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1 Introduction

Our goal is to examine the extent to which an auction mechanism is immune

to a simple form of collusion in which one bidder may bribe another to leave

the auction. Specifically, we consider a second-price (or English) auction

where two buyers have independent private valuations for a good. Before

the auction begins, one of the buyers has the opportunity to offer the other

a bribe in exchange for the other’s commitment to remove himself from the

auction (or bid zero). We analyze two versions of this model: one in which

the amount of the bribe is exogenously fixed (e.g. representing a fixed, legal

“favor” one bidder can do for the other, which cannot be regulated), and one

in which the amount is chosen by the briber.

With respect to a given equilibrium concept for this extended game, we

examine whether the second-price auction is “bribe-proof” in the following

sense. We say that the auction is strongly bribe-proof if bribing does not

occur in any equilibrium of the extended game. We show that the second-

price auction fails this requirement under any reasonable equilibrium concept:

under both fixed and variable bribes, there exists a robust equilibrium in

which bribing occurs. We say that the auction is weakly bribe-proof if bribing

does not occur in some equilibrium of the extended game. We show that the

second-price auction fails weak bribe-proofness under standard refinements

such as D1. While there is a sequential equilibrium in which no bribe is

offered, this equilibrium turns out not to be robust.

The concept of bribe-proofness is practical in the sense that bribing agree-

ments represent a minimal, simple form of collusion. A bribing contract like

ours is relatively easy to enforce; participation in the auction is often verifi-

able, and the contract does not rely on post-auction conditional payments.

The bribing contracts we study certainly do not represent all possible

collusive arrangements. However, the availability of even these can induce

collusion and inefficiencies in the second-price auction. One interpretation

of our results is that, in the private-values auction environment, no efficient

and strategy-proof mechanism is resistant to very simple forms of bidder col-
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lusion, even if the buyers have incomplete information regarding each others’

valuations.

1.1 Related literature

Bribing contracts have been analyzed by Schummer (2000) in the context of

dominant strategy implementation. In a general collective decision problem,

he calls a mechanism bribe-proof if, given player i’s type, player j has no

incentive to pay i to commit to misreport his type, even when j reports

truthfully. Schummer (2000) shows that only constant mechanisms are bribe-

proof. In this paper, we extend this type of analysis to a Bayesian setting,

where players do not know each others’ types, and where the decision problem

of allocating an object is being solved with a second-price auction.

Our paper also contributes to a growing literature on collusion in auctions,

including Graham and Marshall (1987), Mailath and Zemsky (1991), McAfee

and McMillan (1992), and Marshall and Marx (2002).1 These authors model

collusion by assuming that a subset of buyers congregates before the auction,

and play some kind of “collusive mechanism” or “knock-off auction.” Graham

and Marshall (1987) show that a group of bidders can collude in an incentive

compatible and ex-ante budget balanced way by simply asking low-valuation

bidders in the group to drop out of the auction. Payments are made to

all group members before determining who should drop out, while after the

auction, the group’s high-valuation member makes a payment back to the

group only if the manipulation produced ex-post gains for him. Mailath and

Zemsky (1991) provide a more sophisticated mechanism that also achieves

ex-post budget balance, and identify the optimal collusive contract subject

to this constraint.

The main difference between our extended game and the way collusion

is modelled in this literature is that we consider a different (and particular)

bribing stage. Instead of the agents jointly designing a collusive side-contract,

1Laffont and Martimort (2000) have a two-agent public goods setup where the mod-
elling of collusion is similar to that of this literature.
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one of our agents is fixed as having the opportunity to offer a contract to

the other agent.2 This is important because in our model the “designer”

of the mechanism, bidder j, has private information, and his goal is not

the maximization of the joint surplus, but rather his own. The result of

this difference is that in our game, signalling is an issue, and the bribing

equilibrium is not efficient.

In previous work on bidding rings, the ring serves as a device to siphon

profits from the seller to the ring members, and overall efficiency is not lost

(under ex-ante symmetry) as a consequence. In our model, though, bribing

leads to a loss in social surplus. We do not assert that our way of modelling

collusion is better, but we think that it is an interesting alternative, especially,

that inefficiencies arising from bribing have not been considered before.

1.2 Outline of Results

In Section 3 we start with a model in which the briber may only offer an

exogenously fixed bribe amount b. We show that in this model, there are

precisely two equilibria in pure strategies: (i) a bribing equilibrium in which

high briber types offer the bribe, and low acceptor types accept it, and (ii) a

no-bribing equilibrium in which the bribe is never offered.

Since the bribing equilibrium has full support on the action space, it is

robust to the usual equilibrium refinements of signalling games. We argue

that the no-bribing equilibrium, however, is not robust. First, we show that

it fails the iterated deletion of dominated strategies if and only if the amount

of the bribe is sufficiently large compared to a certain function of the distribu-

tion of types. Second, regardless of the distribution of types, the no-bribing

equilibrium does not survive standard equilibrium refinements (such as D1

or Perfect Sequential Equilibrium).

In Section 4 we turn to the case of variable bribe amounts, i.e. where

the briber may choose to offer any amount. Here, among all equilibria in

2Furthermore, we restrict the set of available contracts to “bribing contracts,” that is,
a transfer from j to i conditional on i bidding zero.
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which bribing occurs, we show that there is a unique one that is continuous.

It is a “mostly-separating” equilibrium, in the sense that any briber type

below a certain threshold offers a unique amount b as a function of his type,

while all other types offer the same amount. All bribes are accepted with

positive probability, and the highest bribe is always accepted. We also show

that any equilibrium satisfying the D1 criterion must look like the continuous

equilibrium: a unique bribe offer is made by any low briber type, and the

same offer is made by all high briber types.

In the bribing equilibria of both models, inefficiency occurs with positive

probability. Proofs are collected in the Appendix.

2 The Bribing Contract

Consider a second-price (Vickrey) auction for a single indivisible good, with

two risk-neutral bidders i and j. The buyers have private valuations, θi, θj ∈
[0, 1], drawn independently according to the same differentiable c.d.f. F . We

assume that 0 < F ′(x) < ∞ for all x ∈ [0, 1]. Everything is commonly

known except the valuations, which are privately known by the buyers who

hold them.

We modify the second-price auction to model bribing in the following

way. After the buyers learn their valuations, but before the auction starts,

bidder j has an opportunity to offer a bribe b to bidder i in exchange for i’s

commitment not to bid. If i accepts the bribe, he is committed to making a

bid of 0 in the auction; we are assuming that the bribing contract is enforce-

able. If i rejects the bribe or if j doesn’t offer a bribe in the first place, then

the game proceeds as a second-price auction.

We provide results for two cases: (Section 3) when b is given exogenously,

so j decides whether to bribe but not how much to offer; and (Section 4)

when j may also choose the amount of the bribe b. One interesting aspect of

this game is that buyer j’s decision whether or not to offer a bribe (and the

amount offered) reveals information regarding his type. This signalling effect
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adds much complication to a Bayesian model, and makes out-of-equilibrium

beliefs an important issue.3 In a second-price auction, however, if a bribe is

offered but it is declined, then the players’ beliefs about each other’s type be-

comes irrelevant, since bidders have an incentive to bid truthfully regardless

of their information.

Formally, the game we describe above involves three stages: a stage where

bidder j decides whether to offer a bribe, a stage where i decides whether

to accept an offer (if made), and the second-price auction stage. In order to

simplify the presentation, however, we do not explicitly model the bidders’

behavior in the auction stage. We assume that bidders bid truthfully in

the second-price auction, except of course when bidder i accepts a bribe, in

which case he is forced to bid zero.4 If a bribe b is offered and accepted,

then the payoffs to i and j are b and θj − b, respectively. Otherwise, the

payoff to the bidder with the highest type is max(θi, θj)−min(θi, θj), while

the other bidder receives zero. We formalize the definitions of strategies and

equilibrium concepts in each of the following two sections.

3 Fixed Bribe Amount

In this section we assume that the amount that the briber j can offer, b ≤
E(θi), is exogenously fixed, and that he chooses only whether to offer it.

In this model, a (pure) strategy for bidder j prescribes for each type θj a

decision of whether to offer the bribe b. Hence it can be represented by

the set B ⊆ [0, 1] of types that offer the bribe. A strategy for bidder i

prescribes for each type θi a decision of whether to accept b if offered; it can

3In our model, out-of-equilibrium beliefs affect what would happen if j offered a bribe
that is not expected.

4This assumption is innocuous since our most interesting results concern equilibria
in undominated strategies. It does, however, rule out equilibria (in weakly dominated
strategies) in which bidder j threatens to bid the maximum amount in the second-price
auction, forcing i (if he believes this threat) to accept the bribe regardless of his type.
Since our goal is to determine when bribing equilibria are the only “reasonable” ones, our
results are not weakened by this assumption.
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be represented by the set A ⊆ [0, 1] of types that would accept the bribe if

it were offered. We assume that A and B are measurable.

A sequential equilibrium is a pair of strategies (A,B) and a posterior belief

distribution, µ, which satisfy the usual consistency and rationality conditions

for each type.5

Some of our results involve equilibria whose description includes a parti-

tion of the set of types. As in many such games with a continuum of types,

a pair of equilibria may exist which differ only in the behavior of a single

(borderline) type. In order to describe such equilibria more concisely, we

introduce the following notation. For any 0 ≤ a ≤ 1, we write [0, a〉 to mean
“[0, a] or [0, a).” Similarly, 〈a, 1] means “[a, 1] or (a, 1].” This notation facil-

itates the description of “essentially unique” equilibria, where certain types

on interval boundaries may behave in indeterminate (and irrelevant) ways.

Our first result describes the structure of all sequential equilibria in the

model with a fixed bribe b. Strategies are described by sets which are 2-

partitions of [0, 1].

Proposition 1 In any sequential equilibrium, the set of types that offer a

bribe is of the form B = 〈B, 1] and the set of types that accept the bribe is of

the form A = [0, A〉; furthermore B < 1 implies b < B < A ≤ 1.

Proof: For a given equilibrium, denote the set of types that offer the bribe

as B, and the set of types that accept the bribe as A. When B is non-empty,

if player i accepts the bribe then it must exceed the profit he would get in

the auction, given that θj ∈ B. In other words, if θi ∈ A then

b ≥ Eθj
[(θi − θj)1{θj≤θi} | θj ∈ B] (1)

where 1X is the indicator function for event X. If this inequality holds for

some θi then it holds for any θ′i < θi. Therefore A = [0, A〉. If B is empty then

a similar argument (in which the posterior based on F is replaced by the out-

5See Fudenberg and Tirole (1991), Section 8.3.
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of-equilibrium beliefs) shows that for any beliefs supporting the sequential

equilibrium, A must be an interval.

To show that B is also an interval, define B = inf B. If B = 1 then we

are done. Otherwise, since i can infer θj ≥ B from the fact that the bribe

was offered, he has an incentive to accept the bribe if his type is less than

B + b. This follows because i’s profit in the second-price auction is at most

θi −B ≤ b. Therefore A ≥ min{1, B + b} > B.

For any θj ∈ B, the payoff from offering the bribe must be at least as

great as his unconditional payoff in the second-price auction, that is,

F (A)(θj − b) +Eθi
[(θj − θi)1(A<θi≤θj)] ≥ Eθi

[(θj − θi)1(θi≤θj)]. (2)

Differentiating both the left and right hand sides,

∂LHS(θj)

∂θj

= max{F (A), F (θj)} ≥ F (θj) =
∂RHS(θj)

∂θj

.

When θj < A, the left hand side increases in θj strictly faster than the right

hand side does. Therefore, for any θj ∈ B for which B ≤ θj < A, and any

θ′j > θj, eqn. (2) holds strictly with respect to θ′j. This implies θ′j ∈ B, and

therefore B is of the form 〈B, 1]. Furthermore, eqn. (2) cannot hold at θj = b,

hence B > b. �

Observe that the inequality B < A implies inefficiency: if an equilibrium

exists in which the bribe is offered with positive probability (B < 1), then

with positive probability it will be accepted in situations where θi > θj, and

bidder j will win receive the object.

3.1 The Bribing Equilibrium

Our next result states that regardless of the distribution and the amount

of the bribe b ≤ E(θi), an essentially unique bribing equilibrium exists. By

the previous result, high types offer the bribe while low types accept it, and

inefficiency occurs with positive probability.
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Proposition 2 For any b ∈ (0,E(θi)], there exists a sequential equilibrium

in which bribing occurs. Moreover, all equilibria in which a bribe is offered

with positive probability are essentially equivalent: there exist Ab, Bb such

that in any equilibrium where bribing occurs, the sets of bribers and acceptors

are 〈Bb, 1] and [0, Ab〉, respectively.

The proof of this result amounts to showing that for all b ∈ (0,E(θi)],

there is a unique A,B ∈ [0, 1] such that for all θi ∈ [0, A〉, inequality (1)

holds, and for all θj ∈ 〈B, 1], inequality (2) holds. The details of this proof

can be found in the Appendix. For the case in which the bidders’ types are

uniformly distributed, Figure 1 depicts the bribing equilibrium with respect

to various levels of b. Inefficiency occurs whenever B ≤ θi < θj ≤ A, which

occurs with probability (A−B)/2 in the uniform case.

The bribing equilibrium is robust to any refinement on out-of-equilibrium

beliefs because both actions of player j are used in equilibrium with positive

probability. Since it is essentially unique, the only other possible equilibrium

play of the extended game is one where none of the briber types offer b.

Such “no-bribing equilibrium” can be supported, for example, when bidder i

believes that only type θj = 0 would offer a bribe. In this case, his optimal

strategy is to accept the bribe when his type is such that θi ∈ [0, b〉. Then,
bidder j never would benefit from offering the bribe in the first place, hence

bribing would not occur.

These out-of-equilibrium beliefs are unreasonable, though, since for types

θj < b, offering the bribe is a strictly dominated strategy (as long as it is ac-

cepted with positive probability). In Sections 3.2 and 3.3 we examine whether

any beliefs that can support the no-bribing equilibrium are consistent with

standard refinements. In Section 3.2, we show that under some condition on

F , the bribing equilibrium is the unique equilibrium to satisfy an iterated

dominance condition or the Intuitive Criterion. In Section 3.3 we show that

it is is the unique sequential equilibrium satisfying Cho and Sobel’s (1990)

D1 criterion. It is also the unique Perfect Sequential Equilibrium (Grossman
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Figure 1: Equilibrium values of A and B under the uniform distribution,
for any given bribe level b ≤ E(θ) = 0.5.

and Perry (1986)) of the extended game.6

3.2 Iterative Dominance

In this section we examine the consequences of iteratively deleting weakly

dominated strategies. Proposition 3 provides a necessary and sufficient con-

dition under which this refinement rules out equilibria in which bribing never

occurs (“no-bribing equilibria”). Since “order matters” when eliminating

weakly dominated strategies, for simplicity we restrict attention to the case

of eliminating every weakly dominated strategy in each round of deletion.

We call this maximal elimination of weakly dominated strategies.

To describe the result, it is helpful to define the briber-type who would

be indifferent between offering the bribe and not offering it, given that every

acceptor type θi ∈ [0, 1] would accept the bribe.

Definition 1 For any b ∈ [0,E(θi)] define θb to satisfy

θb − b =
∫ θb

0
(θb − θi) dF (θi). (3)

6In addition to other refinements, it is also unique in satisfying one introduced in a
working paper version of the current paper.
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One can check that θb is unique and well-defined by this equation.

Our result is that a no-bribing equilibrium survives this refinement if and

only if the amount of the bribe, b, is greater than the expected price type

θj = θb + b would pay, conditional on winning the second-price auction.

Proposition 3 For all b ∈ (0,E(θi)), there exists a no-bribing sequential

equilibrium that survives the iterated maximal elimination of weakly domi-

nated strategies if and only if

b > E[θi | θi ≤ θb + b] (4)

If the distribution function is convex, for example, then condition (4)

fails to hold, ruling out the no-bribing equilibrium. On the other hand, for

example, if F (x) = xα with 0 < α < 1, then eqn. (4) holds for small b.

Remark 1 Reasoning similar to that used in the proof of Proposition 3

can be used to show that there is a no-bribing equilibrium satisfying Cho

and Kreps’ (1987) Intuitive Criterion if and only if eqn. (4) is satisfied.

Roughly speaking, the Intuitive Criterion requires the acceptor to form out-

of-equilibrium beliefs that place no probability on any briber type who could

not hope to gain a payoff higher than his equilibrium payoff, as long as the

acceptor plays some best response strategy. Since a best response for the

acceptor must involve an interval [0, A] of accepting types, no briber with

type θj ≤ θb could hope to do better offering the bribe than he does when

not offering it (as in equilibrium). Hence, (out-of-equilibrium) beliefs for

the acceptor must have support only on [θb, 1], and a conclusion similar to

that of Proposition 3 is reached. It may also be noted that in our model,

the Intuitive Criterion is equivalent to the (stronger) iterated version of that

condition, defined by Fudenberg and Tirole (1991, p. 449).
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3.3 D1 and Perfect Sequential Equilibrium

We consider the consequences of restricting the players’ out-of-equilibrium

beliefs according to Cho and Sobel’s (1990) D1 criterion, and Grossman and

Perry’s (1986) Perfect Sequential Equilibrium in our extended game.

In the fixed bribes model, the only type of equilibrium in which one of the

players has an out-of-equilibrium action is a no-bribing equilibrium. There-

fore, for brevity, we define the consequences of D1 only for an equilibrium in

which bribing does not occur.

Cho and Sobel’s D1 criterion is based on the idea that if one sender type is

“more likely” to benefit from using an out-of-equilibrium action than a second

sender type, then the first should get “infinitely more weight” in the receiver’s

posterior beliefs after observing that out-of-equilibrium action. Here, if one

briber type θ′j would benefit from offering a bribe (out of equilibrium) against

more of i’s best responses than θj would, then θj should receive no weight in

i’s posterior beliefs after receiving the bribe offer.

To make this concept precise in our setting, we say that θ′j is more likely

to benefit from bribing than θj is when the following is true: For all A ∈ [0, 1],

if θj is (weakly) better off bribing (compared to not) when exactly θi ∈ [0, A]

accept, then θ′j is also better off bribing when exactly θi ∈ [0, A] accept. In

other words, the set of i’s best responses (which must be of the form [0, A〉)
that would induce θj to offer a bribe is a (weak) subset of the best responses

that would induce θ′j to do so. Formally, for all A ∈ [0, 1], if eqn. (2) holds

for θj, then it holds for θ′j.

We say that θ′j is strictly more likely to benefit from bribing than θj is if

θ′j is more likely to benefit from bribing than θj is, but the converse is not

true.

Let D(θj) be the acceptor type (if it exists) such that θj is indifferent

between offering the bribe and not offering it when the bribe is accepted by

precisely the set of types θi ∈ [0, D(θj)]; formally, let D(θj) be such that

F (D(θj))(θj − b) + Eθi
[(θj − θi)1{D(θj)<θi≤θj}] = Eθi

[(θj − θi)1{θi≤θj}]. (5)
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if it exists. Note that D(θj) is defined only for sufficiently high types, in

which case it is unique. In particular, it is defined if and only if θj ≥ θb;

furthermore D(θb) = 1. It is clear that θ′j is strictly more likely to benefit

from bribing than θj is if and only if D(θ′j) < D(θj).

The definition of the D1 criterion, in the spirit of Cho and Sobel’s defi-

nition, is the following. When bidder i receives an out-of-equilibrium bribe

offer, the support of his beliefs about bidder j’s type must be restricted to

the set of types θj ≥ θb that minimize D(θj).

Using eqn. (5), it can be shown (as we do in Lemma 1, Section 4.2, in the

context of the more general variable bribes model) that D() is continuous

on its support, is strictly decreasing as long as θj < D(θj) and is constant

otherwise. Hence, it has a unique fixed point, θ∗ = D(θ∗), so the minimizers

of D() are [θ∗, 1]. The types that would benefit most from bribing (in the

no-bribing equilibrium) are θj ∈ [θ∗, 1].

According to D1, bidder i must attach probability one to the event that

the out-of-equilibrium bribe has been offered by θj ∈ [θ∗, 1]. Therefore, the

offer would be accepted by (at least) all θi ∈ [0, θ∗ + b〉. But this means

that briber type θj = θ∗ would strictly prefer to deviate from the equilibrium

and offer the bribe (since he would be indifferent when it is accepted by

θi ∈ [0, θ∗]). This is the essence of the proof that for any b < E(θi), there

does not exist a no-bribing equilibrium that satisfies D1.

A no-bribing equilibrium also cannot be a Perfect Sequential Equilibrium.

In a sender-receiver game, for a given equilibrium and out-of-equilibrium

message m, Grossman and Perry (1986) call the beliefs of the receiver (upon

seeing m) consistent with the equilibrium and the prior distribution of the

sender’s type, if there exists a mixed strategy α of the receiver that is a

best response given these beliefs, and the beliefs are generated from the prior

applying Bayes’ rule conditional on the sender’s type being in the set of

types that benefit from sending m when the receiver’s response to m is α. A

Perfect Sequential Equilibrium is a sequential equilibrium that satisfies this

additional consistency requirement.

13



In the no-bribing equilibrium of our extended game, Grossman and Perry’s

consistency implies the following regarding the acceptor’s beliefs when he is

unexpectedly offered b. His beliefs must come from the prior distribution

applying Bayes’ rule conditional on θj ∈ B for some B ⊆ [0, 1]. By Proposi-

tion 1, his best response is to accept if and only if θi ∈ [0, A〉, where A ≤ 1.

Given this response, player j will be better off deviating from the no-bribing

equilibrium with type θj if and only if

F (A)(θj − b) +Eθi
[(θj − θi)1{A<θi≤θj}] ≥ Eθi

[(θj − θi)1{θi≤θj}].

Again from Proposition 1, we know that this inequality is satisfied by

types θj belonging to some interval 〈B, 1], and therefore by consistency,

B = 〈B, 1]. From Proposition 2, we know that for a given b > 0 there

exist unique A and B satisfying the consistency requirement. In fact, we

can conclude that in the no-bribing equilibrium of our game, but off the

equilibrium path (i.e. if b is offered), Grossman and Perry’s consistency re-

quires the acceptor to behave as in the (unique) bribing equilibrium. Since

briber types θj > B are strictly better off in the bribing equilibrium than

in the no-bribing equilibrium, they would deviate and offer the bribe if they

had consistent beliefs in the no-bribing equilibrium. This establishes that a

no-bribing equilibrium cannot be a Perfect Sequential Equilibrium.

Proposition 4 The only equilibrium that satisfies either Cho and Sobel’s (1990)

D1 criterion or Grossman and Perry’s (1986) Perfect Sequential Equilibrium

is the bribing equilibrium of Proposition 2.

Since we have explained the ideas behind the proofs here, a more formal

proof is omitted.

4 Variable Bribes

In this section, we examine the model in which j may offer any amount b to

bidder i. As a simplification, we equate the act of offering a bribe of b = 0
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with the act of offering no bribe.7 Therefore, a strategy for j is simply a

function mapping types into offers, b : [0, 1] → R+. A strategy for i specifies

a measurable set of accepting types for each offer b ∈ R+, A(b) ⊆ [0, 1]. A

sequential equilibrium is defined analogously to the previous section (with i’s

beliefs over types θj conditional on receiving any offer b ∈ R+).

Certain results from the previous section carry over to this one. In par-

ticular, bidder i’s equilibrium strategies must be such that any offer b ∈ R+

is accepted by sets of the form A(b) = [0, A(b)〉. In addition, we have the

following.

Proposition 5 In any sequential equilibrium, j’s strategy b(θj) is weakly

monotonic in θj. Furthermore, j’s equilibrium payoff,

πe(θj) = F (A(b(θj)))(θj − b(θj)) + 1{θj>A(b(θj))}

∫ θj

A(b(θj))

(θj − x)dF (x), (6)

is continuous and strictly increasing in θj.

This result implies that in any equilibrium, if two bribes b > b′ are both

offered in equilibrium, then A(b) > A(b′).

The type of equilibrium behavior described in the fixed-bribe model can

be supported in this model with an appropriate specification of (out-of-

equilibrium) beliefs for i. For example, for any given b < E(θi), the bribing

equilibrium described in Proposition 2 can be extended to this model by spec-

ifying that whenever a different bribe b′ �= b is offered, i believes that θj = 0

with probability 1. The no-bribing equilibrium described in Section 3.2 ap-

plies with similar beliefs. Such beliefs are, of course, unappealing, and do

not survive typical refinements used in signalling games with continuous type

spaces.

On the other hand, there may exist an equilibrium in which j’s strat-

egy b() is continuous. Under the assumption that F is log-concave, we prove

7Under any reasonable equilibrium concept, this assumption changes nothing in the
analysis.
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that there is such an equilibrium, and that it is unique (up to the specifica-

tion of i’s out-of-equilibrium behavior). Furthermore, under our refinement,

any equilibrium bribing function must at least partially agree with this con-

tinuous function.

For the remainder of the section, we make the assumption that F is log-

concave: d[F/F ′]/dθ ≥ 0. This is weaker than the widely used assumption

that F ′ is log-concave.8

4.1 Continuous Equilibrium Bribing Function

In the continuous bribing equilibrium, b() is strictly increasing on some in-

terval [0, θ̄), and is constant on [θ̄, 1]. Therefore, if i receives some offer

b(θj) < b(θ̄), then j’s type θj is perfectly revealed. In this case, i accepts the

offer only if the bribe b(θj) exceeds his (perfectly anticipated) payoff in the

auction, θi − θj, i.e. when θi < θj + b(θj).

In order for j to have the incentive to reveal his type (e.g. not to pretend

to be a slightly higher type), a local incentive compatibility condition must

be satisfied. An increase in the amount of bribe offered must be exactly offset

by the increase in the set of types θi who would accept it. This leads to a

differential eqn. (7) characterizing the bribing function.

Proposition 6 Suppose F is log-concave. In any sequential equilibrium in

which bribing occurs, if j’s bribing strategy function b() is continuous, then

it is the unique solution to the following equation satisfying b(0) = 0.

b′(θj) =




F ′(θj + b(θj))(θj − b(θj))

F (θj + b(θj))− F ′(θj + b(θj))(θj − b(θj))
if θj + b(θj) < 1

0 otherwise

(7)

Conversely, there exists a sequential equilibrium in which j’s (continuous)

8Such distributions also satisfy the so-called monotone hazard rate condition. Bagnoli
and Bergstrom (1989) provide an extensive list of distributions satisfying these types of
conditions.
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strategy b() is described by eqn. (7), with b(0) = 0.

From eqn. (7), it follows that b() is strictly increasing up to some θ̄, after

which it is constant, where θ̄ + b(θ̄) = 1.

The equilibrium is robust to any reasonable refinement of out-of-equilibrium

beliefs: The only out-of-equilibrium bribe that can occur is b > b(θ̄). Even if

all types θi accept this offer, no θj could benefit from offering it because all

types θi already accept the smaller (equilibrium) bribe b(θ̄).

It may be readily checked that when types are distributed uniformly, the

continuous bribing function is piecewise linear, specifically,

b(θj) =

{
1
2
θj if θj ∈ [0, 2

3
)

1
3

if θj ∈ [2
3
, 1]

.

When F is not log-concave, a continuous bribing function b satisfying (7)

may or may not exist. Tedious difficulties arise when F is such that b′(θj)

is infinite for some θj. Without the log-concavity assumption, it may be

that any b() satisfying eqn. (7) is discontinuous, in which case there is no

sequential equilibrium where j has a continuous strategy. Intuitively, this

happens when some type θj sees “increasing returns” from increasing the

amount of his bribe; his increased expenditure is more than offset by the fast

increase in the density of types θi that accept the higher bribe.

4.2 D1 in the Variable Bribes Model

In this section, we show that the briber’s strategy in any equilibrium sat-

isfying Cho and Sobel’s (1990) D1 criterion must agree with the function

described in Proposition 6, eqn. (7), on some interval [0, θ̂j〉, and be con-

stant (and accepted with probability one) otherwise. Furthermore, there is

a discontinuity at θ̂j unless the bribing function completely coincides with

eqn. (7). See Figure 2.

The intuition for why D1 rules out most discontinuities (and pooling on

bribes other than one accepted with certainty) is similar to that offered in
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Section 3.3 for the fixed-bribe model. Essentially, there can be no out-of-

equilibrium bribe b̂ and briber type θj such that both b(θj) < b̂, and that θj

would strictly prefer to deviate to b̂ if all types θi ∈ [0, 1] would accept b̂. If

there were, then sufficiently high briber types would gain “more often” from

offering it than would lower types, causing bidder i to accept it often enough

to break the equilibrium.

This result—and the one for the fixed-bribe model—rely on the following

lemma.

Lemma 1 Fix an equilibrium, b(), A(), and an out-of-equilibrium bribe, b̂.

Denote j’s equilibrium payoff by πe(), and suppose that for some θj ∈ [0, 1],

b(θj) < b̂ and πe(θj) < θj − b̂.9 For all θj ∈ [0, 1], define D(θj) to solve

F (D(θj))(θj − b̂) + 1{θj>D(θj)}

∫ θj

D(θj)

(θj − x)dF (x) = πe(θj) (8)

whenever such a solution exists.

Then D() is continuous on its support, which is an interval containing 1.

Furthermore, it equals 1 at the lower endpoint of its support. For all θj

such that D(θj) exists and b(θj) < b̂, we have dD(θj)/dθj ≤ 0, with strict

inequality if and only if θj < D(θj).

The interpretation of D(θj) (given an equilibrium and a deviation b̂) is

that it is the “least number of acceptor types” that briber type θj needs to

accept b̂ in order to make his deviation profitable. Under the hypothesis of

the Lemma, there is a briber type such that he is willing to deviate if all types

of player i accept b̂. For all briber types higher than this one (and as long

as b(θj) < b̂), the “threshold” number of acceptors required for a profitable

deviation is weakly decreasing (and strictly decreasing if θj < D(θj)).

We formalize our main result of this section as follows.

9 In the fixed bribes model, the result is applied to a no-bribing equilibrium, b(θj) = 0,
and b̂ is the fixed bribe. Then the hypothesis of the lemma holds for all θj > θb.
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θj

bribe

b∗()

b()

b̄

b̂

θ̂j θ̄j
10

Figure 2: If an equilibrium satisfies D1, then the bribing function b()
must (i) coincide with the continuous one of Proposition 6 (denoted b∗())
on some [0, θ̂j〉, and (ii) be constant on 〈θ̂j , 1].

Proposition 7 Suppose F is log-concave. If a sequential equilibrium satis-

fies D1, then the bribing function b() is such that (i) for some θ̂j ≤ θ̄,

b(θj) =

{
b∗(θj) if θj < θ̂j

b̂ ≡ θ̂j − F (θ̂j + b∗(θ̂j))(θ̂j − b∗(θ̂j)) if θj > θ̂j

where b∗() is the continuous bribing function described in Proposition 6, and

(ii) b̂ ≥ 1− E[θj | θj ≥ θ̂j].

Conversely, any function b() satisfying these conditions is part of a se-

quential equilibrium satisfying D1.

The requirement that b̂ = θ̂j − F (θ̂j + b∗(θ̂j))(θ̂j − b∗(θ̂j)) means that

type θj = θ̂j is indifferent between two situations: offering b̂ when it is

always accepted, and offering b∗(θ̂j) when bidder i “knows” j’s type. This

follows from a standard continuity argument. Requirement (ii) implies that

type θi = 1 would rather accept b̂ than compete in the auction against

the distribution of types θj ∈ 〈θ̂j, 1]. Hence that offer is always accepted:

A(b̂) = 1.

Finally, these two requirements combined imply that the discontinuity

in b() (at θ̂j, if it exists) cannot occur arbitrarily close to θj = 0. As θ̂j

approaches zero, so does b̂ = θ̂j−F (θ̂j+b∗(θ̂j))(θ̂j−b∗(θ̂j)). For small θ̂j, this

would contradict requirement (ii). Therefore, for any fixed distribution F ,

19



possible values for θ̂j in Proposition 7 are bounded away from zero.

5 Conclusion

We have examined a simple, specific form of collusion among two bidders

in a second price auction, where one of the bidders is permitted to pay the

other to commit to leave the auction (or bid zero). Regardless of whether

the bribing bidder is permitted to offer only an exogenously fixed payment

or is permitted to choose any payment, a robust equilibrium exists in which

bribing occurs. In these equilibria, the object is allocated inefficiently with

positive probability.

Equilibria in which bribing does not occur are not robust to intuitive

refinements. Therefore, depending on the solution concept that an auctioneer

uses, he may be unable to rationalize the use of this auction even on the basis

of the existence of a collusion-free equilibrium.

Our approach differs from much of the collusion literature in a few ways.

Foremost, we do not model a “collusion design” problem for the agents. In

that literature, it is typical to assume that an uninterested third party designs

and administers a revelation mechanism, making or receiving payments from

bidders based on various information.10 The third-party design assumption

is a way to escape the issue of information transmission in the design stage.

If one makes the more-realistic assumption that bidders already have some

idea about their types at the design stage, then when a bidder proposes the

use of a particular collusive mechanism, information about his type could be

inferred from that proposal.11 This type of inference is a part of what we

model. In our model, there is common knowledge about whether bidder j

desired to seek collusion, while that information exists about i whenever j

10See Marshall and Marx (2002) for a case-by-case analysis of the types of post-auction
information that could be used.

11See Jackson and Wilkie (2001) for one approach to modelling this issue, where agents
simultaneously propose and commit to contingent transfer mechanisms, and final payments
are the sum of those proposals.
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makes the offer.

We close by observing that our results are robust with respect to certain

changes in our basic model.12 For example, the existence of a reserve price r

in the second-price auction does not change the flavor of our results. In

the fixed bribe case, Propositions 1, 2, and 4 continue to hold (for b ≤
E(max{θi, r})− r). Proposition 3 holds after redefining type θb. The results

in the variable bribe case hold with a slightly modified version of eqn. 7, and

initial condition b(r) = 0.

Another class of modifications to the model involves allowing both bid-

ders to offer bribes. There are many ways to formalize such a model, and the

results would depend on how such modelling choices are made. If bidders

are permitted to offer bribes simultaneously, for example, then the results

of the model would depend on how simultaneous offers are resolved. In the

fixed bribe model, if they are resolved by randomly invalidating one of the

offers, then bribing equilibria result which have a structure like the equilib-

rium in our model. On the other hand, if simultaneous offers are resolved

endogenously (e.g., through further communication) then (depending on the

precise model) efficient collusion may result. This is not surprising, given the

observations of Graham and Marshall (1987) that members of a bidder ring

can collude efficiently after truthfully revealing their types to each other.

Finally, some of our results in the fixed bribe case carry over to a similar

model where bidding is costly, and bidder j may “burn” money instead of

transferring it.13 The burned money may represent, for example, the cost

of placing an advertisement in a newspaper, as a signal of intention to bid

in the auction. Preliminary numerical analysis shows that equilibria exist in

this model for nondegenerate pairs of parameters (the cost of burning b, and

the cost of bidding c).

12While we do not wish to formalize such changes here, preliminary notes on the follow-
ing ideas are available upon request.

13We thank an Associate Editor for making this observation.
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Appendix

This appendix contains the proofs of our results.

Proof of Proposition 2: For any b ∈ (0,E(θi)], Proposition 1 implies that

in any bribing equilibrium, briber and acceptor types are of the form 〈B, 1]

and [0, A〉. Since B ≥ b, standard continuity arguments imply that type

θj = B must be indifferent between offering the bribe and not, i.e., by eqn. (2)

and B ≤ A,

F (A)(B − b) =

∫ B

0

(B − x) dF (x). (9)

Note that this holds even if B = 1 since bribing is occurring by assumption.

Also, either A = 1, or type θi = A is indifferent between accepting the

bribe and not. By eqn. (1),

b ≥
∫ A

B
(A− x) dF (x)

1− F (B)
, (10)

and if A < 1 then eqn. (10) holds with equality. (From Proposition 1, if

B = 1 then A = 1 and eqn. (10) becomes b ≥ 0; if B < 1 then A > B and

the right-hand side is positive.)

It is helpful to define the following functions for A,B ∈ [0, 1], A ≥ B.

b1(A,B) = B −
∫ B

0
(B − x) dF (x)

F (A)
,

b2(A,B) =

∫ A

B
(A− x) dF (x)

1− F (B)
.

Observe that since B > 0, b1(A,B) < B.

To prove the existence of an equilibrium, we need to find A,B such that

eqns. (9) and (10) hold, that is, b = b1(A,B) ≥ b2(A,B), with equality if

A < 1.
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A

B

(1, B̂)

1

1

0
0

H

Figure 3: The set H in the proof of Proposition 2.

Define

H = {(A,B) : A ≥ B, b1(A,B)− b2(A,B) ≥ 0, with equality if A < 1}.

We claim that (i) for all B, there exists A such that (A,B) ∈ H, and (ii) for

all A < 1, there exists a unique B such that (A,B) ∈ H.

To see (i), first note that (0, 0) ∈ H. For B > 0, b1(B,B) − b2(B,B) =

E[θi | θi ≤ B] − 0 > 0 so either (1, B) ∈ H or by continuity, (A,B) ∈
H for some A ∈ (B, 1). To see (ii) for A ∈ (0, 1), note that b1(A, 0) −
b2(A, 0) = 0−∫ A

0
(A−x) dF (x) < 0, while b1(A,A)−b2(A,A) > 0. Continuity

implies that b1(A,B) − b2(A,B) = 0 for some B ∈ (0, A), hence (A,B) ∈
H. Furthermore, this B is unique because b1(A,B) − b2(A,B) is strictly

decreasing in B (see eqns. (12) and (14) below).

Define the correspondence h : [0, 1] � [0, 1] such that h(A) = {B :

(A,B) ∈ H}. By (ii), h is non-empty and if A < 1 then h is single-valued. It

can be shown (e.g., by an application of the Maximum Theorem) that h is

upper hemi-continuous. Therefore, for A < 1, h(A) is a continuous function,

and its graph, H, is connected. Define B̂ = limA↑1 h(A) ∈ h(1). An example

of h appears in Figure 3.
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By differentiating b1 and b2, we find that for 0 < B < A ≤ 1,

∂b1

∂A
=

F ′(A)
F (A)2

∫ B

0

(B − x) dF (x) > 0, (11)

∂b1

∂B
= 1− F (B)

F (A)
> 0, (12)

∂b2

∂A
=

F (A)− F (B)

1− F (B)
> 0, (13)

∂b2

∂B
=

{∫ A

B
(A− x) dF (x)− (A−B)(1− F (B))

}
F ′(B)

(1− F (B))2
< 0 (14)

where the last inequality follows by
∫ A

B
(A− x) dF (x) <

∫ A

B
(A−B) dF (x) =

(A−B)(F (A)− F (B)) ≤ (A−B)(1− F (B)).

Consider any A′ > A. If h(A′) > h(A) then by eqns. (11) and (12)

we have b1(A
′, h(A′)) > b1(A, h(A)). If h(A′) < h(A) then by eqns. (13)

and (14) we have b2(A
′, h(A′)) > b2(A, h(A)), which implies b1(A

′, h(A′)) ≥
b2(A

′, h(A′)) > b2(A, h(A)) = b1(A, h(A)). Therefore, b1(A, h(A)) is strictly

increasing in A on A ∈ [0, 1).

By continuity, b1(1, B̂) = b2(1, B̂). Therefore, eqns. (12) and (14) imply

that h(1) = [B̂, 1], and b1(1, B) is strictly increasing in B.

Therefore, b1(A,B) is strictly increasing on H in the sense that if A < 1

then b1(A,B) is strictly increasing in A, and if A = 1 then b1(A,B) is strictly

increasing in B. Since b1(0, h(0)) = 0 (by h(0) = 0) and b1(1, 1) = E(θi),

the strict monotonicity and continuity of b ≡ b1(A,B) along H implies that

there exists a one-to-one mapping between b ∈ [0,E(θi)] and (A,B) ∈ H, i.e.

for all b ∈ [0,E(θi)], there exist unique A, B solving eqns. (9) and (10). �

Proof of Proposition 3: Recall that we assume that players bid their val-

uations in the second-price auction, if it is ever reached (which is consis-

tent with deleting dominated strategies). We begin the process of iteratively

deleting maximal sets of weakly dominated strategies whether or not eqn. (4)

holds.
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Round 1. In the first round of elimination, we delete any of j’s strate-

gies that prescribe type θj ≤ b to offer the bribe. This is clear because by

offering the bribe, such a type can only obtain a negative payoff if the bribe

is accepted. For bidder i, we delete any strategy that prescribes type θi ≤ b

to reject the bribe because such a type cannot obtain a payoff higher than

b in the second-price auction. It is straightforward to check that no other

strategies can be eliminated in the first round.

Round 2. Subject to the first round of elimination, we delete any strat-

egy for the briber that prescribes θj ≤ θb to offer the bribe. To see this,

denote any set of acceptors by A ⊆ [0, 1]. From the first round, we must

have [0, b] ⊆ A. If θj ≤ θb offers the bribe then his profit would be

Eθi
[(θj − b)1{θi∈A} + (θj − θi)1{θi∈[0,θj ]\A}] ≤ θj − b

where the inequality holds because θi > b for all θi /∈ A. Since the LHS

of eqn. (3) increases faster in θb than the RHS does, we have θj − b ≤∫ θj

0
(θj − θi) dF (θi) for all θj ≤ θb. Furthermore, for some admissible A, the

inequality is strict. Therefore for θj ≤ θb not offering the bribe dominates

offering the bribe.

Continuing the second round of elimination, we delete any acceptor strat-

egy that prescribes θi ≤ 2b to reject the bribe. This follows because for any

admissible briber strategy, the bribe is offered only by types θj > b, limiting

the acceptor’s SPA-payoff to no more than θi − b. It is again straightforward

to check that no other strategies can be eliminated in the second round.

Round 3. Similarly, the acceptor’s strategies that we delete in the third

round of elimination are precisely those that prescribe θi ≤ θb + b to reject

the bribe, because the briber’s type is greater than θb if the bribe is offered.

Non-existence. As the first of two cases, suppose that eqn. (4) does not

hold. Let θj = min{1, θb + b}. If θj = 1 then his payoff is 1− b from offering

the bribe and is 1−E(θi) from not offering the bribe, so θj strictly prefers to

bribe. If θj = θb+b < 1, then his payoff is at least F (θj)(θj −b) from offering

the bribe (because each θi ≤ θb + b accepts the bribe according to previous

25



rounds of strategy deletion), and his payoff is F (θj)(θj − E[θi | θi ≤ θj])

from not offering the bribe. Since eqn. (4) does not hold, for any admissible

acceptor strategy, type θj’s payoff from offering the bribe is weakly greater

than that from not offering the bribe. Furthermore, since θb + b < 1, this

inequality is strict when i’s strategy is to accept the bribe with any type. We

conclude that for θj = min{1, θb + b}, offering the bribe weakly dominates

not offering the bribe, therefore the no-bribing equilibrium does not survive

the iterated maximal elimination of weakly dominated strategies.

Existence. Second, suppose that eqn. (4) holds. We show that no briber

strategies can be eliminated in the third round of deletion and that the no-

bribing equilibrium can be supported. If the set of acceptors is exactly [0, 1]

then for all θj > θb, offering the bribe is strictly better than not offering it

(because θb is indifferent and the LHS of eqn. (3) increases faster in θb than

the RHS does).

On the other hand, if the set of acceptors is exactly [0, θb + b], which is

also admissible even after the third round of deletion, then, for all θj > θb,

offering the bribe is strictly worse than not offering it. To see this, consider

the payoff difference between not offering and offering the bribe,

E[(θj − θi)1{θi≤θj}]− F (θb + b)(θj − b)− E[(θj − θi)1{θb+b≤θi≤θj}],

which has a derivative equal to

F (θj)− F (θb + b)−max{0, F (θj)− F (θb + b)}.

This derivative is negative for θj < θb + b and zero otherwise, so the payoff

difference is minimized at θj = θb + b, where it equals

F (θb + b)(E[θi | θi ≤ θb + b]− b) > 0. (15)

Hence for type θj > θb not offering the bribe is strictly better than offering

it. Therefore, we can delete no more briber strategies: For any θj > θb,
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either bribing or not bribing may be strictly better, depending on the set of

accepting types (and we already established that any θj ≤ θb must not offer

the bribe).

To support the no-bribing equilibrium in which j never offers the bribe

we specify i’s out-of-equilibrium beliefs as follows. If the bribe is offered then

i believes that θj = θb + ε with probability 1. His best response is to accept

if and only if θi ≤ θb + ε+ b. For small ε > 0, no θj wants to offer the bribe.

This can be seen by perturbing eqn. (15) with ε. �

Proof of Proposition 5: Monotonicity of b(). Suppose that two bribe

amounts, b and b′ < b, are offered in equilibrium. From the arguments

of Proposition 1, the set of types θi that accept b and b′ are [0, A(b)〉 and
[0, A(b′)〉 respectively. Clearly A(b′) < A(b), otherwise no type would offer b.

Let the infimum type who offers b be denoted θ̃j = inf{θj : b(θj) = b}.
We show that θj > θ̃j implies that θj strictly prefers offering b to offering b′,

implying monotonicity.

If θ̃j = 1, we are done. If θ̃j < 1, denote the expected payoff to some

type θj from offering b as

π(θj, b) = F (A(b))(θj − b) + 1{θj>A(b)}

∫ θj

A(b)

(θj − x) dF (x). (16)

As with eqn. (2), we have ∂π(θj, b)/∂θj = max{F (A(b)), F (θj)}. Therefore,

∂[π(θj, b)− π(θj, b
′)]

∂θj

= max{F (A(b)), F (θj)} −max{F (A(b′)), F (θj)} ≥ 0.

Incentive compatibility (and continuity) imply π(θ̃j, b) − π(θ̃j, b
′) ≥ 0.

Since θ̃j < 1, we have θ̃j < A(b) (as in the second paragraph of the proof

of Proposition 1). Therefore, ∂[π(θ̃j, b) − π(θ̃j, b
′)]/∂θj > 0, and so for all

θj > θ̃j, π(θj, b)− π(θj, b
′) > 0.

Continuity of πe(). To see that πe() is strictly increasing, note that

for all θ′j < θj, πe(θ′j) < π(θj, b(θ
′
j)) ≤ πe(θj), where the first inequality
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follows from the definition of π and the fact that θj > b(θj), and the second

inequality follows from incentive compatibility.

We first show continuity approaching from the right. Suppose towards

contradiction that for some θj ∈ [0, 1), there exists δ > 0 such that for all

ε > 0, πe(θj) + δ ≤ πe(θj + ε). Observe that

πe(θj + ε)− π(θj, b(θj + ε))

= F (A(b(θj + ε))) ε+ 1{θj+ε>A(b(θj+ε))}
∫ θj+ε

A(b(θj+ε))
(θj + ε− x) dF (x)

−1{θj>A(b(θj+ε))}
∫ θj

A(b(θj+ε))
(θj − x) dF (x)

= F (A(b(θj + ε))) ε+ 1{θj>A(b(θj+ε))}
∫ θj

A(b(θj+ε))
ε dF (x)

+1{θj>A(b(θj+ε))}
∫ θj+ε

θj
(θj + ε− x) dF (x)

+1{θj+ε>A(b(θj+ε))>θj}
∫ θj+ε

A(b(θj+ε))
(θj + ε− x) dF (x)

< 4ε

where the inequality follows because each of the four terms is no greater than

ε and the last one is strictly less than ε. Therefore,

lim
ε↓0

[πe(θj + ε)− π(θj, b(θj + ε))] = 0.

But then for ε > 0 sufficiently small, π(θj, b(θj+ε)) > πe(θj+ε)−δ ≥ πe(θj),

contradicting incentive compatibility. Therefore πe is continuous from the

right.

To see continuity from the left, suppose towards contradiction that we

have limθ′j↑θj
πe(θ′j) < πe(θj). Since π(θ′j, b(θj)) is continuous in θ′j, we have

limθ′j↑θj
π(θ′j, b(θj)) = π(θj, b(θj)) = πe(θj). But then for θ′j sufficiently close

to θj, π(θ
′
j, b(θ

′
j)) < π(θ′j, b(θj)), contradicting incentive compatibility. �

Proof of Proposition 6: Existence. When F is log-concave, eqn. (7)

(and the requirement b(0) = 0) uniquely defines a continuous function. To

see that, note that b′(0) = 1/2 by l’Hôpital’s rule. Therefore, 0 < b′(θj) < ∞
on some interval [0, ε).
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Using local arguments, consider (locally) the inverse of b(θj), denoted

Θ(b), defined by Θ(0) = 0 and

Θ′(b) =
F (Θ(b) + b)

F ′(Θ(b) + b)(θj(b)− b)
− 1

when Θ(b) + b ≤ 1.

We claim that Θ(b) is a well-defined, (weakly) increasing and continuous

function, and Θ′(b) > 0 almost everywhere. To see this, note that Θ′(0) = 2.

If for some b > 0, Θ′(b) = 0, then Θ(b) > b. Furthermore,

Θ′′(b) =
(

F (Θ(b) + b)

F ′(Θ(b) + b)

)′
1

Θ(b)− b
+

F (Θ(b) + b)

F ′(Θ(b) + b)

1

(Θ(b)− b)2
,

which is strictly positive because (F/F ′)′ ≥ 0 by log-concavity, and Θ(b) > b.

Therefore, Θ(b) is strictly increasing in a right-hand side neighborhood of b.

That is, whenever b′(θj) becomes infinite, θj is only an inflexion point of b(),

and b() continues with a positive and finite derivative in the right-hand side

neighborhood of θj. This demonstrates the existence of a unique continuous

b() from eqn. (7).

To finish the proof, we construct a strategy (and beliefs) for i, and show

that it and b() form a sequential equilibrium.

We show that θj > 0 implies b(θj) < θj to establish that it is rational

for θj to offer b(θj). Since b′(0) = 1/2, b(θj) < θj holds sufficiently close to

θj = 0. Let θ′j = min{θj : b(θj) ≥ θj} (assuming by contradiction that the

set is nonempty). By continuity, b(θ′j) = θ′j > 0. This implies b′(θ′j) = 0.

Since b′ is also continuous, this implies b(θ′j − ε) ≥ θj − ε, a contradiction.

This implies that b′(θj) is positive whenever θj + b(θj) < 1 (i.e. whenever

b′ is not explicitly defined to be zero). Therefore, b() is invertible on [0, b(θ̄j)).

To construct the equilibrium, the acceptor i believes that an offer b̂ < b(θ̄)

comes from type θj = b−1(b̂); an offer of b(θ̄) comes from some type in [θ̄, 1],

where i’s beliefs are a Bayesian update of F over that interval. Let i’s beliefs

for any out-of-equilibrium offer b̂ > b(θ̄) be the same posterior over [θ̄, 1]. An
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(obvious) best response for i is to accept an offer b̂ if and only if θi ≤ A(b̂)

where

A(b̂) =

{
b−1(b̂) + b̂ if b̂ < b(θ̄j)

1 if b̂ ≥ b(θ̄j)

Note that A() is continuous and differentiable everywhere except b̂ = b(θ̄).

For j, offering b̂ > b(θ̄) is strictly dominated by offering b(θ̄j). Therefore

to check incentive compatibility, it suffices to check that no type θj prefers

to offer b̂ ≤ b(θ̄), i.e. where b̂ = b(θ̂j) for some θ̂j.

To prove this, first consider the quantity

π(θj, b(θ̂j))− π(θ̂j, b(θ̂j)) = F (θ̂j + b̂)(θj − θ̂j) + 1{θj>θ̂j+b̂}

∫ θj

θ̂j+b̂

(θj − x)dF (x)

(see eqn. (16)) which can be written as




∫ θ̂j+b(θ̂j)

θ̂j
F (θ̂j + b(θ̂j))dx+

∫ θj

θ̂j+b(θ̂j)
(θj − x)F (x)dx if θ̂j + b(θ̂j) ≤ θj∫ θj

θ̂j
F (θ̂j + b(θ̂j))dx if θ̂j ≤ θj < θ̂j + b(θ̂j)

− ∫ θ̂j

θj
F (x+ b(x))dx if θj < θ̂j.

Second, consider the quantity π(θj, b(θj))− π(θ̂j, b(θ̂j)). Since

d

dθj

π(θj, b(θj)) =

{
F (θj + b(θj)) if θj < θ̄

1 if θj ≥ θ̄

(which can be verified either directly or via the Envelope Theorem), we have

π(θj, b(θj))− π(θ̂j, b(θ̂j)) =




∫ θj

θ̂j
F (min{x+ b(x), 1})dx if θ̂j ≤ θj

− ∫ θ̂j

θj
F (x+ b(x) ∧ 1)dx if θj < θ̂j.

Comparing these two quantities reveals

π(θj, b(θj))− π(θ̂j, b(θ̂j)) ≥ π(θj, b(θ̂j))− π(θ̂j, b(θ̂j))
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implying incentive compatibility.

Uniqueness. Consider a sequential equilibrium in which j’s offer strat-

egy, b(θj), is continuous and where a positive bribe is offered by some type θj.

Since any positive bribe would be accepted with positive probability (à

la Proposition 1), it is clear that b(0) = 0. Let θ′j = max{θj : b(θj) = 0}.
For any δ > 0 the set of acceptors of a bribe bδ ≡ b(θ′j + δ) > 0 includes

the interval [0, θ′j + bδ]. Hence the payoff for θ′j from offering bδ is at least

F (θ′j + bδ)(θ
′
j − bδ) while his payoff in equilibrium is F (θ′j)(θ

′
j −E[x | x ≤ θ′j]).

For δ sufficiently small, bδ < E[x | x ≤ θ′j], therefore incentive compatibility

requires θ′j = 0. Therefore b(θj) is strictly increasing at θj = 0.

We extend this argument to prove that b() can be constant only on some

interval whose maximum is 1. For this, suppose that there exists a bribe

b such that {θj : b(θj) = b} = [θ′′j , θ
′
j] where θ′′j < θ′j < 1. This bribe is

accepted by θi ∈ [0, A〉 where A < θ′j + b because θ′′j < θ′j. Define c =

θ′j + b − A > 0.14 For any δ > 0 (and θ′j + δ ≤ 1), the set of types that

accept a bribe bδ = b(θ′j + δ) is an interval [0, Aδ〉, where Aδ ≥ min{θ′j + b, 1}.
Hence Aδ ≥ A + c. If θ′j offers bδ then his payoff is F (Aδ)(θ

′
j − bδ). His

equilibrium payoff is F (A)(θ′j − b) when A ≥ θ′j, and is at most F (θ′j)(θ
′
j − b)

when A < θ′j. As δ → 0, we have bδ → b. However, Aδ − A ≥ c > 0 and

Aδ − θ′j ≥ min{b, 1− θ′j} > 0, therefore type θ′j has a strict incentive to offer

bδ instead of b for δ sufficiently close to 0. We conclude that if b() is constant

on a non-degenerate interval [θ′′j , θ
′
j] then it is constant on [θ′′j , 1] also.

We have established that the equilibrium bribe-function, b(), is strictly

increasing on an interval [0, θ̂] and constant on [θ̂, 1]. For any θj ∈ [0, θ̂],

if j offers bribe b(θj), then it is accepted by types θi ∈ [0, θj + b(θj)]. His

equilibrium payoff is

πe(θj) = π(θj, b(θj)) = F (θj + b(θj))(θj − b(θj))

14Note that A = 1 would require θ′j = 1, otherwise any θj > θ′j should not offer any
bribe greater than b. Therefore A < 1 also.
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Furthermore, the Envelope Theorem implies

d

dθj

π(θj, b(θj)) = F (θj + b(θj))

Therefore,

F ′(θj + b(θj))(1 + b′(θj))(θj − b(θj)) = F (θj + b(θj))b
′(θj).

Therefore b′() is defined by eqn. (7).

Finally, we show that θ̂ = θ̄ where θ̄ is defined to be the lowest type

such that β(θj) + θj = 1. Suppose that θ̂ < θ̄. For δ ≥ 0 denote the set of

types that accept b(θ̂− δ) by [0, aδ]. Notice that aδ is discontinuous at δ = 0

because θ̂+ b(θ̂) < 1. Therefore, for sufficiently small δ > 0, type θ̂− δ has a

strict incentive to offer b(θ̂), which is a contradiction. On the other hand, if

θ̂ > θ̄ then type θ̄ + ε could strictly gain by offering b(θ̄), which is accepted

by all types θi ∈ [0, 1], also a contradiction. �

Proof of Lemma 1: For θj such that θj−b̂ > πe(θj), we must haveD(θj) <

1 by definition. By (8) and the continuity of πe(), D() exists and is continuous

in an open ball around θj.

Recall that dπe(θj)/dθj = max{F (A(b(θj))), F (θj)}. By (8) and the im-

plicit function theorem,

dD(θj)

dθj

= −max {F (D(θj)), F (θj)} −max {F (A(b(θj))), F (θj)}
F ′(D(θj))

(
min{θj, D(θj)} − b̂

) . (17)

Assume that b(θj) < b̂. We will show that the denominator in (17) is positive

and the numerator is either positive (when θj < D(θj)), or zero (when θj ≥
D(θj)).

First, note that D(θj) > b̂ because if only types below b̂ accept b̂ then the

profit of the briber will be strictly less when offering b̂ than his payoff would

be by not bribing, so it cannot equal his equilibrium payoff. Combined with

θj > b̂, this implies that the denominator in (17) is indeed positive.
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If θj < D(θj) then (8) becomes,

F (D(θj))(θj − b̂) = F (A(b(θj)))(θj − b(θj)) + 1{θj>A(b(θj))}

∫ θj

A(b(θj))

(θj − x)dF (x)

> F (A(b(θj)))(θj − b̂),

because b̂ > b(θj) and the integral is non-negative. But thenD(θj) > A(b(θj))

as well, so the numerator in (17) is positive.

If θj ≥ D(θj) then there are two cases. If θj < A(b(θj)) then (8) becomes

F (D(θj))(θj − b̂) +

∫ θj

D(θj)

(θj − x)dF (x) = F (A(b(θj)))(θj − b(θj)).

But, using b̂ < D(θj), the above equality, and θj < A(b(θj)),

F (θj)(θj − b̂) ≡ F (D(θj))(θj − b̂) +
∫ θj

D(θj)
(θj − b̂)dF (x)

> F (D(θj))(θj − b̂) +
∫ θj

D(θj)
(θj − x)dF (x)

= F (A(b(θj)))(θj − b(θj))

> F (θj)(θj − b(θj)),

which contradicts b(θj) < b̂. So we conclude that θj < A(b(θj)) is impossible.

On the other hand, if θj ≥ A(b(θj)) then the numerator in (17) is zero, as

claimed.

Consider briber type θj such that θj − b̂ > πe(θj). If θj < D(θj) then,

as we have established, D(θ′j) > D(θj) for all θ
′
j < θj in the support of D().

Since b̂ is less than any θ′j in the support of D(), by continuity, D() must

equal 1 at the lower endpoint of its support. If θj > D(θj) then D() is

constant around θj; by continuity, there exists θ∗j < θj such that θ∗j = D(θ∗j ).

But then, D(θ′j) > D(θ∗j ) for all θ
′
j < θ∗j , and again, D() equals 1 at the lower

endpoint of its support. Finally, D() is well-defined for all θ′j > θj, including

θ′j = 1. �
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Proof of Proposition 7: In a given equilibrium b(), A(), Cho and Sobel’s

D1 criterion requires that after a given deviation of the briber to offering

b̂, the acceptor must believe that j’s type is one of those for which D() as

defined in eqn. (8) is minimal.

Suppose b() is discontinuous at θ̂j, and denote

b′ = lim
θj↑θ̂j

b(θj) < lim
θj↓θ̂j

b(θj) = b′′.

where the inequality follows from monotonicity.

Step 1 (no pooling to the left of θ̂j). Suppose towards contradiction

that b−1(b′) = 〈θ′j, θ̂j〉 is a nondegenerate interval. In the arguments below, it

is without loss of generality to assume b(θ̂j) = b′ since by continuity of πe(),

the equilibrium payoff of θ̂j is the same as if he offered b′ and pooled with

some types lower than his own. Therefore, briber type θ̂j would deviate to

some b̂ = b′+ ε, ε > 0 small, provided that A(b̂) > θ̂j + b̂. Hence D(θ̂j) exists

with respect to such a deviation b̂.

If θ̂j < D(θ̂j) then, by Lemma 1, D() is strictly decreasing at θ̂j, and for

all θ′j < θ̂j, D(θ′j) > D(θ̂j). Hence, by D1, the acceptor must believe that

an out-of-equilibrium b̂ may only be offered by briber types higher than θ̂j.

Therefore, A(b̂) > θ̂j + b̂, and a briber of type θ̂j has an incentive to deviate.

If θ̂j ≥ D(θ̂j) then, by Lemma 1, D() is constant around θ̂j. By continuity,

there exists θ∗j ≤ θ̂j such that θ∗j = D(θ∗j ). By Lemma 1, for all θ′j < θ∗j , we

have D(θ′j) > D(θ∗j ). According to D1, the acceptor must believe that b̂ may

only be offered by briber types higher than θ∗j , hence A(b̂) > θ∗j + b̂. But

then, a briber of type θ∗j has a strict incentive to deviate to offering b̂. We

conclude that D1 rules out pooling to the left of any locus of discontinuity

of b().

Step 2 (pooling on (θ̂j, 1]). Suppose towards contradiction that b() is

strictly increasing on a nondegenerate interval (θ̂j, θ
′
j). Then, for all θj in

this range, A(b(θj)) = θj + b(θj), implying πe(θj) = F (θj + b(θj))(θj − b(θj)).

Continuity implies πe(θ̂j) = F (θ̂j + b′′)(θ̂j − b′′) regardless of whether b(θ̂j) =
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b′′.

We first claim that for ε > 0 sufficiently small, briber type θ̂j would

strictly prefer to deviate to offering b′′ − ε if that act would reveal his type.

Recall that the derivative of πe() at θ̂j from the right is dπe(θ̂j)/dθj = F (θ̂j +

b′′). Also,

lim
δ↓0

b(θ̂j + δ)− b′′

δ
=

F ′(θ̂j + b′′)(θ̂j − b′′)

F (θ̂j + b′′)− F ′(θ̂j + b′′)(θ̂j − b′′)
.

That is, b() must satisfy the usual differential equation from the right due to

(local) incentive compatibility. Furthermore,

0 < F (θ̂j + b′′)− F ′(θ̂j + b′′)(θ̂j − b′′) = − d

db

[
F (θ̂j + b)(θ̂j − b)

]∣∣∣∣
b=b′′

,

where the inequality follows from the strict monotonicity of b(). Therefore,

for ε > 0 sufficiently small, briber type θ̂j strictly prefers to deviate to b′′− ε

if this act reveals his type:

F (θ̂j + b′′ − ε)(θ̂j − b′′ + ε) > F (θ̂j + b′′)(θ̂j − b′′) = πe(θ̂j).

We complete the proof of Step 2 by arguing that according to D1, i must

believe that j’s type is at least θ̂j when a bribe b̂ ∈ (b′, b′′) is offered. This

is so because by continuity, πe(θ̂j) = F (θ̂j + b′)(θ̂j − b′). Since b̂ > b′ and

F (D(θ̂j))(θ̂j − b̂) ≥ πe(θ̂j), we must have D(θ̂j) ≥ θ̂j + b′ > θ̂j. Applying

Lemma 1, we conclude that D() is strictly decreasing at θ̂j, so all θj < θ̂j

will have D(θj) > D(θ̂j).

Step 3. We claim that A(b′′) = 1. Suppose, to the contrary, A(b′′) <

1. Then, briber type θj = 1 would strictly prefer offering b̂ = b′′ + ε, for

ε > 0 sufficiently small, if it is accepted by (nearly) all acceptor types, hence

D(1) < 1. By Lemma 1, D() is constant around (to the left of) θj = 1. By

continuity, we can find θ∗j < 1 such that θ∗j = D(θ∗j ). As a consequence of

D1, the acceptor must believe that the briber’s type is greater than θ∗j when
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b̂ is offered, hence A(b̂) ≥ θ∗j + b̂. But this is a contradiction: briber type θ∗j
will strictly prefer to deviate to offering b̂.

Converse. Finally, we show that any bribing strategy such as in Propo-

sition 7 satisfies D1. Let b′ = limθj↑θ̂j
b(θj) and b′′ = {b(θj) : θj > θ̂j}. Player

i’s best response to j’s equilibrium actions is obvious: A(b) = b−1(b) + b for

all b < b′, and A(b′′) = 1. We will now show that for all b̂ ∈ (b′, b′′), D1

restricts i’s beliefs to be concentrated on θj = θ̂j, hence A(b̂) = θ̂j + b̂. This

response makes it unprofitable for any briber type to deviate, so the proposed

strategies indeed form an equilibrium.

By continuity of πe(), θ̂j − b′′ = F (θ̂j + b′)(θ̂j − b′). Therefore, for all

b̂ ∈ (b′, b′′), briber type would deviate to offering b̂ provided sufficiently many

acceptors accepted it, D(θ̂j) < 1. Note that by 0 < b′ < b̂,

F (θj + b′)(θ̂j − b′) > F (θ̂j)(θ̂j − b̂),

hence θj < D(θ̂j). By Lemma 1, for all θj < θ̂j, D(θj) > D(θ̂j). On the other

hand, for θj > θ̂j,

F (D(θj))(θj − b̂) = θj − b′′.

Since (θj − b′′)/(θj − b̂) is increasing in θj (by b̂ < b′′), we conclude that

D(θj) is increasing for θj > θ̂j. Therefore, D(θj) is minimal at θj = θ̂j. By

D1, following a deviation to b̂, the acceptor must believe that θj = θ̂j =

argminθ′j{D(θ′j)}. This completes the proof. �
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