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Abstract
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1. INTRODUCTION

Dominant strategy implementability is clearly a desirable incentives property

of choice rules. It makes certain issues—such as what information the planner

has about the agents, what information agents have about each other, and

what information is revealed during intermediate stages of the execution of

the mechanism—basically irrelevant. Even the assumption that his fellow

players are rational need not be made by a player concerned with his own

best interests. Furthermore, calculating a player’s best action cannot be more

complex than determining his own preferences over outcomes.

Given the desirability of this incentives property, it is important to de-

termine which rules satisfy it in various situations. Indeed this question

has been—and continues to be—answered for an increasingly diverse class

of situations.1 The nature of such results depends on the environment being

examined. Roughly speaking, possibility results can be obtained in “simpler”

environments, while impossibility results are often obtained in richer ones.

As the literature on strategy-proofness clarifies the line between possi-

bility and impossibility, we are left with the question as to what incentives

properties are obtainable in those richer environments where no reasonable

rules are strategy-proof. In this paper, we address this question by consid-

ering a weaker version of strategy-proofness which does not rule out “small”

gains from manipulation.

Other ways of addressing this question have appeared in the litera-

ture, though many have unappealing modelling assumptions. For instance,

while results under Nash (or Bayesian, etc.) implementation (e.g. see

Moore (1996)) tend to be more positive, they come with a price: Strong

assumptions are made concerning the agents’ and planner’s information (e.g.

common knowledge or common prior beliefs about each other’s preferences).

For many mechanism design environments, such an assumption is not real-

istic.

Another approach applies to situations in which the planner is satisfied

with approximations; he may find it sufficient to implement a rule that is

“close” to some other desirable choice rule. This literature on virtual imple-

mentation (Abreu and Matsushima (1992), Duggan (1997)), achieves very

1See Barberà (2001) and Thomson (1998).
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positive results, though under the same type of informational assumptions

listed above.

Asymptotic non-manipulability is considered by others, such as Roberts

and Postlewaite (1976), Córdoba and Hammond (1998), Ehlers et al. (1999),

Rustichini, Satterthwaite, and Williams (1994), Satterthwaite (2001),

Swinkels (2001), and Kalai (2002).

Finally, yet another way of addressing incentives where strategy-proofness

is impossible is to measure the frequency of opportunities agents have

to manipulate. This idea is considered by Beviá and Corchón (1995),

Kelly (1993), Saari (1995), Smith (1999), and, in experiments, Harrison and

McDaniel (2002).

Our Approach

The method used in this paper can be seen as a different type of approxi-

mation approach, involving an approximation to the notion of dominance.

The motivation behind our notion lies with a simple assumption about the

strategic behavior of agents. Specifically, we approach the problem with the

premise that if a player does not have much to gain by lying, then he will

not bother to do so. Under this modelling assumption, we search for rules in

which gains are limited by some upper bound.

This assumption can be interpreted or applied in various ways. For ex-

ample, it applies when gathering information (about other agents) is costly.

If such costly information is necessary for a player to compute a profitable

way to manipulate the choice rule, it would never be worth the expense to

gather it if the potential gains were bounded above by this cost. Another

application of this idea is to situations in which computation itself is costly.

A third application of our assumption is to situations in which agents

value morality (or honesty) in some real, fixed terms. In such settings, small

gains from cheating do not outweigh the losses (or “guilt”) incurred.

An important observation here is that we make no assumption on the

structure of information that agents possess. Some of the work cited previ-

ously considers a rule to be almost non-manipulable in a Bayesian setting

even if there is a small probability of a very large gain. Such a definition

implicitly assumes that players not only have beliefs consistent with those

assumed by the planner, but that the players cannot have more information
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than that.

The critical detail of our work is to precisely define what it means to gain

much. One approach that may come to mind is to use a utility-based notion

of preferences, where a player would be assumed not to manipulate a rule

unless his utility gain would exceed some bound. This approach, however,

would depend heavily on the interpretation (and/or the parameterization) of

utility functions.

To avoid this difficulty, we define our condition in terms of real commodi-

ties. In our exchange economy model, our behavioral assumption is that an

agent will manipulate a choice rule only if his gains are perceived to be better

than receiving a prespecified, additional amount of goods.

Overview and Interpretation of Results

We restrict attention to the domain of linear (additively separable) prefer-

ences in 2-agent exchange economies with two goods, i.e. an Edgeworth Box.

We begin with this simple class of preferences for various reasons. First,

the analysis is more tractable. Second, here we are able to obtain tight wel-

fare bounds imposed by our relaxed truth-telling condition, allowing us to

quantify the effect of relaxing strategy-proofness. It seems difficult to obtain

results of similar strength on other standard preference domains.

Our results have both a positive and negative flavor. In order to inter-

pret them, we recall a result concerning fully strategy-proof rules for this

domain. Extending results on the classical domain by Hurwicz (1972) and

Zhou (1991),2 Schummer (1997) shows that even when preferences are re-

stricted to the linear preference domain, a strategy-proof, efficient rule must

be dictatorial, i.e. always give the entire endowment to a prespecified agent.

Our sharpest results are obtained when (Section 4) we measure gains only

with respect to a single numeraire good. The first result (Theorem 2) is in

the negative direction: Any efficient rule that satisfies such a relaxation of

strategy-proofness must allocate most of the numeraire good to a prespecified

agent; This bound is shown to be tight with the rule in Example 1.

2They show that for 2-agent exchange economies on the classical domain of preferences,
a strategy-proof, efficient rule sometimes gives agents bundles worse than some original
endowment (Hurwicz), and in fact must always give one agent everything (Zhou). Also,
see Barberà and Jackson (1995), and Serizawa and Weymark (2002).
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While Theorem 2 shows an asymmetry between the agents’ consumption

of the numeraire good, Theorem 3 states that the rule described in Example 1

is always (weakly) more equitable than any other efficient rule satisfying this

relaxed version of strategy-proofness. Specifically, regardless of the preference

profile reported by the agents, the allocation prescribed by this rule weakly

Lorenz-dominates the allocation prescribed by any other such rule.

A negative interpretation of Theorem 3 (as an upper bound on equity) is

clear. However, a positive interpretation comes from the observation (made

in Section 4.2 that this rule demonstrates a type of discontinuity with respect

to the impossibility result of Schummer (1997) described above. As allowable

gains from manipulation are made arbitrarily small, the range of this (pa-

rameterized) rule does not converge to the range of the only strategy-proof,

efficient rule, i.e. of a dictatorial rule. Once strategy-proofness is relaxed an

arbitrarily small amount, there is a (discontinuous) increase in the flexibility

of admissible rules.

In Section 5, we allow measures of gains to be made with respect to any

good. Under this weaker version of almost-dominance, even more rules are

admissible. Furthermore, another discontinuity occurs similar to the one

discussed above.

We conduct a simple welfare analysis in Section 6, and quantify the ef-

fects of relaxing strategy-proofness. Under strategy-proofness, one agent must

always consume nothing. Under the rules we discuss, one of the agents con-

sumes relatively less than the other agent, but for some preference profiles

consumes a bundle that he considers to be almost as good as the entire en-

dowment.

To summarize, the paper is organized as follows. In Section 2 we for-

malize the exchange economy model, while we provide our main definition

in Section 3. In Sections 4 and 5, we provide our results for exchange

economies. Using these results, we quantify the consequences of relaxing

strategy-proofness in this model in Section 6. In Section 7, we provide a brief

discussion on extending the analysis to more general models of exchange.
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2. EXCHANGE ECONOMY MODEL

The set of two agents is N = {1, 2}. There is a positive endowment of

two infinitely divisible goods Ω = (Ω1,Ω2) ∈ R
2
++. Each agent i ∈ N is to

consume a bundle xi ∈ R
2
+. An allocation is a pair of bundles x = (x1, x2) =

((x1
1, x

2
1), (x

1
2, x

2
2)) ∈ R

4
+ such that x1 + x2 = Ω; the set of allocations is

denoted A. Subscripts refer to agents, superscripts refer to goods, and the

vector inequalities are >, ≥, and �.
Each agent has a strictly monotonic, linear preference relation, Ri, over

his consumption space R
2
+. Precisely, such preference relations are the ones

representable by a utility function of the form u(xi) = λx1
i + (1 − λ)x2

i ,

λ ∈ (0, 1). Denote the set of such preference relations as R. The strict
(antisymmetric) and indifference (symmetric) preference relations associated

with Ri are denoted Pi and Ii.

An allocation rule is a function, ϕ:R2 → A, mapping the set of preference

profiles into the set of allocations. To simplify notation, when ϕ(R) = x, we

denote ϕi(R) = xi for any agent i ∈ N . Furthermore, we write −i to refer to

the agent not equal to i. For example, if i = 1, then x−i = x2, and (R
′
i, R−i)

is the same as (R′
1, R2).

We are interested in finding allocation rules that satisfy desirable prop-

erties not only in terms of incentives, but also in terms of efficiency. An

allocation x ∈ A is efficient with respect to a preference profile R ∈ R2 if

there exists no y ∈ A such that for some i ∈ N , yi Pi xi and y−i R−i x−i. We

also call an allocation rule efficient if it assigns to every preference profile an

allocation that is efficient with respect to that preference relation.

For any profile R ∈ R2, denote the set of efficient allocations for R as

E(R). On our domain of linear preferences, if both agents have the same

preference relation (R1 = R2), then the set of efficient allocations is the

entire set: E(R) = A. If R is such that agent 1 values good 1 relatively more

than agent 2 does, then the set of efficient allocations is E(R) = E� ≡ {x ∈
A : x2

1 = 0 or x1
2 = 0}. In the opposite, remaining case, E(R) = E� ≡ {x ∈

A : x1
1 = 0 or x2

2 = 0}.
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3. A DEFINITION OF NONMANIPULABILITY

A simple way to measure manipulability is to measure gains relative to either

of the two goods. To be precise, consider a situation in which an allocation

rule ϕ prescribes, for R ∈ R2, an allocation x = ϕ(R). If we postulate

that agent i would not falsely report his preferences for small gains, then

there exists some number ε1 ≥ 0 such that if for some R′
i ∈ R, we have

ϕi(R
′
i, R−i) � ϕi(R) + (ε1, 0), then agent i would not manipulate the rule

with that particular misrepresentation R′
i. That is, if agent i can gain only

ε1 (or fewer) units of good 1, then the gain is too small to be considered.

Similarly, for some ε2 ≥ 0, we say that an agent does not manipulate ϕ if

he simply gains ε2 (or fewer) units of good 2.
3

Finally, consider a situation in which a false report of preferences, R′
i,

gives agent i the bundle xi = ϕ(R′
i, Ri), such that ϕi(R) + (ε1, 0) Ri xi.

Since the agent would not manipulate the rule in order to obtain the bundle

ϕi(R) + (ε1, 0), we conclude that he would not manipulate the rule in order

to obtain the (worse) bundle xi. A similar reasoning is to be applied with

respect to good 2 and ε2.

Our formal definition of this reasoning is as follows.

(ε1, ε2)-strategy-proofness: For any ε ∈ R
2
+, a rule is (ε1, ε2)-strategy-proof

if for all R ∈ R2, all i ∈ {1, 2}, and all R′
i ∈ R, we have either

(i) ϕi(R) + (ε1, 0) Ri ϕi(R
′
i, R−i), or

(ii) ϕi(R) + (0, ε2) Ri ϕi(R
′
i, R−i).

That is, by misreporting his preferences, an agent cannot procure a gain

that he considers, simultaneously, to be (i) better than simply acquiring

an additional ε1 units of good 1 and (ii) better than simply acquiring an

additional ε2 units of good 2. See Figure 1; in Figure 1a, part [i] of the

definition is redundant, while in the case of Figure 1b, part [ii] is. In the

language of Barberà and Peleg (1990), the agent’s option set should be a

subset of the shaded area.

3A more general definition makes the value of εj dependent on the identity of the agent
in question, or, even more generally, his preference relation Ri. For simplicity, we do not
go to this level of generality.
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ϕi(R) Ri
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good 1

go
od
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ϕi(R)

Ri

ε1

ε2

(a) (b)

Figure 1: If ϕ is (ε1, ε2)-strategy-proof, then any false report by agent i
results in a bundle somewhere within the shaded area.

It should be clear that (ε1, ε2)-strategy-proofness is a stronger condition

than (ε′1, ε
′
2)-strategy-proofness whenever ε ≤ ε′, and that (0, 0)-strategy-

proofness is equivalent to the standard definition of strategy-proofness.

We close this section by observing a result previously established for

the case ε = (0, 0). With a result related to that of Zhou (1991), Schum-

mer (1997) shows that on this class of problems (with linear preferences),

the only efficient rules that are (0, 0)-strategy-proof are those that assign the

entire endowment to a prespecified agent.

Theorem 1 (Schummer (1997)) Let ϕ be an efficient rule that is

(0, 0)-strategy-proof. There exists an agent i ∈ N that always receives the

entire endowment: for all R ∈ R2, ϕi(R) = (Ω
1,Ω2) (and ϕ−i(R) = (0, 0)).

4. RESULTS FOR (ε1,0)-strategy-proofness

We first examine the implications of (ε1, ε2)-strategy-proofness when ε2 = 0

(Figure 2). In this case, we are able to obtain tight bounds on the flexibility of

efficient rules that satisfy this condition (Sections 4.1 and 4.2). Furthermore,

even though this case yields a stronger condition than when ε2 > 0, there is a

discontinuous increase in the range of such rules at ε1 = 0. This demonstrates

a type of nonrobustness to the impossibility result of Theorem 1.
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good 1

go
od

2

ϕi(R)

Ri

ϕi(R) + (ε1, 0)

Ri

ε1

Figure 2: The special case of (ε1, ε2)-strategy-proofness when ε2 = 0.

4.1. A Bound on the Range

Our first result is that, under (ε1, 0)-strategy-proofness, a rule always allocates

nearly all of the endowment of good 1 to a prespecified agent.

Theorem 2. Let ϕ be an efficient rule that is (ε1, 0)-strategy-proof,

where ε1 < Ω1/5. There exists an agent i ∈ N that always receives almost

all of good 1: for all R ∈ R2, ϕ1
i (R) ≥ Ω1 − 2ε1.

To prove the result, we first provide the following lemma, which states

that for any pair of preference profiles with the same set of efficient alloca-

tions, the allocation of good 1 differs at those profiles by at most 2ε1.

Lemma 1. Let ϕ be efficient and (ε1, 0)-strategy-proof. For all R,R′ ∈
R2, if either E(R) = E(R′) = E� or E(R) = E(R′) = E�, then |ϕ1

1(R) −
ϕ1

1(R
′)| ≤ 2ε1.

Proof. Let R,R′ ∈ R2 be such that E(R) = E(R′) = E�. It is either the

case that E(R1, R
′
2) = E�, or E(R′

1, R2) = E�. Without loss of generality,

suppose E(R1, R
′
2) = E� (which is true, for example, if the indifference curves

of R1 are “flatter” than those of R′
1).

By efficiency, ϕ(R1, R
′
2) ∈ E�. Since ϕ is (ε1, 0)-strategy-proof and

ϕ(R′
1, R

′
2) ∈ E�, we have ϕ1

1(R1, R
′
2) − ϕ1

1(R
′
1, R

′
2) ≤ ε1. Similarly,

ϕ1
1(R

′
1, R

′
2)− ϕ1

1(R1, R
′
2) ≤ ε1, so |ϕ1

1(R1, R
′
2)− ϕ1

1(R
′
1, R

′
2)| ≤ ε1.

By the same type of argument, we have |ϕ1
2(R1, R2) − ϕ1

2(R1, R
′
2)| ≤ ε1,

implying |ϕ1
1(R1, R2)− ϕ1

1(R1, R
′
2)| ≤ ε1.

Therefore, by the triangle inequality, |ϕ1
1(R1, R2) − ϕ1

1(R
′
1, R

′
2)| ≤ 2ε1,

proving the result. �
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Now we can prove the theorem.

Proof. Let ϕ be efficient and (ε1, 0)-strategy-proof. There are three possi-

ble cases.

Case 1: For all R ∈ R2, if E(R) = E�, then ϕ2
1(R) = Ω

2.

Step 1a: (E�) In this case, for all δ > 0, there exists R ∈ R2 such that

E(R) = E� and ϕ1(R) � (Ω1,Ω2 − δ). To see this, let R1 satisfy (0,Ω
2) P1

(Ω1 + ε1,Ω
2 − δ), let R2 be such that E(R) = E�, and let R′

1 be such that

E(R′
1, R2) = E�. Since ϕ is (ε1, 0)-strategy-proof and E(R′

1, R2) = E�,

ϕ1(R) + (ε1, 0) R1 ϕ1(R
′
1, R2) R1 (0,Ω

2)

by the hypothesis of Case 1. Therefore ϕ1(R) P1 (Ω
1,Ω2 − δ). Since ϕ1(R) ∈

E�, we have ϕ1(R) � (Ω1,Ω2 − δ).

Therefore by Lemma 1, for all R ∈ R2, if E(R) = E�, then ϕ1
1(R) ≥

Ω1 − 2ε1.

Step 1b: (E� and A) Let R ∈ R2 be such that E(R) ∈ {E�, A}, and suppose
in contradiction to the theorem that Ω1−ϕ1

1(R)−2ε1 = δ > 0. Let y, y′, y′′ ∈
E� satisfy (see Figure 3):

y1 I1 ϕ1(R) + (ε1 +
1
3
δ/3, 0)

y′
1 I1 ϕ1(R) + (ε1 +

2
3
δ, 0)

y′′
1 I1 ϕ1(R) + (2ε1 +

2
3
δ, 0) = (Ω1 − 1

3
δ, 0)

Let R′
2 be such that y2 I ′

2 ϕ2(R)− (ε1, 0). Since ϕ(R1, R
′
2) ∈ E�, the truth-

telling condition implies ϕ2(R1, R
′
2) � y2. Let R′′

2 be sufficiently flat so that

both y′′
2 P ′′

2 (Ω
1 + ε1, 0) and y2 P ′′

2 y′
2 + (ε1, 0). The truth-telling condition

implies ϕ2(R1, R
′′
2) + (ε1, 0) R′′

2 ϕ2(R1, R
′
2), so ϕ2(R1, R

′′
2) ≥ y′

2.

Let R′
1 satisfy (0,Ω

2) I ′
1 y′′

1 + (ε1, 0). Then E(R′
1, R

′′
2) = E�. Note

that by construction, y′
1 + (ε1, 0) I1 y′′

1 . The truth-telling condition implies

ϕ1(R1, R
′′
2) + (ε1, 0) R1 ϕ1(R

′
1, R

′′
2). Therefore ϕ1(R

′
1, R

′′
2) ≤ y′′

1 .

By the hypothesis of Case 1, for all R′′
1 such that E(R′′) = E�, we have

ϕ1(R
′′) � (0,Ω2). But then for any such R′′

1, we have ϕ1(R
′′) P ′

1 ϕ1(R
′
1, R

′′
2)+

(ε1, 0), which contradicts the truth-telling condition.
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y
y′

y′′

ϕ(R) Ω
ε1 δ/3

R1

R′
1

R′
2

R′′
2

Figure 3: Proof of Theorem 2. The figure represents the upper-right
corner of the Edgeworth Box.

Therefore, if Case 1 holds, we have derived the conclusion of the theorem.

Case 2: For all R ∈ R2, if E(R) = E�, then ϕ2
2(R) = Ω

2.

This case is symmetric to Case 1. In this case, for all R ∈ R2, ϕ1
2(R) ≥

Ω1 − 2ε1.

Case 3: Neither Case 1 nor Case 2 holds, i.e., there exist R,R′ ∈ R2 such

that E(R) = E�, E(R′) = E�, ϕ2
1(R) < Ω2, and ϕ2

2(R
′) < Ω2.

In this case, by Lemma 1, for all R,R′ ∈ R2, E(R) = R� implies ϕ1
1(R) ≤

2ε1, and E(R′) = R� implies ϕ1
2(R

′) ≤ 2ε1. Since ε1 < Ω1/5, this implies that

for all such R,R′,

ϕ1
1(R

′)− ϕ1
1(R) > ε1 (1)

Let R1 be such that (2ε1,Ω
2) P1 (Ω

1 − 3ε1, 0). Let R2, R
′
1 be such that

E(R) = E� and E(R′
1, R2) = E�. Then eqn. (1) implies ϕ1(R

′
1, R2) P1

ϕ1(R) + (ε1, 0), which contradicts the truth-telling condition. Therefore this

case cannot hold. �

4.2. A Most-Equitable Rule

Theorem 2 states that under an efficient rule that is (ε1, 0)-strategy-proof, one

agent always must receive at least Ω1 − 2ε1 of good 1. The rule—described

below in Example 1—simultaneously shows that (i) this bound is tight, and

(ii) there is no such bound corresponding to good 2. In other words, agent 1

receives (i) from as little as Ω1 − 2ε1 of good 1 to as much as all of it, and

12



O1

Ωx
R1

y(R1)

ε1ε1

x′

Figure 4: An efficient rule that is (ε1, 0)-strategy-proof.

(ii) from as little as none of good 2 to as much as all of it.

Furthermore, and most importantly, we provide Theorem 3, showing that

this rule is, unambiguously, the “least dictatorial” (or most equitable) of

all efficient rules that are (ε1, 0)-strategy-proof. This result does not, by

itself, make the rule appealing. Instead, the rule is used to show another

discontinuity when we relax (ε1, ε2)-strategy-proofness from ε2 = 0 to ε2 > 0.

Example 1. Fix the allocations x = ((Ω1 − ε1,Ω
2), (ε1, 0)), which gives

agent 1 the entire endowment except for ε1 units of good 1, and x′ = ((Ω1 −
2ε1,Ω

2), (2ε1, 0)). For all R1 ∈ R, let y(R1) ∈ E� be the unique allocation

in E� that agent 1 considers indifferently to x (as in Figure 4), i.e., that

x1 I1 y1(R1). Define ϕ̃ so that for all R ∈ R2,

ϕ̃(R) =

{
x′ if x′ is efficient for R

y(R1) otherwise

We leave it to the reader to check that ϕ̃ is efficient and (ε1, 0)-strategy-proof.
4

This rule is clearly not symmetric. In fact, for most profiles of preferences,

both agents would prefer agent 1’s consumption bundle to agent 2’s. A more

formal welfare analysis appears in Section 6. The statement of Theorem 2

does not, by itself, rule out more equitable rules. As the next theorem shows,

however, no efficient, (ε1, 0)-strategy-proof rule can be more equitable than

ϕ̃ (or the rule obtained from ϕ̃ by switching the roles of the agents). This

4Clearly, a mirror image to this rule exists in which the labels of the two agents are
switched, and that rule also satisfies the two properties.
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statement is true in a very strong sense: Under any other such rule, say

ϕ, one of the two agents would, under any profile of preferences, prefer the

bundle that ϕ̃ prescribes to agent 2 to the one he receives under ϕ.

Theorem 3. No efficient, (ε1, 0)-strategy-proof rule is more equitable

than ϕ̃.5 Specifically, let ϕ be an efficient rule that is (ε1, 0)-strategy-proof,

where ε1 < Ω1/5. Then one of the agents must (weakly) prefer playing the

role of agent 2 under ϕ̃ to playing his own role under ϕ, i.e., one of the

following is true.

(1) for all R ∈ R2, ϕ̃2(R) R2 ϕ2(R) (agent 2 prefers ϕ̃ to ϕ), or,

(2) for all R ∈ R2, ϕ̃2(R
′) R1 ϕ1(R), where R′

1 = R2 and R′
2 = R1 (agent 1

prefers agent 2’s consumption under ϕ̃ to his under ϕ).

Proof. Let ϕ be an efficient rule that is (ε1, 0)-strategy-proof. Suppose (by

Theorem 2) that agent 1 is the agent who always receives at least Ω1 − 2ε1

of the numeraire good under ϕ. In this case, we show statement (1) of the

Theorem: for all R ∈ R2, ϕ̃2(R) R2 ϕ2(R). (Supposing the opposite leads to

statement (2).)

If E(R) = E�, the conclusion follows from Theorem 2, since ϕ2(R) �
(2ε1, 0) = ϕ̃2(R).

If either E(R) = E� or E(R) = A, suppose in contradiction to the theo-

rem that ϕ2(R) P2 ϕ̃2(R). Then there exists δ > 0 such that

ϕ1(R) I1 (Ω
1 − ε1 − 2

3
δ,Ω2)

(otherwise the proof is trivial). Letting y = ϕ(R) and R′
2 = R2, and defining

y′, y′′, R′
1, and R′′

1 as in Figure 3 (proof of Theorem 2), leads to a contradiction

as it did in Step 1b of that proof. �

In light of this result, a full characterization of efficient, (ε1, 0)-strategy-

proof rules does not appear to be interesting. For example, the rule ϕ̃ can

be perturbed in many uninteresting ways (e.g., by giving slightly more of the

goods to agent 1) while remaining (ε1, 0)-strategy-proof.

5The same result obviously applies to the rule obtained from ϕ̃ by reversing the (asym-
metric) roles of the two agents.
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To emphasize the idea that a small relaxation in strategy-proofness leads

to a large increase in the flexibility of rules, consider the implications of

(ε1, 0)-strategy-proofness as ε1 approaches zero. The rule ϕ̃ was defined in

Example 1 with respect to a given value of ε1. The range of this rule for a

given ε1 is

{x ∈ E� : x1
1 > Ω1 − ε1, x2

1 < Ω2} ∪ {((Ω1 − 2ε1,Ω
2), (2ε, 0))}

As ε1 converges to zero, this set converges to the right-hand border of the

Edgeworth Box, i.e., to {x ∈ A : x1
1 = Ω

1}.
Therefore, as (ε1, 0)-strategy-proofness converges to strategy-proofness,

the range of an admissible rule does not converge to the support of the

ranges of strategy-proof and efficient rules (i.e. dictatorial rules) character-

ized in Schummer (1997) for this domain.6 This discontinuity is important

to observe because it reinforces the notion that a small relaxation of strategy-

proofness leads to a relatively large increase in the range of admissible rules.

On domains for which impossibility results regarding strategy-proofness have

been established, relaxing the condition even in a small way may allow for

significantly more flexible allocation rules.

There is an additional point that gives these results even more positive

flavor. In models with additional agents, rules satisfying the truth-telling

condition may be even more flexible. The 2ε1-bound of Theorem 1 is derived

from the fact that there are only two agents. Roughly speaking, two unilat-

eral changes in preferences can change the welfare of agents by an amount

comparable to at most 2ε1 units of good 1 (as in the proof of Theorem 2).

With more agents, there is reason to believe that changes in preferences by

more agents will lead to even greater flexibility in rules satisfying our condi-

tion. Owing to the difficulty of this model with more than two agents7 we

leave this topic to future research.

6Formally, this sequence of examples shows that the ranges of the admissible rules is
a correspondence that is not upper-semi-continuous at ε1 = 0, fixing ε2 = 0. It is clearly
lower-semi-continuous: dictatorial rules are (ε1, 0)-strategy-proof for any ε1.

7See Serizawa and Weymark (2002) for the latest development on the consequences of
efficiency and full strategy-proofness for n > 2.
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Figure 5: Defining an efficient rule that is (ε1, ε2)-strategy-proof.

5. RULES FOR (ε1, ε2)-strategy-proofness

We now turn our attention to the weaker condition of (ε1, ε2)-strategy-

proofness when ε2 > 0. The rule ϕ̃ can be generalized in various ways,

not all of which are obvious. For example, one obvious generalization could

be obtained by redefining x (in Example 1) to be (Ω1 − ε1,Ω2 − ε2), and

generalizing the rule in the obvious way.

In this section, we focus our attention on a generalization that is slightly

less asymmetric (and perhaps less obvious) than that one. Though we are

unable to obtain results analogous to Theorems 2 and 3, the purpose of

this example is to show that relaxing (ε1, 0)-strategy-proofness to (ε1, ε2)-

strategy-proofness results in another discontinuity (at ε2 = 0) in the ranges

of admissible rules.

Example 2. For all R1 ∈ R, let y(R1) ∈ E� and z(R1) ∈ E� be the

unique allocations (as in Figure 5) such that y1(R1) I1 (Ω1 − ε1,Ω2 − 2ε2)

and z1(R1) I1 (Ω1 − 2ε1,Ω2 − ε2). Define ϕ̂ so that for all R ∈ R2,

ϕ̂(R) =

{
z(R1) if z(R1) is efficient for R

y(R1) otherwise

We leave it to the reader to check that ϕ̂ is efficient and (ε1, ε2)-strategy-proof.

In Section 4.2 we showed that relaxing strategy-proofness to (ε1, 0)-

strategy-proofness results in a discontinuous enlargement in the possible range

16



O1

Ω

ε1

2ε1

O1

Ω

ε1

ε2

2ε1

2ε2

(a) (b)

Figure 6: The ranges of (a) ϕ̃ and (b) ϕ̂.

of admissible, efficient rules. The rule ϕ̂ shows that further relaxing to (ε1, ε2)-

strategy-proofness (ε2 > 0) results in another striking discontinuity: Fixing

ε1 ≥ 0, the range of ϕ̂—defined with respect to (ε1, ε2)—is discontinuous at

ε2 = 0.

To see this, observe that the range of ϕ̂ (for a given (ε1, ε2)) is

{x ∈ E� : x1
1 > Ω1−ε1, x2

1 < Ω2−2ε2}∪{x ∈ E� : x2
1 > Ω2−ε2, x1

1 < Ω1−2ε1}

which is highlighted in Figure 6b. As (ε1, ε2) converges to (0, 0) from above,

this range converges to the upper and right-hand borders of the Edgeworth

Box. However, by Theorem 2, the range of any efficient, (ε1, 0)-strategy-proof

rule is contained in the set {x ∈ A : x1
1 ≥ Ω1 − 2ε1}, which converges to the

right-hand side of the Edgeworth Box as ε1 converges to zero.

6. MEASURES OF WELFARE

First consider the stronger condition of (ε1, 0)-strategy-proofness. Theorem 3

provides an upper bound on the welfare of the “unfavored” agent under an

efficient, (ε1, 0)-strategy-proof rule. In order to have a better understanding

of how well-off agent 2 is under the rule ϕ̃, it is useful to consider a class

of normalized utility functions. We parameterize each preference relation

Ri ∈ R with λi ∈ ]0, 1[ such that the preference relation is represented by

the utility function

u(xi) = λix
1
i + (1− λi)x

2
i

Below we consider the case in which Ω = (1, 1). In this case, an agent’s

utility is always equal to one when he receives the entire endowment, and

17



is always equal to zero when he receives nothing. In particular, a utility

level can be interpreted as a proportion of the entire endowment, that is,

u(δ, δ) = δ.

Under the rule ϕ̃ (defined with respect to a given ε1), agent 2’s utility is a

function of λ1, λ2, ε1, and Ω. It is a fairly straightforward geometric exercise

to derive agent 2’s utility under ϕ̃:8

u2(ϕ̃;λ, ε1,Ω) =



2λ2ε1 if λ2 ≥ λ1;

(1− λ2)ε1λ1/(1− λ1) if λ2 < λ1 ≤ Ω2/(Ω2 + ε1);

λ2ε1 + Ω
2(λ1 − λ2)/λ1 otherwise.

Figure 7 graphs u2(ϕ̃; ·) when ε1 = 0.1 and Ω = (1, 1). We see that

agent 2 receives a non-negligible amount of utility at most profiles. The

average utility that agent 2 receives over this entire range of values for (λ1, λ2)

is approximately 0.18 (under a uniform distribution).9 This is significantly

higher than the average utility agent 2 would receive by consuming a constant

ε1 = 0.1 units of good 1, which would be 0.05 units of utility.

By the previously mentioned result of Schummer (1997), if strategy-

proofness were required, one of the agents would receive a constant utility of

zero. These numbers encourage the idea that a “small” relaxation of strategy-

proofness leads in some sense to a “larger” relaxation of dictatorship.

When the condition is weakened to (ε1, ε2)-strategy-proofness with ε2 > 0,

the rule ϕ̂ is admissible. Under that rule (defined with respect to a given ε),

agent 2’s utility is

u2(ϕ̂;λ, ε1, ε2,Ω) =




λ2Ω
1 + (1− λ2)(ε2 + (2ε1 − Ω1)λ1/(1− λ1)

if λ2 ≥ λ1 and 2ε1 + ε2(1− λ1)/λ1 > Ω1;

λ2(2ε1 + ε2(1− λ1)/λ1)

if λ2 ≥ λ1 and 2ε1 + ε2(1− λ1)/λ1 < Ω1;

(1− λ2)Ω
2 + λ2(ε1 + (2ε2 − Ω2)(1− λ1)/λ1)

if λ2 < λ1 and 2ε2 + ε1λ1/(1− λ1) > Ω2;

(1− λ2)(2ε2 + ε1λ1/(1− λ1))

if λ2 < λ1 and 2ε2 + ε1λ1/(1− λ1) < Ω2.

8A proof is available upon request.
9Upon request, an Excel file is available to compute utility values in this section.
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Figure 7: Utility to agent 2 from the rule ϕ̃, when ε1 = 0.1. Higher λi

indicates higher relative preference toward good 1.

Figure 8 graphs agent 2’s utility under this rule when ε1 = ε2 = .1 and

Ω = (1, 1). The average value is approximately .34.

7. OTHER DOMAINS

So far we have restricted attention to exchange economies with only two

goods. The definition given in Section 3 can be generalized in the obvious

way when there are k > 2 goods, with respect to some ε ∈ R
k
+. Furthermore,

the definition can be applied to any domain of preferences, instead of just

the domain of linear preferences, R. In this section, we briefly mention some
implications of such generalizations.

7.1. More goods

For economies with k goods (and linear preferences), the natural definition

of our condition is as follows.

ε-strategy-proofness: For any ε ∈ R
k
+, a rule is ε-strategy-proof if for all
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Figure 8: Utility to agent 2 from the rule ϕ̂, when ε1 = ε2 = 0.1.

R ∈ R2, all i ∈ {1, 2}, and all R′
i ∈ R, we have for some j, 1 ≤ j ≤ k,

ϕi(R) + (0, . . . , 0, εj, 0 . . . , 0) Ri ϕi(R
′
i, R−i).

Considering the case of ε = (ε1, 0, . . . , 0), the rule ϕ̃ described in Section 4.2

can be generalized as follows. Re-define x, x′ to be the allocations such that
x1 = Ω − (ε1, 0, . . . , 0) and x′

1 = Ω − (2ε1, 0, . . . , 0); redefine y(R1, R2) to

be the set of efficient allocations that agent 1 considers indifferently to x.

Then, ϕ̃ (defined as before with respect to x, x′) is efficient and (ε1, 0, . . . , 0)-

strategy-proof.

Furthermore, it is clear that for this case, results analogous to Theorems 2

and 3 can be obtained, showing this generalization of ϕ̃ to be a “most equi-

table” such rule on this domain. With an investment in additional notation,

these analogous results can be obtained from the original ones in the same

way Schummer (1997) extends the results for 2-agent/2-good economies to

multiple-good economies. For brevity, we omit this notationally tedious task.
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7.2. Other preferences

When agents’ preferences may be other than linear, some of the previous

results can be easily extended. For instance, suppose agents may have any

quasi-linear preference relation over, say, two goods, i.e., preferences rep-

resented by a utility function of the form u(x1, x2) = x1 + v(x2) for some

concave v(). In this case, ϕ̃ can be generalized by letting y(R1, R2) be any

efficient allocation that agent 1 considers indifferently to x (with ties broken

arbitrarily). This generalization chooses the efficient point that agent 1 con-

siders indifferently to x, unless that point would be x itself, in which case x′

is chosen.

Obviously the generalization is efficient. To see that it is (ε1, 0)-strategy-

proof, note that if y(R1, R2) is chosen, then agent 1 cannot possibly gain

enough to violate the condition; agent 2 weakly prefers y2(R1, R2) to x2, so

cannot prefer x′
2 to y2(R1, R2) + (ε1, 0). If x′ is chosen, similar arguments

apply.

Finally, consider a “standard economic” domain of all convex, strictly

monotonic, continuous preferences.10 A standard result in the strategy-

proofness literature is that an increase in the domain of preferences can only

make implementability more difficult. Indeed, it is trivial to show that if an

efficient, (ε1, 0)-strategy-proof rule is defined on any domain larger than R,
then whenever both agents’ preferences are linear, a prespecified agent must

receive almost all of the endowment of good 1, as in Theorem 2.

It turns out to be more difficult to extend this bound to the entire domain

of convex, monotonic preferences. While we are unable to show that it is

tight, we provide the following bound over this larger domain.

Theorem 4. Suppose ϕ is an efficient, (ε1, 0)-strategy-proof rule de-

fined over the domain of convex, strictly monotonic, continuous preferences.

Then for some i ∈ N , for any profile (R1, R2) in that domain, we have

ϕ1
i (R1, R2) ≥ Ω1 − 3ε1.

Proof. Denote any superdomain of the linear preference domain by R∗ ⊇
R, and let ϕ be an efficient, (ε1, 0)-strategy-proof rule for that domain.

Note that the restriction of ϕ to the subdomain R defines an efficient,

(ε1, 0)-strategy-proof rule for that domain. Therefore, Theorems 2 and 3

10A formal definition of this type of domain is omitted.
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apply to that restriction. Therefore, and without loss of generality, suppose

that whenever, (R1, R2) ∈ R2, we have ϕ1
1(R1, R2) ≥ Ω1−2ε1. We show that

for all (R1, R2) ∈ (R∗)2, ϕ1
1(R1, R2) ≥ Ω1 − 3ε1.

Step 1: for all R2 ∈ R∗ and all R1 ∈ R, ϕ1(R1, R2) R1 x′
1.

To see this, suppose by contradiction that x′
1 P1 ϕ1(R1, R2). Then there

exists a linear preference ordering R′2 ∈ R (sufficiently “close” to R1) such

that both E(R1, R
′
2) = E� and y2(R1, R2)+(ε1, 0) P ′

2 ϕ2(R1, R2) (where y() is

defined as in Example 1). However, Theorem 3 implies y2(R1) R′
2 ϕ2(R1, R

′
2),

contradicting the fact that ϕ is (ε1, 0)-strategy-proof.

This step implies that by reporting a sufficiently “flat” preference relation,

agent 1 can obtain a bundle that “almost” vector-dominates x′
1. Intuitively,

this leads to the conclusion that he can never be more than “ε1-worse off”

than x′, as we formalize in Step 2.
Step 2: For all R1, R2 ∈ R∗, ϕ1(R1, R2) + (ε1, 0) R1 x′

1.

To see this, suppose by contradiction the opposite. Then there exists

(sufficiently flat) R′
1 ∈ R such that for any allocation z, we have

[z1 R′
1 x′

1] =⇒ [z1 P1 ϕ1(R1, R2) + (ε1, 0)].

By Step 1, this is a contradiction: agent 1 can successfully manipulate by

declaring R′
1.

The conclusion of the Theorem follows from Step 2 and monotonicity. �

We leave it as an open question whether a tighter bound exists over that

entire domain, and whether the discontinuity result of Section 4.2 extends.
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