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THE OPTIMALITY OF A SIMPLE MARKET MECHANISM

By MARK A. SATTERTHWAITE AND STEVEN R. WILLIAMS!

Strategic behavior in a finite market can cause inefficiency in the allocation, and market
mechanisms differ in how successfully they limit this inefficiency. A method for ranking
algorithms in computer science is adapted here to rank market mechanisms according to
how quickly inefficiency diminishes as the size of the market increases. It is shown that
trade at a single market-clearing price in the k-double auction is worst-case asymptotic
optimal among all plausible mechanisms: evaluating mechanisms in their least favorable
trading environments for each possible size of the market, the k-double auction is shown
to force the worst-case inefficiency to zero at the fastest possible rate.
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1. INTRODUCTION

THE RULES THAT DETERMINE how trading proceeds within a market can be
regarded as an algorithm for solving the problem of the market, which is to allo-
cate units from the traders who initially own them to those who value them most
highly. Market mechanisms and computer algorithms are more than just analo-
gous. Almost every financial exchange in the world is developing a computerized
trading system to complement or even substitute for its floor trading system. In
the field of experimental economics, trade is commonly studied using a computer
network to organize exchange among subjects. A market mechanism in each of
these cases is explicitly a computer algorithm that specifies how traders may com-
municate with one another and how their messages determine the terms of trade.

The relationship between market mechanisms and algorithms is used in this
paper to show that a family of common market mechanisms is optimal in a
sense motivated by the study of algorithms in computer science. This is part
of an effort to develop a theory of market mechanisms that is analogous to
the theory of auctions. Currently, economic theory provides little guidance to
financial exchanges in the selection of computer algorithms and floor procedures
for trading. A theory of market mechanisms would provide such guidance and
also complement the rich literature on markets in experimental economics, which
is currently the main source of guidance in the design of market mechanisms.

''We thank Henryk Wozniakowski and Sunil Chopra for suggestions concerning the asymptotic
analysis of algorithms. Roy Radner provided helpful comments concerning the maxmin approach.
Finally, we thank seminar participants at Columbia University, the Decentralization Conference, the
Games 2000 Conference of the Game Theory Society, IDEI Toulouse, the Midwest and the Southeast
Theory and International Trade Meetings, Northwestern University, Pennsylvania State University,
the Summer Meetings of the Econometric Society, the Technion, Tel Aviv University, University of
Arizona, and University of Western Ontario for their comments.
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The family of k-double auction (or k-DA) mechanisms is proven to be optimal
here, where each choice of the index & € [0, 1] determines a different mechanism
in the family. The k-DA operates as follows. Bids and offers are simultaneously
submitted by the traders and then aggregated to form demand and supply curves.
Using the weight k, a market-clearing price p = (1—k)a+kb is selected from the
interval [a, b] of all possible market-clearing prices. Buyers whose bids are above
p then trade with sellers whose offers are below p. The k-DA institutionalizes
Marshall’s model of demand and supply as a market mechanism. It is a practical
method for organizing trade that is well-grounded in classical microeconomic
thought.?

If the market is perfectly competitive, then the k-DA solves the problem of
the market exactly in the sense that its allocation is efficient. If the market has
only a finite number of traders, however, then the k-DA’s allocation may be
inefficient, i.e., there may be “error” in this algorithm’s solution. This may occur
because traders in a finite market who privately know their preferences need not
act as price-takers and their strategic efforts to influence price in their favor can
cause inefficiency in the allocation. Such inefficiency is common among market
mechanisms, for every such mechanism must manage the strategic behavior of
the traders as each attempts to manipulate the market’s outcome in his favor.
Interpreted as an algorithm, the error of a market mechanism in computing the
gains from trade is the fraction of the expected potential gains from trade that
the traders inefficiently fail to achieve because of their strategic behavior. Market
mechanisms differ in how successfully they limit this error. Reflecting the theory
of perfect competition, however, the error in any reasonable mechanism should
converge to zero as the number of traders on each side of the market increases
to infinity.

It is common in computer science to evaluate an algorithm by bounding its
error with a function of some measure m of a binding constraint on the operation
of the algorithm. The number m, for instance, could be the number of numerical
inputs into the algorithm, the number of iterations the algorithm is permitted,
or some measure of the amount of time that the algorithm is allowed to approx-
imate the exact solution to the problem. A bound of this kind expresses the rate
at which error diminishes as the constraining measure m is relaxed, with error
converging to zero as m goes to infinity. An algorithm with a faster rate of con-
vergence is deemed superior to an algorithm with a slower rate of convergence
because it approximates the exact solution of the problem more accurately than
the slower algorithm when m is sufficiently large.

We adapt this methodology from computer science to rank the k-DA relative
to other market mechanisms in a simple model of trading. The trading model is
as follows. There are m buyers, each of whom wishes to purchase at most one
unit of an indivisible, homogeneous good, and m sellers, each of whom has one

% There are a multitude of other market mechanisms that are used in practice, studied theoretically,
and tested in experiments. See Friedman (1993) for a survey of these mechanisms, including the
k-DA.
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unit of the good to sell. The number m is the size of the market. Each buyer
i and each seller j privately knows the value v; or cost ¢; that he places on a
unit. Buyer i receives a payoff of v, —x; when he purchases a unit and pays x;
while seller j receives a payoff of y; —c; when he sells his unit and receives a
payment of y;. A trader who does not trade receives zero as his payoff. Each
trader regards the values of all buyers as independent draws from the distribution
G(-) and the costs of all sellers as independent draws from the distribution F(.).
All of the above is common knowledge among the traders. A pair (G, F) is an
environment.> An independent private values model with quasilinear utility is thus
assumed here and the Bayesian game approach of Harsanyi (1967-68) is used to
analyze the strategic behavior of traders.

A maxmin approach is used to evaluate mechanisms. For each m, the error of
a mechanism in a particular environment (G, F) is its relative inefficiency, i.e.,
the fraction of the expected potential gains from trade (calculated with respect
to G and F) that the mechanism inefficiently fails to achieve in equilibrium. The
worst-case error of the mechanism is computed by maximizing this error over
a set of possible environments. The rate at which worst-case error converges to
zero is then used to compare mechanisms.

The k-DA is compared in this paper to mechanisms that satisfy for each m
and each environment both interim individual rationality (i.e., each trader’s condi-
tional expected payoff as a function of his value/cost is nonnegative) and ex ante
budget balance (the expected sum of the transfers among the traders is nonneg-
ative, so that the mechanism on average does not require a subsidy to operate).
These rather weak restrictions are satisfied by most common mechanisms for
trading.* Applying a term from computer science, the main result of this paper
is that the k-DA is worst-case asymptotic optimal among all mechanisms for orga-
nizing trade that satisfy these two constraints. “Asymptotic” refers here to the
ranking of mechanisms using rates of convergence and “worst-case” refers to the
evaluation of each mechanism in its least favorable environment for each value
of m. Stated simply, this result means that the k-DA’s worst-case error over a set
of environments converges to zero at the fastest possible rate among all interim
individually rational and ex ante budget balanced mechanisms.’

3 A model of Telser (1978) explains (G, F) as the demand and supply of the limiting continuum
market: 1— G(p) is the mass of buyers and F(p) the mass of sellers in a continuum market who
can profitably trade at the price p. The finite market that we consider is obtained by independently
sampling m buyers from the demand curve 1— G and m sellers from the supply curve F. Common
knowledge and symmetry of beliefs in the finite market both follow from common knowledge of
demand and supply in the continuum market together with common knowledge of the sampling
process.

4 Most common mechanisms (such as the k-DA) satisfy the stricter constraints of ex post budget bal-
ance (the transfers among the traders balance for every sample of values/costs) and ex post individual
rationality (a trader is never forced to accept an unprofitable trade). We use the weaker constraints
of interim individual rationality and ex ante budget balance here because optimizing over this larger
class of mechanisms strengthens the sense in which the &-DA is deemed optimal.

S This result complements an earlier result of Wilson (1985), which showed that the k-DA is interim
incentive efficient in the Holmstrom-Myerson (1983) sense when m is sufficiently larger.
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Our approach is as follows. Rustichini, Satterthwaite, and Williams (1994)
proved that error in a k-DA is at most k/m? for some constant k € R* deter-
mined by the set of environments. The issue in this paper is whether the error
in any mechanism can exhibit a faster rate of convergence than this quadratic
rate exhibited by the k-DA. This is addressed by considering the constrained
efficient mechanism, which is a mechanism that minimizes error over all mech-
anisms in each environment subject to the constraints of incentive compatibility,
interim individual rationality, and ex ante budget balance. The main technical
result of this paper bounds below the error in the constrained efficient mecha-
nism by y/m® for some y € R*. For reasons of tractability, this is done only in
the case in which both G and F are uniform. Because the worst-case error of any
mechanism is at least as large as the worst-case error in the constrained efficient
mechanism, and because worst-case error of the constrained efficient mechanism
is at least as large as its error in the uniform environment, it follows that worst-
case error in any mechanism is at least y/m?. The quadratic rate of convergence
of worst-case error in the k-DA is thus the fastest rate possible.

It is noteworthy that our optimality result concerns a property of this simple,
well-motivated mechanism across a range of possible environments and sizes of
the market, rather than simply for a single, fixed environment and size of market.
Our result thus responds to the Wilson Critique (Wilson (1987)) of mechanism
design. Wilson criticized this field for focusing upon the problem of designing
a mechanism explicitly for each specific problem (e.g., as determined here by
the specification of an environment and a market size). An economic consultant
asked for advice on the selection of a mechanism may not know all the parame-
ters that specify the problem, and the parameters may change over time; theoret-
ical results that describe how the mechanism should be chosen assuming detailed
knowledge of the problem may thus have little value to the consultant. A more
meaningful task for mechanism design is to establish the sense in which a simple
mechanism performs reasonably well across the variety of problems that might
be encountered in practice, which is the nature of our results.

There are obviously stronger senses in which a mechanism may be deemed
optimal than worst case asymptotic optimality, and so our adoption of this stan-
dard needs explanation. The worst case asymptotic approach reduces the eval-
uation of algorithms over a range of problems to a single case (the worst one)
and a single statistic (the rate of convergence of error to zero). This approach
is justified by pragmatism, for it simplifies the problem of comparing algorithms
and allows progress to be made. Nevertheless any statistic is only a summary
that cannot perfectly capture every sample. Therefore, before this approach is
accepted, two objections must be addressed: (I) a mechanism’s asymptotic rate
of convergence may not reflect its absolute performance in small and moderate
sized markets, and (II) the worst case that determines a mechanism’s ranking
may be irrelevant to its performance in more plausible environments.®

6 See Russell (1997, particularly pp. 65-68) for an insightful discussion of the usefulness of the
worst case asymptotic optimality criterion within artificial intelligence research.
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With respect to objection (I), numerical experiments that we have done indi-
cate that the asymptotic rate at which a mechanism’s error converges to zero is
a good predictor of the mechanism’s performance in small and moderate sized
markets. In particular, for a variety of different environments, calculation of equi-
libria for the k-DA, the constrained efficient mechanism, and a variety of other
mechanisms suggests the following:’

(i) The asymptotic convergence rate of a mechanism’s error is exhibited in
small and moderate sized markets, i.e., as m increases from 2 to 4 and then to
8, the mechanism’s convergence rate is approximately the same as its asymptotic
rate.

(ii) A disparity in the relative rates of convergence of two market mechanisms’
errors mirrors the relative sizes of the errors they exhibit in moderate sized
markets.

(iii) Across a range of environments, error in the k-DA is nearly indistinguish-
able from the error in the constrained efficient mechanism once m reaches 8.

The last point is particularly significant because it suggests that, for m > 8,
the k-DA’s error is essentially the same as the constrained efficient mechanism’s
error. Therefore, while far from comprehensive, our calculations support the use
of the asymptotic rate of convergence to efficiency as a statistic for measuring
the performance of market mechanisms.

Turning to objection (II), the worst-case approach is commonly taken when a
probability distribution over the set of problems is either unclear or else exceed-
ingly difficult to address, thereby making a ranking based upon expected perfor-
mance infeasible. This is surely the case in the problem of selecting a market
mechanism over a set of environments. Savage (1972, p. 168-169) deemed the
worst-case approach meaningful if (a) the error in the worst case is reasonably
small and (b) the worst case occurs in a state that is not unusual. Our results
satisfy these conditions reasonably well. Specifically, with respect to (a), for all
environments that we have tested numerically, the k-DA’s error has been the
same order of magnitude as the constrained efficient mechanism’s error. With
respect to (b), we derive our result that the constrained efficient mechanism’s
worst case error cannot be faster than quadratic in the uniform environment. This

7 These statements are based upon calculations presented in the following papers. Drawing upon
calculations from Gresik and Satterthwaite (1989), Table 5.1 of Satterthwaite and Williams (1989b)
compares the 1-DA to the constrained efficient mechanism in the uniform environment for m
between 2 and 12. Table III of Rustichini, Satterthwaite, and Williams (1994) compares, for the uni-
form environment and m between 1 and 8, the 0.5-DA to the constrained efficient mechanism and
to the fixed price and dual price mechanisms that are discussed below. Finally, Satterthwaite and
Williams (1999, Table 2) compare the 0.5-DA and the constrained efficient mechanism across three
nonuniform environments and m between 2 and 8. The calculations in the nonuniform cases support
the contention that the uniform environment is not unusual or unique in any respect. This last paper
can be found online at http://www.kellogg.northwestern.edu/research/math/.
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is not an odd environment concocted for the sake of establishing the worst-case
result.®

Contrasting the rate of convergence in the k-DA mechanism with that of other
mechanisms that have appeared in the literature gives further understanding of
the usefulness of this approach to ranking mechanisms. Consider Hagerty and
Rogerson’s fixed-price mechanism (1985). Gresik and Satterthwaite (1989, p. 319)
show that if it is generalized to markets of arbitrary size, then its error is at
least B/4/m for some B € R*. The asymptotic approach ranks the fixed-price
mechanism as inferior to the market-clearing price in the k-DA, which supports
common economic intuition. We know of no other formal criterion that quantifies
a sense in which trade at a fixed price is inferior to trade at a market-clearing
price in the k-DA.

There are two other mechanisms besides the k-DA that are known to be
worst-case asymptotic optimal. First, the constrained efficient mechanism is itself
worst-case asymptotic optimal. Second, McAfee (1992) designed an interim indi-
vidually rational mechanism that generates a monetary surplus through the use
of a different price for buyers than for sellers. Ex ante payments can be devised
to return the expected surplus to the traders and thereby insure that the ex ante
budget constraint is satisfied with equality. If such payments are included as part
of the mechanism, then it too is worst-case asymptotic optimal. Such ex ante pay-
ments, however, must vary with the environment. Altered in this way, McAfee’s
mechanism shares the flaw of the constrained efficient mechanism of failing the
Wilson Critique in the sense that its rules depend upon the environment. This
flaw renders a market mechanism implausible for actual use. If such payments
are disallowed in McAfee’s mechanism and the surplus is instead regarded as
a cost of arranging trade,’ then its worst-case error is at least §/m for some
& € R* (Rustichini, Satterthwaite, and Williams (1992)). McAfee’s mechanism

8 More formally, Gilboa and Schmeidler (1989) developed an axiomatic justification for the worst
case approach. Let C be a set of choices, X a set of states, and u(c, x) the ex post utility of choice
¢ € C given the state x € X. In our setting, ¢ is a market mechanism, x is a vector of buyers’ values
and sellers’ costs, and u(c, x) is the ex post gains from trade that mechanism ¢ realizes in state x.
Gilboa and Schmeidler modified the Savage axioms and showed that an ordering of C satisfying their
axioms necessarily ranks choices ¢ according to the values of

r}'lg;lj u(c, x)dF

for some set E of prior distributions over X. An ordering thus ranks choices according to their worst
case expected utilities over E, and a most preferred choice is therefore a maxmin choice. While there
are substantial issues that must be addressed before the Gilboa-Schmeidler approach could be for-
mally applied to the mechanism choice problem that we consider, their results do suggest a rationale
for our use of the worst case in ranking market mechanisms. For a similar purpose, the Gilboa-
Schmeidler theory has been cited recently by macroeconomists to support the use of the maxmin
criterion in model selection. See the symposium, “Robustness to the Uncertainty,” in the American
Economic Review of May, 2001, which includes papers by Epstein (2001), Sims (2001), Chamberlain
(2001), and Hansen and Sargent (2001).

Y This perspective can be defended on the grounds that the surplus consists of gains from trade
generated by the preferences of the traders that they sacrifice in order to achieve for themselves a
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without payments is thus inferior to the k-DA in a worst-case asymptotic anal-
ysis. Though we suspect that other mechanisms besides the k-DA can be both
worst-case asymptotic optimal and robust in the sense that their outcome func-
tions do not vary with the environment, examples of such mechanisms have not
yet been found.'’

We discuss in Sections 2, 3, and 4 the model, prior results on the k-DA, and
a formal statement of our main result. The task of bounding error in the con-
strained efficient mechanism for all sizes of markets is carried out in Sections 5
and 6, which is then followed by a brief conclusion.

2. THE MODEL

The analysis of this paper is carried out over any set £ of environments (G, F)
with the following properties:

El: G and F are C' functions with support [0, 1];

E2: for some ¢, g satisfying 0 < g <1 < g, the densities g and f of the distri-
butions G and F satisfy the bounds

(1) 0<g=<gf=g

E3: E contains the uniform environment (G*, F*) in which both G and F are
uniform on [0, 1].

The bound (1) permits a worst-case analysis and assumption E3 insures that
the uniform case is available for comparison with the worst-case. This will be
useful for the sake of tractability.

A market game ¢,, of size m over E consists of:

M1: a strategy set A; for each of the 2m traders;

M2: an outcome mapping {,,: ([T7" A4;) x E — ([0, 1] x R)>" that specifies for
each trader his probability of receiving a unit along with a monetary transfer as
functions of the profile of strategies and the environment;

M3: the selection of a Bayesian-Nash equilibrium in the game defined by M1
and M2 for each environment (G, F) € E.!!

portion of the potential gains from trade. In other words, the surplus is a cost of arranging trade.
This, however, ignores the welfare of an intermediary who receives the surplus.

1 More recently, Yoon (2001) modified the Vickrey (or two-price) double auction by (i) collecting
taxes from the agents to fund this mechanism’s deficit, and (ii) allowing a trader to opt out of the
mechanism after learning his value/cost and thereby avoid his tax. Given the environment (G, F),
Yoon showed that the taxes can be chosen with (i) and (ii) in mind so that this modified Vickrey
double auction satisfies ex ante budget balance and interim individual rationality while retaining the
dominant strategy incentive compatibility of the Vickrey mechanism. Yoon then showed that error
in this modified mechanism is at most A/m for some constant A € R*. His numerical calculations
suggest that error converges to zero more slowly in this mechanism than the quadratic rate of the k-
DA. If his calculations are representative, then this modified Vickrey double auction is also inferior
to the k-DA in the worst-case asymptotic sense.

! Our definition of a market game is unusual in that (i) the outcome mapping ¢,, can depend upon
the environment and (ii) an equilibrium is specified for each environment. Property (i) allows the
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A market mechanism over E is a sequence @ = (¢,,),.n in Which ¢,, is a
market game of size m over E.

Efficiency dictates that in each sample of 2m values/costs the 7 units must be
allocated to the traders with the m highest values/costs. In the efficient alloca-
tion, buyers whose values are among the top m values/costs purchase units from
sellers whose costs are among the m smallest values/costs. Let I, (G, F) denote
the expected potential gains from trade among the 2m traders, computed with
respect to the joint distribution of their 2m values/costs. The value ¢,,(G, F)
denotes the expected gains from trade achieved by the 2m traders in the selected
equilibrium of the market game ¢,, when (G, F) is the environment. Our mea-
sure of error in a market game is relative inefficiency e(¢,,, G, F), which is the
fraction of the expected potential gains from trade in the environment (G, F)
that is inefficiently not achieved in the selected equilibrium of ¢,,:

m*

I,,(G,F)—¢,(G, F)
I,.(G,F) '

2 e(¢,, G, F) =

Myerson and Satterthwaite (1983) showed in the case of bilateral trade (m =
1) that e(¢,,, G, F) > 0 in any market game ¢,, satisfying interim individual
rationality and ex ante budget balance. This result was later extended to arbitrary
values of m by Williams (1999, Theorem 4). These results imply that an interim
individually rational and ex ante budget balanced mechanism @ is necessarily
inefficient, regardless of the size of the market m.

3. RESULTS ON THE k-DA

A k-DA mechanism ®*PA = (¢*P*) . is the sequence of market games
described at the beginning of this paper'? together with the selection for each m
of an equilibrium for the market of size m in the environment (G, F) that has
the following three properties:

Symmetry: Each buyer uses the same function B,,(-) and each seller uses the
same function §,,(-) to select his bid/ask as functions of his value/cost.

Nondominated Strategies: At every v;, ¢; € [0, 1], B,,(v;) <v; and S,,(c;) = c;.

Nontriviality: The sets {v;|B,,(v;) > 0} and {c;|S,,(c;) < 1} have positive mea-
sure, which implies that trade occurs with positive probability.

An equilibrium satisfying these three properties is denoted (B, S,,). Exis-
tence of an equilibrium with these properties is proven by Jackson and

market game to be chosen optimally for each environment, which is a central theme in mechanism
design. Property (ii) is part of the definition of a market game purely because this simplifies the
discussion.

12 The rules of the k-DA are defined in detail in Rustichini, Satterthwaite, and Wiliams (1994,
p- 1045). We will not be analyzing the operation of this mechanism here, relying instead on results
drawn from this earlier paper. It is thus sufficient to understand that the market game ¢*"* operates
as described in the Introduction.

!
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Swinkels (1999).13:14:15 With our definition of a mechanism, each rule for select-
ing an equilibrium defines a different k-DA. The precise rule for choosing an
equilibrium, however, is immaterial for our purposes as long as the selected
equilibrium satisfies these three properties. The requirement that strategies be
nondominated insures that each equilibrium (B,,, S,,) satisfies interim individ-
ual rationality, and the rule that all trades in the k-DA are consummated at a
market-clearing price insures that every equilibrium satisfies ex ante budget bal-
ance. Any k-DA mechanism thus satisfies these two constraints.

The following theorem concerning the rate at which the relative inefficiency
of the k-DA mechanism converges to zero is the main result on the k-DA that
is needed in this paper.

THEOREM 1 (Rustichini, Satterthwaite, and Williams (1994)): There exists a
continuous function k : R™" — R* such that

(4, 9)

(3) e(¢XP G, F) = o

in any environment (G, F) satisfying 0 <q <g, f <q.

The bound (3) thus holds for all (G, F) € E and all k € [0, 1]. Because g
and g are not varied in the remainder of this paper, for simplicity they will be
omitted as variables in k when (3) is applied below. This theorem follows from
Theorem 3.2 of Rustichini, Satterthwaite, and Williams (1994), which states that
e(¢%PA G, F) is bounded above by ¢/m? for some function £ of G, F, and k. In
(3) we have replaced & with a bound that holds for all k € [0, 1] and that expresses
the dependence of the bound on G and F explicitly in terms of the bounds g and

13 Theorem 6 and Corollary 7 of Jackson and Swinkels (1999) establish the existence of an equilib-
rium in distributional strategies that satisfies nondominated strategies and nontriviality. The proofs of
these results can be adapted to insure that symmetry also holds using the approach of their Theorem 3,
which concerns the existence of symmetric equilibria in symmetric Bayesian games. A distributional
strategy allows a trader to employ a different mixed strategy for each of his possible values/costs. As
Jackson and Swinkels (1999, p. 6) point out, the monotonicity of equilibrium strategies implies that
an equilibrium in distributional strategies can be altered to define an equilibrium in pure strategies.
Theorem 2.1 of Rustichini, Satterthwaite, and Williams (1994) provides the requisite monotonicity
argument in the case of the k-DA.

14 Similar existence theorems for Bayesian games were proven concurrently by Simon and Zame
(1999) using similar methods. We cite Jackson and Swinkels (1999) above because they provide the
extra step of proving the existence of an equilibrium in the k-DA in which trade occurs with positive
probability. It has long been known that a symmetric equilibrium in nondominated strategies exists
in the k-DA, namely, the no-trade equilibrium defined by B,, =0 and §,, = 1. The existence of an
equilibrium in which trade occurs has always been the crucial issue, which Jackson and Swinkels
specifically address. See also Ye (1998) for an alternative approach for proving existence of equilibria
in the k-DA.

15 Earlier existence results include Leininger, Linhart, and Radner (1989) and Satterthwaite and
Williams (1989a), which prove the existence of a variety of equilibria in ¢{™* (ie., the bilateral
k-DA), and Williams (1991), which proves the existence of a unique smooth equilibrium in ¢!-PA
(the 1-DA) for a generic set of environments.
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g on the densities. A function (-) that satisfies (3) can be obtained by working
through the proofs of Theorems 3.1 and 3.2 in Rustichini, Satterthwaite, and
Williams (1994).

4. THE MAIN RESULT

A market game ¢, is evaluated over a set of environments E according to its
worst-case error €"” (¢,,, E), which is defined as

4) e, E)= sup. e(d.. GLE).

(G.F)eE

Given a set E of environments, a mechanism @ defines a sequence of worst-case
error values. A mechanism @ is worst-case asymptotic optimal over E among some
set M of mechanisms defined on E if the sequence of worst-case error values for
any other mechanism in M does not converge to zero at a faster rate than the
sequence defined by the mechanism @. This notion of optimality is captured by
the following definition.

DEFINITION: Given a set E of environments and a set M of mechanisms
defined on E, a mechanism @ is worst-case asymptotic optimal over E among
mechanisms in M if, for any other mechanism @®* € M, there exists a constant
1 € R* such that

(5) s Y5 0@ (0}, F)
for all m e N.

The main theorem of this paper can now be stated.

THEOREM 2: Assume that the set of environments E has the properties E1-E3
stated at the beginning of Section 2. A k-DA mechanism ®&*P* is worst-case asymp-
totic optimal over E among all interim individually rational and ex ante budget-
balanced mechanisms defined on E.

The strength of this result is emphasized by noting that the constraints that it
imposes on a mechanism are weak enough to allow the possibility that the mech-
anism operates over time, consummates trades at a number of different prices,
runs surpluses and deficits that cancel only in expectation, or compels traders on
occasion to accept losses ex post. A great variety of market mechanisms are thus
covered by Theorem 2. The theorem is also strengthened because the assump-
tions on the set of environments E are so modest: that £ is not required to be
in some sense large shows that our worst-case analysis does not require the con-
sideration of odd environments, and conversely, that E is not restricted beyond
the conditions at the beginning of Section 2 shows that our worst-case analysis
does not depend upon avoiding plausible environments.

Let @ = (¢%°),,ny denote a mechanism with the property that, for each m and

each environment (G, F) in E, ¢¢¢ maximizes the achieved gains from trade in
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the environment (G, F) subject to the constraints of interim individual rationality
and ex ante budget balance.'® Alternatively, ¢<¢ can be described as a market

m

game ¢, that solves the constrained optimization problem

(6) mine(4,,, G, F)

subject to the constraints on ¢, of interim individual rationality and ex ante
budget balance. A market game ¢ that solves (6) is constrained efficient in the
environment (G, F); ¢ is constrained efficient in E if it solves (6) for every
(G, F) € E. A mechanism @ is constrained efficient in (G, F) (or E) if each of
its market games ¢ is constrained efficient in (G, F) (or E). Solving for ¢<° is

m

one instance of the central problem in Bayesian mechanism design. The existence
and the properties of @ will be discussed in Section 5.

Any interim individually rational and ex ante budget-balanced mechanism @
defined on E satisfies

(7) eWO!‘(d)m, E) z e(d)m’ GU’ F“) 2 (C‘( ;ﬁ’ G“’ F“)

for each m, where the first inequality is true because (G“, F*) € E and the sec-
ond holds because ¢ solves (6). As demonstrated below, Theorem 2 is a con-
sequence of the following theorem.

THEOREM 3: There exists a positive number y such that
(8) 8(([);:,, (;u7 Fll) > JT
i
Establishing this lower bound on the relative inefficiency of the constrained
efficient mechanism in the uniform environment constitutes most of the formal

analysis of the paper. This theorem is proven in Section 6. We now show how
the proof of our main result follows directly from it.

PROOF OF THEOREM 2: Letting @ denote an alternative mechanism defined
on E, we need to find a positive number 7 that satisfies

€wu’(¢fy;nq , E) = ﬂ(ew(‘b"” E))

for all m € N. Inequalities (7) and (8) together imply

e om B) 2 L = (2)( ;).
m- K m-

Theorem 1 then implies
e (b E) 2 (1) (@574, )

The proof is completed by setting n = k/7y. Q.E.D.

16 Recall that the constraint of incentive compatibility is implicit in our definition of a mechanism.
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5. THE CONSTRAINED EFFICIENT MECHANISM

All that remains to be proven is Theorem 3, which bounds below by y/m?
the error e(¢se, G¥, F*) of the constrained efficient market game ¢¢: in the
uniform environment (G, F"). The purpose of this section is to establish a result
concerning @ that is needed in the next section for the proof of Theorem 3.

The argument in this section proceeds as follows. A trader’s a-virtual util-
ity is defined below as a particular function of his value/cost, the environment
(G, F), and a parameter « € [0, 1]. Intuitively, this function adjusts each trader’s
value/cost in a way that compensates for the privacy of his information and
thereby neutralizes his incentive to misrepresent. Theorem 4 below, which illus-
trates a general principle of Bayesian mechanism design,'’ is a result of Gresik
and Satterthwaite (1983) stating that ¢¢ allocates the m units to those traders
with the largest a-virtual utilities for a nonzero value of a = a, (G, F) that solves
a particular equation. Allocation according to a-virtual utilities is efficient only
when a = 0 because the O-virtual utility of a trader equals his true value/cost.
If @ > 0, then allocation according to a-virtual utilities leads in expectation to
inefficiency that is increasing in a@. A key issue in the remainder of this paper
is therefore to bound below the rate at which the sequence (a},(G“, F*)),,cn
which characterizes @°¢, converges to 0 as the market size m goes to infinity.

The difficulty is that &, (G, F) is customarily characterized as the solution of
a 2m-dimensional integral equation. This equation is all but intractable except
for small values of m. A technique that we invent here is to devise a particu-
lar sequence of market games that allocate the units according to the a-virtual
utilities. The equation that characterizes a}, (G, F) is simply a budget balance
condition on the mth market game in this sequence that can be expressed as a
two-dimensional integral equation. The value of this alternative equation is then
demonstrated in Lemma 2 of the next section in which the desired lower bound
on a;(G*, F") is derived. While this section may thus seem at first glance to
be a digression, it is in fact a large part of this paper’s original analysis because
it provides a tractable means for characterizing the constrained efficient market
game ¢<¢ for arbitrary values of m.

Let a € [0, 1]. A trader’s a-virtual utility is defined as a function of his value/cost
as follows: buyer i’s a-virtual utility function is

Gito) =1

Vh(v)=v +a :
() g(v)

17 Efficiency in a general mechanism design problem is a mapping that specifies an outcome as a
function of the true types of the agents. The general principle is that the outcome in a constrained
efficient revelation mechanism is determined by applying the efficiency mapping to the a-virtual
utilities of the agents, where a is chosen so that the mechanism is ex ante budget balanced. This
principle originated in Myerson (1981), which concerned the constrained efficient mechanism for
auctioning an item. It is derived as a general principle in Wilson (1993) and it appears in almost all
derivations of constrained efficient mechanisms.
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and seller j’s a-virtual utility function is

Vi(c,)=c +aF(Cj)
a\&j )= Crieen
i (Cj)

The environment (G, F) is regular if, for each a, the functions ¥”(.), ¥:(-) are
increasing on [0, 1]. The uniform environment is regular and we restrict the
remainder of this section to regular environments.

For a sample of 2m values/costs of the traders, let #;) denote the jth smallest
a-virtual utility among the corresponding 2m a-virtual utilities:

Ly Sl =" = tom)-

Recall that the definition of a market mechanism @ specifies an equilibrium in
each market game ¢, for each environment (G, F). For a given a € [0,1], a
market game ¢, is an a-market game in the environment (G, F) if ¢,, allocates
the m units to buyers and sellers whose a-virtual utilities are among the top m
values f(,, 1y < t(.2) < - < Lp,). Trades thus occur in an @-market game between
buyers whose a-virtual utilities are at least #.,,,, and sellers whose a-virtual
utilities are no more than ¢,,,. For a sequence A = (a,,),,n, @ market mechanism
@ is an A-mechanism in the environment (G, F) if for each m the market game
¢,, is an a,,-market game in this environment. As mentioned above, a theorem
of Gresik and Satterthwaite (1983) states that an interim individually rational,
ex ante budget balanced mechanism is constrained efficient in the environment
(G, F) if and only if it is an A*-mechanism for the particular sequence A* =
(a;,(G, F)),.n that is characterized below.

Some notation is needed to state their theorem. Let o, =
(V55U Cpy- .. C,) denote a sample of 2m values/costs. Given o, and
a € [0, 1], for buyer i define p(0,,) as

1 if ¥ (v) > Lons1)s

i o iO if ¥2(v;) < Limt1)s

and for seller j define gi(a,,) as

14 W (e)) < b,

J -
9a(Tm) = [o if Wi(c,) > 1

m)*

These are indicator functions that equal one if and only if the trader trades in
the given sample o, when items are allocated by an a-market game. Denote
with 7! (o,,) the payment that buyer i makes to the mechanism and denote with
sh(c,,) the payment seller j receives as functions of ,,. The expression

9. % (z (o) - Z si(a))
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is the a-market game’s expected surplus. If (9) is zero, then the market game is
ex ante budget balanced. Finally, let U;(v;) and V(c;) be the interim expected
utilities of buyer i with value v; and seller j with cost c¢; respectively.

Define the function Sur(a, m, G, F) by the formula

m m
1) Su(am,G.F) = (LW @) - (T Heaen) |
i=1 j=1
This function is crucial because Sur(a, m, G, F) = 0 determines the value of
a’ (G, F) that characterizes the constrained efficient market game in this envi-
ronment. This is the 2m-dimensional integral equation that we mentioned at the
beginning of this section and that we reinterpret below as a two-dimensional
integral.

Theorem 4 combines a number of results in Gresik and Satterthwaite (1983)
to characterize the constrained efficient market game.'®:!

THEOREM 4 (Gresik and Satterthwaite (1983)): The following statements are
true in the case of a regular environment (G, F).

(i) For each m > 1, there exists a unique o (G,F) € (0,1) that satisfies
Sur(at (G, F), m, G, F)=.

(i) Let A* = (a},(G, F)),,cn. A constrained efficient mechanism exists in the
environment (G, F) and is an A*-mechanism. Conversely, any A*-mechanism that
satisfies interim individual rationality and ex ante budget balance is constrained
efficient in this environment.

An interpretation of formula (10) for Sur(a, m, G, F) follows directly from
Gresik and Satterthwaite’s derivation of the constrained efficient mechanism.
Suppose an a-market game ¢, satisfies U;(0) =0 = V(1) for each buyer i
and each seller j. The quantity Sur(e, m, G, F) then equals this market game’s
expected surplus,

m

(11) Sur(a,m,G,F) =%, (Z 7o) = i%(%&)-
j=1

=i

18 This theorem follows from Theorems 2 and 3 of their paper together with the following three
observations. First, while Gresik and Satterthwaite assume the stronger constraint of ex post budget
balance, only the weaker constraint of ex ante budget balance is needed to derive Theorem 4 above.
They showed that transfers in a constrained efficient mechanism can always be altered to satisfy
ex post budget balance without disturbing the constrained efficiency of the mechanism. Second,
Williams (1999, Thm. 4) proved that Sur(0, m, G, F) < 0. This inequality implies both that ¢¢¢ cannot
be an a = 0 market game (which is one of the possible conclusions of their theorems) and also
(together with their Theorem 3) the existence of a solution to Sur(a;, (G, F), m, G, F) = 0. Third,
any a7, (G, F) that solves this equation is shown by Gresik and Satterthwaite to define a constrained
efficient market game. Because inefficiency is increasing in a, the solution a}, (G, F) must therefore
be unique.

19 Results of this kind are now standard in the derivation of constrained efficient mechanisms.
Because the relevant material of Gresik and Satterthwaite (1983) is unpublished, the reader may wish
to consult the derivation in Myerson and Satterthwaite (1983), which presents the main ideas of the
analysis in the simplified setting of bilateral trade (m = 1), or the general discussion in Wilson (1993).
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Depending on the value of a, it may be positive, zero, or negative. The calculation
that establishes (11) is outlined in the Appendix.

Consider next the family of mvo-price A-mechanisms that we invent for the
purpose of computing Sur(a, m, G, F) using (11) instead of (10). For a given
sequence A = (a,,),,y and for m € N, define the market game @ in a two-

m

price A-mechanism ®*4 = (¢2 ), . by starting with values/costs as reported by
the traders and computing the a,,-virtual utilities as functions of these reports.
Allocate the m units to the traders whose «,,-virtual utilities are the m largest
(i.e., those at or above ¢,,,,)); items are allocated in the case of a tie of 7, =
f(m+1) first by assigning items to those traders whose a,,-virtual utilities are strictly
above f(,,.), second to buyers whose a,-virtual utilities equal #.,,,,,, and last
to sellers whose a,,-virtual utilities equal ¢, ,,, using a fair lottery whenever
necessary. Each buyer who purchases a unit pays (‘If(’,’m)“(t(,,,)) as his price and
each seller who sells his unit receives (‘If;m)"(t(m*l)). Traders who fail to trade
neither receive nor pay a monetary transfer. Notice that a trader who successfully
trades cannot influence his price in his favor by changing his reported value/cost.
As proven in the Appendix, the market game ¢ has the following properties.

LEMMA 1: If the environment (G, F) is regular, then the following statements
hold for a market game &2 in a two-price A-mechanism.

(i) Honestly reporting one’s valuejcost is the unique dominant strategy of each
trader.

(if) The m items are allocated in the dominant strategy equilibrium to traders
whose «,,-virtual utilities are among the m largest.

(iii) The dominant strategy equilibrium is interim individually rational, and a
buyer with value v; = 0 or a seller with cost ¢; =1 has an interim expected payoff
equal to 0.

The selection of the dominant strategy equilibrium for each m and each (G, F)
completes the definition of the two-price A-mechanism. Property (ii) insures
that it is indeed an A-mechanism. Ties among the «,,-virtual utilities occur with
probability zero in the dominant strategy equilibrium. Consequently, we ignore
them in the remainder of this paper. Property (iii) implies that the expected
surplus in ¢4 is Sur(a,,, m, G, F).

We now can realize the goal of this section, which is to derive a tractable for-
mula for Sur(a,,, m, G, F) using the properties of the two-price A-mechanism.
Let H(t,, t(ny1)) denote the expected number of trades conditional on the val-
ues of the mth and the (m+1)st a,,-virtual utilities 7., and ¢,,,,,. The expected
surplus conditional on ¢, and ¢, is
(12) H(r(m)’ t(nIJrl))((q/: )fl(t(m)) s (11,(; )71(t(m+l)))7

m m

because (Wé’m)"(t(m,) is the price that buyers pay and (‘I’gm)“'(t(,,,ﬂ)) is the price
that sellers receive. Taking expectations with respect to the joint distribution
of ¢, and ¢.,.,, and replacing a,, with the generic parameter a produces the
desired formula for Sur(a, m, G, F).

Reproduced with permission of the copyright owner. Furfrher reproduéﬁoﬁ7br0hibriitédﬂv;/7ithiout pefmission.




1856 M. A. SATTERTHWAITE AND S. R. WILLIAMS

THEOREM 5: If the environment (G, F) is regular, then
(13) Sur(a, m, G, F) = %‘[H(t(m)’ t(m+1))((lp(f)—l(t(m)) 25 (lpz:)_l(t(m+l)))]’

where the second expression is defined in (12) using the two-price A-mechanism.

Equation (13) clearly differs from the standard formula for Sur(a, m, G, F) in
(10) in its dependence upon both the transfers and the allocation rule in the two-
price A-mechanism. Most importantly for our purposes, (13) is a two-dimensional
integral instead of the 2m-dimensional integral in (10).

6. A LOWER BOUND ON THE INEFFICIENCY OF THE CONSTRAINED
EFFICIENT MECHANISM IN THE UNIFORM ENVIRONMENT

The alternative formula (13) for the expected surplus is valuable because it
makes the equation Sur(a® (G*, F*), m, G, F*) = 0 solvable for a lower bound
on a;,(G*, F*). This bound is derived below in Lemma 2. The bound is then used
in Theorem 3 to establish the desired lower bound on e(¢¢¢, G*, F*). Uniformity
is used to draw several conclusions in the proofs of these results concerning
the distributions and the expected differences of order statistics for the sake of
reducing (13).”° Because these two results concern only the uniform environment
(G*, F*) and a fixed market size m, “a}, (G", F*)” is replaced in this section by
the generic parameter “a”, except in the statement of the lemma.

LEMMA 2: There exists a constant T € R* such that the value o, (G*, F*), which
characterizes the constrained efficient market game ¢<¢ in the uniform environment,
is at least T/m for all m.

The proof of Lemma 2 is in the Appendix.

PROOF OF THEOREM 3: Let s, denote the jth smallest value/cost in a sam-
ple of 2m buyers’ values and sellers’ costs in the uniform environment. A lower
bound on the expected value of the unrealized gains from trade will be com-
puted by bounding a portion of the losses in the event D that is defined by the
following two conditions:

(i) (., is a seller’s cost and s,y is a buyer’s value;

(1) Y5(S0ms1) <Y (S(m) € Simsr) — S(my < /(@ +1).

Recall that efficiency requires that the m items be assigned to the traders
with the m highest values/costs while a constrained efficient market game ¢;;
assigns the items to the traders with m highest a-virtual utilities. Condition (i)
implies that both the buyer with value s,,,,, and the seller with cost s, should

20 While the proofs of Lemma 2 and Theorem 3 are greatly simplified by the assumption of the
uniform environment, intuition suggests that this environment is merely an expedient in these proofs,
i.e., the bounds in these results do not fundamentally depend upon uniformity. Recent work by Tatur
(2001) in fact suggests that these results extend to nonuniform environments.

|
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trade for the sake of efficiency, either with each other or with others. Because
b (-) is increasing and ¢; < ¥;(c;), the m — 1 a-virtual utilities of traders whose
values/costs exceed 5., are above 8 (S(ms1y)- Condition (ii) implies that there
is an additional a-virtual utility above ¢/5(8(,.1y), for a total of at least m. The
buyer whose value equals s, thus does not trade in ¢;7. A similar argument
shows that the seller with cost s, also does not trade. The unrealized gains from
trade are therefore at least .1, — ¢y 0 event D.

A lower bound on I, (G*, F*) — ¢ (G*, F*) will now be computed by inte-
grating .y, — Sy OVer event D. Define w = 5,1y — ¢y and let p(w; m) denote
its density function. Notice first that, for any given value of w, the probability
that s, is a buyer’s value and s, is a seller’s cost equals 1/4. This is true
because each trader’s value/cost is independently drawn from the same distribu-
tion. A lower bound on I',,(G*, F*) — ¢5(G*, F*) is thus given by (14):

1 pasr
(14)  [(G".F")-¢(G" F) > ¢ [ wp(w: m) dw
0
(15) > Z]u wp(w; m) dw.

Because 7/m < a € [0, 1], it follows that a/(a+1) = a/2 > 7/2m. This implies
(15):

The integral in (15) is straightforward to evaluate given that buyers’ values and
sellers’ costs are distributed uniformly on [0, 1]. Equation (2.3.1) in David (1961,
p. 11) implies that

2m!

(16) p(w, m) = w ./“ .Y”’Al(l Lot A u))m—l ax.

Integration by parts implies that for j, k=11

j:lw x(1—x—w)dx =f0

Applying this formula to (16) a total of m— 1 times and then simplifying produces
p(w; m)=2m(1— w)>"~. This formula allows us to evaluate the integral in (15):
1-(14+7)(1-%)"

2m—+1

k—_j{_—le‘l (1—x=w) s

l-w

17) f()7 wp(w; m) dw =

The term (1 — (7/2m))*" in (17) is positive and decreasing in m to lim,,_, (1 —
(1/2m))>" = e~". Substitution into (14)—(15) thus implies
1 1= +ne" ¥

il et ik TSR

Fm(G,F)—¢m(G,F)>ZX 2m—+1 m’

where

1-(14+71)e””
3 ;

X

2
it
ENE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




1858 M. A. SATTERTHWAITE AND S. R. WILLIAMS

To show that y > 0, regard 7 as a variable and note that: (i) 1 — (1 +7)e " =0 at
T=0; (ii) d/d7[1—(1+71)e "] =7e " > 0 for 7 > 0. It follows that y > 0 for the
positive value of 7 given by Lemma 2.

Turning finally to e(¢¢¢, G, F*), we have

m?

GU Fll Ay ce GU. F‘ll
( ,”’ GL( F“) = Hl( ) ¢I}1( 2 ) > Y §
m(Gll Fu) ’»nI“m(Gu’ Fu)
The expected potential gains from trade I, (G*, F*) are at most m because at
most m trades can be made, each of value one or less. Therefore, e(¢¢¢, G“F*) >
y/m?. OED.

7. CONCLUSION

We have shown in this paper that the k-DA is worst-case asymptotic optimal.
The demonstration that the rate at which its worst case error converges to zero is
as fast as possible quantifies a sense in which trade at a market-clearing price is
superior to or equal to trade using other mechanisms. This formalizes common
economic intuition.

The rate at which worst-case error converges to zero is a coarse measure of a
market mechanism, first because it reduces performance over all environments
to a worst case, and second because it summarizes performance over all sizes
of markets with a single rate as the sole statistic. Our defense of this measure
is that (i) it successfully distinguishes some mechanisms as optimal and some as
inferior, and (ii) it accurately mirrors the performance of mechanisms in the small
markets and the variety of environments that we have numerically investigated.
The analysis of algorithms in computer science suggests that this measure may
not be sufficiently fine for all purposes of selecting a market mechanism. It is,
however, a useful first cut that distinguishes the plausible from the inferior, a
step that has not been taken for market mechanisms by other formal analyses.
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and
Dept. of Economics, University of Hlinois, 1206 So. 6th St., Champaign, IL 61820,
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APPENDIX

VERIFICATION OF FORMULA (11) FOR SUR(:). Let T denote the expected surplus (9) of the a-
market game ¢,,. Formula (11) is proven by equating two formulas for the ex ante expected sum of
the utilities of the 2m traders in this game, solving this equation for T, and then simplifying. The
first formula is simply

m

(18) CB DO ACATE ~L o )
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The second formula is derived from incentive compatibility. A standard argument in mechanism
design applies this constraint to represent buyer i’s interim expected utility as

U(v,) = U,(0) + [ (1) dt,
and seller j’s interim expected utility as

A |
Filc) = V,(n+/ Gi(1)dt,

Je
j

where p; (7) or g/(¢) is the trader’s interim expected probability of trading given that his value/cost
is 7. Myerson and Satterthwaite (1983, p. 269-270) illustrate the derivation of these formulas. If
U;(0) =0= V(1) for each buyer i and each seller j (as hypothesized in this calculation), then a
second formula for the ex ante expected sum of the utilities is

m m

(19) Z‘ [Ui( v)]*Z* V()]

f/“ Do g(v)dtdv+2/ /‘qu({))‘(t dt dc,
i=1

G(v,) (c;) )
—Z ,,,,,(—;g(v p,,(U,,,))+Z ,,,,,(f( gLl ):

The third line follows from the second using exactly the same manipulations that Myerson and
Satterthwaite (1983) use in the m =1 case in the long equation between equations (5) and (6) in their
paper. Equating (18) and (19), solving for T', and then simplifying shows that the expected surplus 7
equals (10), the standard formula for Sur(-). Q.E.D.

PROOF OF LEMMA 1: Consider a buyer with value v who reports v*. Let u,,, denote the mth
smallest «,,-virtual utility among the 2m — 1 values computed using the reports of the other traders.
The selected buyer’s ex post payoff is

UA(lI/l{:” ](“mn) if lp]x’,,,(v* > Uimys
(20) m(v—(¥,)  (Um)) i T (V) =t
0 if ¥ (V) < U

In (20) 7 represents the probability that the selected buyer receives an item if randomization is
needed to complete the allocation. The value of 7 depends only upon the values and costs reported
by the 2m — 1 other traders. It is clear from (20) that the selected buyer maximizes his ex post payoff
through his choice of v* if he receives v — (‘1’[{"” "(u,,) when it is positive and zero when it is not.
Regularity implies that

v— (llfu"m)"(u )>0& 11"1’,” (v) > u

(m) (m)*

This equivalencc implies that v* = v is the unique report that guarantees the selected buyer receives
i (u,,,,,) exactly when it is positive. Similar to the second-price Vickrey auction, it follows
that v* = v is the selected buyer’s unique dominant strategy. A similar argument establishes that
honestly reporting his cost is the unique dominant strategy of every seller. Property (i) in the theorem
is thus established.

Property (ii) is immediate from the definition of the market game. Turning to property (iii), a
buyer with value v, trades only if ¥ (v,) > t,,, which, by the assumption of regularity, implies that
vz (P )" (¢)). The price (llfl’,"”) "(t,ny) he pays when he buys is thus no more than his value v,.
A snmllar argument shows that the price received by a seller is at least as large as his cost, which
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establishes interim individual rationality. A buyer with value v; =0 or a seller with cost ¢; =1 has
an expected payoff equal to zero because a trader with this value or cost never trades. If buyer i,
for instance, has value v, = 0, then his virtual utility is ¥ (0) < 0. The a,,-virtual utility of a seller
with cost ¢; =0 is ‘lf(fm(()y) = 0. Regularity implies that the a,,-virtual utilities of the m sellers surely
exceed the a,,-virtual utility of the ith buyer, who therefore never trades. QE.D.

PROOF OF LEMMA 2: We begin by reducing Sur(a, m, G*, F*) = 0. Uniformity implies that

by +
W) = (1 + @) ~a & (B (1) = T2
P B i
V() = (1+a)e; & (L) () = Tra-

Substitution of the above formulas for (¥2)-'(¢,,) and (¥)~'(¢,.,) into (13) implies

U pu o t(m) +a '(nH—I)
Sur(a, m, G*, F )ZK[H(’(m)’[wwn)( i —m) .

The equation Sur(a, m, G“, F*) =0 can be then solved for a:

;[H([mm ’(,mlu)(’(n.u) B t(nn)]

o= ~
({‘[H([(m)' t(nHH)l

The expected number of trades H(t,,, ,..,)) given t, and 1, ,, is clearly no more than m, which
implies

BLH (t(), Lot ll)(t[mA]) I [(m)J]
m i

(21) az

The right side of (21) still depends upon a because its value affects the distributions of 7, and ¢
Starting from (21) it is sufficient to show that there exists a constant 7, such that

(m+1)*

(22) BLH (tms1ys Liomy) Emary — Emp)] = T

Because this proof concerns the distributions of the traders’ a-virtual utilities, it is helpful to note
that buyers’ and sellers’ a-virtual utilities are independently and uniformly distributed on [—a, 1] and
[0, 1+ e], respectively. Trade occurs only among buyers and sellers whose a-virtual utilities are in
[0, 1], for an a-virtual utility of a buyer that is in [—a, 0) is surely below those of all sellers and the
a-virtual utility of a seller in (1, 1+ «] is surely above those of all buyers.

The left side of (22) is calculated by summing over the m* events distinguished by the number
of a-virtual utilities from each of the two sides of the market that lie within [0, 1]. For 1 <i, j < m,
define A, ; as the event in which exactly i buyers’ a-virtual utilities and j sellers” a-virtual utilities lie
in [0, 1]. We have

(23) “ [(tqm— 1) [(m))H(I(m-rH" rum)] = Z r{"[(t(nwl) W I(ml)H(t(mﬂ‘w [lm)J \ A,_Jv]-Pl'(A,_J),

1<i, j<m

where the events in which either i =0 or j = 0 are omitted because no trades occur in these cases
(i.e., H(t(ns1)> tim)) = 0).
We next simplify three terms in (23) in the event A, ;. First, observe that

P e 1 i+j o\
2 P = _— — :
i r(4.,) (\i)(j)(l+a> (1+a)

This follows from the distributions of buyers’ and sellers’ a-virtual utilities: for either a buyer or a
seller, 1/(1+ a) is the probability that his a-virtual utility is in [0, 1] and a/(1 + «) is the probability
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that it is outside this interval. Second, consider H (£, {)- In event A4, ;, the a-virtual utilities of
exactly i buyers’ and j sellers’ are independently and uniformly distributed on [0, 1]. Consequently,
there are exactly m — i a-virtual utilities of buyers below 0. The values ¢, and ¢, ., in the entire
sample of 2m a-virtual utilities are thus respectively the ith and the (i + 1)st among those within
[0, 1]. The expected number of trades H (), f,,)) in event A4, ; given the values of ¢, and 7,
therefore equals the expected number of the i buyers’ a-virtual utilities that are among the j largest
in this sample of i+ j a-virtual utilities from the uniform distribution on [0, 1]. In such a sample,
j/(i+j) is the probability that the a-virtual utility of any one of these i+ j traders is among the j
largest. It follows that ij/(i+ j) is the expected number of buyers whose a-virtual utilities are among
the j largest, and so

R
(25) H i1y Limy) = ﬁ_—, in the event A, ;.

Third, t,,.1) —,, is the difference between the ith and (i+1)st values in this sample of i +j a-virtual
utilities that are independently and uniformly distributed on [0, 1]. It follows from David ((1981),
Ex. 3.1.1, p. 35) that

1
i+j+1°

(26) £[t|nl+lb_tlm) ‘Al.r]:

Substituting (24), (25), and (26) into (23) produces

(27) %[(lww_”7I(,”])H(t(,,”,,,f‘m))]

-2 OO ERE) )

I<i,j<m

The remainder of this proof is a calculation that bounds (27). It follows from the definition of a
binomial coefficient that

(O E ) =G0 e () (mm)

Recall that 1 < i, j < m, which implies that

e 1 m* 1 1
me = > = o] 2 o,
(i+j)(i+j+l)‘2m(2m+1) 4+ 2 76
The expression in (27) is thus at least

1 Z (m—l)(m—l)( 1 )r»w( a )melwri
6 i—1 j—1 1+« 1+«

I<i, j<m

sl e (G DG

which after replacing i with i+ 1 and j with j+ 1 becomes

1 1 :X z (m_l (m~l>( 1 )’*J( a >1(m Hqun.
s i i J\it+e) \1+a

1<i, jem—1

2m—(i+j)

This expression factors as

() (BT () ())
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Applying the binomial expansion, this equals

1 1 1
{ t H(t L > —( ) —,
(Eminy = tam) H timanys L)) 2 £\ 755 %
where the last inequality holds because « € [0, 1]. Q.E.D.
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