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Abstract

We establish how large a sample of past decisions is required to predict future decisions of a committee
with few members. The committee uses majority rule to choose between pairs of alternatives. Each member’s
vote is derived from a linear ordering over all the alternatives. We prove that there are cases in which an
observer cannot predict precisely any decision of a committee based on its past decisions. Nonetheless,
approximate prediction is possible after observing relatively few random past decisions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper establishes how large a sample of past decisions is required to forecast future
decisions of a social institution that chooses between pairs of alternatives via simple majority
rule. We first show that there are cases in which an observer cannot exactly forecast any future
decision of an institution based on its past decisions. We then show that approximate forecasting
is possible after observing relatively few decisions, provided the institution has few members.
Rubinstein [12] and Kalai [6] establish the basic information requirements for learning rational
choice. Our results extend their analysis to an important form of social choice.

The standard social choice model assumes that each member of a group has a rational preference
relation (i.e., complete and transitive) over a finite set of alternatives. The model then applies an
aggregation rule to formulate the choice rule of the group. One of the most popular aggregation
rules is simple majority rule. The group chooses alternative a over alternative b if more than half
of the group members prefer a to b. We refer to a group choosing between pairs of alternatives
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via simple majority as a committee. Committees are widely observed in practice; Legislatures,
courts, juries, boards of directors and many other institutions decide according to simple majority.
In addition to explicit voting procedures, many groups such as households, cartels and computer
networks use aggregation rules that resemble simple majority. Because committees are so popular,
and their decisions often very influential, one may be interested in predicting future choices of
committees based on their past choices.

Learning a committee’s choices is more difficult than learning rational choice. As pointed
out by Condorcet [2], a committee’s choices may be intransitive even in the case of a three-
member committee. Namely, unlike the case of rational choice, if one learns that the committee
chooses a over b and b over c, one cannot infer that the committee necessarily chooses a over
c. Arrow [1] shows that this discouraging property is inherent to every aggregation rule that
satisfies a few desirable conditions. Maskin [9] and Dasgupta and Maskin [4] depart from Arrow’s
analysis and show that a majority rule results in transitive choices on a larger domain of individual
preference profiles than any other rule satisfying slightly stronger conditions than Arrow’s. This
result, together with other results in the literature (e.g., [10]), provides a possible explanation
for the popularity of majority rule in practice, and motivates further study of the properties of
majority rule.

We study whether choice functions of small committees are learnable. 1 We first investigate
this question in the context of three-member committees, and then extend the results to larger
committees and decisive societies. While focused on learning, our results also establish the basic
information requirements for econometric studies of a committee’s decisions. As such, they help
advance empirical and experimental analysis of committees in economics and other political and
social sciences.

We analyze two-staged learning procedures. First, an observer sees examples of the commit-
tee’s choices. An example is a pair of alternatives and the chosen element from this pair. Then,
the observer formulates a hypothesis intended to predict future choices of the committee. We
distinguish between two types of learning according to the desired quality of prediction. In ex-
act learning, the learner’s goal is to predict future choices of the committee with certainty. In
approximate learning, the learner’s goal is to predict future choices with high accuracy.

The first notion we examine is exact learning. Following Rubinstein [12], we consider a model
in which the committee wishes to communicate its choice function to a student using the minimal
possible number of examples. This model is appealing because it assumes that examples are
communicated optimally to a learner. Hence, the number of examples needed for learning in this
model serves as a lower bound to the number of examples needed for exact learning in other
models, in which the examples are picked by the learner or generated by some random process.

In Section 2 we show that there exist cases in which a committee cannot communicate its choice
function to a student without describing all of its choices. The intuition is straightforward. Suppose
there are five elements, numbered 1–5, and that the committee’s choice function is induced by the
rational preference relation 1 � 2 � 3 � 4 � 5. Assume also that the committee communicates
to the student how it chooses between all pairs of elements except for the choice between 1 and
5, which appears to be the easiest to deduce. The learner cannot deduce with certainty that the
committee chooses 1 over 5; a committee with members’ preference relations 1 � 2 � 3 � 4 � 5,
5 � 1 � 2 � 3 � 4, and 2 � 3 � 4 � 5 � 1 agrees with all the examples provided, yet chooses
5 over 1.

1 A choice function assigns to every pair of elements a chosen element from the pair.
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This negative result about exact learning motivates the study of the weaker concept of
Probably Approximately Correct (PAC) Learning (see [7,15]). In the PAC model, examples of the
committee’s choices are revealed to an observer randomly and independently, according to some
fixed probability measure over the choice pairs. After seeing the sample set, the observer has to
formulate a hypothesis that will enable him to predict future choices of the committee with high
probability (with respect to the same measure). Thus, in the PAC model the examples are drawn
at random (instead of optimally), but the learner has to predict only most of the future choices
(instead of all of them).

In Section 3 we show that the choices of three-member committees are PAC-learnable from
a number of examples that is linear in the number of alternatives N, and that asymptotically
fewer examples do not suffice. Kalai [6] shows that rational choice is PAC-learnable from O(N)

examples. 2 Our result implies that an asymptotically similar number of examples suffices for
three-member committees.

We discuss larger committees with r>3 members in Section 4. We show that if the number of
members r is relatively small, the choices of the committee are still PAC-learnable from f (r, N)·N
examples, where A1 · r �f (r, N)�A2 · min {r2 log2 r, r log2 N}, and A1 and A2 are constants.

McGarvey [11] shows that any asymmetric binary relation can be induced by a majority vote of
a large committee. Hence, PAC-learning the choices of large committees requires large samples.
Our results support this claim by indicating that the number of examples needed for PAC-learning
increases at least linearly in the number of members on the committee. Nonetheless, there are
interesting cases in which the choices of large committees are still PAC-learnable, and we consider
one such example in Section 4. A society is a committee with potentially many members. An �-
decisive society is a society in which every choice is �-decisive, i.e., at least a fraction of ( 1

2 + �)

of the society’s members (not necessarily the same members) agree with every decision. We show
that the choices of �-decisive societies are PAC-learnable from at most f (�) ·N examples, where

f (�) = O(( 1
� )

2
log2

1
� ). Thus, if a society is decisive, it is much easier to PAC-learn its choices

regardless of the number of members in the society.

2. Exact learning

Suppose that Alice wants to communicate a choice function to Bob. Bob knows the family to
which the choice function belongs (e.g., it is induced by a three-member committee), but does not
initially know the choice function. Knowledge is communicated via examples. An example is a
pair of elements and the chosen element from this pair. Alice selects examples and communicates
them to Bob. Bob’s task is to deduce the entire choice function from the examples. Generating
examples, communicating them, and deducing from them is costly. Thus, Alice and Bob want the
number of examples to be as small as possible. Describability is the minimal number of examples
needed to describe any choice function in the family.

The notion of describability was introduced by Rubinstein [12], who seeks “to explain the fact
that certain properties of binary relations are frequently observed in natural language.” One of
the features Rubinstein investigates is the describability of a relation, i.e., the ease with which the
relation can be described by means of examples. We find this notion appealing for two reasons.
First, describability is an intuitive measure of supervised exact learning, in which an instructor
guides a student through the learning process. Second, describability is a “first best” notion

2 We use the following notation throughout the paper. Let f, g : N −→ R+. We write f (n) = O(g(n)) if there is a
constant A > 0 such that f (n)�A · g(n) for every n.
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in the sense that it assumes that examples are communicated optimally to the learner. That is,
describability serves as a lower bound on the number of examples needed for exact learning in
other scenarios, in which the examples are picked by the learner or generated by some random
process.

2.1. Definitions

Let X = {x1, . . . , xN } be a finite set of N elements. Let Y = {(xi, xj ) : i < j} be the collection

of pairs of distinct elements of X. The set Y contains
(

N
2

)
= N(N − 1)

2
pairs. A choice function

c : Y → X assigns to every choice problem (xi, xj ) ∈ Y an element c(xi, xj ) ∈ {xi, xj }. In other
words, a choice function is a tournament, i.e., a complete asymmetric binary relation, on X. A
choice function is rational if it satisfies transitivity. We identify a rational choice function with
the linear ordering it induces on X.

We explore the learnability of committees’ choice functions. A committee is a collection of r
members, where r �3 is an odd integer. Every member of the committee has a linear ordering on
X. For every pair of elements xi and xj , the committee chooses xi over xj if more than half of
the committee’s members rank xi higher than xj . 3 We denote by rMaj the family of all choice
functions of r-member committees.

Our benchmark measure of exact learning is describability. Let C be a family of choice functions.
The describability of C is the minimal integer k such that every choice function in C is uniquely
determined by k examples or less. Formally,

Definition 2.1. The describability of a family of choice functions C is desc(C) = maxc∈C{dC(c)}
where dC(c) denotes the minimal integer m such that there exist m pairs, y1, y2, . . . , ym ∈ Y ,
which obey the following:

if c′ ∈ C and c′(yi) = c(yi) for all i = 1, 2, . . . , m then c′ = c.

For example, Rubinstein [12] shows that the describability of the family of all linear orderings
is N − 1. Indeed, any linear ordering of the form x1 � x2 � x3 � . . . � xN−1 � xN can be
described by the examples “xi is chosen over xi+1” for 1� i�N − 1. On the other hand, a linear
ordering cannot be described by less than N − 1 examples, because one cannot deduce the order
between two elements that are never chosen in the examples.

Definition 2.1 implies that for every two families of tournaments (i.e., choice functions), C1 and
C2, if C1 ⊆ C2, then desc(C1)�desc(C2). Thus, as a family of tournaments expands, it becomes
weakly more difficult to describe the tournaments in the family. Moreover, the describability of

the family of all tournaments on N alternatives is
(

N
2

)
, because if even one example is missing we

can always find two tournaments that agree on all the examples given, but disagree on the missing

example. These two observations imply that for any family of tournaments C, desc(C)�
(

N
2

)
.

2.2. Three-member committees

We now establish the describability of the family of three-member committees. The family
3Maj contains a relatively small number of tournaments (at most (N !)3) in comparison to the

3 Since the number of members is odd and they each have a linear ordering on X, the committee’s choice function is
well-defined.
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total number of tournaments on X, which is 2

(
N
2

)
. One might expect the describability of 3Maj

to be approximately similar to the describability of the family of linear orderings. However,

Proposition 2.2. The describability of 3Maj over a set X of N elements is
(

N
2

)
.

Proof. Consider the family C = C1 ∪ C2, where C1 is the family of all tournaments induced by
linear orderings, and C2 is the family of all tournaments that deviate from some linear ordering

in exactly one pair. The describability of C is
(

N
2

)
. Indeed, any tournament c1 ∈ C1 cannot be

described by less than
(

N
2

)
examples, because for every set of

(
N
2

)
−1 examples used to describe

c1, there is a tournament c2 ∈ C2 that agrees with this set of examples and still disagrees with c1
on the missing example.

Moreover, C ⊂ 3Maj. Indeed, C1 ⊂ 3Maj, because we can replicate any linear ordering three
times and receive a tournament in 3Maj. C2 ⊂ 3Maj, because we can generate any tournament
with one deviation from a linear ordering as a majority vote of three linear orderings. Without
loss of generality, we illustrate this for a tournament which is consistent with the linear ordering
x1 � . . . � xi � . . . � xj � . . . � xN except for one deviation xj � xi . This tournament can be
obtained as a majority vote of the following three linear orderings:

x1 � . . . � xi � . . . � xj � . . . � xN,

xj � xi � x1 � . . . � xN,

x1 � . . . � xN � xj � xi.

Consequently, we get that
(

N
2

)
= desc(C)�desc(3Maj)�

(
N
2

)
. That is, desc(3Maj) =

(
N
2

)
.

�

Proposition 2.2 extends to larger committees. Since 3Maj ⊆ rMaj for any odd integer r �3,

we get that desc(rMaj) =
(

N
2

)
as well.

Describability refers to supervised exact learning, in which a teacher provides both the questions
and the answers. One can also think of scenarios of independent exact learning, in which the
student has to figure out by himself the “right” questions to ask and the teacher only provides
the answers. 4 For example, a graduate student who wants to learn which research questions are
interesting, repeatedly presents various research topics to his advisors (or thesis committee) who
point out the most interesting one among them. In our context, the independent exact learning
problem is formulated as follows: How many questions does a student need to ask a teacher in
order to learn a choice function in 3Maj? Proposition 2.2 implies the following.

Corollary 2.3. An independent learner who wants to discover a choice function of a three-

member committee needs to ask
(

N
2

)
questions in the worst case.

Suppose that the learner has already learned the choice function of the committee over the N
alternatives, and that a new alternative becomes available to the committee members. Assuming

4 Independent exact learning of linear orderings is extensively discussed in the computer science literature under the
title of comparison-based sorting algorithms. See [3,8] for details.
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that the new alternative does not alter the relations between the N incumbent alternatives, the
learner’s task is to learn the relation between the new alternative and the N incumbent ones. Of
course, N queries or examples will suffice to do so. Proposition 2.4 suggests that one cannot do
any better.

Proposition 2.4. A teacher who wants to communicate to a student how to add a new element z
to a tournament in 3Maj must use N examples in the worst case.

Proof. Consider a committee that has a linear ordering x1 � x2 . . . � xN on X. Assume that the
new element z is located somewhere within the ordering. Specifically, the committee’s new linear
ordering is x1 � . . . � xi � z � xi+1 � . . . � xN . A teacher cannot communicate this fact to a
student without describing all the relations between z and the elements of X.

Indeed, assume that the teacher communicates to the student the relations between z and all
the elements of X except for one arbitrary element xj . Without loss of generality, assume that
the committee chooses xj over z. The student cannot deduce the relation between xj and z. A
committee with members’ preference relations

x1 � . . . � xi � z � xi+1 � . . . � xN,

z � xj � x1 � . . . � xN,

x1 � . . . � xN � z � xj ,

where xj ’s location in the first ordering is the same as in the committee’s true linear ordering,
agrees on all the examples provided yet chooses z over xj . �

Note the difference from a scenario in which one restricts attention to the family of linear
orderings. In this case, a teacher has to communicate at most two examples to a student in order
to describe how to add z to a known linear ordering on X. It suffices to communicate the relations
between z and its immediate predecessor, and z and its immediate successor, when they exist.

2.3. Economic interpretations

The results about exact learning suggest that in learning “aggregated choice” there is a large
gap between a situation in which learning is based only on observing the committee’s choices
and a situation in which learning is also based on observing the choices of individual committee
members. Namely, if a teacher can communicate the choices of individual committee members
to a student, then the student can learn the committee’s choice function from at most 3(N − 1)

examples. However, if one has access only to the choices of the committee, then in the worst case
one cannot learn the committee’s choice function before seeing all of its choices.

Proposition 2.2 and Corollary 2.3 imply another result. Suppose that an observer does not
care about learning the committee’s choices, and only wishes to verify that the choices of the
committee are transitive. As can be inferred from the proof of Proposition 2.2, he has no way of
doing so without seeing all the committee’s choices. Moreover, suppose that an observer knows
that the committee’s choices are transitive, and only wants to verify that they remain so after a
new alternative z becomes available. The proof of Proposition 2.4 implies that he cannot do so
before seeing the relation between z and all the other elements.

While our results are phrased in the context of social choice, they apply to learning individual
choice as well. Instead of an r-member committee, one can think of a single decision maker (DM)
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with r criteria according to which she ranks the alternatives. The DM chooses xi over xj , if xi

is ranked higher than xj in more than half of the criteria. Proposition 2.2 and Corollary 2.3 then
imply that it is much easier to exactly learn a DM’s choices when one can identify the different
criteria the DM uses and learn about each of them separately, as opposed to a case in which one
observes only the DM’s choices.

3. Probably approximately correct learning

The above results about exact learning motivate our study of a weaker concept of learning,
called probably approximately correct learning (henceforth, PAC-learning). Kearns and Vazirani
[7] and Vidyasagar [15] provide a detailed analysis of PAC-learning. In the PAC model, a sample
set of the choices of a three-member committee is revealed to an observer randomly according to
some probability measure on all the choice pairs. The observer’s task is to predict approximately
the choices of the committee. That is, given the sample set, the observer should predict future
choices of the committee with high accuracy. Note the difference from the describability notion,
where the sample set is chosen optimally (and not according to some probability measure), and
where we demand exact prediction of future choices (and not prediction with high accuracy). 5

3.1. Definitions

Let C be a family of Boolean functions from an instance space Z to {0, 1}. We assume that C
is known, and we want to learn a specific target function c ∈ C. Note that choice functions are
Boolean functions over the set Y of all choice pairs, if we interpret c(xi, xj ) = 0 as implying that
xi is chosen over xj . Let P be a probability measure over Z. The measure P provides a natural
measure of error between any function h ∈ C and c. Namely, we define errorc(h) = Pr[x ∈ Z :
c(x) 	= h(x)]. Let 0 < �, � < 1/2.

Definition 3.1. A family of Boolean functions C is PAC-learnable from t examples with confi-
dence 1 − � and accuracy 1 − � with respect to P if:

For every c ∈ C, if z1, . . . , zt are drawn at random and independently according to P , then
with probability at least 1 − �:

if h ∈ C satisfies h(zi) = c(zi) for i = 1, . . . , t then errorc(h)��.

If this holds for every measure P , then we say that C is PAC-learnable from t examples with
confidence 1 − � and accuracy 1 − �.

Fig. 1 provides graphical intuition. On the right side, the large oval represents a family of
functions C. A particular function c ∈ C is represented by a point. The probability measure
P induces a distance function (or an error measure) on C. The small grey oval includes all the
functions whose distance from c is ��. The probability measure P also induces a probability
measure over samples of t examples. On the left side, these samples are classified into “good”
and “bad” samples. A sample is good if any h ∈ C that agrees with the sample lies in the grey

5 See Kalai [6] for a discussion on PAC-learnability and describability.
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Fig. 1. PAC-learning.

oval around c. The family C is PAC-learnable from t examples if for every c ∈ C, the proportion
(w.r.t. to the probability measure P) of good samples is at least 1 − �.

Thus, if a family of functions C is PAC-learnable from t examples, then with high probability,
after seeing a random sample of t examples of some function c ∈ C, any function h ∈ C that
“agrees” with the examples will predict a large proportion of the values of c; Hence the name
probably approximately correct learning.

Learning in the PAC model is susceptible to two kinds of failure. The confidence parame-
ter � is necessary since a random sample may be “unrepresentative” of the underlying function
one wants to learn. For example, the sample might include repeated draws of the same exam-
ple despite the fact that P is a uniform measure. The accuracy parameter � is necessary since
a small random sample may not distinguish between two functions that differ on only a few
examples.

A fundamental aspect of PAC-learnability is the number of examples needed to learn a family
of functions C. This number is closely connected to the notion of the Vapnik–Chervonenkis
dimension. More specifically, let S = {s1, s2, . . . , sm} ⊆ Z, and denote by

�C(S) = {(c(s1), c(s2), . . . , c(sm)) : c ∈ C} ⊆ {0, 1}m

the set of all the configurations of S that are realized by C. If �C(S) = {0, 1}m then we say that
C attains S. Thus, C attains S if C realizes all the possible configurations of S.

Definition 3.2. The Vapnik–Chervonenkis dimension of C, denoted as VCD(C), is the cardinality
d of the largest set S = {s1, s2, . . . , sd} attained by C. If C attains arbitrarily large finite sets then
VCD(C) = ∞.

The definition implies three important things. First, it follows from the definition that
s1, s2, . . . , sd must be distinct. Second, in order to prove that VCD(C) is at least d, one has
to find some attained set of size d. Third, in order to prove that VCD(C) is at most d, one has to
show that no set of size d + 1 is attained by C.

For example, let X = {x1, x2, x3, x4}, and let c be the choice function induced by the linear
ordering x1 � x2 � x3 � x4. Consider the family C of all choice functions that “agree” with c
on all pairs (xi, xj ) ∈ Y except for at most two pairs. The VC-dimension of C is two. Indeed, C
attains any two pairs in Y because we allow for two “deviations” from c. However, no three pairs
are attained by C because this would imply that there is a function in the family that disagrees
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with c on at least three pairs (the function that chooses the second element from every pair.) This
example can be generalized as follows.

Example 3.3. Let c be a rational choice function. Let CK be the family of all choice functions
that agree with c on all y ∈ Y except for at most K arbitrary pairs. Then, VCD(CK) = K .

Example 3.3 suggests that as the number of allowed “deviations” from c increases, VCD(CK)

increases. Intuitively, one might also argue that as the number of deviations increases, CK becomes
more “complex” and hence more difficult to learn. The tight connection between PAC-learning
and the VC-dimension is established in the following theorem.

Theorem 3.4. For fixed values of � and �, the number of examples needed to PAC-learn a family
of Boolean functions with confidence 1 − � and accuracy 1 − � is bounded above and below by
linear functions of the VC-dimension. 6

Thus, in order to evaluate how many examples are needed to learn a family of functions C, it
is enough to investigate the VC-dimension of the family. A simple observation is that if the VC-
dimension of C is d, then C must contain at least 2d functions (otherwise, it would be impossible
to attain a set of size d).

Proposition 3.5. Let C be a family of Boolean functions. Then, VCD(C)� log2 |C|.

The following theorem, which was proved independently by Sauer [13], and Shelah and Perles
[14], provides another connection between VCD(C) and the number of functions in C.

Theorem 3.6. Let C be a family of Boolean functions from a space of m elements to {0, 1}. If
VCD(C)�d, then the number of functions in C is at most gd(m) = ∑d

i=0

(
m
i

)
where

(
m
i

) =
m!

i!(m − i)! . Hence, if the number of functions in C is at least gd(m) + 1, then VCD(C)�d + 1.

3.2. PAC-learnability of 3Maj

We return now to the family of three-member committees. We first prove that VCD(3Maj)
is linear in the number of alternatives N. We then use Theorem 3.4 to conclude that for fixed
values of � and � the family of three-member committees is PAC-learnable from O(N) examples.
Note that by using the result of Proposition 3.5 along with the fact that |3Maj| < (N !)3, we get
that VCD(3Maj) < 3N log2 N . We obtain an asymptotic improvement on this upper bound in
Proposition 3.9.

We start by obtaining a lower bound on the VC-dimension.

Proposition 3.7. The VC-dimension of 3Maj is at least 3(N − 2).

Proof. Let X = {x1, x2, . . . , xN }. In order to prove that VCD(3Maj)�3(N − 2), we introduce
a set of 3(N − 2) choice pairs that 3Maj attains. First, we introduce an attained set of 3(N − 3)

6 For further details about the connection between the VC-dimension and PAC-learning, and between the number of
examples and � and �, see Kearns and Vazirani [7], Chapter 3.
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pairs, and then we add three more pairs. The set of 3(N − 3) pairs is separated into three types:

T1 : ∀ 4�j �N (x1, xj ),

T2 : ∀ 4�j �N (x2, xj ),

T3 : ∀ 4�j �N (x3, xj ).

Given a configuration of choices from these pairs (i.e., a vector in {0, 1}3(N−3)), we construct
a function c in 3Maj that realizes this configuration by introducing three orderings O1, O2, and
O3 that induce c. The idea is that the ordering Oi “takes care” of the Ti-pairs in the sense that
the remaining two orderings disagree on these pairs and Oi resolves this disagreement according
to the configuration. More formally, in Oi we place xi above all the elements xj , 4�j �N , for
which c(xi, xj ) should be 0, and below all the elements xj for which c(xi, xj ) should be 1. In
the other two orderings, we place xi once below all the other elements and once above all the
other elements. Therefore, Oi determines the realization of the Ti examples, and this realization
is consistent with the given configuration.

We now add three additional pairs (x1, x2), (x1, x3), and (x2, x3). The construction of the
orderings Oi still leaves a few “degrees of freedom” that allow to realize all the configurations of
the additional pairs. We distinguish between two cases.

Case 1: c(x1, x3) = 0. Then, the orderings are

O1 : . . . � x1 � . . . � x2, x3,

O2 : x3 � . . . � x2 � . . . � x1,

O3 : x1, x2 � . . . � x3 � . . . .

Changing the order between x2 and x3 in O1 and between x1 and x2 in O3 allows us to realize all
the configurations in which c(x1, x3) = 0.

Case 2: c(x1, x3) = 1. Then, the orderings are

O1 : x2, x3 � . . . � x1 � . . . ,

O2 : x1 � . . . � x2 � . . . � x3,

O3 : . . . � x3 � . . . � x1, x2.

Changing the order between x2 and x3 in O1 and between x1 and x2 in O3 allows us to realize all
the configurations in which c(x1, x3) = 1.

This gives us a set of 3(N − 3) + 3 = 3(N − 2) pairs that 3Maj attains, as required. �

We now prove an upper bound on VCD(3Maj). We use the following proposition in the proof.

Proposition 3.8 (Kalai [6]). The VC-dimension of the family of linear orderings is N − 1.

Note that Proposition 3.8 and Theorem 3.4 imply that for fixed values of � and �, the number
of examples needed to PAC-learn the family of rational choice functions is linear in the number
of alternatives N.

Proposition 3.9. The VC-dimension of 3Maj is less than 99N .
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Proof. Assume the VC-dimension of 3Maj is M. Then there are M pairs of elements, y1, y2, . . . ,

yM ∈ Y , such that every configuration of choices from these pairs is realized by a tournament in
3Maj. Thus, given a configuration of choices from the M pairs (i.e., a vector in {0, 1}M ), there
exist 3 linear orderings such that for every coordinate (or choice) of the configuration at least 2
of the 3 orderings “agree” with it. Consequently, there is one ordering (or more) that agrees with
at least 2M

3 coordinates of the configuration. In that case, we say that the ordering “covers” the
configuration. What is the minimal number of different orderings needed to cover all the possible

configurations of the M pairs? A single ordering can agree with
(

M
i

)
configurations on M − i

coordinates (we take the configuration induced by the ordering, and we have
(

M
i

)
options to

choose the i coordinates that disagree with the ordering). Consequently, a single ordering can

cover at most
(

M
0

)
+

(
M
1

)
+ . . . +

(
M

M− 2M
3

)
configurations. Therefore, as the total number of

configurations is 2M , the number of different orderings needed is at least

U = 2M(
M
0

)
+

(
M
1

)
+ . . . +

(
M

M− 2M
3

) �2M(1−H( 1
3 )),

where H(�) = −� log2 � − (1 − �) log2 (1 − �), 0 < � < 1, is the binary entropy function, and
the inequality is derived from Conclusion A.3 in Appendix A.1.

Let us think of these U orderings as U different vectors in {0, 1}M , where we identify each order-
ing with the configuration it induces. According to Theorem 3.6, if the number of vectors exceeds

gN−1(M) = ∑N−1
i=0

(
M
i

)
, then the VC-dimension of these linear orderings (and, consequently,

the VC-dimension of all linear orderings) is at least N. This is impossible due to Proposition 3.8.
Therefore, we get that

2M(1−H( 1
3 )) �U �

N−1∑
i=0

(
M

i

)
�2MH( N

M
),

where the right inequality is derived from Conclusion A.3. Taking log 2 of both sides and dividing
by M, we get that

1 − H

(
1

3

)
�H

(
N

M

)
,

which implies that M < 99N . �

Remark. The proof of Proposition 3.9 can be applied to societies of potentially many members—
every member with a linear ordering on the alternatives and one vote—in which every choice is
supported by two-thirds or more of the votes.

Propositions 3.7 and 3.9 establish that VCD(3Maj) is linear in N. Consequently,

Theorem 3.10. For fixed values of � and �, the number of examples needed to PAC-learn the
family of choice functions of three-member committees with confidence 1 − � and accuracy 1 − �
is linear in the number of alternatives N.
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Thus, with high probability, after seeing A · N independent random examples of the choices
of a three-member committee, any choice function in 3Maj that “agrees” with the examples will
predict a large proportion of the committee’s future choices.

4. PAC-learning of larger committees and decisive societies

The results of Section 3 can be generalized to larger committees. Consider the family rMaj for
an odd integer r �3. The number of functions in rMaj depends on both the number of alternatives
N and the number of members r. If r is very large then any tournament on N alternatives can be

realized by a committee of r members, and consequently VCD(rMaj) =
(

N
2

)
. In fact, Erdős

and Moser [5] show that every tournament on N alternatives can be realized by a majority vote of
O( N

log2 N
) orderings. Therefore, we limit attention to committees of at most r � N

log2 N
members.

According to Proposition 3.5, VCD(rMaj) < rN log2 N , because the number of functions in
rMaj is less than (N !)r . The same line of argument used in the proofs of Propositions 3.7 and 3.9
can be used to obtain the following result (see Appendix A.2 for a detailed proof).

Theorem 4.1. Let r �3 be an odd integer. Then,
1. The VC-dimension of rMaj is at least Nr − r2.
2. TheVC-dimension of rMaj is at mostN ·f (r, N), wheref (r, N) = min {10r2 log2 r, r log2 N}.
Consequently, for fixed values of � and �, the number of examples needed to PAC-learn rMaj is
at least A1(Nr − r2) and at most A2 · Nf (r, N), where A1 and A2 are constants.

Another interesting family of choice functions is the family of functions induced by �-decisive
societies. A society is a committee with potentially many members. An �-decisive society is a
society in which every choice is �-decisive, i.e., at least a fraction of ( 1

2 + �) of the society
members (not necessarily the same members) agree with every choice, where 0 < � < 1/2. In
other words, the choices of an �-decisive society are not sensitive to a small fraction of people
changing their minds. It is easy to verify that any r-member committee, where r �3 is odd, is
a decisive society for � = 1

2r
. In the other direction (which is more difficult), if we randomly

sample a committee of ln N

�2 members from the society, then with probability > 1
2 , the choices

of the committee will coincide with the choices of the society. Erdős and Moser [5] show that a
large society can realize any tournament on N elements, and therefore PAC-learning the choices
of large societies is difficult. If, however, we know that a society is decisive, it is much easier to
PAC-learn its choices regardless of the size of the society.

Proposition 4.2. For fixed values of � and �, the family of choice functions of �-decisive societies
is PAC-learnable with confidence 1−� and accuracy 1−� from at most f (�) ·N examples, where

f (�) = O(( 1
� )

2
log2

1
� ).

The proof of Proposition 4.2 is similar to that of Proposition A.3 in Appendix A.2, and is left to
the reader.

Proposition 4.2 is non-trivial when ( 1
� )2 log2

1
� � N . A sufficient condition for this is that

� 
√

log2 N

N
. Thus, as the number of alternatives N grows, one can learn from a reasonably small

number of examples (with respect to N) the choices of societies which are less and less “decisive”.
When N → ∞ and we allow � → 0 at a slow enough rate, the choices of an �-decisive society
are still learnable from a number of examples that is relatively small with respect to N.
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5. Concluding remarks

This paper explores whether it is possible to learn the choices of a small committee from
examples. The first part of the paper discusses exact learning. We show that in the worst case(

N
2

)
examples are needed to describe a choice function of a three-member committee. It is an

open problem whether fewer examples suffice in the average case, when the linear orderings of
the members are uniformly and independently distributed.

The second part of the paper discusses PAC-learning. The results we obtain are asymptotic in
nature. Namely, we study situations in which the number of alternatives N is large. This follows the
basic paradigm of theoretical computer science, which draws its main insights into the behavior of
algorithms from their asymptotic behavior. For example, we prove that VCD(3Maj) < 3N log2 N

and that VCD(3Maj) < 99N . Of course, it might be the case that the constant 99 in the second
inequality can be significantly improved, but as it stands the first inequality is stronger when
N < 233, i.e., for all practical purposes. Nevertheless, the second inequality provides an insight
that cannot be deduced from the first. The number of examples needed for PAC-learning a choice
function of a three-member committee is asymptotically similar to the number of examples needed
for PAC-learning a rational choice function; i.e., both are PAC-learnable from O(N) examples.

The analysis in the PAC model raises a complementary algorithmic question. Given a sample
set of choices of a three-member committee, what can be deduced about the other choices of the
committee, and how? We argue that it is possible to deduce most of the committee choices after
seeing a relatively small number of them. However, we do not present an efficient algorithm that
does so; i.e., an algorithm that finds a committee that agrees with the examples after a number of
steps which is polynomial in the number of alternatives N.

A basic assumption of the PAC model is that examples are drawn at random and independently.
While this assumption is a reasonable approximation in some settings, it is less plausible in others.
For example, a legislature often decides between a status quo option (which is the chosen option
from the previous stage) and a new (possibly, random) option, and not between a pair of options
drawn at random. Extending our results to such a scenario is a challenge for future work.

It may also be interesting to examine which additional properties of rational choice functions
extend to three-member committees. In particular, are there simple regularities that character-
ize choice functions of committees? For example, we know that a choice function is rational if
it is rational when it is restricted to every subset of three alternatives. Is there a similar char-
acterization for choice functions of three-member committees (with three replaced by a larger
constant)? A positive answer to this question would provide a positive answer to the follow-
ing question. Given a set of examples of choices by a social institution, is there an efficient
way to decide whether a three-member committee can generate them? We leave these ques-
tions as well as applying the PAC model to additional questions of economic interest for future
research.
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Appendix A.

A.1. Combinatorial approximations

The main combinatorial result we use throughout this section is Stirling’s approximation:

√
2�n

(n

e

)n

�n!�√
2�n

(n

e

)n

e
1

12n .

Proposition A.1. Let 0<�<1. Then,
(

n
�n

)
� 2√

n
2nH(�) where H(�) = −� log2 � − (1 − �)

log2 (1 − �) is the binary entropy function.

Proof. Using Stirling’s approximation, we have

(
n

�n

)
�

2
√

�n
(

n
e

)n

√
2��n

(
�n
e

)�n√
2�(1 − �)n

(
(1−�)n

e

)(1−�)n

�
√

n√
�n

√
(1 − �)n

· nn

(�n)�n((1 − �)n)(1−�)n

= 1√
�(1 − �)n

·
(

1

��(1 − �)(1−�)

)n

= 1√
�(1 − �)n

2nH(�)

� 2√
n

2nH(�) �

Proposition A.2. Let 0�k < 1
2n. Then,

∑k
i=0

(
n
i

)
�

(
n
k

)
n−k
n−2k

.

Proof. It is easy to verify that
(

n
k−i

)
�

(
k

n−k+1

)i(
n
k

)
. Indeed, the inequality holds for i = 0, 1,

and for i > 1 we get by induction on i that

(
n

k − i

)
= k − i + 1

n − k + i

(
n

k − (i − 1)

)
� k

n − k + 1

(
n

k − (i − 1)

)
�

(
k

n − k + 1

)i(
n

k

)
.

Thus,

k∑
i=0

(
n

i

)
�

(
n

k

) k∑
i=0

(
k

n − k + 1

)i

�
(

n

k

) k∑
i=0

(
k

n − k

)i

�
(

n

k

)
1

1 − k
n−k

=
(

n

k

)
n − k

n − 2k
. �

Conclusion A.3. Let 0 < ��
√

n−2
2
√

n−2
. Then,

∑�n
i=0

(
n
i

)
�2nH(�).
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Proof. According to Proposition A.2,

�n∑
i=0

(
n

i

)
� 1 − �

1 − 2�

(
n

�n

)
.

Using Proposition A.1 and the inequality ��
√

n−2
2
√

n−2
, we obtain the conclusion. �

A.2. Proof of Theorem 4.1

The following two propositions imply the result of Theorem 4.1.

Proposition A.2. Let r be a positive integer. Then,

VDC((2r + 1)Maj)�(2r + 1)N −
(

r + 1
2

)
− (r + 1)(2r + 1).

Proof. We introduce a set of (2r + 1)N −
(

r+1
2

)
− (r + 1)(2r + 1) choice pairs that the family

(2r + 1)Maj attains. The pairs are of two types, T1 and T2, as follows:

T 1 : 1. ∀ 2�j �N (x1, xj ),

2. ∀ 3�j �N (x2, xj ),

...

r. ∀ r + 1�j �N (xr, xj ),

T 2 : r + 1. ∀ 2r + 2�j �N (xr+1, xj ),

r + 2. ∀ 2r + 2�j �N (xr+2, xj ),

...

2r + 1. ∀ 2r + 2�j �N (x2r+1, xj ).

There are Nr−
(

r+1
2

)
pairs of type T1, and (r+1)(N−(2r+1)) pairs of type T2. Consequently,

the total number of pairs is (2r + 1)N −
(

r+1
2

)
− (r + 1)(2r + 1).

Given a configuration of choices from these pairs, we construct the 2r + 1 orderings, denoted
by O1, . . . , O2r+1, as follows. Generally, every ordering Oi has four regions:

A︸ ︷︷ ︸ � B︸ ︷︷ ︸ � xi � C︸ ︷︷ ︸ � D︸ ︷︷ ︸ .

Regions A and D are “balance” regions, which assure that every xi , 1� i�2r +1, appears r times
as a “small” element and r times as a “big” element in the 2r orderings except for Oi . Then,
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the ordering Oi , by manipulating elements in regions B and C, determines the realization of the
pairs in which xi appears first. More specifically, the orderings are divided into two types and
constructed as follows.

Type 1: There are r orderings of this type, denoted by O1, O2, . . . , Or . The ordering Oi is
“responsible” for the pairs of type T1–i, that is, pairs in which xi appears first. The ordering
Oi has four regions as described above. Regions A and D of Oi are “balance” regions, which
include the elements x1, . . . , xi−1. Regions B and C include the elements xi+1, . . . , xN . Region
B includes all the elements out of xi+1, . . . , xN such that c(xi, xj ) = 1. Region C includes all
the elements out of xi+1, . . . , xN such that c(xi, xj ) = 0.

The ordering of the elements within the regions obeys the following rule: The smaller the index
of the element, the further it is located from xi . For example, if both xj and xj ′ appear in region
A (or D), and j < j ′, then xj � xj ′ (or xj ′ � xj ).

Type 2: There are r + 1 orderings of this type, denoted by Or+1, . . . , O2r+1. The ordering Oi

is “responsible” for the pairs of type T2–i, and has four regions, as described above. Regions A
and D are the “balance” regions, which include the elements x1, . . . , x2r+1 except xi (note that
more elements appear in these regions with respect to the orderings of type 1). Regions B and
C include the elements x2r+2, . . . , xN . Region B includes all the elements out of x2r+2, . . . , xN

such that c(xi, xj ) = 1. Region C includes all the elements out of x2r+2, . . . , xN such that
c(xi, xj ) = 0 . The ordering of the elements within the regions obeys the same rule as in type 1
orderings.

It still remains to describe the balancing process, i.e., how to position the elements in regions
A and D in the 2r + 1 orderings. The construction of the orderings implies that xi , 1� i�2r + 1,
may appear in regions B and C only in the orderings O1, . . . , Or ; that is, xi appears in regions B
and C at most r times. We have to balance these appearances with appearances in regions A and
D. For example, if xi appears 2 times in region B and 4 times in region C, then it is located in the
remaining orderings (except for the ordering Oi) r −2 times in region A and r −4 times in region
D. The ordering of the elements within regions combined with the fact that for j > i, xj joins
regions A and D not before xi joins these regions, implies that xi � xj in orderings (except for
Oi) in which xi appears in either region A or B, and that xj � xi whenever xi appears in regions
C or D. Therefore, the balancing process assures that for every j > i, xi � xj in r orderings (not
including Oi), and xj � xi in r orderings (not including Oi). Consequently, Oi alone realizes the
examples in which xi appears first, according to the location of the elements in regions B and C
in this ordering. As every Oi agrees with the given configuration on the pairs in which xi appears
first, we conclude that the 2r + 1 orderings realize the configuration. �

Proposition A.3. Let r be a positive integer. Then,

VDC((2r + 1)Maj)� min {(2r + 1)N log2 N, 10N(2r + 1)2 log2 (2r + 1)}.

Proof. We showed earlier that VCD((2r + 1)Maj) < (2r + 1)N log2 N . It is left to show that
VDC((2r + 1)Maj)�10N(2r + 1)2 log2 (2r + 1). Denote the VC-dimension by M. Using the
same arguments as in the proof of Proposition 3.9 we get the inequality:

1�H

(
r

2r + 1

)
+ H

(
N

M

)
.

A series of algebraic manipulations will allow us to derive the result of the proposition.



212 Y. Salant / Journal of Economic Theory 135 (2007) 196–213

Step 1: Approximate H( r
2r+1 ).

For a small x, we can approximate H
(

1
2 + x

)
using Taylor’s formula around x0 = 1

2 :

H

(
1

2
+ x

)
= H

(
1

2

)
+ H ′

(
1

2

)
x + H ′′

(
1

2

)
x2

2
+ H(3)

(
1

2

)
x3

6
+ R4(x),

where R4(x) is the remainder in Taylor’s formula. The term R4(x) is negative because
every odd derivative of H at x0 = 1

2 is zero and every even derivative is negative. Sub-
stituting for numbers in the above formula and using the fact that R4(x) is negative,
we have:

H

(
1

2
+ x

)
�1 − 2x2 log2 e �⇒substitute x with − 1

4r+2

H

(
r

2r + 1

)
�1 − 2 log2 e

1

(4r + 2)2
�⇒

use the fact that 1�H
(

r
2r+1

)
+H

(
N
M

)

1�1 − 2 log2 e
1

(4r + 2)2
+ H

(
N

M

)
�⇒

2 log2 e
1

(4r + 2)2
�H

(
N

M

)
�⇒log2 e>1

1

2(2r + 1)2
�H

(
N

M

)

Step 2: Approximate H
(

N
M

)
.

Let 0 < t < 1. The sum of the geometric progression with multiplier t is

1

1 − t
= 1 + t + t2 + t3 + . . . �⇒use integration on both sides

− log2(1 − t) = t + 1
2 t2 + 1

3 t3 + . . . �⇒multiply by (1−t)

−(1 − t) log2(1 − t) = t −
(

1
2 t2 + 1

6 t3 + . . .
)

� t �⇒H(t)=−t log2 t−(1−t) log2(1−t)

H(t)� − t log2 t + t �⇒ 1
2(2r+1)2

�H
(

N
M

)

1

2(2r + 1)2
� − N

M
log2

N

M
+ N

M

Denote M = cN . Then, the last inequality can be written as 1
2(2r+1)2 � 1

c
log2 c + 1

c
. This

inequality implies that c = O((2r + 1)2 log2 (2r + 1)). It remains to determine the constant of
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the O(·). Denote c = 2d(2r + 1)2 log2 (2r + 1). Then,

1

2(2r + 1)2
� 1

c
(log2 c + 1) �⇒c=2d(2r+1)2 log2 (2r+1)

1

2(2r + 1)2
� 1

2d(2r + 1)2 log2 (2r + 1)
log2 (2d(2r + 1)2

log2 (2r + 1)) + 1 �⇒
1� 1

d log2(2r + 1)
log2 2d + 2 log2 (2r + 1)

+ log2 log2 (2r + 1) + 1 �⇒multiply by d

d �2 + log2 2d + log2 log2 (2r + 1) + 1

log2 (2r + 1)
�2 + 3 = 5

Consequently, the VC-dimension is at most 10N(2r + 1)2 log2 (2r + 1). �
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