(1).
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For k = 2, suppose by contradiction that W ′ maximizes U ·2 and provides
strictly higher expected utility than W ∗α. If W ′(1) = W ∗α(1), then W ∗ maximizes
U ·2 by construction of W ∗α(2); therefore we have W ′(1) 6= W ∗α(1). Observe that, by
construction, W ∗α(1) is a threshold set, i.e. of the form {1, 2, . . . , x} containing
the “best x” object types. This follows from the observation that U ·1 cannot
be maximized by a policy in which position 1 defers object type i and accepts
some worse type j > i. Using similar reasoning, we can also see that W ∗α(2)
(which maximizes U ·2 subject to fixingW ∗α(1)) and evenW ′(2) (which, withW ′(1),
maximizes U ·2) also must be threshold sets, since it cannot be optimal to defer a
better object than an accepted one.

Additionally, W ′(1) must be a threshold set. If not, it would prescribe posi-
tion 1 to defer some object type i while planning to accept some worse type j > i.
In this case position 1 could obtain higher expected utility than from UW

′
1 either

by accepting i or by deferring j, i.e. either by adding i ∈ W ′(2) to W ′(1) or by
deleting j ∈ W ′(2) from W ′(1). By Theorem 3, however, this improvement in
position 1’s expected utility would also improve the expected utility to position 2,
contradicting the fact that W ′ maximizes U ·2.

Since W ∗α(1) and W ′(1) are threshold sets, one must be a subset of the other.
If W ∗α(1) ( W ′(1) then removing some i ∈ W ′(1) \W ∗α(1) from W ′(1) increases
U ·1. By Theorem 3 this increases U ·2, contradicting the fact that W ′ maximizes U ·2.

Therefore W ′(1) ( W ∗α(1). Let i = min{i ∈ W ∗α(1) \W ′(1)} be the highest-
valued object type in W ∗α(1) that is not in W ′(1). It is immediate from the con-
struction of W ∗α(1) that adding i to W ′(1) gives position 1 expected utility higher
than UW ′1 . If i ∈W ′(2), then by Theorem 3 this change gives position 2 expected
utility higher than UW ′2 , contradicting the fact that W ′ maximizes U ·2.

Therefore i 6∈W ′(2). Since i is the best object type not inW ′(1) andW ′(2) is a
threshold set, this implies W ′(2) = W ′(1). In this case, we can see via Equation 6
that the addition of i to W ′(1) = W ′(2) increases U ·2 (which, recall, is negative):
the term corresponding to µW ′(2)/(µW ′(2) − α) decreases; the term corresponding
to µW ′(1)/µW ′(2) remains one; UW ′1 increases; and the final summation term is null.
Hence the overall effect of adding i to W ′(1) is to increase position 2’s expected
utility, contradicting the fact that W ′ maximizes U ·2.

For k > 2, the proof continues inductively, with analogous, but tedious, rea-
soning. The general idea as above is that moving an object type between the set
W (k) and one of the earlier sets W (`) (` < k) either benefits both positions or
hurts both positions. Since the sets W ∗α(1), . . . ,W ∗α(k − 1) already maximize ex-
pected utilities to those positions, the expected utility to a later position cannot
be improved by a change that would hurt those positions, a là Theorem 3. The
related, full proof of Proposition 7 is available upon request.
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Proof of Proposition 5. Equation 10 proves the case k = 1. Supposing Equa-
tion 12 holds for some k, we show it to hold for k + 1.

Upon the arrival of an object i ∈ W (k + 1), the agent in position k + 1 either
receives the object, or moves into position k. Conditional on the latter event (mov-
ing into position k), that agent’s eventual (continuation) payoff has an expected
NPV of EPVk by definition. Hence, starting from position k+ 1, the agent incurs
waiting costs until seeing an arrival of i ∈ W (k + 1) and then faces two possible
lump sum payoffs: receiving vi if i ∈ W (k + 1) \W (k) or otherwise “receiving”
EPV1 as an expected continuation payoff.

The expected NPV of waiting costs for an arrival from W (k + 1) is

1/(r + µW (k+1))

as described earlier. The expected NPV of the lump sum payoff is

µW (k)
µW (k+1)

·
EPVk · µW (k+1)
r + µW (k+1)

+
∑

i∈W (k+1)\W (k)

µi
µW (k+1)

·
viµW (k+1)
r + µW (k+1)

Combining these terms and substituting, we have

EPVk+1 =
µW (k) · EPVk
r + µW (k+1)

+
∑

i∈W (k+1)\W (k)

µivi
r + µW (k+1)

− 1
r + µW (k+1)

= 1
r + µW (k+1)

µW (k)
µW (k)

k∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1

 k∏
m=`

µW (m)
r + µW (m)


+

 ∑
i∈W (k+1)\W (k)

µivi − 1


= 1
µW (k+1)

k+1∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1

 k+1∏
m=`

µW (m)
r + µW (m)


yielding Equation 12 for k + 1.

Proof of Theorem 5. LetW ,W ′, k ≥ 1, and j be such that j ∈W (k+1)\W (k),
W ′(k) = W (k) ∪ {j}, and ` 6= k =⇒W ′(`) = W (`).23 We prove

EPV W
k+1 < EPV W ′

k+1 ⇐⇒ EPV W
k > EPV W ′

k .

23The proof is slightly easier to read using indices k and k + 1 rather than those in the
statement of the theorem.
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First it is obvious that

vj < EPV W
k ⇐⇒ EPV W

k > EPV W ′
k (21)

i.e. under policy W ′, position k agents would benefit from instead deferring j-type
objects when vj is less than their continuation value under W .

By (12), we can write EPV W
k = X/(r + µW (k)) where

X =
k−1∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1

 k−1∏
m=`

µW (m)
r + µW (m)

+

 ∑
i∈W (k)\W (k−1)

µivi − 1


Since W and W ′ differ only in that W ′(k) = W (k) ∪ {j}, we also have EPV W ′

k =
X+µjvj

r+µW (k)+µj . Therefore by the recursion relation in Equation 11,

EPV W
k+1 = 1

r + µW (k+1)

[
µW (k)

X

r + µW (k)
+

∑
i∈W (k+1)\W (k)

µivi − 1


EPV W ′

k+1 = 1
r + µW (k+1)

[
(µW (k) + µj)

X + µjvj
r + µW (k) + µj

+
∑

i∈W (k+1)\W (k)
µivi − µjvj − 1


Hence we have EPV W ′

k+1 > EPV W
k+1 if any only if

(X + µjvj)
µW (k) + µj

r + µW (k) + µj
− µjvj > X

µW (k)
r + µW (k)

X

(
µW (k) + µj

r + µW (k) + µj
−

µW (k)
r + µW (k)

)
> µjvj

(
1−

µW (k) + µj

r + µW (k) + µj

)

X

(
µjr

(r + µW (k) + µj)(r + µW (k))

)
> µjvj

(
r

r + µW (k) + µj

)

EPV W
k = X

(r + µW (k))
> vj

With (21) this proves the result.

Proof of Proposition 6. Under the constraint in Equation 15 the payoff is

Π
(
λ− µW (K)

γ
;W

)
=
∑
i∈W (K) µivi − λ/γ

µW (K)
+ 1
γ

so the maximization exercise in (15) is equivalent to

max
Ô⊆O

∑
i∈Ô µivi − λ/γ

µÔ
≡ max

W
Π(λ/γ;W ) (22)
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By Theorem 2 this is solved by setting Ô = W ∗(λ/γ), the set of types that would
be accepted through position λ/γ under a no-influence policy.

Proof of Proposition 8. The arguments proving the case r = 0 are provided in
the text. For the case r > 0, though preferences over policies can be evaluated
explicitly using Proposition 5, we provide purely ordinal arguments for simplicity.
Say that “position ` prefers policy W to W ′” when EPV W

` > EPV W ′
` .

We show that position k̂ prefers W Ij to W ∗. Since k̂ prefers W ∗ to WS by
Assumption 1, this proves the result for k = k̂. Furthermore, due to the recursive
nature of payoffs (Equation 11), this proves that any position k > k̂ also prefers
W Ij to WS , completing the proof.

Consider policy W Ik̂−1 which assigns type 2 objects to position k̂ − 1. By
Assumption 1, position k̂ − 1 prefers W ∗ to W Ik̂−1 . By Theorem 5 position k̂ has
opposed preferences, and prefersW Ik̂−1 toW ∗ (sinceW Ik̂−1 differs fromW ∗ = W Ik̂

only in that 2 ∈W Ik̂−1(k̂ − 1) \W ∗(k̂ − 1)).
If j = k̂ − 1 we are done. Otherwise we extend the idea to policy W Ik̂−2 .

By the same arguments as above, (i) position k̂ − 2 prefers W Ik̂−1 to W Ik̂−2 by
Assumption 1, (ii) position k̂ − 1 prefers W Ik̂−2 to W Ik̂−1 by Theorem 5.

Finally, due to the recursive structure of payoffs (Equation 11), position k̂ thus
also prefers W Ik̂−2 to W Ik̂−1 . (Specifically, this is because, since W Ik̂−2(k̂ − 1) =
W Ik̂−1(k̂ − 1), the specification of the set W (k̂ − 2) affects EPVk̂ in the same
direction it affects EPVk̂−1.)

Repeating this argument, position k̂ prefers W I1 to W I2 to. . . to W Ik̂−1 to
W ∗ = W Ik̂ to WS . Since payoffs are recursive, the same statement applies to any
position k ≥ k̂.

Proof of Proposition 9. Given our definitions ofWS andW I1 , Equation 7 gives
the expected utility to position k ≥ 2 as

UW
S

k = −e−αv1

(
µ1

µ1 − α

)k
UW

I1
k = µ1(−e−αv1) + µ2(−e−αv2)

µ1 + µ2
·
(

µ1 + µ2
µ1 + µ2 − α

)k
Therefore UWS

k ≥ UW I1
k if and only if
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e−αv1

(
µ1

µ1 − α

)k
≤ µ1(e−αv1) + µ2(e−αv2)

µ1 + µ2
·
(

µ1 + µ2
µ1 + µ2 − α

)k
(µ1 + µ2)

(
µ1(µ1 + µ2 − α)

(µ1 + µ2)(µ1 − α)

)k
≤ µ1(e−αv1) + µ2(e−αv2)

e−αv1

(µ1 + µ2)
(
µ1(µ1 + µ2 − α)

(µ1 + µ2)(µ1 − α)

)k
≤ µ1 + µ2e

α(v1−v2)

eα(v1−v2) ≥ µ1 + µ2
µ2

(
µ1(µ1 + µ2 − α)

(µ1 + µ2)(µ1 − α)

)k
− µ1
µ2

v1 − v2 ≥
1
α

ln
(
µ1 + µ2
µ2

[
µ1(µ1 + µ2 − α)

(µ1 + µ2)(µ1 − α)

]k
− µ1
µ2

)

It is straightforward to verify that the term in square brackets exceeds 1, and hence
that the right hand side increases in k.
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