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Abstract

In various object allocation problems, including organ allocation,
potential recipients are prioritized according to their actions (e.g.
treatment decisions). While prioritization can improve object allo-
cation, strict prioritization has been shown to distort action choices,
especially in competitive environments. We examine how competitive-
ness impacts this welfare tradeoff when the planner more generally
can partially prioritize recipients via rationing through classification
(RTC): the planner rations a fractional share of the objects amongst
recipients taking some critical action, rationing the rest amongst the
remaining recipients.

In “competitive” environments (where RTC is without loss), opti-
mal utilitarian welfare is obtained by maximizing this fractional share
subject to eliminating distorted decisions (see also Braverman and
Garg (2020), Perez-Richet and Skreta (2022)). In less competitive
environments (i.e. few agents control many recipients’ actions) our
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model becomes a (not well-behaved) atomic congestion game some-
times yielding a second form of equilibria with excessively distorted
actions. We provide conditions making this second form of equilibria
less plausible. In such cases we can extend the earlier welfare result
and show that competitiveness decreases optimal welfare. Numeri-
cal analysis confirms these results and suggests the latter equilibria
typically yield lower welfare.

1 Introduction
There are many contexts in which limited resources are allocated based on
potential recipients’ action choices. As one leading example, patients await-
ing organ transplants are prioritized—partly or even fully—based on interim
treatment choices made by their care providers. For heart transplant patients
a prioritization is predominantly based on the choice of mechanical circula-
tory or ventilatory support; liver transplant patients historically received
higher priority when placed in an intensive care unit (ICU). Other examples
include some school choice settings (where priorities can depend on choice of
residential location), and organizations that rank or rate agents.1

The prioritization of recipients based on actions leads to two consequences,
both confirmed by empirical observation. Firstly, action choices become dis-
torted. As an illustration of this again within the context of organ allocation,
a policy change in October of 2018 increased the relative priority of heart
patients treated with an intra-aortic balloon pump (IABP) over those treated
with high-dose inotropes (HDI). Coinciding with this change was a roughly
three-fold increase in IABP usage (Ran et al., 2021). Another version of
this same story occurred for liver patients in 2002, when the removal of ICU
status as a prioritization factor coincided with a roughly 50% drop in the
admission of liver patients to ICU’s (Snyder, 2010).

The second consequence is linked to a crucial feature of these organ allo-
cation examples which motivates our main model: more than one potential
recipient (patient) falls under the care of a single strategic agent in the form of
a Transplant Center (TC). The possibly coordinated decision-making across
multiple recipients is a factor in these kinds of allocation problems that is

1A related example is certification agencies, though they may not face an exogenous
budget constraint when allocating certifications; see Frankel and Kartik (2021), Ball
(2023), Perez-Richet and Skreta (2022), and Perez-Richet and Skreta (2023).
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novel in the analysis of allocation problems (see Subsection 1.1). Intuitively,
increasing priority for one patient might crowd out other patients. If this
congestion effect were to be internalized by that patient’s TC, one might
expect the above distortions to be weakened. Indeed, Parker et al. (2018)
provide compelling evidence of this in the context of heart allocation, show-
ing that patient “over-treatment” was noticeably correlated with the number
of competing Transplant Centers within a given area. Viewing the strategic
agent to be the TC rather than the patient, this evidence the intuition that
decentralization of action choices intensifies the above distortion.

With both of these consequences in mind, we construct a stylized model
to consider (i) the degree to which a planner should prioritize recipients based
on action choices, and more significantly (ii) how that degree is affected by
the level of competition, vis à vis the degree to which action choices are decen-
tralized as described above. The planner trades off the potential distortion
in action choices against possible improvements in allocation decisions. At
least in the case of organ allocation, discussions on addressing these distor-
tions have often centered on the binary decision of whether to give full or
no priority to otherwise identical patients who take one action vs. another.
E.g. in the heart example discussed above, IABP patients were given strict
priority over HDI following perceived abuse of the latter treatment; for livers,
the abuse of ICU status resulted in its complete elimination as a factor.

Rather than consider the tradeoff as a binary one, we allow a planner to
partially prioritize the class of recipients that take a particular action over the
class who do not. Namely, we describe a “rationing through classification”
(RTC) approach that allows the planner to offer less-than-strict priority to
the former class by reserving a more-than-zero share of resources for the lat-
ter. Our approach is one way to convexify the (all-or-nothing) absolute- and
no-prioritization alternatives. Though it sounds reminiscent of a reserves-
based mechanism design approach, a key difference is the endogenous choice
of classification membership through equilibrium actions of the agents. In
addition, while our approach appears to constrain a “general mechanism
design” approach, it turns out that in very competitive environments our
restriction to RTC is without loss of generality (details to be discussed in
Subsection 2.2).

Due to the potential for a poorly behaved optimization problem, we re-
strict attention to a stylized model in which there are two types of (many)
potential recipients (“patients”). Types differ in their (i) benefit from taking
a critical action (invasive medical “treatment”) and (ii) marginal benefit from
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receiving an object (“transplant”). What drives the planner to use actions as
a basis for allocation decisions is a natural assumption of correlation in these
benefits: patients who benefit most from treatment are those who marginally
benefit most from transplants.2 To allocate objects the planner uniformly ra-
tions some fraction k of them to the class of recipients who take the critical
action, and rations the rest to the remaining recipients. The stark case of
k = 1 strictly prioritizes all agents who take the critical action over those who
do not, analogous to organ allocation applications where different treatment
choices strictly prioritize otherwise identical patients. Lower values of k can
be thought of a as partial prioritization, in that some objects are reserved
for recipients who do not take the action. In some cases (Section 3) we can
even replicate no prioritization—where the planner ignores action choices—
by choosing an appropriately low level of k. In summary, k can be thought
of as the “weight” that the action choice plays in the allocation decision.
By increasing this weight the planner might improve object allocation but
worsen decisions, as in the heart and liver transplant examples mentioned
earlier.

The primary novelty of our contribution is to incorporate the level of com-
petition (i.e., decentralization of action choices) into an analysis of this trade-
off between improved object allocation and distorted decision making. We
first consider “perfectly competitive” environments (where recipients choose
their own actions), showing that allocative efficiency is maximized when the
planner maximizes the ration k subject to eliminating any distortions in
decision-making. As a corollary we show that utilitarian welfare is maxi-
mized in the same way, resembling conclusions in related work by Braverman
and Garg (2020) and Perez-Richet and Skreta (2022).

Next we consider a general model of “imperfect competition” where pa-
tients are partitioned into n “Transplant Centers,” each of which chooses
actions on behalf of its own patients. In a stylized way this captures the
phenomenon in our leading examples that allocation is based on individual
actions but these actions are chosen by an agent acting on behalf of numer-
ous individuals. This model yields an atomic congestion game that, despite a
restriction to two types and two “routes,” is poorly behaved relative to other
such games that have been studied. When equilibria in this setting are anal-

2Positive correlation simply determines which group of patients the planner prefers
to receive transplants; the model could be solved symmetrically in the opposite case of
negative correlation with analogous results.
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ogous to those in the “perfect competition” model we generalize the above
optimality results and show that welfare decreases in the level of competition
(n). However we also demonstrate through numerical analysis that a second
form of equilibria can occur that lead to highly distorted action choices. Ad-
ditional, preliminary numerical analysis suggests that these latter equilibria
yield lower welfare under plausible modeling assumptions.

1.1 Related Literature
The closest work to ours addresses questions on strategic classification within
both computer science and economics. This literature has focused on the case
in which individual recipients strategically decide their own actions, which
corresponds to our baseline “perfect competition” model in Section 3. Our
results in that section mirror some results in this literature as described be-
low. We distinguish ourselves from this work when we allow for “imperfect
competition” (Section 4), reducing the number of strategic agents that con-
trol potential recipients’ actions.3 Our contribution is to show the extent and
limits to which results in the baseline model extend to the general one, and
how this extension is impacted by the level of competition.

Generally speaking, the models in this literature have the following char-
acteristics. Agents can, at some cost, misrepresent their privately known
type. The planner wishes to correctly classify an agent’s type as being
above/below some threshold (“high/low”), while all agents desire a high
classification. In a setup like this Hardt et al. (2016) consider a planner
who maximizes classification accuracy against strategically misrepresenting
agents, setting aside manipulation costs. Embedding this problem into a
(machine) learning context, they provide efficient algorithms that are near-
optimal with high probability in each of two cases: when the classification
objective is known and when it first must be learned by the algorithm through
existing data. In a related model, Milli et al. (2019) analyze the tradeoff be-
tween accuracy and the resulting manipulation costs imposed on (true) “high
type” agents.

In a continuous-type version of our baseline model (Section 3), Braver-
man and Garg (2020) maximize accuracy net of agents’ manipulation costs.
Under some assumptions they show that optimal classifiers (i) typically re-

3An additional minor difference from some of this work is that we impose a “classifica-
tion budget” representing the fixed supply of resources.
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quire randomization, and (ii) induce no manipulation. Our setup necessarily
induces randomness by nature of our budgeted rationing problem (see foot-
note 3) but its degree is determined endogenously: equilibrium behavior in
our model determines the rate at which high-type agents receive favorable
classification. Nevertheless we obtain an analogous result (Theorem 2) in the
baseline model.

Perez-Richet and Skreta (2022) allow the planner to commit to a prob-
abilistic testing function that maps (misrepresented) types into distribu-
tions over test outcomes. The planner then (optimally) uses equilibrium-
induced test outcomes to make classification decisions. Under an increasing-
returns assumption on misrepresentation costs accuracy-maximizing mech-
anisms have two characteristics. First they “raise the bar” by offering the
greatest chance of high classification only to observed types above some ar-
tificially high threshold. Second, the only agents who achieve this threshold
in equilibrium are those whose true type is above the true desired thresh-
old. Other types engage in no misrepresentation, being compensated with
just enough probability of high classification to offset the net benefit of mis-
representing.4 As a next step, Perez-Richet and Skreta (2023) impose this
no-misrepresentation condition as a constraint under which they find optimal
mechanisms in the presence of an allocation budget constraint.

Other work further removed from ours examines variations on the ques-
tion of mechanism, scoring, or ratings design under costly misrepresentation.
Frankel and Kartik (2021) consider agents who vary both in their type as
above and in their misrepresentation costs. This dual heterogeneity leads the
planner to commit to under-weight information, thereby improving its accu-
racy in equilibrium. When the types are multidimensional Ball (2023) shows
that the planner can benefit by under-weighting only some dimensions while
over-weighting others. With a model and objectives that diverge from ours,
Lee and Suen (2023) consider allocating university seats to students with
high entrance exam scores obtained either naturally (high types) or through
costly tutoring (low types). They show that an increase in seat scarcity can
decrease the level of inefficient tutoring.

While the above papers (and ours) consider static settings, Munoz-Rodriguez
(2024) considers how a planner might leverage inter-temporal incentives to

4Our Theorem 1 reaches the same conclusion in our baseline model where individual
recipients are the agents. That result is also consistent with the fact that when there are
only two types in their setting, optimal mechanisms eliminate manipulation entirely.
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effectively assign transplant organs. Roughly speaking, his model can be in-
terpreted as an overlapping generations version of our “perfect competition”
model, but where types have either zero or infinite differences in values across
actions. Deriving optimal dynamic mechanisms (i.e. using report histories),
an implication is that biasing organ allocation towards high types is achieved
by leveraging the low types’ option value inherent in this dynamic setup. As
in our perfect competition setting, it is not optimal to fully bias allocation
towards high types.

Finally, our general model of (Section 4) can be viewed as a generalization
of congestion games as pioneered by Wardrop (1952). Budgeted allocation
through classification induces congestion: increasing one’s allocation proba-
bility through misrepresentation necessarily reduces someone else’s. Indeed,
fixing the planner’s rationing method in our baseline model of Section 3,
equilibrium existence follows from that literature (Konishi, 2004). Of course
our objective goes beyond this, so we describe the equilibrium and see how
its welfare varies with the planner’s choice of ration.

Corresponding to our general model (Section 4) a literature on atomic
congestion games (ACG’s) considers (atomic) agents who each control a mass
of traffic to be routed through a network. Equilibrium existence and unique-
ness results can be obtained in such games when they are sufficiently struc-
tured, e.g. if all traffic is of a single type and the network is sufficient simple
(Bhaskar et al., 2015; Harks and Timmermans, 2018). Unfortunately, with-
out such assumptions these results need not hold. The presence of two types
of recipients in our model corresponds to a “two-traffic-type” model, meaning
that not only might payoffs violate the common concavity assumption in this
literature, but our payoff functions locally violate concavity everywhere. We
are not aware of any equilibrium existence results from that literature that
apply to our problem. Interestingly however, Wan (2012) considers simple
ACG’s with two nodes and one traffic type, showing that welfare improves
when traffic is split amongst fewer atomic agents. Our Proposition 4 shows
the degree to which that idea extends to the two-type case.
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2 Model

2.1 Primitives
Though our model is necessarily stylized for tractability, we use terminology
related to organ allocation for easier interpretation. There is a continuum
of patients of two possible types: a mass rℓ > 0 of low-type (ℓ) patients
and a mass rh > 0 of high-type (h) patients. For each patient there are
two possible actions labelled N (“Non-treatment”) and T (“Treatment”).
We consider two scenarios regarding the decisions over these actions. In
“perfectly competitive” environments (Section 3) each patient decides their
own action. In less competitive environments (Section 4) a Transplant Center
coordinates decisions across its multiple patients.

There is a positive mass ϕ < rℓ +rh of scarce objects which we call organs,
to be assigned to patients in a manner described below.

A patient’s welfare depends on their type, action, and whether they re-
ceive an organ. Any patient who receives an organ obtains welfare L∗. Oth-
erwise, a type i patient who takes action d obtains welfare Ld

i . To capture
the relevant tradeoffs we wish to consider we assume

LN
h < LT

h < LT
ℓ < LN

ℓ < L∗ (1)

Interpreting high types as the relatively “sicker” or “high risk” patients,
these inequalities embody natural assumptions underlying our motivating
examples. Most fundamentally, the Treatment action increases the welfare
of high types and reduces the welfare of low types, setting aside any chance
of receiving an organ. Therefore we call T a high type’s natural action, and
N a low type’s natural action. Second is the assumption that high types
receive higher marginal benefit from organs. This assumption plays a role
only in our welfare statements, but also represents the real world objective
of prioritizing high-risk patients (Persad et al., 2009). The assumption that
L∗ is independent of type is without loss of generality both strategically
and in terms of welfare.5 The assumption that L∗ is independent of action
represents the idea that treatments in these applications affect short-term
hazard rates rather improve long-term quality of life; that is, conditional on

5Specifically, our model omits aggregate uncertainty for tractability. Therefore adding
a constant to the welfare of each low type has no impact. Furthermore the assumption
is a realistic approximation when, for example, L∗ represents post-transplant expected
life-years in liver (Schaubel et al., 2009) and heart (Meyer et al., 2015) transplantation.
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surviving until transplant, any treatment effects are negligible relative to the
value of receiving an organ.

2.2 Rationing through Classification
The planner observes patients’ actions but not their types. Implicitly as-
suming that the planner cannot observe patients’ identities (or equivalently,
must treat patients with identical actions equally), the planner assigns some
fraction k of the organs uniformly randomly among patients whose action is
T , and similarly uniformly randomly assigns mass (1 − k)ϕ of organs among
those whose action is N . We define the process of Rationing through Clas-
sification as one where (i) the planner publicly commits to such a fraction
k ∈ [0, 1], (ii) actions are decided for each patient (either selfishly in Section 3
or by their Transplant Center in Section 4), and (iii) agents being classified
only by their actions, organs are rationed (uniformly randomly) within each
classification. Our main question is how the degree of prioritization of treat-
ment—modelled through the planner’s choice of k—impacts the structure of
equilibria and equilibrium welfare.

For example at one extreme, a planner might fully prioritize action T by
choosing a maximal value of k. A naive planner (disregarding low types’ in-
centives) might expect this choice to maximally assign organs to high types.
Of course if low types are encouraged to choose T , welfare is lower both be-
cause of the inefficient choice of action and because fewer high types receive
organs. This is analogous to the ICU example discussed in the Introduction,
where otherwise identical agents would be strictly prioritized based on dif-
fering ICU status. At another extreme imagine a planner entirely ignoring
the treatment decision, and randomly allocating organs to all agents with
equal probability. The obvious tradeoff is that actions are chosen efficiently,
though organs are assigned non-discriminantly. It turns out that, at least in
sufficiently competitive environments, this outcome can be replicated in our
setup by selecting the proportional value k̂ ≡ rh/(rℓ + rh).6 For intermediate
values of k the planner can more finely adjust these tradeoffs. We analyze
them under varying degrees of competition.

At a technical level, our focus on RTC appears to be a restriction. More
generally the planner could let the ration k depend on the realized profile of
action choices. There is a 2-fold response to this point. First it turns out this

6With very low degrees of competition this need not hold; see Section 4.

9



Preliminary and incomplete.

restriction is without loss of generality in our baseline “perfect competition”
model since infinitesimal agents are “price takers.” That is, any equilibrium
profile resulting in some value of k in a general mechanism corresponds to
an equilibrium for k under RTC, and thus our restriction is without loss.
Second, any general mechanism that is not RTC requires the planner to
observe a profile of realized actions. While our model is indeed a static one
for tractability, a more realistic dynamic setting would not allow a planner
to observe an entire profile of actions before making allocation decisions. On
the other hand, a mechanism that commits to some (probabilistic) ration k
is feasible in any environment.

3 Perfect Competition

3.1 Equilibrium structure
Fixing any choice of k, we imagine each infinitesimal patient selfishly choosing
their own action. A strategy profile p = (pℓ, ph) describes the fractions of
low- and high-types that choose action T . A non-wasteful profile p induces
two allocation probabilities of receiving an organ for patients who have
chosen either N or T :7

πN(p) = (1 − k)ϕ
(1 − pℓ)rℓ + (1 − ph)rh

πT (p) = kϕ

pℓrℓ + phrh

(2)

When p is clear from the context we may simply write πN and πT .
A patient’s payoff is their expected welfare using the values in (1). A

profile p is an equilibrium if it satisfies the usual incentive compatibility
conditions for both types.

pℓ < 1 =⇒ πNL∗ + (1 − πN)LN
ℓ ≥ πT L∗ + (1 − πT )LT

ℓ

pℓ > 0 =⇒ πNL∗ + (1 − πN)LN
ℓ ≤ πT L∗ + (1 − πT )LT

ℓ

ph < 1 =⇒ πNL∗ + (1 − πN)LN
h ≥ πT L∗ + (1 − πT )LT

h

ph > 0 =⇒ πNL∗ + (1 − πN)LN
h ≤ πT L∗ + (1 − πT )LT

h

(3)

Either action gives a patient some lottery between the organ payoff (L∗)
and the relevant non-organ payoff. Observe that if either type has an incen-
tive not to choose its “natural action” (N for low types, T for high types), it

7To avoid division by zero we can define πN (1, 1) = 0 and πT (0, 0) = 0, but these
particular values are not significant in the analysis.

10



Preliminary and incomplete.

must be in exchange for a strictly higher probability of receiving an organ.
Both types cannot simultaneously have such an incentive, which proves the
following. (Formal proofs are in the appendix.)
Lemma 1. If (pℓ, ph) is an equilibrium then at least one type chooses its
natural action with certainty, i.e. pℓ = 0 or ph = 1 (or both).

It is intuitive that an increase in k should induce a greater number of
patients to choose T , and that high types patients should be induced more
easily than low types. Indeed in the perfect competition setting this intuition
holds. With Lemma 1 this leads to the following description of equilibria.
Proposition 1 (Three regions). For any k ∈ [0, 1] there exists a unique
equilibrium p∗(k). It satisfies

k < k′ =⇒ p∗
ℓ(k) = 0, p∗

h(k) < 1 (biased toward N)
k′ ≤ k ≤ k∗ =⇒ p∗

ℓ(k) = 0, p∗
h(k) = 1 (separating)

k > k∗ =⇒ p∗
ℓ(k) > 0, p∗

h(k) = 1 (biased toward T)
(4)

where

k′ = max
{

0,
rh

ϕ

ϕ(L∗ − LN
h ) + rl(LN

h − LT
h )

rh(L∗ − LN
h ) + rl(L∗ − LT

h )

}
(5)

k∗ = min
{

1,
rh

ϕ

ϕ(L∗ − LN
l ) + rl(LN

l − LT
l )

rh(L∗ − LN
l ) + rl(L∗ − LT

l )

}
(6)

Furthermore p∗() is weakly increasing in k, and k′ < rh

rℓ+rh
< k∗.

In fact p∗() is constant only on [k′, k∗], i.e. strictly increasing elsewhere.
It is possible that k∗ = 1, i.e. that even if the T action is fully prioritized
over N, all low types choose N in equilibrium. Similarly k′ = 0 is possible.
The proof of Proposition 1 implies the following.

k′ > 0 ⇔ LT
h − LN

h

L∗ − LN
h

<
ϕ

rl

(7)

k∗ < 1 ⇔ LN
l − LT

l

L∗ − LT
l

<
ϕ

rh

(8)

Intuition driving (8) is that low types are more easily induced to choose T
(via an increase in k) when (i) organ supply is greater, (ii) competing high
types are fewer, (iii) the cost to choosing T is lessened, and (iv) the benefit of
receiving an organ conditional on choosing T is higher. Analogous intuition
drives (7).
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3.2 Equilibrium welfare
A change in k directly affects welfare by changing the fraction of organs
allocated to low/high types. However it also changes equilibrium treatment
decisions, affecting welfare not only through this distortion but through its
further impact on organ allocation amongst the two types. The total effect
on welfare, or even just on the fraction of organs assigned to high types, can
be indeterminate.

An unambiguous case is when k induces separation profiles, i.e. k ∈
[k′, k∗]. Since all patients choose natural actions, increasing k within this
range merely increases the fraction of organs allocated to high types, in-
creasing total welfare.

When k > k∗, an increase in k has two effects: a greater share of organs
go to the Treatment group (which contains all high types) but more low types
choose Treatment. It turns out that the latter effect always outweighs the
former; an analogous result holds for k < k′.

Formally, for any k ∈ [0, 1] denote the equilibrium fraction of organs
allocated to high types as

f(k) = (1 − k) (1 − ph(k))rh

(1 − ph(k))rh + (1 − pℓ(k))rℓ

+ k
ph(k)rh

ph(k)rh + pℓ(k)rℓ

where pℓ(k), ph(k) is the unique equilibrium for k.

Theorem 1. The fraction f() of organs allocated to high types is

• decreasing in k for k ∈ [0, k′],

• increasing in k for k ∈ [k′, k∗], and

• decreasing in k for k ∈ [k∗, 1].

Furthermore f() is maximized at k∗.

For an intuition imagine parameters for which, when k = 1, (i) all patients
choose T in equilibrium, but (ii) each low type patient—facing a lottery
between receiving an organ and receiving LT

ℓ —is indifferent about choosing N
instead. Each patient receives an organ with probability πT = ϕ/(rℓ + rh).
Now imagine decreasing k and changing the strategy profile so that (i) mass ϵ
of low type patients instead choose N and (ii) mass πT ϵ of organs are instead
rationed to patients who choose N .

12
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Observe that after this proportional change, actions N and T both induce
the same allocation probability as before (ϕ/(rℓ + rh)). Therefore the new
profile cannot be an equilibrium (for the new k): conditional on not receiving
an organ, N yields higher welfare. That is, in order to maintain equilibrium
indifference, low types must “disproportionately follow the organs” that were
reallocated to N . This would imply πN < πT at the new equilibrium, and
hence increase organ allocation to high types. Conversely, an increase in k
would decrease f(). The argument extends to [k∗, 1] and symmetrically to
[0, k′].

Theorem 1 has immediate welfare implications. Within [k′, k∗] it is clear
that welfare increases in k since actions remain fixed while f() increases.
Within [k∗, 1], an increase in k (i) reduces f() and (ii) increases the mass of
low types choosing T , necessarily decreasing welfare.

For k ∈ [0, k′] on the other hand, an increase in k (i) decreases f() but
(ii) reduces the mass of high types choosing N . It turns out that either
effect can dominate, breaking any symmetry with our argument for the case
[k∗, 1]. Nevertheless, a simple argument relying on the monotonicity of f in
this range can be used to prove that welfare for k ∈ [0, k′] is inferior to that
at k∗.

Theorem 2. Utilitarian welfare (the sum of patients’ equilibrium payoffs) is

• increasing in k for k ∈ [k′, k∗],

• decreasing in k for k ∈ [k∗, 1],

• maximized at k∗ among all k ∈ [0, 1].

We next turn to our “imperfect competition” model, where each Trans-
plant Center decides actions on behalf of its share of patients. Notably, the
arguments showing the welfare inferiority of k ∈ [0, k′] in the proof of Theo-
rem 2 do not extend to that model due to the fact that (the analog of) f()
need not be monotonic on [0, k′] as it was in Theorem 1. More significantly,
even the analog of Lemma 1 fails to hold, complicating the description of
equilibria. One of our main contributions is to show a form in which Theo-
rem 2 extends to that model nevertheless.
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4 Imperfect Competition

4.1 Atomic agents
We capture the idea of imperfect competition in the sense that a finite number
of atomic agents choose actions on behalf of their own share of patients.
Formally, there are n Transplant Centers (TC’s). Each TC decides actions
on behalf of its own mass rℓ/n of low-type patients and mass rh/n of high-
types. A strategy for TC i is a pair pi = (piℓ, pih) ∈ [0, 1]2 describing the
percentages of its low- and high-type patients assigned action T . A strategy
profile p = (pi)i∈T C = (piℓ, pih)i∈T C . As is standard, p−i denotes strategies
for TC’s other than i.

A TC’s payoff (formalized below) is the total expected welfare of its
patients as defined earlier (using (1)).8 We continue to interpret the param-
eters in (1) as individual patient welfare, suggesting an interpretation of a
utilitarian TC that weights only its own patients. However, since individual
patients play no strategic role in this section, one can go well beyond that
interpretation. For example, the welfare parameters in (1) could instead rep-
resent the profitability of treating or transplanting patients of either type.
They could represent some combination of welfare and profits, or any (ad-
ditive) cost or benefit the TC receives from different patient outcomes. Of
course such interpretations might lead to different objectives for the planner,
which we leave to future analysis.

To generalize concepts from earlier, for a given strategy profile p we denote
the resulting average treatment rates by classification as

p̄ℓ =
∑

piℓ/n p̄h =
∑

pih/n

Additionally fixing the planner’s choice of k, the profile p induces the follow-
ing two allocation probabilities analogous to Equation 2.

πN = min
{

1,
(1 − k)ϕ

(1 − p̄ℓ)rℓ + (1 − p̄h)rh

}
πT = min

{
1,

kϕ

p̄ℓrℓ + p̄hrh

}

Profile p is non-wasteful (for k) when there are no more organs than
patients at N or at T :

(1 − k)ϕ ≤ (1 − p̄ℓ)rℓ + (1 − p̄h)rh and kϕ ≤ p̄ℓrℓ + p̄hrh (9)
8This sum is deterministic, as our model has no aggregate uncertainty.
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Transplant Center i’s payoff at profile p is

ui(p) = 1
n

[
(1 − piℓ)rℓ(πNL∗ + (1 − πN)LN

ℓ ) + (1 − pih)rh(πNL∗ + (1 − πN)LN
h )

+piℓrℓ(πT L∗ + (1 − πT )LT
ℓ ) + pihrh(πT L∗ + (1 − πN)LT

h )
]

(10)

In standard fashion, pi is a best response to p−i if pi ∈ arg max ui(·, p−i),
and p is a (pure, Nash) equilibrium if pi is a best response to p−i for each i.

4.2 Equilibrium structure and intuition
Though we have numerical analysis suggesting that an equilibrium always
exists across a wide range of primitives (Subsection 4.3) we have no ana-
lytical proof of equilibrium existence. The primary difficulty is that TC’s
payoffs need not be quasi-concave; indeed payoffs locally violate concavity
everywhere.9 Notably, much of the literature on atomic congestion games
directly makes assumptions on payoff-concavity (rather than on primitives)
which guarantee well-behaved problems with existence or uniqueness results.
Our interest is in how primitives impact structure and welfare of equilibria
without sweepint primitives “under the rug.” The downside of this approach
is our lack of a formal existence result. Nevertheless we provide partial re-
sults arguing that certain conditions are more prone to lead to the existence
of certain kinds of equilibria (Subsection 4.3).

We turn to necessary conditions for equilibria. It is immediate that equi-
libria must be non-wasteful: at any wasteful profile, some TC would be able
to change the actions of some patients in order to (i) guarantee those patients
receive an otherwise wasted organ, and (ii) increase all other patients’ chance
of receiving an organ. Formal proof is omitted.

Lemma 2. Fix k. If p is an equilibrium profile then it is non-wasteful.

Next, despite the non-concavity of payoff functions, it turns out that
equilibrium profiles must be symmetric (or payoff-equivalent to a symmetric
equilibrium). Unlike in Section 3, however, there are potentially two kinds
of equilibria under imperfect competition. In a “Non-inversion” equilibrium
either all high types take action T or all low types take action N (analogous

9Proof available upon request.
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to the conclusion of Lemma 1). In an “Inversion” equilibrium either all low
types take action T or all high types take action N (or both).

Theorem 3. Fix k and suppose p is an equilibrium. There exists an equilib-
rium p∗ that is symmetric, is Pareto-equivalent to p, and satisfies one of the
following.

• (Non-inversion) For every TC i, p∗
iℓ = 0 or p∗

ih = 1.

• (Inversion) For every TC i, p∗
iℓ = 1 or p∗

ih = 0.

Inversion equilibria have the perverse characteristic that each TC is choos-
ing action T for at least some of its low type patients and, simultaneously,
choosing action N for at least some of its high type patients. For an in-
tuition behind why this might occur consider TC i’s best response when,
rationally or not, i’s competitors choose action T for a large percentage of
their patients. First, excess congestion at T could conceivably cause i to
choose action N for (at least some of) its high types in order to give those
(high organ-value) patients better odds of an organ. Given this, i might also
choose to avoid further congesting those high types by placing its low types
at T , particularly if both the value of an organ and the value of N over T are
low for those types. Finally, if doing so leads i to place a large percentage
of patients at T we have constructed an equilibrium. The theorem does not
specify whether or when either kind of equilibrium exists. Numerical analysis
described in Subsection 4.3 demonstrates that, indeed, either or both types
may exist, depending on parameters.

The proof of Theorem 3 has two components, one ruling out “interior”
equilibria and the other deriving symmetry. The intuition behind the former
is that, at any arbitrary strategy profile, all TC’s face the same relative
incentive to “swap” equal masses of opposite-type agents between actions N
and T . Thus at any interior profile, all TC’s would strictly prefer executing
the same such swaps until reaching a corner solution (which is either a Non-
inversion or Inversion strategy).

For an intuition behind symmetry, note that the set of, say, Non-inversion
strategies is a monotonic, one-dimensional set: the decision of how many
patients to send to Treatment, prioritizing high-type patients over low-types.
If TC i sends fewer agents to Treatment than TC j, then i has a greater
marginal incentive than j to send additional patients to Treatment since
doing so crowds out fewer of i’s own patients. Since both TC’s should face
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the same marginal incentive in equilibrium, they must choose symmetrically.
The same argument applies to Inversion strategies.

4.3 Numerical analysis
Without an analytical result determining when Inversion (or Non-inversion)
equilibria exist, we provide partial, additional insight with the use of some
computations. Across a wide range of values for the primitives of our model
we approximate equilibria under various rations of k and evaluate the result-
ing equilibrium welfare. Below we justify the values of primitives we consider
as being those which should make Inversion equilibria most plausible under
our modeling assumptions; namely we consider n and L∗ to be relatively
small.

Despite this choice of primitives we interpret our initial findings suggest
two things. First, while Inversion equilibria can exist—even exclusively—
they are atypical across the complete range of parameters. Second, even when
they do exist, Inversion equilibria (at any value for k) are typically welfare-
dominated by some Non-inversion equilibrium (at the value of k described
in Theorem 4). In fact, whenever 2ϕ < rℓ + rh (organs are relatively scarce),
none of the economies we considered yields an Inversion equilibrium with
higher welfare than the highest-welfare Non-inversion equilibrium. These
conclusions lead us to focus on Non-inversion equilibria in Subsection 4.4.

We briefly describe the parameters we considered in deriving these con-
clusions. (Additional details are to be provided in a forthcoming online ap-
pendix.) Being restricted to a fine but discrete grid of values, we considered
all (normalized) values of rℓ + rh ≡ 1 and ϕ < 1. We focused specifically
on the case n = 3 since (i) we require n ≥ 3 in Subsection 4.4 while (ii)
as n becomes large the model converges to one resembling Section 3 (where
Inversion equilibria do not exist).

For patient welfare (Equation 1) we fix (normalize) the values of LN
h and

LN
ℓ . We (conservatively) fix L∗ close to (but slightly larger than) 2LN

ℓ − LN
h

because (i) this value is a strict lower bound for L∗ in Assumption 1 while
(ii) the problem we study becomes less interesting as L∗ becomes arbitrarily
large (since on a relative scale the distinction between N and T becomes
negligible for the patients). With these values fixed, we consider all values
(in a discrete grid) for LT

h and LT
ℓ satisfying Equation 1.

Across this entire range of parameter values we consider a values of
k ∈ (0, 1) roughly in increments of 0.1. For all such values we search for
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symmetric profiles that are (approximately) equilibria and classify each as
either Inversion or Non-inversion. Remarkably, every economy we considered
yields (i) at least one (approximate) equilibrium, (ii) at most one of which
is Inversion, and (iii) at most one which is Non-inversion.10 In any economy
where ϕ < (rℓ + rh)/2, the highest equilibrium welfare is obtained under a
Non-inversion equilibrium (for a ration k∗ described in Theorem 4).

4.3.1 Plausibility of Inversion Equilibria

Intuition suggests that various conditions on primitives might make Inver-
sion equilibria less plausible. Observe that for a given set of primitives an
Inversion equilibrium cannot exist if, at all symmetric strategy profiles, a
TC’s payoff is decreasing in piℓ (i.e. the corresponding partial derivative is
negative); otherwise a TC would benefit from reducing any positive mass of
low types assigned to N . While this condition is overly strong, it turns out
that two kinds of parameter changes that decrease this partial derivative are
consistent with a lower prevalence of Inversion equilibria in our numerical
examples.

To formalize them, define the following differences.

∆∗ = L∗ − LN
ℓ ∆T = LT

ℓ − LT
h

∆ℓ = LN
ℓ − LT

ℓ ∆h = LT
h − LN

h

The proof of the following result is available upon request.

Proposition 2. At any symmetric, non-wasteful profile p̃ and holding all
other ∆’s constant, the partial ∂ui(p̃)/∂piℓ is

• decreasing in ∆ℓ = LN
ℓ − LT

ℓ ;
• increasing in ∆h = LT

h − LN
h .

One might therefore suspect Inversion equilibria to be less prevalent when
∆ℓ is relatively large or when ∆h is relatively small. Even though Inversion
equilibria are generally uncommon in our numerical analysis to begin with,
we find that this pattern holds indeed. (Details will be added in a future
version of the paper.)

In fact in the few cases where Inversion equilibria exist exclusively it is
typical that ∆T is large. Intuitively, such cases are those where TC’s become

10The latter observation is consistent with Proposition 3; however we have no result
corresponding to (ii) due to non-concavities in payoffs.
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relatively indifferent about treatment decisions (N vs. T ) for both of their
patient types, and care only about which types get organs. Thus N and T
become mere labels for two approximately equivalent actions. When k = 0.5
for example, any Non-inverting equilibrium is mirrored by a payoff-equivalent
Inverting equilibrium by simply switching the actions of all patients.

4.4 Non-inversion equilibrium
As demonstrated by the numerical results of Subsection 4.3, the existence and
uniqueness of a “non-inversion” kind of equilibrium obtained in the perfect
competition setting (Section 3) does not generally extend to the imperfect
competition setting. To begin with, however, we can show that at most
Non-inversion equilibrium exists in the general case, and that the results of
Theorem 1 and Theorem 2 extend to such equilibria when they exist in the
imperfect competition case.

To do this we focus on symmetric, Non-inversion profiles that satisfy local
IC constraints, namely, only checking deviations to nearby Non-inversion
strategies.11

Definition 1 (NI-candidate). Fixing k, a symmetric profile p∗ is an NI-
candidate for k when any one of the following holds.

• (1-NI) p∗
iℓ ≡ 0 and ∂ui

∂pih
(p∗) ≡ 0.

• (1-NI corner) p∗
iℓ ≡ 0, p∗

ihrh ≡ kϕ, and ∂ui

∂pih
(p∗) ≤ 0.

• (2-NI) p∗
iℓ ≡ 0, p∗

ih ≡ 1, ∂ui

∂pih
(p∗) ≥ 0, and ∂ui

∂piℓ
(p∗) ≤ 0.

• (3-NI) p∗
ih ≡ 1 and ∂ui

∂piℓ
(p∗) ≡ 0.

• (3-NI corner) p∗
ih ≡ 1, (1 − p∗

iℓ)rℓ ≡ (1 − k)ϕ, and ∂ui

∂piℓ
(p∗) ≥ 0.

The next result proving the uniqueness of NI-candidates implies there is at
most one NI-equilibrium. Furthermore we show that NI-candidates satisfy
an analog of Proposition 1: they are monotonic in k and yield separation
whenever k lies within some intermediate range of values. Finally we prove
an analog of Subsection 3.2 for NI candidates, deriving the value of k that
yields the NI-candidate with higher welfare than any candidate for some
other value of k.

11Definition 1 only checks FOC’s, making it even weaker than this verbal definition;
however proofs in the Appendix show the definitions are equivalent.
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Some of these proofs require two mild assumptions: that n ≥ 3 and that
the benefit of receiving an organ exceeds any welfare differences between
non-recipients.12

Assumption 1 (Valuable organs). L∗ − LN
ℓ > LN

ℓ − LN
h .

Proposition 3 (Three NI regions). Fix n ≥ 3 and suppose Assumption 1
holds. For any k ∈ [0, 1] there exists a unique NI-candidate p∗(k). Further-
more p∗() is weakly increasing in k, and

k < k′ =⇒ ∀i, p∗
iℓ(k) = 0 and p∗

ih(k) < 1 (Region NI-1)
k′ ≤ k ≤ k∗ =⇒ ∀i, p∗

iℓ(k) = 0 and p∗
ih(k) = 1 (Region NI-2)

k > k∗ =⇒ ∀i, p∗
iℓ(k) > 0 and p∗

ih(k) = 1 (Region NI-3)

where

k′ = max
0,

−(LT
h − LN

h ) + ϕ
rℓ

(
n−1

n
L∗ + 1

n
LN

ℓ − LN
h

)
ϕ
rℓ

(
n−1

n
L∗ + 1

n
LN

ℓ − LN
h

)
+ ϕ

rh

n−1
n

(L∗ − LT
h )

 (11)

k∗ = min
1,

(LN
ℓ − LT

ℓ ) + ϕ
rℓ

n−1
n

(L∗ − LN
ℓ )

α

 > k′ (12)

α = ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
n − 1

n
L∗ + 1

n
LT

h − LT
ℓ

]
> 0 (13)

It is easily verified that as n → ∞, k′ and k∗ converge to their corre-
sponding values in the perfect competition case of Proposition 1.

The derivation of k′ and k∗ in Proposition 3 is possible since, even though
payoffs need not be generally concave, we prove a “limited concavity” result
(Lemma 6). As a special case of it, when TC’s use the separation strategy
piℓ ≡ 0 and pih ≡ 1, each TC’s payoff is concave in pih and either decreasing
or concave in piℓ. Therefore k′ and k∗ can be derived only from the two
partial derivatives of payoffs at that profile.

Our main result on NI-candidates under imperfect competition is only
partially analogous to our results on perfect competition equilibria (Subsec-
tion 3.2). Analogously, both the fraction of organs allocated to high types
and utilitarian welfare are single-peaked (at k∗) for values k ∈ [k′, 1]. How-
ever neither is necessarily monotonic on [0, k′]. Nevertheless, a more involved
proof recovers our main conclusion: among all NI-candidates, both the frac-
tion of organs to high types and total welfare are maximized at k∗.

12Some results require only the weaker assumption that L∗ − LT
ℓ > LT

ℓ − LT
h .
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Theorem 4. Fix n ≥ 3 and suppose that Assumption 1 holds. Among all
NI-candidates as a function of k ∈ [0, 1], both the fraction of organs allocated
to high types and the sum of TCs’ payoffs are

• increasing in k for k ∈ [k′, k∗],

• decreasing in k for k ∈ [k∗, 1], and

• maximized at k∗,

where k∗ is defined in Equation 12.

Under the planner’s welfare-optimal choice of k∗ (and the assumption
that NI-candidate profiles are realized), optimal welfare is decreasing in the
degree of competition, n. This is a corollary of Theorem 4 along with the
following observation.

Proposition 4. The fraction k∗(n) (defined in Equation 12) is decreasing
in n.

5 Conclusion
By using agents’ observable actions as a basis for resource allocation, a plan-
ner induces a tradeoff between (i) making better allocation decisions and (ii)
distorting choice over recipients’ actions. Though a planner might want to
bias allocation in favor of recipients prone to take one particular action, doing
so encourages other recipients to “wrongly” take that action. Furthermore
the intensity of this tradeoff is impacted by the level of “competition”—the
extent to which recipients’ decisions are coordinated or centralized.

Evaluations of this tradeoff have led to organ allocation policy changes
that have given or removed full prioritization of recipients who take a par-
ticular “treatment” action over those who do not. In order to offer a more
nuanced approach that compromises between the binary choice between full-
and no-prioritization, we introduce and analyze the concept of rationing
through classification; a planner partially prioritizes recipients taking one
action by setting aside only a fraction of resources for them, reserving the
rest for the remaining recipients.

When we consider the special case of our model that yields the most-
competitive environments (where action choices are fully decentralized) the
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planner maximizes aggregate welfare with a rationing of resources that elim-
inates distorted actions. This special case of our model and the flavor of the
result are reminiscent of related work in the literature.

Our broader focus, and the novelty of our approach, is to consider less-
competitive environments where an agent (e.g. a Transplant Center) chooses
actions on behalf of many patients. The general model yields a so-called
atomic congestion game that fails to satisfy standard payoff assumptions (e.g.
quasi-concavity) that would yield equilibrium existence or uniqueness results.
Indeed, in addition to equilibria analogous to those in more competitive
environments, this model allows for the theoretical possibility of an “inverted”
form of equilibria in which action choices are severely distorted. Numerical
analysis confirms that such equilibria can exist.

Despite this, our preliminary numerical investigation also suggests that
these latter type of equilibria are (i) atypical, being ruled out by reason-
able assumptions on primitives, and (ii) typically welfare-dominated by the
more intuitive form of equilibria analogous to those necessarily describing
behavior in more competitive environments. Focusing on these intuitive,
“Non-inversion” equilibria we generalize the above baseline result by charac-
terizing the welfare-maximizing rationing level under such equilibria, showing
that it eliminates distortions, and show that welfare decreases in the degree
of competition.

This work underscores at least two considerations for policy makers who
design institutions for resource allocation based on action choices. First
the model demonstrates how a rationing approach can serve as a welfare-
improving compromise between the all-or-nothing decision of whether to fully
prioritize one class of recipients over another. Second, the novelty of con-
sidering both high and low competition levels in our model highlights the
importance of considering the degree decentralized decision-making when
designing such institutions. In allocation systems where agents—such as
Transplant Centers—take allocation-relevant actions on behalf of many po-
tential recipients, policy needs to be tailored to the competitive environment.
Indeed, despite the political difficulty of doing so, this work even demon-
strates how optimal allocation policy should differ across regions of varying
competitiveness.
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6 Proofs Appendix

6.1 Perfect Competition
Proof of Lemma 1. If pℓ > 0 then low types weakly prefer choosing Treat-
ment:

πNL∗ + (1 − πN)LN
ℓ ≤ πT L∗ + (1 − πT )LT

ℓ

Since L∗ > LN
ℓ > LT

ℓ (and min{πN , πT } < 1) this would imply πN < πT .
Similarly ph < 1 would imply πN > πT . Hence pℓ = 0 or ph = 1.

Lemma 3. For any k there is a unique equilibrium pℓ(k), ph(k). Furthermore
pℓ() and ph() are weakly increasing in k.

Proof of Lemma 3. For any k, equilibrium existence follows from stan-
dard arguments and is omitted. To prove uniqueness and monotonicity, fix
k, k̃ with k ≤ k̃ and let (pℓ, ph) and (p̃ℓ, p̃h) be arbitrary equilibria for k
and k̃ respectively, with allocation probabilities πN , πT , π̃N , π̃T . We show
monotonicity (pℓ, ph) ≦ (p̃ℓ, p̃h) which also implies uniqueness (k = k̃).

Claim: either (pℓ, ph) ≦ (p̃ℓ, p̃h) or (pℓ, ph) ≧ (p̃ℓ, p̃h). If pℓ = p̃ℓ (or
ph = p̃h) the claim follows immediately. If pℓ < p̃ℓ then Lemma 1 implies
p̃h = 1 ≥ ph. Similarly pℓ > p̃ℓ implies ph = 1 ≥ p̃h, proving the claim.

Claim: (pℓ, ph) ≦ (p̃ℓ, p̃h). First suppose instead that pℓ > p̃ℓ and hence
ph ≥ p̃h. Since k ≤ k̃ this implies πN > π̃N and πT < π̃T . Since p is an
equilibrium for k, low types weakly prefer Treatment in that equilibrium:

πT L∗ + (1 − πT )LT
ℓ ≥ πNL∗ + (1 − πN)LN

ℓ

This implies a strict such preference at p̃ under k̃:

π̃T L∗ + (1 − π̃T )LT
ℓ > π̃NL∗ + (1 − π̃N)LN

ℓ

This strict preference requires p̃ℓ = 1 in equilibrium, contradicting pℓ > p̃ℓ.
Supposing ph > p̃h leads to a similar contradiction.
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Proof of Proposition 1. By Lemmas 1 and 3 there exist 0 ≤ k′ ≤ k∗ ≤
1 that define the three cases of Equation 4. When k = k̄rh/(rℓ + rh), a
separating profile (pℓ = 0, ph = 1) yields πN = πT , so (pℓ = 0, ph = 1) is
an equilibrium where each agent has strict incentive to choose their natural
action. By continuity this would hold for small perturbations of k, thus

k′ <
rh

rℓ + rh

< k∗ (14)

Next, by continuity, k′ is the lowest value of k at which the separation
profile (pℓ = 0, ph = 1) induces a high type to choose T , i.e. at which

πT L∗ + (1 − πT )LT
h ≥ πNL∗ + (1 − πN)LN

h

Substituting πN = (1 − k)ϕ/rℓ and πT = kϕ/rh this becomes

k ≥
(LN

h − LT
h ) + ϕ

rℓ
ϕ(L∗ − LN

h )
ϕ
rh

(L∗ − LT
h ) + ϕ

rℓ
(L∗ − LN

h )

which yields k′ as in (5). Thus k′ > 0 whenever ϕ(L∗ −LN
h )+rl(LN

h −LT
h ) > 0

yielding (7).
Low types are induced to choose N at the separation profile when

πT L∗ + (1 − πT )LT
ℓ ≤ πNL∗ + (1 − πN)LN

ℓ

i.e. simply reversing the above inequality and changing h to ℓ. Similarly this
leads to (6) and (8).

Proof of Theorem 1. The result is obvious in the range k ∈ [k′, k∗] where
pl(k) ≡ 0, ph(k) ≡ 1, and hence f(k) ≡ k.

For any k ∈ (k∗, 1), Proposition 1 implies pℓ(k) > 0 and ph(k) = 1;
furthermore pℓ(k) < 1 (otherwise a low type guarantees an organ deviating to
N). This implies an equilibrium indifference condition for low types. Writing
equilibrium allocation probabilities πN , πT as functions of k, it is

πT (k)L∗ + (1 − πT (k))LT
ℓ = πN(k)L∗ + (1 − πN(k))LN

ℓ , or
1 − πN(k)
1 − πT (k) = L∗ − LT

ℓ

L∗ − LN
ℓ

> 1

where LT
ℓ < LN

ℓ implies the inequality. Therefore πN(k) < πT (k), and
πN(k), πT (k) vary in the same direction with a change in k ∈ (k∗, 1). We
show πT (k) (hence f) is decreasing on this range.
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Fix k∗ < k < k + ϵ < 1 and let δ = pℓ(k + ϵ) − pℓ(k) ≥ 0. If instead we
have kϕ+ϵϕ

pℓ(k)rℓ+δrℓ+rh
= πT (k+ϵ) ≥ πT (k) = kϕ

pℓ(k)rℓ+rh
then (ϵϕ)/(δrℓ) ≥ πT (k) >

πN(k). This also means (1−k)ϕ
(1−pℓ(k))rℓ

= πN(k) > πN(k + ϵ) = (1−k)ϕ−ϵϕ
(1−pℓ(k))rℓ−δrℓ

.
(In words, if an increase in k moves “disproportionately” few low types to T
to increase πT , this must decrease πN < πT .) This contradicts the fact that
πN , πT covary; the indifference condition cannot hold at k + ϵ. Therefore
(with continuity arguments) πT decreases in k ∈ [k∗, 1].

A symmetric argument applies to k ∈ [0, k′] (where πN > πT ). An
increase in k disproportionately increases ph, increasing πN , the rate at which
low types receive organs, hence decreasing f().

Proof of Theorem 2. On the interval [k′, 1], welfare is clearly single-peaked
(with peak at k∗) following the arguments made in the text. The rest of the
proof covers [0, k′].

At k = 0 we know that (i) all organs go to the agents choosing N, (ii)
all low types choose N (pℓ = 0), and (iii) at most all high types choose N
(ph ≤ 1). Thus the fraction of organs going to high types at k = 0 is

f(0) = (1 − ph(0))rh

(1 − ph(0))rh + rℓ

≤ rh

rh + rℓ

≡ k̄

i.e. high types receive less than their “proportional share” k̄.
At k = k∗, agents use a separating profile and thus f(k∗) = k∗ > k̄ (where

the inequality follows (14)). Thus when comparing k∗ to k = 0, (i) high types
receive more organs and (ii) treatment decisions are more efficient. Welfare
is thus higher at k∗.

Finally the same conclusion can be drawn for any k ∈ (0, k′]: By Theo-
rem 1 high types receive even fewer organs at such k than at k = 0, and thus
fewer than at k∗. Furthermore treatment decisions remain less efficient than
at k∗. Therefore welfare is higher at k∗ than at any k ∈ [0, k′].

6.2 Imperfect Competition
6.2.1 Symmetry, I/NI equilibria

The proof of symmetry and the non-inversion/inversion structure of equilib-
ria involves supplemental results—helpful in later proofs—that focus on a
particular kind of deviation by a TC i.
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Fix a non-wasteful profile p at which i is “double mixing,” i.e. pi ∈ (0, 1)2,
resulting in allocation probabilities πN , πT . Consider any (non-wasteful) de-
viation from p, where i moves ϵ > 0 mass of low types from T to N and ϵ
mass of high types from N to T. This results in the strategy

(p′
iℓ, p′

ih) = (piℓ − ϵ/rℓ, p′
ih + ϵ/rh)

Note that this deviation does not change the total masses of patients assigned
actions N and T ; therefore it also does not change πN and πT . Therefore this
deviation has no effect on other TCs’ payoffs regardless of what strategies
p′

−i they are using. In addition, the deviation impacts TC i’s payoff only
in how it affects the (expected) welfare of the 2ϵ mass of patients that were
swapped:13

ϵ[Payoff effect moving a low type T → N and a high type N → T ]
= ϵ[LN

ℓ + πN(L∗ − LN
ℓ ) − LT

ℓ − πT (L∗ − LT
ℓ )

+ LT
h + πT (L∗ − LT

h ) − LN
h − πN(L∗ − LN

h )]
= ϵ[(1 − πN)(LN

ℓ − LN
h ) + (1 − πT )(LT

h − LT
ℓ )] (15)

The effect can be read as the combination of facts that, among i’s patients
who fail to receive an organ, some who were assigned to N turn from high
types into low types and some who were assigned to T turn from low types
into high types. The convex combination of these positive and negative effects
could have any sign. Regardless, it means that a best response is either a
corner solution or is Pareto-equivalent to one.

Lemma 4 (No double-mixing is w.l.o.g.). Fix k, a TC i, and a profile p at
which pi is a best response to p−i. There exists p′

i ∈ [0, 1]2 \ (0, 1)2 such that

(i) p′
i is a best response to p−i, and

(ii) for any TC j and any p′
−i, uj(pi, p′

−i) = uj(p′
i, p′

−i).

Proof of Lemma 4. Fix i and p as in the Lemma. Suppose (15) is positive.
Then i would have the incentive to swap equal masses of low types at T and
high types at N if feasible. Since pi is a best response this must be infeasible:
either piℓ = 0 or pih = 1. Similarly if (15) is negative then piℓ = 1 or pih = 0.
In either case letting p′

i = pi proves the result.
13The resulting linearity in ϵ means that payoff functions are ruled surfaces.
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Suppose (15) is zero. If pi ̸∈ (0, 1)2, again setting p′
i = pi proves the result.

Otherwise we can let (p′
iℓ, p′

ih) = (piℓ − ϵ/rℓ, p′
ih + ϵ/rh) where, by choosing ϵ

maximally, p′
i ̸∈ (0, 1)2. Since (15) is zero, p′

i is also a best response to p−i.
Furthermore this deviation preserves i’s masses of patients assigned N and
T , so for any TC j and any p′

−i, uj(pi, p′
−i) = uj(p′

i, p′
−i).

Observation 1. The following facts about Equation 15 are helpful.

(i) The negative coefficient (LT
h − LT

ℓ ) is of lower absolute magnitude than
(LN

ℓ − LN
h ). Hence πN = πT implies that (15) is positive.

(ii) πN = 1 (πT = 1) implies that (15) is negative (positive).

(iii) When πn increases and πT decreases (e.g. by increasing the total mass
of agents receiving Treatment) (15) decreases.

This narrows the search for i’s best responses to an arbitrary p−i as
follows, and illustrated in Figure 1.

• By Lemma 2 and Lemma 4 we restrict attention to non-wasteful strate-
gies at the edges of [0, 1]2.

• The downward sloping (dashed) lines represent “swaps” of the kind
described above; equivalently these are isoquants along which πN and
πT are constant.

• Moving to the upper-left along any such line changes i’s payoff at a
rate described by (15).

• That rate (15) decreases as (piℓ, pih) increases.
• In any region where (15) is positive a best response must be “non-

inverting.”
• In any region where (15) is negative a best response must be “inverting.”
• The set of candidate best responses is therefore reduced to the set

highlighted in yellow.
These arguments prove the following part of Theorem 3.

Lemma 5. Fix k. For any equilibrium profile p there exists a Pareto-
equivalent equilibrium p∗ for which one of the following is true.

• (Non-inversion) For every TC i, p∗
iℓ = 0 or p∗

ih = 1.

• (Inversion) For every TC i, p∗
iℓ = 1 or p∗

ih = 0.
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piℓ

pih

1

1

0

Figure 1: Candidate best responses are in blue; arrows indicate directions along
which expression (15) increases. The triangular “wasteful” regions and the double-
arrow segment may not exist depending on parameters.

Proof. As in the proof of Lemma 4, if (15) is non-zero, either all TC’s are
using Non-inversion strategies or all are using Inversion strategies (depending
on its sign). In the special case that (15) is zero for some interior equilibrium,
we can construct a Pareto-equivalent equilibrium while shifting each TC’s
strategy to, say, a Non-inversion strategy as in Lemma 4.

The remainder of our proofs are more concise when expressing strategies
and payoffs in terms of masses (rather than percentages) of organs and pa-
tients. Fixing some k we denote the masses of organs rationed to N and T
as

ϕN = (1 − k)ϕ ϕT = kϕ

Similarly when a strategy profile p is clear from context we write

Ai = (1 − piℓ)rℓ/n Di = piℓrℓ/n

Bi = (1 − pih)rh/n Ei = pihrh/n

Ci =
∑
j ̸=i

[(1 − pjℓ)rℓ/n + (1 − pjh)rh/n] Fi =
∑
j ̸=i

[pjℓrℓ/n + pjhrh/n]

Here Ai, Bi, and Ci are i’s low types, i’s high types, and i’s competitors’
patients that take action N ; Di, Ei, and Fi correspond to T .
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TC i’s payoff as given in (10) becomes

AiL
N
ℓ + Ai

Ai + Bi + Ci

ϕN(L∗ − LN
ℓ ) + BiL

N
h + Bi

Ai + Bi + Ci

ϕN(L∗ − LN
h )

+ DiL
T
ℓ + Di

Di + Ei + Fi

ϕT (L∗ − LT
ℓ ) + EiL

T
h + Ei

Di + Ei + Fi

ϕT (L∗ − LT
h )

(16)

keeping in mind that Ai = rℓ/n − Di and Bi = rh/n − Ei.
While a TC’s payoff is not generally concave in pi, it is concave with

respect to pih; under certain conditions it can be concave with respect to piℓ

along edges of the strategy space. The proof of the following lemma also
provides the partial derivatives of payoffs, (17) and (18), utilized in later
proofs.

Lemma 6 (Limited concavity.). Fix k, a non-wasteful profile p, and a TC i.

(i) ui(p) is concave in pih.

(ii) If pih = 1 then ui(p) either is decreasing or is concave in (non-wasteful)
piℓ ∈ [0, 1].

(iii) If Assumption 1 holds, n ≥ 2, and pjh = pkh for all j, k,14 then ui(p) is
concave in piℓ.

Proof. To prove (i) we show (16) is concave in Ei. Omitting subscript i, its
derivative with respect to E (noting B = rh/n − E) is

∂ui

∂E
= A

(A + B + C)2 ϕN(L∗ − LN
ℓ ) − LN

h − A + C

(A + B + C)2 ϕN(L∗ − LN
h )

− D

(D + E + F )2 ϕT (L∗ − LT
ℓ ) + LT

h + D + F

(D + E + F )2 ϕT (L∗ − LT
h )

= (LT
h − LN

h ) + ϕN

A + B + C

(
A

A + B + C
(LN

h − LN
ℓ ) − C

A + B + C
(L∗ − LN

h )
)

+ ϕT

D + E + F

(
D

D + E + F
(LT

ℓ − LT
h ) + F

D + E + F
(L∗ − LT

h )
)

= (LT
h − LN

h ) − ϕN
A(LN

ℓ − LN
h ) + C(L∗ − LN

h )
(A + rh/n − E + C)2 + ϕT

D(LT
ℓ − LT

h ) + F (L∗ − LT
h )

(D + E + F )2

(17)
14In fact the combination Ci ≥ rh/n and pih = 0 is sufficient.
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Since all bracketed terms are positive, (17) is decreasing in E. Therefore ui

is concave in E (i.e. in pih).
To show (ii) and (iii), the derivative of (16) with respect to D is

∂ui

∂D
= (LT

ℓ − LN
ℓ ) + ϕN

A + B + C

(
B

A + B + C
(LN

ℓ − LN
h ) − C

A + B + C
(L∗ − LN

ℓ )
)

+ ϕT

D + E + F

(
E

D + E + F
(LT

h − LT
ℓ ) + F

D + E + F
(L∗ − LT

ℓ )
)

= (LT
ℓ − LN

ℓ )︸ ︷︷ ︸
treatment effect

+ ϕN
B(LN

ℓ − LN
h ) − C(L∗ − LN

ℓ )
(rℓ/n − D + B + C)2︸ ︷︷ ︸

N -reallocation effect

+ ϕT
−E(LT

ℓ − LT
h ) + F (L∗ − LT

ℓ )
(D + E + F )2︸ ︷︷ ︸

T -reallocation effect
(18)

While the treatment effect is negative, the overall sign of (18) depends
on the signs of two “reallocation effects.” Denote

X = B(LN
ℓ − LN

h ) − C(L∗ − LN
ℓ ) X ′ = −E(LT

ℓ − LT
h ) + F (L∗ − LT

ℓ ) (19)

When X > 0 (X < 0) the “N -reallocation effect” is convex and increasing
in D (concave, decreasing in D); when X ′ > 0 (X ′ < 0) the “T -reallocation
effect” is convex and decreasing in D (concave, increasing in D).

Under Assumption 1 one can show X < X ′; this yields three cases.

• X < X ′ ≤ 0: it is immediate that (18) is negative, so ui is decreasing
in D (i.e. in piℓ).

• X ≤ 0 < X ′: both reallocation effects are decreasing in D so (18) is
decreasing in D; hence ui is concave in D (in piℓ).

• 0 < X < X ′: both treatment effects are positive and convex in D, but
change in opposite directions with respect to D. Therefore (18)’s sign
and its direction of change w.r.t. D are indeterminate.

To prove statement (ii) of the lemma observe that if pih = 1 (B = 0) then
X < 0 yielding the first and second cases above.

To prove (iii) observe that if pih = pjh for all j then B ≤ (n − 1)C and
E ≤ (n − 1)F . If n ≥ 2 then Assumption 1 implies X < 0 < X ′ yielding the
second case above.

32



Preliminary and incomplete.

The next lemma implies the intuitive idea that a TC who has already
sent more patients to Treatment than another derives lower marginal benefit
from sending additional patients of either type to Treatment due to crowding
out more of its own patients.
Lemma 7. For any k, any TCs i and j, and any non-wasteful profile p,

∂ui

∂Di

− ∂uj

∂Dj

= ∂ui

∂Ei

− ∂uj

∂Ej

= (Dj − Di)
[

ϕN(L∗ − LN
ℓ )

[rℓ + rh − (Di + Ei + Fi)]2
+ ϕT (L∗ − LT

ℓ )
(Di + Ei + Fi)2

]

+ (Ej − Ei)
[

ϕN(L∗ − LN
h )

[rℓ + rh − (Di + Ei + Fi)]2
+ ϕT (L∗ − LT

h )
(Di + Ei + Fi)2

]
(20)

Proof. Rewriting the partial Equation 17 with Ai = rℓ/n − Di and Ci =
(n − 1)(rℓ/n + rh/n) − Fi,

∂ui

∂Ei

= (LT
h −LN

h )−ϕN
(rℓ/n − Di)(LN

ℓ − LN
h ) + ((n − 1)(rℓ/n + rh/n) − Fi)(L∗ − LN

h )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
Di(LT

ℓ − LT
h ) + Fi(L∗ − LT

h )
(Di + Ei + Fi)2 (21)

An analogous expression holds for j. Since Di + Ei + Fi = Dj + Ej + Fj (the
total mass of patients receiving Treatment is fixed), the two denominators in
(21) are the same as those in the analogous expression for j. Hence

∂ui

∂Ei

− ∂uj

∂Ej

= ϕN
(Di − Dj)(LN

ℓ − LN
h ) + (Fi − Fj)(L∗ − LN

h )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Di − Dj)(LT

ℓ − LT
h ) + (Fi − Fj)(L∗ − LT

h )
(Di + Ei + Fi)2

Since Fi − Fj = −(Di − Dj) + (Ej − Ei),

∂ui

∂Ei

− ∂uj

∂Ej

= ϕN
(Di − Dj)(LN

ℓ − LN
h − L∗ + LN

h ) + (Ej − Ei)(L∗ − LN
h )

(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Di − Dj)(LT

ℓ − LT
h − L∗ + LT

h ) + (Ej − Ei)(L∗ − LT
h )

(Di + Ei + Fi)2

which equals (20).
A parallel argument shows that ∂ui/∂Di − ∂uj/∂Dj equals this same

expression.
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Proof of Theorem 3. By Lemma 5 it is without loss to restrict attention
to Inverting and Non-inverting equilibria. Consider any Non-inverting equi-
librium profile p. Observe that for any i, j, either (piℓ, pih) ≥ (pjℓ, pjh) or
(piℓ, pih) ≤ (pjℓ, pjh).

Suppose (piℓ, pih) ⪇ (pjℓ, pjh), i.e. using the above notation suppose Dj ≥
Di and Ej ≥ Ei with at least one inequality being strict. By (20) i has a
greater marginal incentive to send patients (of either type) to T than j does.
This implies either that i has the strict incentive to (feasibly) increase pi or
that j has the strict incentive to (feasibly) strictly decrease pj, contradict-
ing the equilibrium assumption. A parallel argument applies to Inversion
equilibria.

6.2.2 Unique NI-candidates

To prove Proposition 3 we write the partial derivatives of TC payoffs ui also
as a function of k. For any (symmetric, non-wasteful) non-inversion strategy
profile and k, define δW and δN by evaluating (17) and (18) at such profiles.

δW (E, k) ≡ ∂u

∂Ei

∣∣∣∣∣
∀j Dj=0, Ej=E

(22)

= (LT
h − LN

h ) − ϕN
rℓ(LN

ℓ − LN
h )

n(rℓ + rh − nE)2 − ϕN
(n − 1)(L∗ − LN

h )
n(rℓ + rh − nE) + ϕT

(n − 1)(L∗ − LT
h )

n2E

δN(D, k) ≡ ∂u

∂Di

∣∣∣∣∣
∀j Dj=D, Ej= rh

n

(23)

= (LT
ℓ − LN

ℓ ) − ϕN
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD) − ϕT

rh(LT
ℓ − LT

h )
n(nD + rh)2 + ϕT

(n − 1)(L∗ − LT
ℓ )

n(nD + rh)

With this notation we write the definition of NI-candidate (Definition 1
as follows.

Definition (NI-candidate). A symmetric profile p∗ (inducing strategies Di =
p∗

iℓrℓ/n, Ei = p∗
ihrh/n) is an NI-candidate if

• (1-NI) p∗
iℓ ≡ 0 and δW (E, k) = 0; or

• (1-NI corner solution) p∗
iℓ ≡ 0, nEi = kϕ, and δW (E, k) ≤ 0; or

• (3-NI) p∗
ih ≡ 1 and δN(D, k) = 0; or

• (3-NI corner solution) p∗
ih ≡ 1, rℓ/n−Di = (1−k)ϕ, and δN(D, k) ≥ 0;

or
• (2-NI) p∗

iℓ ≡ 0, p∗
ih ≡ 1, δW (E, k) ≥ 0, and δN(D, k) ≤ 0.
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The following lemma conveys the intuition that the benefit of assigning
more patients to T increases in k and decreases in the total mass of patients
assigned to T . This intuition is always true for (i) assigning more high type
patients to T , but requires mild assumptions for (ii) low-type patients (who
congest their own TC’s high-type patients).
Lemma 8 (Properties of δN , δW ).

(i) δW (E, k) is linearly increasing in k ∈ [0, 1] and decreasing in E ∈
[0, rh/n].

(ii) If Assumption 1 holds, n ≥ 2 implies δN(D, k) is linearly increasing in
k ∈ [0, 1], and n ≥ 3 implies δN(D, k) is decreasing in D ∈ [0, rℓ/n].

Proof. To prove the first claim, note that δW is continuous and differen-
tiable. Differentiating δW (E, k) with respect to k yields

∂δW

∂k
= ϕ

rℓ(LN
ℓ − LN

h )
n(rℓ + rh − nE)2 + ϕ

(n − 1)(L∗ − LN
h )

n(rℓ + rh − nE) + ϕ
(n − 1)(L∗ − LT

h )
n2E

> 0

(24)
which is a sum of positive terms independent of k; so δW is linearly increasing
in k. Likewise,
∂δW

∂E
= −ϕN

2rℓ(LN
ℓ − LN

h )
(rℓ + rh − nE)3 − ϕN

(n − 1)(L∗ − LN
h )

(rℓ + rh − nE)2 − ϕT
(n − 1)(L∗ − LT

h )
(nE)2

which for any E ∈ (0, rh/n] is a sum of three strictly negative terms; so δW

is decreasing in E.
Analogously for the second claim,

∂δN

∂k
= ϕ

(n − 1)(L∗ − LN
ℓ )

n(rℓ − nD) + ϕ
−rh(LT

ℓ − LT
h ) + (n − 1)(rh + nD)(L∗ − LT

ℓ )
n(rh + nD)2

(25)
If n ≥ 2 and Assumption 1 holds, then the second term is strictly positive.
Since the first term is positive, δN is linearly increasing in k. Likewise

∂δN

∂D
= ϕN

−(n − 1)(L∗ − LN
ℓ )

(rℓ − nD)2 + ϕT
2rh(LT

ℓ − LT
h )

(nD + rh)3 − ϕT
(n − 1)(L∗ − LT

ℓ )
(nD + rh)2

Since rh/(nD + rh) < 1,

∂δN

∂D
< ϕN

−(n − 1)(L∗ − LN
ℓ )

(rℓ − nD)2 + ϕT
2(LT

ℓ − LT
h )

(nD + rh)2 − ϕT
(n − 1)(L∗ − LT

ℓ )
(nD + rh)2
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If n ≥ 3 and Assumption 1 holds, then the magnitude of the third term
exceeds that of the second term; so δN is decreasing in D.

Lemma 9 (Candidates in Region 2-NI). Fix k and denote the “NI-separating”
profile ps by ps

iℓ ≡ 0 and ps
ih ≡ 1. Then (ps, k) is an NI-candidate if and only

if k′ ≤ k ≤ k∗ where k′ < k∗ are defined by (11) and (12).

Proof. Fixing k, (ps, k) is a NI-candidate if and only if a TC has no incentive
to decrease E from its value rh/n and has no incentive to increase D above 0.

The former is the requirement δW (rh/n, k) ≥ 0 which, by Equation 22, is

(LT
h − LN

h ) − ϕN

rℓ

1
n

(LN
ℓ − nLN

h + (n − 1)L∗) + ϕT

rh

n − 1
n

(L∗ − LT
h ) ≥ 0

Substituting for ϕN = (1 − k)ϕ and ϕT = kϕ this inequality holds when

k ≥
−(LT

h − LN
h ) + ϕ

rℓ

1
n

(
(n − 1)L∗ + LN

ℓ − nLN
h

)
ϕ
rℓ

1
n

((n − 1)L∗ + LN
ℓ − nLN

h ) + ϕ
rh

n−1
n

(L∗ − LT
h )

≡ k′ (26)

establishing (11).
The latter requirement is δN(0, k) ≤ 0, i.e. by Equation 23

(LT
ℓ − LN

ℓ ) − ϕN

n−1
n

(L∗ − LN
ℓ )

rℓ

+ ϕT

− 1
n
(LT

ℓ − LT
h ) + n−1

n
(L∗ − LT

ℓ )
rh

≤ 0

which holds when

kα ≤ (LN
ℓ − LT

ℓ ) + ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ ) (27)

where α =
[

ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
− 1

n
(LT

ℓ − LT
h ) + n − 1

n
(L∗ − LT

ℓ )
]]

The inequality obviously holds if α ≤ 0. However Assumption 1 and the
assumption that n ≥ 3 imply α > 0. Dividing both sides of (27) by α yields
k ≤ k∗ as defined in (12).

The following implies that region 2-NI is non-degenerate: equilibrium
separation occurs for a range of values of k.

Lemma 10. For k′, k∗ defined in (11)–(12), k′ < k∗ and rh

rℓ+rh
≡ k̄ < k∗.
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Proof. It is clear from (11) and (12) that k′ < 1 and k∗ > 0. Hence if k′ = 0
or k∗ = 1 the conclusion is immediate.

Suppose k′ > 0 and k∗ < 1, hence δW (rh/n, k′) = 0 and δN(0, k∗) = 0.
Since δW is increasing in k, we prove the result by showing δW (rh/n, k∗) >
0 = δN(0, k∗). We do this by showing that (i) δW (rh/n, k)−δN(0, k) increases
in k, and (ii) δW (rh/n, k̄) > δN(0, k̄) at the “proportional” value k̄ ≡ rh

rℓ+rh
<

k∗.
To show (i) we evaluate (24)–(25) at (rh/n, k) and (0, k) (reordering the

first two terms of the first expression).

∂δW

∂k
(rh/n, k) = ϕ

(n − 1)(L∗ − LN
h )

nrℓ

+ ϕ
(LN

ℓ − LN
h )

nrℓ

+ ϕ
(n − 1)(L∗ − LT

h )
nrh

∂δN

∂k
(0, k) = ϕ

(n − 1)(L∗ − LN
ℓ )

nrℓ

+ ϕ
−(LT

ℓ − LT
h )

nrh

+ ϕ
(n − 1)(L∗ − LT

ℓ )
nrh

It is easy to see that the three terms in the first expression are greater than
the respective terms in the second expression, proving (i).

To prove (ii), evaluate the two derivatives at k̄.

δN(0, k̄) = (LT
ℓ − LN

ℓ ) − ϕ
rℓ

rh + rℓ

(n − 1)(L∗ − LN
ℓ )

nrℓ

+ ϕ
rh

rh + rℓ

−(LT
ℓ − LT

h ) + (n − 1)(L∗ − LT
ℓ )

nrh

= (LT
ℓ − LN

ℓ ) − ϕ
(n − 1)(L∗ − LN

ℓ )
n(rh + rℓ)

+ ϕ
−(LT

ℓ − LT
h ) + (n − 1)(L∗ − LT

ℓ )
n(rh + rℓ)

= (LT
ℓ − LN

ℓ ) − ϕ
(LT

ℓ − LT
h )

n(rh + rℓ)
+ ϕ

(n − 1)(LN
ℓ − LT

ℓ )
n(rh + rℓ)

< 0

which is negative since the magnitude of the first (negative) term exceeds
that of the third (positive) term. Additionally, since δN(0, k∗) = 0 and is
increasing in k this implies k̄ < k∗.

Secondly,

δW (rh/n, k̄) = (LT
h − LN

h ) − ϕ
rℓ

rh + rℓ

(LN
ℓ − LN

h )
nrℓ

− ϕ
rℓ

rh + rℓ

(n − 1)(L∗ − LN
h )

nrℓ

+ ϕ
rh

rh + rℓ

(n − 1)(L∗ − LT
h )

nrh

= (LT
h − LN

h ) − ϕ
(LN

ℓ − LN
h )

n(rh + rℓ)
− ϕ

(n − 1)(L∗ − LN
h )

n(rh + rℓ)
+ ϕ

(n − 1)(L∗ − LT
h )

n(rh + rℓ)

= (LT
h − LN

h ) − ϕ
(LN

ℓ − LN
h )

n(rh + rℓ)
− ϕ

(n − 1)(LT
h − LN

h )
n(rh + rℓ)
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Note that

δW (rh/n, k̄) − δN(0, k̄) = (LT
h − LN

h ) − (LT
ℓ − LN

ℓ ) − ϕ
(LN

ℓ − LN
h ) − (LT

ℓ − LT
h )

n(rh + rℓ)

− ϕ(n − 1)LT
h − LN

h + LN
ℓ − LT

ℓ

n(rh + rℓ)

=
[
LT

h − LN
h − LT

ℓ + LN
ℓ

] [
1 − ϕ

rh + rℓ

]
> 0

since LT
h > LN

h , LN
ℓ > LT

ℓ , and ϕ < rh + rℓ. Therefore at k∗ > k̄, (i) implies

δW (rh/n, k∗) > δN(0, k∗) = 0 = δW (rh/n, k′)

implying k∗ > k′.

Lemma 11 (Candidates in Region 3-NI). If k > k∗ then there exists a unique
NI-candidate. It satisfies pih ≡ 1.

Proof. Let ps be defined as in Lemma 9 and recall δN(ps, k∗) = 0 by defi-
nition of k∗. By Lemma 9, k > k∗ > k′ implies δW (ps, k) > 0. The lemma
furthermore implies δW (p, k) > 0 for any symmetric profile satisfying piℓ ≡ 0,
i.e. there can be no NI-candidate in region 1-NI.

Lemma 9 similarly implies δN(ps, k) > 0. By Lemma 9, δN(·, k) contin-
uously decreases as we increase D (piℓ) from zero. Either δN(D, k) = 0 at
some unique D or we have (corner solution) δN(rℓ/n, k) > 0. In the latter
case we clearly have a unique NI-candidate. In the former (interior) case,
recall by Lemma 6 (statement (ii)) that at such a profile, a TC’s payoffs are
either decreasing or concave in piℓ. Since δN(D, k) = 0 we must have con-
cavity with respect to piℓ, hence this point uniquely satisfies the local first-
and second-order conditions.

Lemma 12 (Candidates in Region 1-NI). If k < k′ then there exists a unique
NI-candidate. It satisfies piℓ ≡ 0.

We omit the proof. It mirrors that of Lemma 11 with the simplification
that, in reference to Lemma 6, payoffs are always concave in pih.

Proof of Proposition 3. Existence, uniqueness, and the description of the
NI-candidates are proven by the above three lemmas. Monotonicity of p∗()
w.r.t. k follows from Lemma 8.
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6.2.3 Optimal NI-candidate

The proof of Theorem 4 relies on the following lemma, stating that in region
3-NI we have πT > πN .

Lemma 13 (πT > πN in Region NI-3). Fix k, and suppose p∗ is a NI-
3 equilibrium: for all i, p∗

iℓ = p∗
ℓ > 0 (and hence p∗

ih = 1). Then k >
(p∗

ℓrℓ + rh)/(rℓ + rh), that is, the equilibrium allocation probability is higher
in T than in N: πT > πN .

Proof. By Lemma 6, p∗
ih = 1 implies ui(p∗) is either decreasing or concave in

piℓ. Since p∗
ℓ > 0 it must be concave. Therefore either the partial derivative

(23) is zero, or the equilibrium is at a corner (where the N-nonwastefulness
constraint binds and πN = 1). However Observation 1 (Fact 2) rules out the
latter, hence (23) is zero.

Recall for NI-3 equilibria that A = rℓ/n − D, B = 0, C = (n − 1)A,
E = rh/n, F = (n − 1)(D + E). So πN = ϕN/(A + B + C) = ϕN/(rℓ − nD)
and πT = ϕT /(D + E + F ) = ϕT /(rh + nD). Let λ = rh/(rh + nD). Since
Equation 23 is zero we have

(LN
ℓ − LT

ℓ ) + ϕN
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD)

= ϕT
−rh(LT

ℓ − LT
h ) + (n − 1)(nD + rh)(L∗ − LT

ℓ )
n(nD + rh)2

LN
ℓ + πN (n − 1)

n
(L∗ − LN

ℓ )

= LT
ℓ + πT −rh(LT

ℓ − LT
h ) + (n − 1)(nD + rh)(L∗ − LT

ℓ )
n(nD + rh)
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Thus

(1 − πN)LN
ℓ + πN

(
(n − 1)

n
L∗ + 1

n
LN

ℓ

)

= LT
ℓ + πT

(
(n − 1)(L∗ − LT

ℓ )
n

+ −rh(LT
ℓ − LT

h )
n(nD + rh)

)

= LT
ℓ + πT

(
n − 1

n
(L∗ − LT

ℓ ) + −λ(LT
ℓ − LT

h )
n

)

= (1 − πT )LT
ℓ + πT

(
n − 1

n
L∗ + (1 − λ)LT

ℓ + λLT
h

n

)

< (1 − πT )LN
ℓ + πT

(
n − 1

n
L∗ + 1

n
LN

ℓ

)
Since L∗ > LN

ℓ we have πT > πN ; equivalently k > (p∗
ℓrℓ + rh)/(rℓ + rh).

Proof of Theorem 4. For any k let f(k) and πT (k) respectively denote the
fraction of organs allocated to high types and the probability that a patient
assigned to T receives an organ, under k’s NI-candidate. We prove the results
regarding f . The results regarding TCs’ total payoffs follow directly using
the same arguments made in Subsection 3.2.

It is immediate that f() is increasing on [k′, k∗] since (as under perfect
competition) the strategy profile is constant across all such NI-candidates.
The remainder of the proof consists of showing (i) f is decreasing on [k∗, 1],
and (ii) f(k) < f(k∗) whenever k ∈ [0, k′].

Step (i). For any k ∈ (k∗, 1], there is at most one symmetric pro-
file (namely the NI-candidate p(k)) satisfying δN(D, k) = 0 by Lemma 11.
Whenever such p(k) exists (i.e. the NI-candidate is not a corner solution), let
D(k) = p(k)rℓ/n denote the corresponding mass of low types each TC sends
to T.

By Lemma 8 D(k) is increasing in k; hence the values of k > k∗ for which
such δN(D(k), k) = 0 exist are an interval (of the form (k∗, x] by continuity).
We show that πT (k) is decreasing in k on this interval. Since pih(k) ≡ 1 on
this range, a decrease in πT () necessarily decreases f(), proving (i).

We implicitly differentiate δN(D(k), k) = 0 (Equation 23) w.r.t. k after
substituting ϕN = (1 − k)ϕ and ϕT = kϕ. (Write D = D(k) and D′ =
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∂D(k)/∂k, and ignore the corner case piℓ ≡ 1, where nD = rℓ.)

ϕ
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD) − ϕ(1 − k)(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD)2 nD′ − ϕ

rh(LT
ℓ − LT

h )
n(nD + rh)2

+ 2ϕk
rh(LT

ℓ − LT
h )

n(nD + rh)3 nD′ + ϕ
(n − 1)(L∗ − LT

ℓ )
n(nD + rh) − ϕk

(n − 1)(L∗ − LT
ℓ )

n(nD + rh)2 nD′ = 0

or

(n − 1)(L∗ − LN
ℓ )

n(rℓ − nD) − rh(LT
ℓ − LT

h )
n(nD + rh)2 + (n − 1)(L∗ − LT

ℓ )
n(nD + rh)

= (1−k)(n − 1)(L∗ − LN
ℓ )

n(rℓ − nD)2 nD′+k
(n − 1)(L∗ − LT

ℓ )
n(nD + rh)2 nD′−2k

rh(LT
ℓ − LT

h )
n(nD + rh)3 nD′

Denoting r = rℓ + rh and S = nD + rh < r,

D′ =
(n−1)(L∗−LN

ℓ )
n(rℓ−nD) + (n−1)(L∗−LT

ℓ )
n(nD+rh) − rh(LT

ℓ −LT
h )

n(nD+rh)2

(1 − k) (n−1)(L∗−LN
ℓ

)
(rℓ−nD)2 + k

(n−1)(L∗−LT
ℓ

)
(nD+rh)2 − 2k

rh(LT
ℓ

−LT
h

)
(nD+rh)3

=
(n−1)(L∗−LN

ℓ )
n(r−S) + (n−1)(L∗−LT

ℓ )
nS − rh(LT

ℓ −LT
h )

nS2

(1 − k) (n−1)(L∗−LN
ℓ

)
(r−S)2 + k

(n−1)(L∗−LT
ℓ

)
S2 − 2k

rh(LT
ℓ

−LT
h

)
S3

= (n − 1)(L∗ − LN
ℓ )S2 + (n − 1)(L∗ − LT

ℓ )(r − S)S − rh(LT
ℓ − LT

h )(r − S)
(1 − k)(n − 1)(L∗ − LN

ℓ )S3 + k(n − 1)(L∗ − LT
ℓ )S(r − S)2 − 2krh(LT

ℓ − LT
h )(r − S)2

(r − S)S
n

To show that the derivative of πT (k) ≡ kϕ
nD+rh

is negative, i.e. that

ϕ

nD + rh

− nkϕ

(nD + rh)2 D′ = ϕ

S
− nkϕ

S2 D′ < 0

we need to show D′ > S/(nk). Using the derivation of D′ above, this in-
equality becomes (see tex comments)

(L∗ − LN
ℓ )S2(n − 1)(kr − S) > −krh(LT

ℓ − LT
h )(r − S)2

Since r > S this is true whenever k ≥ S/r, i.e. whenever πT (k) ≥ πN(k),
which is true by Lemma 13. Hence πT () and f() are decreasing on [k∗, 1].

Step (ii): consider the case k ∈ [0, k′].15 By previous arguments, NI-
candidate profiles vary continuously in k; therefore f() is continuous. Hence

15This case is mostly symmetric to the previous one, except that the possibility that
k̄ < k′ necessitates additional arguments.
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we can choose
k̃ = arg max

[0,k′]
f(k)

We show f(k̃) < f(k∗) ≡ k∗.
Case 1: πN(k̃) ≥ πT (k̃). A low type receives an organ with probability

πN(k̃), whereas a high type receives an organ with a weakly lower probability
of

(1 − pih)πN(k̃) + pihπT (k̃)
where (0, pih) is the NI-candidate for k̃. Since high types receive organs with
lower probability than low types, they collectively receive no more than the
(unconditional) organ allocation rate: f(k̃) ≤ ϕ

rℓ+rh
< k∗, where the second

inequality follows from Lemma 10 (k̄ < k∗).
Case 2: πN(k̃) < πT (k̃). We show that f is increasing at k̃. This means

k̃ = k′, implying the desired conclusion.
Since the mass of organs allocated to low types is πN(k̃)rℓ, f(k̃) = 1 −

πN

ϕ
rℓ. To show f is increasing we show πN() is decreasing at k̃.
To show the derivative of πN(k) ≡ (1−k)ϕ

rℓ+rh−nE
is negative at k̃, i.e. that

−ϕ

rℓ + rh − nE
+ (1 − k̃)ϕnE ′

(rℓ + rh − nE)2 =
(

−ϕ

rℓ + rh − nE

)(
1 − (1 − k̃)nE ′

rℓ + rh − nE

)
≤ 0

we need to show
E ′(k̃) ≤ rℓ + rh − nE(k̃)

(1 − k̃)n
(28)

We implicitly differentiate δW (E(k), k) = 0 (Equation 22) w.r.t. k and
evaluate at k̃. Writing E = E(k) and E ′ = E ′(k) we obtain

ϕ
(n − 1)(L∗ − LT

h )
nE

− ϕ(1 − k̃)(n − 1)(L∗ − LN
h )

(rℓ + rh − nE)2 nE ′ + ϕ
rℓ(LN

ℓ − LN
h )

(rℓ + rh − nE)2

− 2ϕ(1 − k̃) rℓ(LN
ℓ − LN

h )
(rℓ + rh − nE)3 nE ′ + ϕ

(n − 1)(L∗ − LN
h )

(rℓ + rh − nE) − ϕk̃
(n − 1)(L∗ − LT

h )
(nE)2 E ′n = 0

Denoting S = rℓ + rh − nE(k̃) and r = rh + rℓ this yields

E′(k̃) = rℓ(LN
ℓ − LN

h )S−2 + (n − 1)(L∗ − LN
h )S−1 + (n − 1)(L∗ − LT

h )(r − S)−1

2(1 − k̃)rℓ(LN
ℓ − LN

h )S−3n + (1 − k̃)(n − 1)(L∗ − LN
h )S−2n + k̃(n − 1)(L∗ − LT

h )(r − S)−2n
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Therefore one can show that (28) is equivalent to

(n − 1)(L∗ − LT
h )[(1 − k̃)(r − S) − k̃S] ≤ rℓ(LN

ℓ − LN
h )(1 − k̃)

(
r − S

S

)2

Note that ϕ(1−k̃)
S

= πN(k̃) < πT (k̃) = ϕk̃
r−S

implies that the LHS is non-
positive. Since the RHS is non-negative, (28) holds.

6.3 Numerical exercises: details
Specifics and summaries of our numerical exercises will be provided in a
future version.
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