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Abstract

We consider the pricing problem of a platform that matches het-

erogeneous agents using match-contingent fees. Absent prices, agents

on the short side of such markets capture relatively greater surplus

than those on the long side (Ashlagi et al. (2017)). Nevertheless we

show that the platform need not bias its price allocation toward either

side. With independently drawn preferences, optimal price allocation

decisions are independent of market size or imbalance; furthermore,

changes in the optimal price level move both sides’ prices in the same

direction. In contrast, preference homogeneity biases price allocation

in a direction that depends on the form of homogeneity; furthermore,

changes in market imbalance move both sides’ prices in opposite di-

rections. These effects arise due to the exclusivity of matchings in

two-sided market settings.
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1 Introduction

The proliferation of online, “winner-take-all” matching platforms has led to

intensified interest in the study of platform pricing. While an established

literature on two-sided markets explains much about such pricing, it has

mostly1 abstracted away from two real-world characteristics of markets that

can lead to market size effects on pricing that otherwise would not be present.

Specifically, we consider settings where exclusive (one-to-one) partnerships

are created amongst horizontally differentiated agents.

(I) Exclusivity. Canonical models of two-sided markets realistically rep-

resent certain platforms (video game consoles, credit cards, newspapers, etc.)

by assuming that each participating agent interacts with all (or a constant

fraction of) agents on the other side of the market. Our interest is in plat-

forms that exist specifically to create one-to-one (or capacity constrained)

matchings (e.g. ridesharing or matchmaking services).

(II) Heterogeneity. Many models of two-sided interactions consider some

form of homogeneity in preferences; e.g. that agents commonly rank poten-

tial partners, or express indifference over partners. Such assumptions are

realistic in certain environments, but in others—especially those exhibiting

exclusivity—agents’ preferences over potential partners are heterogeneous;

examples include dating or headhunting services.

Characteristics (I) and (II) lead to a third distinction between existing

work and ours: consideration of the matching process itself. Agents care not

only about the price they pay to the platform but about the identity of the

partner with whom they are matched.2 Though the platform controls prices,

it may or may not control the matching process itself. Centralized platforms

1Exceptions are discussed in Subsection 1.2.
2In contrast, without capacity constraints on interactions, it is natural simply to assume

that a pair of agents interacts whenever it is mutually beneficial, given prices.
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(e.g. ride sharing) may be able to directly specify matching outcomes. De-

centralized ones (e.g. dating sites) do so only indirectly by setting the rules

by which agents interact to make pairing decisions. This leaves the question

of which matching outcomes might actually occur on such platforms.

When search and information frictions are low it is reasonable to assume

that decentralized platforms yield matching outcomes in the core, i.e. stable

matchings à la Gale and Shapley (1962). Indeed, Adachi (2003) obtains such

outcomes in the equilibria of a decentralized matching model with random

encounters. Hitsch et al. (2010) validate this notion empirically, demon-

strating that interactions at an online dating site resemble stable matching

outcomes with respect to estimated preferences.

Though stability is a natural assumption, our main results apply to any

platform whose matching outcomes satisfy a weaker set of assumptions.3

Specifically, we consider any platform (decentralized or not) whose matching

outcomes are (1) individually rational, and (2) sensitive only to the agents’

ordinal preferences over compatible partners. Examples include platforms

yielding stable matchings, serially dictatorial matchings, or maximal match-

ings subject to individual rationality. Our “black box” treatment of the

matching process allows us to bypass assumptions on the agents’ behavior

and information, while also clarifying the intuition underlying our results.

1.1 Overview

Our work sits between two established literatures. A two-sided markets liter-

ature, as described above, analyzes pricing in environments that differ from

ours. A two-sided matching literature pioneered by Gale and Shapley (1962)

considers environments satisfying (I) and (II) but sets aside pricing. We ask

how pricing structure in the latter kinds of environments may differ from

those studied in the former, particularly due to the presence of market size

imbalance and of preference homogeneity (or correlation).

3We are greatly indebted to an Editor for encouraging us to formalize this.
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The resulting insights depart from those obtained from either literature.

For instance, when matchings are non-exclusive it is primarily the marginal

distribution of agents’ values that determines the platform’s transaction fees,

independently of market imbalance and preference correlation. Intuitively, if

an agent is not crowded out of a potential pairing by that partner’s interaction

with others, then revenue-maximizing transaction fees for that pair can be

calculated regardless of the presence of other agents. When matchings are

exclusive, however, the platform’s pricing decision can be affected by both

absolute and relative market size in a way that depends on the structure of

preference correlation (homogeneity). Generally speaking, market size drives

the sum of prices, or price level (Section 4), while market imbalance and

preference homogeneity interact to drive relative prices across the two sides,

or price allocation (Section 5).

To establish that the latter effect requires this interaction, we first con-

sider heterogeneous (independently drawn) preferences (Section 3). Here we

show that neither market size nor market imbalance affects the platform’s

price allocation decision. This conclusion is not only a baseline from which

to consider homogeneous preferences, but also establishes another departure

from intuition established in previous work. Ashlagi et al. (2017) show that

market imbalance leads to higher normalized payoffs for “scarce” agents on

the short side of stable matching markets than for agents on the long side.

One might thus expect a monopolistic platform to capture these imbalanced

payoffs by charging a relatively higher price to the scarce agents. We show

that this is not the case when agents are charged in the form of transaction

fees; market imbalance by itself does not justify imbalanced prices.

To illustrate with a simple example,4 consider a setting with only one

agent (“man”) on one side of a market who can pair with at most one of ten

agents (“women”) on the other, each agent drawing an i.i.d. value from [0, 1]

for each potential partner. Assume that the platform yields a (single) match

4We are grateful to a referee for suggesting this illustration.
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whenever at least one man-woman pair is compatible: their values for each

other exceed their respective transaction fees. By setting the man’s fee to be

0.5 and the women’s fee to be 0, a match is created whenever at least one of

the man’s ten draws exceeds 0.5. Swapping the two sides’ fees, a match is

created whenever at least one of the ten women draws her value in excess of

0.5. Both scenarios thus yield the same expected revenue: there is no strict

benefit from charging a higher price to the man.5

This conclusion relies on two assumptions. First is that the matching out-

come depends only on each pair’s compatibility. If the outcome is sensitive to

additional preference information, the conclusion need not hold. We estab-

lish weak assumptions on the matching process (Subsection 2.1) that preserve

the example’s conclusion more generally. Second is preference heterogeneity:

i.i.d. values imply that (i) the man views the women as “differentiated” and

(ii) the women have “private values” for the man. Introducing preference

homogeneity along either of these dimensions also alters this conclusion as

we discuss in Section 5.

While our main focus is on price allocation, we consider price level in Sec-

tion 4. Unlike the former, price level decisions depend on the specification

of the matching process. Focusing on stable matching outcomes (motivated

above) we provide an expression that yields a lower bound for the stable plat-

form’s revenue, and illustrate that thicker markets lead to higher price levels.

The expression exactly describes expected revenue for a serially dictatorial

matching platform.6

1.2 Other Approaches

Platform pricing has been studied in ways that differ from both our setting

(exclusive matchings among agents with heterogeneous preferences) and our

5With additional assumptions the optimal fees are equal (Proposition 1), thus preserv-
ing the surplus-imbalance result of Ashlagi et al. (2017) even net of optimal prices.

6A ranking between stability and a form of serial dictatorship is first established in a
related model by Arnosti (2016).
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pricing method (transaction fees). Most prominently, the two-sided markets

literature alluded to above (pioneered by Rochet and Tirole (2003),(2006),

and Armstrong (2006)) focuses on non-exclusive matchings, with homogene-

ity in agents’ fixed or variable benefits from joining the platform; see also

Weyl (2010). Besides transaction fees, access fees also have been considered,

particularly where agents also value platform membership itself.

In our setting, where value is generated solely from exclusive matching,

we set aside access fees to preserve ex post individual rationality (IR). If

agents decide whether to join the platform before learning their preferences

over the other participants, optimal access fees simply charge each side the

expected surplus of joining the platform, violating IR for some agents ex

post. Notably, such access fees would typically be biased toward the shorter

side of the market as intuition might suggest; under stability this follows

from Ashlagi et al. (2017). In contrast we show that transaction fees induce

no such bias if preferences are heterogeneous.

Related work on exclusive matching platforms analyzes other forms of

up-front payments, but in a setting of homogeneous (vertical) preferences,

where efficient (or stable) matchings are assortative. First, Damiano and

Li (2007)7 offer agents a menu of access fees, each giving entry to a “club”

that randomly matches members. Knowing their types when they choose

clubs, agents end up coarsely sorted by type. The authors’ main concern is

the inefficiency (coarseness) of revenue-maximizing menus.

Second, one can reinterpret the money-burning, signalling model of Hoppe

et al. (2009) as a platform that runs an all-pay auction, assortatively match-

ing agents with respect to their bids. Their results imply that an increase

in market imbalance would increase total revenue earned from the long side

and increase total surplus on the short side.

A search market literature also addresses pricing and exclusive matching.

Bloch and Ryder (2000) consider agents (again with vertical preferences)

7Also see Damiano and Li (2008) for an analysis of competing platforms.
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who have the outside option to find a partner via a search market with

friction. They show that a platform using flat fees loses low-type agents

to the search market while fees proportional to surplus cause high types to

defect. Analogous results in the case of transferable utility are shown by

Rubinstein and Wolinsky (1987) and Yavas (1992).

The related, wider problem of preventing defection from the platform

is addressed by Spiegler (2000) through more general (contractual) pricing

arrangements. Roughly speaking, his solution induces agents to stay on

the platform by offering certain compensations to one side of the market

whenever agents on the other side defect. He further shows that such schemes

can be constructed in a way that limits the platform’s liability.

Other topics beyond our scope, such as platform competition and infor-

mation structure, use models that further depart from ours. Depending on

the setting, platform competition can be softened when: platforms offer non-

exclusive membership (Caillaud and Jullien (2003)), each platform restricts

agent participation on a unique side of the market (Halaburda et al. (2018)),

two platforms price to be cheaper (and larger) on opposite sides of the mar-

ket (Ambrus and Argenziano (2009)). In terms of information structure,

Biglaiser (1993) studies platforms as “experts” that reduce adverse selection;

Fershtman and Pavan (2016) and Gomes and Pavan (2016) study the impact

of information structure on platform pricing and design. We abstract away

from informational considerations by “black-boxing” the matching process.

2 Model

There are two finite sets of agents, referred to as men M = {1, 2, . . . ,M}
and women W = {1, 2, . . . ,W}. A (one-to-one) matching is a function

ν : M×W →M×W satisfying the following usual conditions for all (m,w) ∈
M ×W : (i) ν(m) ∈ W ∪ {m}, (ii) ν(w) ∈ M ∪ {w}, and (iii) ν(m) = w if

and only if ν(w) = m. We say agent i ∈M ∪W is unmatched (or single)
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at ν when ν(i) = i. We say (m,w) ∈M×W is a marriage when ν(m) = w.

The number of marriages in ν is denoted |ν|.
If man m ∈ M is matched to woman w ∈ W , m obtains value um(w) ∈

[0, 1] and w obtains uw(m) ∈ [0, 1]. The value of being unmatched is zero

(denoted ui(i) ≡ 0). These normalizations are not critical to our results.

A profile of values, denoted u = ((um)M , (uw)W ), is randomly drawn from

a joint distribution. Heterogeneous preferences (Section 3 and Section 4) are

represented by independently drawn values. Namely, a random economy

is one where each value um(w) is independently drawn from (marginal) dis-

tribution FM, and each uw(m) is independently drawn from FW . The cor-

responding densities (fM, fW) are continuously differentiable with positive

support on [0, 1]. Homogeneous preferences are represented by correlated

values as constructed in Section 5.

Agents make transfers to the platform as described below. At a matching

ν, an agent i who pays x to the platform has a payoff of ui(ν(i))− x.

2.1 Matching platforms

A matching platform specifies prices and, given these prices, yields a match-

ing outcome as a function of the agents’ realized values. In terms of prices,

we focus on platforms that charge agents via match-contingent fees. That is,

an agent’s payment to the platform is a function only of (i) the side of the

market to which the agent belongs, and (ii) whether or not the agent ends

up in a marriage. Formally, prices are a pair p = (pM, pW) ∈ [0, 1]2, where

matched men and women pay the platform pM and pW respectively.8 The

payments of unmatched agents are normalized to zero.

Fixing such prices p, a platform is defined by the manner in which it

creates matchings as a function of the agents’ realized values. A match-

ing process µ is a function that, for any p and u, yields a matching

8The restriction to [0, 1] is innocuous since the support of values is on [0, 1]; e.g. see
the arguments in the proof of Lemma 2.
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ν = µp,u : M ×W →M ×W .

There are multiple interpretations of the function µ, which is a “black

box” representation of how agents end up being matched. At one extreme,

imagine a centralized platform that can fully observe the agents’ prefer-

ences, u. Such a platform may be able to fully dictate the matching outcome

by choosing an arbitrary µ, e.g. one that maximizes the number of marriages.

In contrast, a decentralized (or uninformed) platform may be able to spec-

ify only some set of rules by which decentralized agents interact and form

marriages on the platform. In this case µp,u could represent an equilibrium

outcome of the game induced by such rules under prices p, at a realization u.9

Earlier we motivated the assumption that µp,u represent a stable matching

with respect to preferences induced by p and u. Nevertheless, our main

results apply to matching processes that satisfy weaker conditions.

First, we restrict attention to ex post individually rational outcomes.

Given prices p = (pM, pW) and realized values u, we call the pair (m,w) ∈
M ×W p-compatible (at u) if both um(w) ≥ pM and uw(m) ≥ pW . The

matching process µ is individually rational if, for any p and u,

∀(m,w) ∈M ×W, [µp,u(m) = w] =⇒ [m and w are p-compatible]

The main assumption we make on the matching process is that its out-

comes are sensitive only to the agents’ ordinal preferences over compatible

partners. Condition 1 requires the matching outcome to remain constant

whenever a change in prices (p, p′) and/or realized values (u, u′) has no ef-

fect on (i) the set of compatible pairs of agents and (ii) the agents’ ordinal

preferences over such partners.

Condition 1. A matching process µ is ordinal subject to compatibility

(hereafter, ordinal) if, for any p, p′ and u, u′, we have µp,u = µp′,u′ whenever

the following two conditions hold.

9I.e. µ can represent an implementable social choice function under some solution con-
cept. In the case of stability see Roth (1984a), Kara and Sönmez (1996), Alcalde (1996).
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1. The set of p-compatible pairs at u equals the set of p′-compatible pairs

at u′, and

2. for all such p-compatible pairs (m,w), (m,w′), (m′, w) at u,

um(w) > um(w′)⇔ u′m(w) > u′m(w′) and

uw(m) > uw(m′)⇔ u′w(m) > u′w(m′).

Many natural matching processes satisfy this condition, such as those

that yield man-optimal (or woman-optimal) stable matchings with respect

to the agents’ ordinal preferences induced by u and p. This follows from the

fact that the Deferred Acceptance algorithm which calculates such matchings

is a function only of agents’ ordinal preferences over compatible partners; see

Section 4. Other examples include those based on certain serially dictato-

rial choice functions (again see Section 4) and those that choose maximal

matchings subject to individual rationality. In general, whenever the match-

ing process represents outcomes that result from some strategic behavior

of agents on a decentralized platform, the condition conveys the idea that

the agents’ behavior depends only on their realized ordinal preferences over

“relevant” (i.e. compatible) potential partners.

Conversely Condition 1 rules out matching processes that are sensitive to

preference intensity or to preferences over incompatible partners. Consider

decentralized platforms on which pairs are created only when both partner’s

net payoffs exceed some positive threshold c > 0. In this case a small price

increase might change the outcome of the matching process without affecting

ordinal preferences or compatibility, violating the condition.

Some of our price allocation results apply in the natural case that higher

prices decrease the number of created marriages. In fact we only need this

law of demand assumption to hold in expectation.

Condition 2. A matching process µ is monotonic if the expected number
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of realized marriages is strictly decreasing in prices: for any pairs of prices

p � p′, we have Eu(|µp,u|) > Eu(|µp′,u|).

All of the matching processes mentioned immediately after Condition 1

also satisfy Condition 2. In fact they satisfy a stronger, point-wise version

of monotonicity: for all u, |µp,u| ≥ |µp′,u|, with strict inequality for some

positive density of u’s.10

Condition 1 and Condition 2 suffice to prove our main results on price

allocation in Section 3. However our discussion of homogeneous preferences

in Section 5 is simplified by restricting attention to “maximal” matching

processes, in the sense that at least one member of any p-compatible pair

must belong to some marriage.

Condition 3. A matching process µ is weakly unimprovable if, for any

prices p and realized values u, there exists no p-compatible pair (m,w) ∈
M ×W such that µp,u(m) = m and µp,u(w) = w.

The processes mentioned after Condition 1 are all weakly unimprovable.

3 Price allocation

Fixing a matching process µ and prices p = (pM, pW), the platform’s rev-

enue is the price level, pT ≡ pM + pW , multiplied by the number of created

marriages, |µp,u|. For a random economy the number of created marriages is

a random variable which we denote below by Kp. Expected revenue is thus

pT · E(Kp) ≡ (pM + pW) · E(Kp).

Even if we fix a price level pT , the allocation of pT between pM and

pW typically affects the distribution of Kp, and thus affects the platform’s

expected revenue.11 Therefore the platform’s pricing decision can be viewed

10In the case of stability this follows from a result of Gale and Sotomayor (1985b).
11Thus our model fits Rochet and Tirole’s (2006) definition of two-sided markets.
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as a choice of a total price level pT followed by a decision of how to allocate

pT between the two sides.

max
p=(pM,pW )

(pM + pW)E(Kp) = max
pT

(
pT · max

pM+pW=pT
E(Kp)︸ ︷︷ ︸

price allocation decision

)
.

Focusing on the price allocation decision, we first show that price allo-

cation affects the distribution of marriages Kp only to the extent that it

affects the probability that any arbitrary man-woman pair is p-compatible.

Define the incompatibility parameter q(p) to be the probability that an

arbitrary pair (m,w) ∈M ×W is incompatible at prices p = (pM, pW).

q(p) = q(pM, pW) ≡ FM(pM) + FW(pW)− FM(pM)FW(pW) (1)

Lemma 1 states that for ordinal matching processes, the distribution of

marriages is a function only of q(p): All price pairs with the same incompat-

ibility parameter yield the same expected number of marriages.12

Lemma 1 (The distribution of marriages depends only on q(p)). Suppose

the matching process µ is ordinal. For any p′ = (p′M, p
′
W) and p′′ = (p′′M, p

′′
W)

satisfying q(p′) = q(p′′), Kp′ and Kp′′ have the same distribution.

Proof: For any prices p, since values ui(j) are drawn independently, the

probability that any pair (m,w) will be p-compatible is 1 − q(p), indepen-

dently of any other pair’s compatibility. Therefore, the probability that the

set of p-compatible pairs will be some arbitrary set C ⊆M ×W is

(1− q(p))|C| · q(p)M ·W−|C|

which is a function only of q(p). Since q(p′) = q(p′′), p′ and p′′ induce the

same distribution over all possible sets of compatible pairs, C ⊆M ×W .

12This conclusion may not hold when µ is not ordinal. See Example 1 in the Appendix.
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Fix some realized set of compatible pairs, C. Since values are drawn

independently, an agent’s ordinal preference ranking of his/her compatible

partners in C is uniformly random regardless of prices. That is, conditional

on any such C, p′ and p′′ induce the same (uniformly random) distribution

over ordinal preferences.

The outcome of an ordinal matching process depends only on the realiza-

tion of (i) the set of compatible pairs C and (ii) the agents’ ordinal preferences

over their partners in C. Since p′ and p′′ induce the same distribution over

(i) and (ii), they induce the same distribution over matching outcomes; Kp′

and Kp′′ thus have the same distribution.

A general implication of Lemma 1 is that the platform does not bias its

price allocation toward any particular side of the market as a function of

market size imbalance (i.e. the size of M relative to W ). We formalize this

in two ways, through Theorem 1 (when FM = FW) and Theorem 2.

Consider the special case in which there are no ex ante differences be-

tween the two sides of the market other than size, i.e. where FM = FW . It

immediately follows—from the symmetry of q() in its arguments—that the

expected number of marriages (and hence expected revenue) is a symmetric

function of pM and pW regardless of any imbalance between M and W .

Theorem 1 (Revenue symmetry). Suppose the matching process is ordinal

and that FM = FW . Let prices p = (pM, pW) and p′ = (p′M, p
′
W) be such that

pM = p′W and pW = p′M. Then p and p′ yield the same expected revenue to

the platform.

Proof: Follows from Lemma 1 and the symmetry of q() in its arguments.

Thus any expected revenue earned by charging a relatively higher price

to the short side of the market could have been achieved by reversing the

price list. This contrasts with the intuition (mentioned in Subsection 1.1)

to charge more to the side of the market with higher per capita surplus.
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Optimal transaction fees are not biased toward the short side of the market,

even if that side obtains higher gross payoffs from participation.

In light of this it is natural to suspect that, at least for symmetric distri-

butions FM = FW , a revenue-maximizing price allocation charges both sides

equal prices regardless of any market imbalance. This is indeed the case when

the value distributions satisfy a standard hazard rate condition. We say that

Fi has a strictly increasing hazard rate if hi(x) ≡ fi(x)/(1 − Fi(x)) is

strictly increasing in x ∈ [0, 1]. (Omitted proofs are in the Appendix.)

Proposition 1 (Symmetry with monotone hazard rate). Suppose the match-

ing process is ordinal and monotonic, and that FM = FW has a strictly in-

creasing hazard rate. For any 0 < pT < 2, prices p∗M = p∗W = pT/2 uniquely

maximize expected revenue subject to the constraint pM + pW = pT .

In particular, unconstrained revenue-maximizing prices satisfy p∗M = p∗W
whenever FM = FW has monotone hazard rate. Without the hazard rate

condition the platform might strictly benefit by charging two unequal prices;

see Example 2 in the Appendix. Even in this case the platform is indifferent

about which side receives the higher price (Theorem 1).

Obviously when FM 6= FW , the revenue-maximizing price allocation need

not be symmetric. Nevertheless it remains independent of market size since

optimal price allocations are simply those that minimize the incompatibility

parameter, q().

Theorem 2 (Optimal price allocation is market-size independent.). Suppose

the matching process is ordinal and monotonic. For any 0 < pT < 2 and

prices p∗M + p∗W = pT , the following two statements are equivalent.

1. (p∗M, p
∗
W) minimizes q(pM, pW) subject to the constraint pM+pW = pT .

2. (p∗M, p
∗
W) maximizes expected revenue subject to the constraint pM +

pW = pT .
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Proof: Under the constraint pM + pW = pT > 0, (p∗M, p
∗
W) maximizes ex-

pected revenue if and only if (p∗M, p
∗
W) maximizes the expected number of

marriages. By Lemma 1 the expected number of marriages is a function only

of q().

To see that it is a decreasing function of q(), consider any 0 ≤ q′ <

q′′ ≤ 1. Clearly there exist prices p′ � p′′ with q(p′) = q′ < q(p′′) = q′′.

By monotonicity, p′′ yields lower expected marriages than p′. Maximizing

expected revenue is thus equivalent to minimizing q().

While the optimal allocation of a given price level, pT , is independent

of market sizes (M and W ), the choice of pT itself is typically affected by

market sizes (see Section 4). The resulting indirect effect on price allocation

is ambiguous without further assumptions. Nevertheless under the hazard

rate condition we can show that optimally allocated prices (p∗M(pT ), p∗W(pT ))

are nondecreasing in the price level pT .

Proposition 2 (Price co-movement). Suppose the matching process is or-

dinal and monotonic and that FM and FW have strictly increasing hazard

rates. Then the following hold.

• For any 0 < pT < 2 there are unique prices, (p∗M(pT ), p∗W(pT )), that

maximize expected revenue subject to the constraint pM + pW = pT .

• These optimally allocated prices covary in price level: p∗M(pT ) and

p∗W(pT ) are nondecreasing in pT .

As a corollary of this result, any arbitrary change in market sizes affects

both sides’ (unconstrained) revenue-maximizing prices in the same direction.

That is, fix all of the primitives of our model other than market sizes. Suppose

that prices (p̃∗M, p̃
∗
W) maximize expected revenue for market sizes (M̃, W̃ ),

while prices (p̂∗M, p̂
∗
W) maximize expected revenue for market sizes (M̂, Ŵ ).

Then by Proposition 2 either (p̃∗M, p̃
∗
W) 5 (p̂∗M, p̂

∗
W) or (p̃∗M, p̃

∗
W) = (p̂∗M, p̂

∗
W).
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We explore two important points about this conclusion. First, one cannot

determine which of these two inequalities holds without specifying how the

matching process varies across different market sizes. Section 4 considers

price level in the natural case where µ selects stable matchings at all market

sizes. Second, the co-movement of optimal prices hinges on the assumption

of independently drawn preferences. Section 5 shows how different forms of

preference homogeneity overturn this conclusion in different directions.

4 Price level

In this section we consider the topic of optimal price level (pT ) for matching

processes that yield pairwise stable matchings à la Gale and Shapley (1962)

as motivated in the introduction. In our context, a matching is stable with

respect to prices p when (i) each matched pair is p-compatible, and (ii) no

“blocking pair” of agents can match with each other and obtain strictly

higher values (net of price) than in the matching. The well known Deferred

Acceptance algorithm of Gale and Shapley (1962) computes such a matching,

which furthermore contains the same number of marriages as any other stable

matching (Roth (1984b)). Therefore we restrict attention to the following

DA matching process without loss of generality.

Definition 1. The DA matching process, µDA, yields, for any prices p

and values u, the matching µDA
p,u that results from the following algorithm.

Initialize all men to be eligible and, in each round t = 1, 2, . . ., execute the

following steps.

Step t.1: Each eligible man proposes to his favorite (highest-valued)13 p-

compatible woman among those to whom he has not already proposed.

(If no such woman exists he proposes to no one.)

13We ignore the zero probability event of ties. One form of preference homogeneity in
Section 5 yields ties that can be broken arbitrarily without affecting the results.
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Step t.2: Each woman is tentatively matched to her favorite man among

those who have proposed to her (if any exist). These men become inel-

igible; all others become eligible. If each eligible man has proposed to

each of his p-compatible partners, the algorithm outputs the tentative

matching; otherwise execute round t+ 1.

Observe that µDA satisfies the conditions of Subsection 2.1. Condition 1

is satisfied since the algorithm is a function only of the agents’ ordinal pref-

erences induced by p and u. Condition 2 follows from Gale and Sotomayor

(1985b): a price increase induces “preference truncations,” shrinking the set

of matched agents. Condition 3 is immediate from stability.

In order to analyze price level in relation to market size and imbalance, we

would like a tractable expression for expected revenue under µDA as a function

of both prices (pM, pW) and market sizes (M,W ). Due to the combinatorial

nature of this problem such an expression remains out of reach. Instead we

draw conclusions by first demonstrating that this expected revenue is approx-

imated (and bounded) by the expected revenue obtained under the following

(compatibility-constrained) serially dictatorial matching process (which also

satisfies the conditions in Subsection 2.1).

Definition 2. The SD matching process, µSD, yields, for any prices p

and values u, the matching µSD
p,u that results from the following algorithm.

Initialize all men to be eligible and, in each round t ∈ {1, 2, . . . ,W} execute

the following step.

Step t: Woman w = t is matched to m, her favorite p-compatible man

among those that are eligible. (If no such man exists she is single.)

Man m is removed from the set of single men.

Arnosti (2016) formally shows that the expected number of stable mar-

riages is bounded by that obtained under a similar procedure. He considers

large matching markets with short, constant-length preference lists on one

market side, while our preference lists are “shortened” via prices and thus
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not of constant length as markets grow large. Since this technical difference

is minor, we merely verify Arnosti’s bound in our setting through simulation

(see Figure 2) rather than extend his formal arguments to our setting.

On the other hand, we provide a closed-form expression for expected

revenue (or marriages) under µSD, requiring the following notation.

Definition 3. For any real number q ∈ [0, 1], the q-analog of integer

j ∈ Z and the q-factorial of j are, respectively, defined as follows.

[j]q ≡ 1 + q + · · ·+ qj−1 =
1− qj

1− q
[j]q! ≡ [j]q[j − 1]q · · · [1]q

The q-binomial coefficient for integers k,n ∈ Z+ (k ≤ n) is[
n

k

]
q

≡ [n]q!

[k]q![n− k]q!

Since our purpose is to consider how market size affects the distribution

of marriages under µSD, we make this dependence on M and W explicit.

Analogous to the notation used in Section 3, for any prices p = (pM, pW) we

let random variable KSD
p,M,W denote the number of marriages created by µSD

for a random economy at prices p.

Theorem 3 (Distribution of marriages under µSD). For any M,W , and

prices p = pM, pW with incompatibility parameter q = q(p), the number

of marriages created under µSD for a random economy has the following

distribution.14 For 0 ≤ k ≤ min{M,W},

P (KSD
p,M,W = k) = (1− q)kq(M−k)(W−k)

[
M

k

]
q

[
W

k

]
q

[k]q! (2)

14Equation 2 is analyzed by Blomqvist (1952) and Kemp (1998). Ebrahimy and
Shimer (2010) use it to describe employment in a stock-flow labor model.
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Figure 1. The expected number of marriages under serial dictatorship for
various q(p), fixing M = 50.

Its expectation is provided by Kemp (1998).

E(KSD
p,M,W ) =

∑min{M,W}
j=1

[(1−qM )···(1−qM−j+1)][(1−qW )···(1−qW−j+1)]
1−qj (3)

The first two terms in Equation 2 have a straightforward interpretation:

(1− q)k is the probability that k given pairs of agents are compatible, while

q(M−k)(W−k) is the probability that all other agents are incompatible. The

remaining terms are a probabilistic analog to the number of ways to form k

pairs from the sets M,W .

Figure 1 graphs Equation 3 for various levels of incompatibility q(p),

fixing M = 50 while varying W . The graph illustrates the intuitive fact that,

when the market is very imbalanced (W far from 50), the platform creates

close to the maximum feasible number of marriages (min{W, 50}) even at

relatively high prices (q(p) close to 1). In relatively balanced markets, on the

other hand, the platform faces a richer tradeoff between price and volume.15

15To illustrate, when M = W = 50 and FM, FW are both U [0, 1], revenue-maximizing
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The same intuition holds true for stable platforms (µDA).

We compare the expected number of marriages created under µSD and

µDA, observing that the former is both an approximation and a bound for

the latter. Following the intuition discussed above, it is unsurprising that

these values approximate each other in very unbalanced markets, where both

matching processes create close to the maximum feasible number of mar-

riages, min{M,W}. Therefore we focus on the (“worst”) case of balanced

markets (M = W ), where the expected number of marriages under either

process need not be close to min{M,W}. Our resulting conclusions easily

extend to unbalanced markets.

Figure 2 graphs the percentage by which the expected number of mar-

riages under µSD falls short of the expected number of marriages under

µDA. To be precise, let KDA
p,M,W denote the number of marriages created

by µDA for a random economy at prices p. The figure graphs the percent-

age
[
E(KDA

p,M,W )− E(KSD
p,M,W )

]
/E(KDA

p,M,W ) as a function of (balanced) mar-

ket size n = M = W . Consistent with the related asymptotic results of

Arnosti (2016), the values in the graph are positive.

The figure also hints that for any pair of prices (i.e. any q(p)), the per-

centage difference converges to zero. The following theorem implies a slightly

stronger conclusion: the expected number of single agents under µSD con-

verges to a constant as n = M = W grows large; see Figure 3.16

Theorem 4 (Expected singles under µSD). For random, balanced economies

of size n = M = W , let random variable SSD
p,n denote the number of un-

matched men (hence unmatched women) under µSD at prices p. For any

prices p with incompatibility parameter q = q(p), its asymptotic expectation

prices under µSD are approximately p∗M = p∗W = 0.718 (q(p∗) ≈ 0.92). These prices yield
approximately 41.9 expected marriages, leaving 16% of the market unserved. While these
numbers are merely illustrative, they demonstrate a nontrivial price-volume tradeoff.

16The distribution of SSD
p,n has thin tails (see Equation 10 in the Appendix). Therefore

Figure 3 approximates S̄(q) by summing the first (sufficiently many) terms of Equation 4.
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Figure 2. The percentage difference in expected marriages between µDA

(simulation) and µSD (Equation 3).

is

lim
M=W→∞

E
(
SSD
p,n

)
= S̄(q) ≡

[
∞∏
i=1

(1− qi)

][
∞∑
s=0

s · qs2

((1− q) · · · (1− qs))2

]
. (4)

The result is significant since it allows us to draw a related conclusion

about the number of unmatched agents under µDA, even in economies of

arbitrary size and imbalance. First, begin with a balanced economy of size
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q

Figure 3. The expected number of unmatched men (women) under µSD in
large, balanced markets at prices p is S̄(q(p)).
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n = M = W and fix prices p. It is intuitive that S̄(q) is an upper bound

for E(SSD
p,n); i.e. there are more expected single men/women in the limit than

in the finite economy. Second, recall that E(SSD
p,n) is an upper bound on

the expected number of single men/women under µDA; i.e. there are fewer

marriages under µSD than under µDA (Figure 2). Third, under µDA, it is

clear that the expected number of single men is greater than it would have

been in an unbalanced economy of size n = M ′ < W ′; i.e. adding agents to

one side of the market (say, W ) decreases the platform’s “shortfall” relative

to the maximum feasible number of marriages, n = min{M ′,W ′}.
Combining these three inequalities yields our conclusion: the expected

number of marriages that a stable platform fails to produce by charging

prices p = (pM, pW) > (0, 0) is bounded above by S̄(q). Fixing prices, the

fraction of potential marriages that the platform fails to create—but that

could have been created at lower prices—becomes vanishingly small as the

market grows. Not only does a larger market benefit the platform in the

obvious way of increasing the number of potential matches, but also does

so by increasing the feasible per-capita value of matchings yielding higher

surplus extraction per agent. The relative “cost of stability” suffered by the

platform in smaller markets vanishes as the market grows large.

These conclusions rely on certain assumptions we have made so far. Aside

from the standard abstractions we make in our model (e.g. a lack of search

frictions, etc.), the most significant assumption has been that of independent

preferences (u). We address this in the following section.

5 Preference Homogeneity

We reconsider the effect of market imbalance on price allocation when prefer-

ences exhibit homogeneity. Recall that under heterogeneous preferences (in-

dependently drawn values), market imbalance has no direct effect on price

allocation (Theorem 2) and any indirect effect (via its effect on the price
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level) moves both sides’ prices in the same direction (Proposition 2).

Here we show how two forms of preference homogeneity alter these con-

clusions. First, market imbalance biases price allocation, but in a direction

that depends on the which type of homogeneity is present (Proposition 3).

Second, any change in market imbalance moves the two sides’ prices in op-

posite directions (Proposition 4).

We consider the two forms of homogeneity separately. In the first—

within-side homogeneity—all agents on one side of the market agree on the

desirability of any given agent on the other side. Such “vertical” preferences

have been assumed in various works on exclusive matching platforms dis-

cussed in Subsection 1.2. In the second—partner homogeneity—any given

agent values all potential partners equally. This assumption, appearing for

example in the two-sided markets literature, reflects undifferentiated partners

while allowing heterogeneity in outside options.

Throughout this section we assume that the profile of agents’ values u is

drawn from a joint distribution that satisfies one of the following two sets of

assumptions.

Definition 4. Preferences exhibit within-side homogeneity when

• for each w ∈ W , the men have a common value UM(w) drawn from FM,

so for all m ∈M , um(w) = UM(w);

• for each m ∈ M , the women have a common value UW(m) drawn

from FW , so for all w ∈ W , uw(m) = UW(m);

• these (W +M) different values are drawn independently.

Preferences exhibit partner homogeneity when

• each m ∈ M has a participation value UM(m) drawn from FM, so for

all w ∈ W , um(w) = UM(m);

• each w ∈ W has a participation value UW(w) drawn from FW , so for

all m ∈M , uw(m) = UW(w);
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• these (M +W ) different values are drawn independently.

Under either form of preference homogeneity the space of plausible match-

ing processes becomes less rich. Indeed much work under within-side homo-

geneity assumes or derives a stable (assortative) matching outcome. Our

observations apply more generally to any matching processes satisfying Con-

dition 3, since they yield the same number of marriages as µDA.

Fact. Suppose preferences exhibit either form of homogeneity. Let µ be in-

dividually rational and weakly unimprovable. For any prices p, the expected

number of marriages under µ and µDA are equal.

This fact is proven simply. Under within-side homogeneity, the women

commonly find any given man “acceptable” with probability 1 − FW(pW).

The number of acceptable men is thus a (binomial) random variable, kM.

Similarly the number of acceptable women is kW . Clearly µDA creates k =

min{kM, kW} marriages (assortatively). An individually rational µ creates

no more than k marriages; a weakly unimprovable µ creates no fewer.

Analogously under partner homogeneity, there are (binomially distributed)

k′M men and k′W women “willing to participate.” An individually rational,

unimprovable µ creates k′ = min{k′M, k′W} marriages.

In either case, expected revenue maximization involves the (intractable)

expected minimum of two binomial variables. Since our goal is to qualita-

tively contrast market imbalance effects under our two forms of correlation,

we simplify the discussion by examining a large (continuum) market.

5.1 Price allocation: large markets with homogeneity

We consider the model of Section 2 but with a continuum of agents: a mass

M̃ of men and a mass W̃ of women. Our definitions extend to this setting

in a straightforward way, so we omit their reformalization for brevity.

Under within-side homogeneity, analogous to kM, kW above, there are

(now deterministic) masses of “acceptable” men κM = (1 − FW(pW)) ∗ M̃
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Figure 4. Within-side homogeneity leads to a relatively higher price for the
short side of the market: M̃ > W̃ leads to FW(pW) > FM(pM).

and women κW = (1 − FM(pM)) ∗ W̃ , yielding a mass of marriages κ =

min{κM, κW}. Revenue maximizing prices clearly yield κM = κW , implying

1− FW(pW)

1− FM(pM)
=
W̃

M̃
(5)

Therefore (see Figure 4) the short side of the market is charged a relatively

higher price than the long side in the sense that if, say, W̃ < M̃ , then

FW(pW) > FM(pM). When FM = FW this additionally means pW > pM.

Partner homogeneity inverts this relationship: The platform equates the

masses of men κ′M = (1−FW(pW))∗W̃ and women κ′W = (1−FM(pM))∗M̃
who are “willing to participate.” Inverting the right hand side of Equation 5,

the price bias now relatively favors the short side. We summarize as follows.

Proposition 3 (Market imbalance and preference homogeneity). Consider

an imbalanced market where (without loss of generality) M̃ > W̃ and suppose

the matching process is individually rational and weakly unimprovable.

• Under within-side homogeneity, the revenue-maximizing platform charges

a relatively higher price to the short side: FW(pW) > FM(pM).

• Under partner homogeneity, the revenue-maximizing platform charges

a relatively higher price to the long side: FM(pM) > FW(pW).

Proof: Follows from Equation 5.
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Lastly we show that, with preference homogeneity, a change in market

imbalance moves the two sides’ prices in opposite directions. This contrasts

with the independent values case where prices co-vary (Proposition 2).

Proposition 4 (Price negative co-movement). Suppose FM and FW have

strictly increasing hazard rates. An increase in the proportion of men, M̃/W̃ ,

changes revenue-maximizing prices (p∗M, p
∗
W) as follows.

• Within-side homogeneity: p∗M weakly decreases and p∗W weakly increases.

• Partner homogeneity: p∗M weakly increases and p∗W weakly decreases.

An intuitive illustration of this result is so-called surge pricing on ride

sharing platforms exhibiting partner homogeneity (agents are ex ante indif-

ferent over partners). A relative shortage of drivers leads to higher rider

prices and lower driver prices (higher wage). Interestingly, the introduction

of heterogeneous preferences over potential partners to such environments

would make surge pricing less desirable (Proposition 2).

For within-side homogeneity, an increase in M̃/W̃ gives each woman a

more valuable partner. As the platform extracts this value by raising pW

marriages become more profitable. The platform thus lowers pM to generate

more of them. This argument is reminiscent of the “see-saw” effect in Rochet

and Tirole (2006): a price increase on one side incentivizes a price decrease

on the other. Unlike in their model, the argument holds here only under an

interaction between preference homogeneity and market imbalance.

6 Conclusion

We have established a qualitative distinction between pricing decisions on

exclusive and non-exclusive matching platforms. With exclusivity, an in-

teraction between preference homogeneity and market imbalance impacts

optimal price allocation: transaction prices become biased toward either the
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short or long side of the market depending on the form of homogeneity. This

bias disappears when preferences are fully heterogeneous. An amplification

in market imbalance either moves the two sides’ prices in the same direction

(heterogeneous preferences) or opposite direction (homogeneous preferences).

The reasoning behind this is that the two cases differ in their price allo-

cation objective. For ordinal, monotonic matching processes, this objective

under heterogeneous preferences is to minimize the incompatibility rate for

any arbitrary pair of agents (Lemma 1). Under homogeneous preferences the

objective is to minimize incompatibility between “marginal” participants on

the platform (Equation 5), which depends on market sizes.

These results highlight an empirical requirement on exclusive matching

platforms that is absent in the case of non-exclusive matching: knowledge of

the presence and structure of preference homogeneity and, unless preferences

are sufficiently heterogeneous, an assessment of the imbalance between the

sizes of the two sides of the market.

7 Appendix: Omitted Proofs and Examples

The following example illustrates that the conclusions of Section 3 may fail

for non-ordinal matching processes.

Example 1 (Asymmetric pricing for non-ordinal µ). Let M = {m} and W =

{1, . . . , 10}, with each value ui(j) drawn uniformly from [0, 1]. Let µ be such

that, for any prices p and realized values u, m marries his favorite woman,

arg maxum(w), if she is p-compatible with him, and otherwise remains single.

The outcome is sensitive to m’s preferences over incompatible women so µ

is not ordinal. It is easy to see that (i) at prices pM = 0 and pW = 0.5, a

marriage is created with probability 0.5; (ii) at prices p′M = 0.5 and p′W = 0

this probability is (1−0.510). Even though q(p) = q(p′), the expected number

of marriages is greater at prices p′.

Proposition 1 and Proposition 2 are proven with the following result.
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Lemma 2. Suppose the matching process is ordinal and monotonic, and that

FM and FW have strictly increasing hazard rates. For any 0 < pT < 2 there is

a unique pair of prices, (p∗M, p
∗
W), that maximize expected revenue subject to

the constraint pM + pW = pT . These prices minimize the absolute difference

in the two sides’ hazard rates:

(p∗M, p
∗
W) = arg min

pM,pW : pM+pW=pT

|hM(pM)− hW(pW)| (6)

Proof: By Theorem 2 it suffices to show that there is a unique pair of prices

that minimize q(pM, pW) subject to the constraint pM + pW = pT , and that

these prices satisfy (6). Recall our restriction to prices pM, pW ∈ [0, 1]. Note

that this restriction is without loss of generality here since, for 0 < pT < 2,

q-minimizing prices must satisfy pM, pW ∈ [0, 1). First, pM ≥ 1 or pW ≥ 1

implies q() = 1 while prices (pT/2, pT/2) guarantee q() < 1. Second, if say

pM < 0, then a small increase in pM and decrease in pW = pT − pM > 0

strictly decreases q().

Under the constraint pM + pW = pT , the requirement pM, pW ∈ [0, 1]

can be written as max{0, pT − 1} ≤ pM ≤ min{1, pT}. Therefore, defining

q̃(pM) ≡ q(pM, pT − pM), the minimization problem can be written as

min
pM

q̃(pM) s.t. max{0, pT − 1} ≤ pM ≤ min{1, pT} (7)

Differentiating q̃ on this range, we have

dq̃(pM)

dpM
= (1− FW(pT − pM))fM(pM)− (1− FM(pM))fW(pT − pM) (8)

which is continuous in pM. For interior values of pM, i.e. max{0, pT − 1} <
pM < min{1, pT}, this can be written as

dq̃(pM)

dpM
= (1− FW(pT − pM))(1− FM(pM))(hM(pM)− hW(pT − pM))
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where division by zero is avoided for pM < min{1, pT}. Furthermore this

inequality along with max{0, pT − 1} < pM also implies

(1− FW(pT − pM))(1− FM(pM)) > 0

meaning that, for interior values of pM, dq̃(pM)/dpM has the same sign as

the difference

(hM(pM)− hW(pT − pM)). (9)

By the monotone hazard rate assumption, (9) is strictly increasing in pM.

Hence on the range max{0, pT−1} ≤ pM ≤ min{1, pT}, the sign of dq̃(·)/dpM
is either (i) always negative, (ii) always positive, or (iii) crosses zero from

below at exactly one price p∗M. In these three respective cases, q̃() is min-

imized at (i) p∗M = min{1, pT}, (ii) p∗M = max{0, pT − 1}, or (iii) where

hM(p∗M) = hW(pT − p∗M). In each case, this is the price that minimizes (6),

proving the lemma.

Proof of Proposition 1. The result follows immediately from Lemma 2

and observing that the solution to (6) is given by p∗M(pT ) = pT/2 when

FM = FW .

Without the hazard rate condition, revenue-maximizing prices may be

unequal even if FM = FW , as illustrated in the following discretized example.

Example 2 (Optimal, unequal prices). Consider one man and one woman

(M = W = 1), and the matching process that creates a marriage whenever

the agents are p-compatible. The value that each agent assigns to the po-

tential mate is (independently) either 0.1 (probability π) or 0.9 (probability

1−π). One can restrict attention to prices pM, pW ∈ {0.1, 0.9} and check by

inspection that the following price pairs maximize expected revenue.

(p∗M, p
∗
W) = (0.9, 0.9) when π ≤ 4/9,

(p∗M, p
∗
W) ∈ {(0.1, 0.9), (0.9, 0.1)} when 4/9 ≤ π ≤ 4/5,

(p∗M, p
∗
W) = (0.1, 0.1) when 4/5 ≤ π.
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In the case 4/9 < π < 4/5, it is strictly optimal to charge unequal prices.

Nevertheless, the set of optimal price lists is symmetric (see Theorem 1).

Proof of Proposition 2. For any 0 < pT < 2, Lemma 2 states that there

are unique revenue-maximizing prices, (p∗M(pT ), p∗W(pT )). We show that

p∗M(pT ) is nondecreasing in pT . An identical argument applies to p∗W(pT ).

Fix 0 < p′T < p′′T < 2, and denote optimal price allocations

p′M = p∗M(p′T ) p′W = p′T − p∗M(p′T ) p′′M = p∗M(p′′T ) p′′W = p′′T − p∗M(p′′T ).

Suppose by contradiction that p′′M = p′M − δ for some δ > 0. With the

constraints in (7), this implies

max{0, p′′T − 1} ≤ p′′M < p′M ≤ min{1, p′T}

max{0, p′T − 1} ≤ p′W < p′W + δ < p′′W ≤ min{1, p′′T}

Next observe that

hM(p′′M) < hM(p′M) ≤ hW(p′W) < hW(p′W + δ) < hW(p′′W)

The strict inequalities follow immediately from the hazard rate assumption.

To derive the weak inequality, observe that if hM(p′M) > hW(p′W) then for

small ε > 0, p′M − ε > 0 and p′W + ε < 1 would strictly reduce the absolute

difference in hazard rates, i.e.

∣∣hM(p′M − ε)− hW(p′W + ε)
∣∣ < ∣∣hM(p′M)− hW(p′W)

∣∣
in contradiction to (6).

By definition, (p′′M, p
′′
W) minimizes (6) with respect to p′′T . However,

hM(p′′M) < hW(p′′W) implies that for small ε > 0, p′′M + ε < 1 and p′′W − ε > 0
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strictly reduces the absolute difference in hazard rates, i.e.

∣∣hM(p′′M + ε)− hW(p′′W − ε)
∣∣ < ∣∣hM(p′′M)− hW(p′′W)

∣∣
which contradicts (6).

Proof of Theorem 3. Fix p = (pM, pW) with incompatibility parameter

q = q(p). We prove Equation 2 for arbitrary M by induction on W . Since p

is fixed we simplify notation by writing KM,W to denote KSD
p,M,W .

Fix M . Equation 2 clearly holds when W = 1: P (KM,1 = 0) = qM (the

woman is incompatible with each man) and P (KM,1 = 1) = 1 − qM . For

some arbitrary W , suppose Equation 2 accurately describes the distribution

of KM,W−1. We show that it accurately describes the distribution of KM,W .

Observe that the SD algorithm (Definition 2) creates at most one (perma-

nent) marriage in each step 1 ≤ t ≤ W . Also, the total number of marriages

created through step W − 1 has the same distribution as KM,W−1. In words,

running SD on a random economy of size (M,W −1) is equivalent to running

the first W − 1 steps of SD on a random economy of size (M,W ).

Furthermore for SD to yield a total of k marriages after the final step

t = W , there must have been either k or k−1 marriages created through step

t = W − 1. Consider the (conditional) probability of obtaining k marriages

given either of these two scenarios.

Scenario 1: k marriages are created through step t = W − 1. Entering

step t = W there are M −k men yet unmatched. Woman W is incompatible

with each of them with probability qM−k. That is, with probability qM−k

step t = W adds no additional marriage to the existing k.

Scenario 2: k−1 marriages are created through step t = W−1. Entering

step t = W , there are M − k + 1 men currently unmatched. Woman W is

p-compatible with at least one with probability 1 − qM−k+1. That is, with

probability 1− qM−k+1 step t = W adds a kth marriage to the existing k−1.
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The total probability of SD yielding k marriages is therefore

P (KM,W = k) = P (KM,W−1 = k − 1)(1− qM−k+1) + P (KM,W−1 = k)qM−k.

Using Equation 2 to substitute for the distribution of KM,W−1 this equals

(1− q)k−1q(M−k+1)(W−k)
[
M

k − 1

]
q

[
W − 1

k − 1

]
q

[k − 1]q!(1− q
M−k+1)

+ (1− q)kq(M−k)(W−k−1)
[
M

k

]
q

[
W − 1

k

]
q

[k]q!(q
M−k)

=

(
qW−k

[k]q (1− q)

)
(1− q)kq(M−k)(W−k)

[
M

k − 1

]
q

[
W − 1

k − 1

]
q

[k]q!(1− q
M−k+1)

+ (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W − 1

k

]
q

[k]q!

=

(
qW−k

[k]q (1− q)

)
(1− q)kq(M−k)(W−k)

[
M

k

]
q

[k]q
[M − k + 1]q

[
W

k

]
q

[k]q
[W ]q

[k]q!(1− q
M−k+1)

+ (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[W − k]q
[W ]q

[k]q!

= qW−k(1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[k]q
[W ]q

[k]q!

+ (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[W − k]q
[W ]q

[k]q!

= (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[k]q!

(
qW−k [k]q + [W − k]q

[W ]q

)

= (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[k]q!

proving Equation 2 for KM,W . Equation 3 is proven by Kemp (1998).

Proof of Theorem 4. Fix prices p with q = q(p). In a balanced market of

size n = M = W , the probability that µSD yields a perfect matching, i.e. of
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having zero unmatched agents, is given by Equation 2.

P (KSD
p,n,n = n) = (1− q)nq(n−n)(n−n)

[
n

n

]
q

[
n

n

]
q

[n]q!

= (1− qn) · · · (1− q1)

As n goes to infinity, P (KSD
p,n,n = n) converges to φ(q) ≡

∏∞
i=1(1 − qi). It

can be shown that 0 ≤ q < 1 implies φ(q) > 0. Therefore P (KSD
p,n,n = n) is

bounded away from zero across all market sizes n.

In unbalanced markets of arbitrary sizes M,W , the probability of ex-

actly k marriages, and hence g = M − k single men and h = W − k single

women, can be written in terms of g and h using Equation 2.

P (KSD
p,M,W = k) = P (KSD

p,k+g,k+h = k) = (1− q)kqgh
[
k + g

k

]
q

[
k + h

k

]
q

[k]q!

Letting the market grow large by letting k →∞, the probability that there

are g single men (and hence h single women) converges to

lim
k→∞

P (KSD
p,k+g,k+h = k)

= lim
k→∞

(1− q)kqgh
[
k + g

k

]
q

[
k + h

k

]
q

[k]q!

= lim
k→∞

(1− q)kqgh
(

(1− qk+1) · · · (1− qk+g)
(1− q) · · · (1− qg)

)(
(1− qk+1) · · · (1− qk+h)

(1− q) · · · (1− qh)

)
[k]q!

= lim
k→∞

(1− qk) · · · (1− q)qgh
(

(1− qk+1) · · · (1− qk+g)
(1− q) · · · (1− qg)

)(
(1− qk+1) · · · (1− qk+h)

(1− q) · · · (1− qh)

)
= φ(q)qgh

1

(1− q) · · · (1− qg) · (1− q) · · · (1− qh)
(10)

Hence in the case of asymptotically large balanced markets (g = h), the
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expected number of single men (and hence women) converges to Equation 4:

S̄(q) = φ(q)
∞∑
s=0

s · qss 1

(1− q) · · · (1− qs) · (1− q) · · · (1− qs)
.

Proof of Proposition 4. We prove that under partner homogeneity, the

revenue-maximizing price charged to the men is weakly increasing in η ≡
M̃/W̃ , the relative proportion of men. By relabeling the sides of the market,

the same proof implies that the women’s revenue-maximizing price weakly

decreases in η.

For i =M,W and x ∈ [0, 1], define p̃i(x) ≡ F−1i (1−x) to be the price at

which x is the proportion of agents on side i who are “willing to match.” Our

assumptions on FM and FW imply that p̃M() and p̃W() are strictly decreasing

and continuously differentiable.

Recall that the platform sets prices in a way that equates the two masses

of agents “willing to match,” which we write as κM = κW = κ, a là Figure 4.

Revenue maximization can be written as the following optimal choice of κ.

max
κ≤min{M̃,W̃}

κ ·
[
p̃M

(
κ/M̃

)
+ p̃W

(
κ/W̃

)]
Equivalently, the objective can be written in terms of choosing the proportion

of men willing to match, which we denote κ̃ ≡ κ/M̃ .

max
κ̃≤min{1,1/η}

M̃κ̃ · [p̃M (κ̃) + p̃W (ηκ̃)]

The first-order condition necessary for an interior optimum 0 < κ̃ <

min{1, 1/η} is

p̃M (κ̃) + p̃W (ηκ̃) + κ̃ · p̃′M(κ̃) + ηκ̃ · p̃′W(ηκ̃) = 0 (11)

By definition x = 1 − Fi(p̃i(x)). By the inverse function theorem p̃′i(x) =

−1/fi(p̃i(x)). Substituting these terms and denoting the hazard rates hi(x) =
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fi(x)/(1− Fi(x)), the first-order condition (11) is:

G(κ̃, η) ≡ p̃M(κ̃) + p̃W(ηκ̃)− 1

hM(p̃M(κ̃))
− 1

hW(p̃W(ηκ̃))
= 0

Since each p̃i() is strictly decreasing in κ̃, the hazard rate assumption

implies that −1/hi(p̃i(·)) is also strictly decreasing in κ̃. Therefore G() is

strictly decreasing in κ̃ and the second-order conditions are also satisfied.

Observe that G(κ̃, η) is continuous in κ̃ and strictly positive when evalu-

ated at κ̃ = 0. Therefore there are two possibilities: either there is a unique

interior optimizer 0 < κ̃ < min{1, 1/η} satisfying (11), or G(κ̃, η) > 0 for all

interior κ̃, the constraint binds, and the unique optimizer is κ̃ = min{1, 1/η}.
Regardless of the case, let κ̃∗(η) denote the unique optimizer as a function

of η. Consider an increase in the ratio of men to women from some η′ to some

η′′ > η′. As η increases, G(κ̃, η) decreases and the constraint κ̃ ≤ min{1, 1/η}
becomes weakly tighter. Therefore this must lead to a weakly lower optimal

proportion of matched men: κ̃∗(η′′) ≤ κ̃∗(η′), whether the constraint binds

or not. This implies a weak increase in the optimal price charged to the men,

p̃M(κ̃∗(η′′)) ≥ p̃M(κ̃∗(η′)).

By relabeling the sides of the market, the same conclusion can be drawn for

the optimal price charged to the women’s side.

The proof for within-side homogeneity is analogous, but relates the pro-

portion of “acceptable men” κ̃ to the women’s price rather than the men’s.

Thus the opposite conclusion is reached, proving the proposition.
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