A Dynamic Process of Exchange

Stanley Reiter

The model presented in this paper deals with dynamic behavior of a market not in equilibrium. It is a characteristic feature of markets that are out of equilibrium that opportunities to trade on different terms exist simultaneously. One explanation of how a uniform price comes to prevail in a market is in terms of arbitrage. In broad terms, the model studied here formalizes a dynamic arbitraging process and explores the extent to which that process can bring about results of the kind usually envisaged for it.

The literature on markets that are out of equilibrium contains models which deal with search behavior and models in which a market "process" is formalized as a game. The model studied in this paper differs from these in many details but mainly in two respects. First, the behavior of agents is modeled from a "bounded rationality" point of view, rather than, say, in terms of optimal searching. Second, the main focus is on the dynamic process and its long-run tendency, rather than on a solution concept such as Nash equilibrium or market clearing. In these respects, my viewpoint of 1959 is retained here.

A dynamic market process cannot satisfactorily be based on static excess demand behavior of economic agents (traders, in a pure exchange setting) because it is unsatisfactory to assume that agents will maximize utility, treating the budget constraint as if it were a certainty in a situation in which it is necessarily uncertain. Away from the static equilibrium, no agent can be assured of his opportunities. If the behavior of agents away from equilibrium is qualitatively different from their behavior at equilibrium, they can, in effect, recognize whether the market is or is not in equilibrium. While it is possible that behavior in equilibrium should be in some sense a limit of disequilibrium behavior, we take the view that behavior of agents should, in some sense, be qualitatively the same throughout the process.

The role of information and its effect on the appropriate behavior of agents then becomes important. We try to take account of two aspects of the role of information. First, the institutional structure of the market determines the information agents get from the market process, the "structural" aspect. Second, the restricted capacity of economic agents to handle information restricts behavior, the "bounded rationality" aspect. The structural aspect of information is modeled by looking at an extreme case, one in which
each agent acquires information only from his own direct experience—and, at that, only information indispensable to making trades, namely, bids or offers tendered to or by himself. Moreover, trading is assumed to be unorganized and anonymous. Traders meet one another at random, exchange bids, do or do not agree to trade, and then separate, each ignorant of the identity of the other.

The "bounded rationality" aspect enters in two ways. First, in economic life each individual takes part in many different economic activities, including trading in markets for many different commodities. Each person has limited time and resources, and typically devotes a substantial portion of them to some specialized productive activity, his job, from which he earns his living. Such a person cannot devote a large amount of his time and resources to searching out trading opportunities. If the number of commodities which an individual trades is large, relative to his capacity, then the individual agent can do relatively little in the way of searching or acquiring information in "most" markets. Thus, in any market we may expect to find many agents whose capacities for search are relatively small. In the kind of situation that would typically result, opportunities for arbitrage profit may be expected to exist. Therefore, some agent would have incentives to "specialize" in such a market, that is, to devote a large portion of his resources to trading in that market and in effect make trading his "job." Such considerations led to the formulation of a pure exchange model in which there are two types of agents, those with relatively large capacity and those with low capacity, and correspondingly, with different appropriate behavior.

Second, the behavior of each type of agent is itself restricted by restricted capacity to process information in the face of complex and changing circumstances. Explicitly to derive and characterize rules for fully rational behavior in such circumstances is a difficult problem. Instead, the model specifies certain plausible modes of behavior supported only by heuristic arguments. This leads, as will be seen below, to behavior involving stochastic elements.

More specifically, the process is as follows. A market consists of a finite collection or agents.

The market process goes on in time, which is discrete, consisting of a sequence of periods. Contact among agents takes place at random during each period.

There are two types of agents. One is characterized by low capacity for contact per period (reflecting a low allocation of information-processing capacity to this market). The other is characterized by a high capacity for contact per period. There are many low-capacity agents and a few high-capacity ones. I shall call the agents consumers and traders, respectively.

The situation envisaged was one in which the various agents, having very little information about opportunities, might be prepared to trade on very
A Dynamic Process of Exchange

different terms. This is a situation in which the possibility of arbitrage profit exists.

When a trader and a consumer meet, some form of bargaining takes place. Because of the trader's high capacity for contact, he is likely to be better off devoting his capacity to seeking arbitrage profits than to spend scarce time in hard bargaining with a single consumer, from whom he is likely to make a relatively small gain, at best. This is modeled as follows.

When trader and consumer meet, the consumer makes a bid. The trader either accepts it or rejects it and moves on to another consumer. Thus, each participant makes and receives a bid as a result of each contact he makes. These bids are the sole basis of the information acquired from the market.

I turn next to the behavior of agents. First, the consumers. The specification of rational behavior for a consumer presents an interesting and largely unsolved problem of behavior under uncertainty. In the nature of the case, a consumer can have at best an estimate of the alternatives confronting him. The only point that he can be certain about is the point involving no trade. His problem is complicated by three factors. First, the set of alternatives facing him may change from time to time. Second, his ability to acquire information and, hence, the rate at which he acquires information may be slow, relative to the rate at which the set of alternatives is changing. This means that aging information becomes increasingly irrelevant. Third, each "observation" involves both information and payoff. The means of acquiring information is the making and receiving of offers. The process involves the risk of making deals. In this respect the consumer's problem is like problems of the "two-armed-bandit" class.

In view of these difficulties, we shall prescribe intuitively appealing modes of behavior for consumers, the rationality of which is supported only by heuristic arguments.

Roughly speaking, each consumer selects his current bid probabilistically, on the basis of the current state of his information about his opportunities.

Now, the traders. Each trader, in pursuit of arbitrage profit, accepts or rejects the bids received by him, using a decision rule that is chosen at the beginning of the current period and maintained unchanged through that period. Thus, a trader is assumed not to be able to respond to variations in the pattern of bids received which take place within a period. That is, he cannot condition his response to a bid on the basis of the other bids received before it in the same period. Such a restriction on behavior reflects considerations of "bounded rationality." The specification of rational behavior for a trader presents difficulties similar to those already mentioned in connection with the same problem for consumers. Our approach is the same in this case as in that: we prescribe intuitively appealing modes of behavior supported by heuristic arguments. The prescribed behaviors represent conjectured solutions to a problem of statistical decision theory, namely, this particular form of the two-armed-bandit problem.
The difference between traders and consumers is the higher capacity for contact enjoyed by traders. This makes it plausible for traders to attempt to take advantage of the possibility for profit inherent in the simultaneous existence of offers on different terms. In such circumstances it is possible for a trader to find several transactions the net effect of which is preferred by him to no trade, while no single one of them is so preferred. Therefore, the behavior of traders, being directed toward finding advantage in the sum of many transactions, does not depend on an evaluation of each offer individually, with immediate reference to his own preferences.

In addition, the asymmetry between traders and consumers provides a basis for strategic behavior. A trader, knowing that he is a trader, may consider that he has a degree of monopoly power, namely, the power to control the information received by individual consumers and, thereby, to influence the perception on the part of consumers of the opportunities in the market. One type of monopoly power—or perhaps it is better to say one source of monopoly power—is the ability of an agent to distort the “true” opportunities confronting the others. In this view the stick-up man who holds a pistol to his victim’s head and says “Your money or your life!” exercises a kind of monopoly power not so different from that, say, of a product monopolist, who presents consumers with marginal rates of transformation different from those determined by the technology. A consumer, knowing that he is a consumer in a world in which there are traders, also has a strategic problem. These will be explored below.

In what follows, the behavior of agents is stated more precisely. A stochastic process, resulting from the behavior of agents and their interactions, represents the market process. The long-run behavior of this process is studied. The main results are stated in propositions 1 and 2.

Generally, we expect arbitraging to eliminate price differences within a market, and for the resulting allocations to be "optimal." For instance, a process based on recontacting à la Edgeworth has been shown to lead to Core allocations. In the present model, the unorganized structure of the market and the restricted capacity of agents to make contacts limit the allocations achievable by the process. Specifically, the process cannot be guaranteed to achieve Core allocations. Rather, the process tends toward allocations in the K-core. (The K-core is the set of allocations which cannot be blocked by coalitions involving fewer than K + 1 agents, where K, one of the parameters of the model, is a positive integer.) If a core allocation results, it is essentially accidental. The results contained in propositions 1 and 2 are established in a model in which each agent acquires very little information about what is happening in the market generally. However, these results would remain even if agents were provided with information about all transactions. They depend on the restricted capacity of traders to make contacts. As long as individual arbitragers are small, relative to the market, a process of unorganized arbitrage, such as the one in this model,
A Dynamic Process of Exchange

cannot guarantee Core allocations, or competitive ones. Thus, it appears that some organized market institution is needed. "Natural" arbitrage is not enough. Furthermore, increasing the number of traders will not save the situation. Increasing the number of competing arbitrageurs seems to lead to a sort of monopolistically competitive solution rather than one in which full equalization of opportunities prevails.

Agents are of two kinds: consumers and professional traders or intermediaries, called traders. Let

\[C = \{1, \ldots, n\} \]

be the set of consumers and let

\[T = \{n + 1, \ldots, m\} \]

be the set of traders. Then the set of agents \(i \) is given by

\[I = C \cup T. \]

Let \(\mathcal{X} \) be the commodity space. I shall suppose that \(\mathcal{X} \) is a (countable) discrete subset of \(\mathcal{R}^d \). The role of this assumption is to avoid technical complexities connected with probability and measure, while retaining the main ideas.

Consumer \(i \) is characterized, as usual, by his consumption set \(M_i \subseteq \mathcal{X} \), his initial endowment \(\omega_i \in \mathcal{X} \) and his preferences, \(\prec_i \), assumed to be represented by a utility function. Correspondingly, the trade space of consumer \(i \) is

\[\mathcal{X}^i = \mathcal{X}^d - \{\omega_i\} = \{x \in \mathcal{X}^d \mid \omega^d = x \in \mathcal{X} \}. \]

A preference relation \(\prec_i \) on \(\mathcal{X}^i \) induces a preference relation \(\prec \) on \(\mathcal{X} \) in the usual way, that is, \(x \prec y \iff \omega^d + \omega^i = \omega \), \(x'^i = x^i + \omega^i \), and \(y^i \prec y^i \).

I assume that \(\succ \) is represented by a utility function \(U^i : \mathcal{X} \rightarrow \mathcal{R} \) where \(\succ \) is strictly monotone for each \(i \in C \), and \(U^i(0) = 0 \); \(\succ \) is automatically continuous since \(\mathcal{X} \) is discrete.

BIDS

Each agent makes bids. The bid of consumer \(i \) is a point of \(\mathcal{X} \).

Denote by \(b(t) \) the bid of consumer \(i \) at time \(t \). Let \(b(t) = (b(t)_1, \ldots, b(t)_n) \) be the vector of bids of consumers, where \(b(t)_i \in \mathcal{X}^i \).

Traders respond to bids received. The response of trader \(j \) is a function,

\[\phi^j : \mathcal{X}^n \rightarrow \mathcal{X}^n \]

defined as follows.

First, let

\[\phi^j : \mathcal{X}^n \rightarrow \mathcal{X}^n \]

where \(\phi^j(b(t)_1, \ldots, b(t)_n) = (b(t)_1, \ldots, b(t)_n) \) if \(b(t)_j \in \mathcal{X}^i \) and

\[b(t)_j = \begin{cases} b(t)_j & \text{if } i \in C, \\ 0 & \text{otherwise.} \end{cases} \]
Thus, $p_j(b) = b^j$ is the vector of bids received by trader j when b is the vector of bids made by the consumers. The response b^j of trader j to each bid received is either that bid, indicating that he accepts the bid, or the zero vector in \mathbb{X}_i, indicating that he rejects that bid. Thus, when the consumers bid b, $b^j(b) = a^i$, where $a^i = (a^{i_1}, \ldots, a^{i_n})$ and

$$a^i = \begin{cases} b^i & \text{if } b^i \neq 0 \text{ and } b^i \text{ is accepted;} \\
0 & \text{otherwises.} \end{cases}$$

The functions b^j must also satisfy the following condition. For trader j there is a scalar c^j, which may be interpreted either as representing j's costs of being a trader or, alternatively, as representing trader j's aspirations to monopoly profit. It is required that trader j accept only sufficiently profitable trades; that is, if

$$b^j(b) = (a^{i_1}, \ldots, a^{i_n}) = a,$$

then $\sum_{i=1}^n a^{i_l} \leq -c^j 1 < 0$, where $l = (1, 1, \ldots, 1) \in \mathbb{X} \subset \mathbb{R}^n$.

Anonymity of trading imposes a further restriction on the responses b^j, as follows. If $b^j = (b^{i_1}, \ldots, b^{i_n})$ is an array of bids received by j, and if

$$b^{i} = (b^{i_{i_1}}, \ldots, b^{i_{i_n}}),$$

where i_1, \ldots, i_n is the permutation of $(1, \ldots, n)$, given by

$$\begin{pmatrix} 1, \ldots, n \\ i_1, \ldots, i_n \end{pmatrix},$$

then

$$b^j(b) = b^j(b^{i_{1}}, \ldots, b^{i_{n}}).$$

Thus, trader j's responses to a given array of bids received must be independent of who made those bids. Note that j's response to a bid depends on the array of bids received, not just on the individual bid.

To express the idea that agents have limited capacity to contact other agents, I shall assume that consumers can make, at most, one contact with another agent in each period and that traders can make some given finite number, k, for each trader j. I assume further that the nature of the (random) meeting process is such that consumers meet only traders and vice versa.

Thus there is a positive integer k, such that trader j can receive no more than k bids in any period. Then if k is the number of non-zero bids in b^j, 2^n is the number of different functions b^j which satisfy the anonymity condition; only some of these will meet the profitability condition. I shall suppose that trader j chooses his response to bids received, b^j, probabilistically, from the set of possible responses satisfying the requirements of anonymity and profitability, given b^j. We may identify a function b^j with its graph in $\mathbb{X}^n \times \mathbb{X}^n$, that is, with the (discrete) set

$$\{(a^i, b^{i}) \in \mathbb{X}^n \times \mathbb{X}^n \mid a^i = b^j(b^{i})\}.$$
and the response of trader \(j \) may be represented as a (discrete) conditional probability measure:

\[p'(y | x) = p'(y | x) \]

where \(p'(y | x) = \text{Prob} (y | b_i = x_i) \).

Thus, \(p'(x) \) is a discrete measure non-zero on the set of vectors \(y = (y^1, \ldots, y^n) \), such that \(y^i = x^i \) or \(y^i = 0 \).

Let \(\mathcal{P} \) be the set of all these conditional probabilities:

\[p' : X^* \times X^* \rightarrow [0,1]. \]

Thus, an action of trader \(j \) at time \(t \) is a function, \(p_j(t) \in \mathcal{P} \).

The information that trader \(j \) has about his trading opportunities may be described by a function which assigns a subjective probability to each bid he might conceivably receive.

Let \(Q \) denote the class of functions

\[q' : x^* \rightarrow [0,1] \quad j \in \mathcal{J} \]

where \(X^* \) denotes the trade set of trader \(j \). Thus, if \(a \in X^* \), \(q'(a) \) is the subjective probability that trader \(j \) has in mind at time \(t \) to receive the bid \(a \).

The behavior, or strategy, of trader \(j \) is given by a function:

\[\phi' : Q \rightarrow \mathcal{P}. \]

These functions will be specified further below.

BIDDING OF CONSUMERS

Bids of a consumer are chosen probabilistically. Let \(Q \) denote the set of probability measures on \(X^* \). Thus, if \(q' \in Q \), then

\[q' : X^* \rightarrow [0,1] \quad i \in \mathcal{C} \]

is a probability measure; \(q'(x') \) is the probability that \(b_i = x' \in X^* \).

The action of consumer \(i \) in period \(t \) is \(q_i(t) \).

This is interpreted and justified as follows. If consumer \(i \) knew his present and future trading opportunities (for sure, he would select a bid which would maximize his utility, given his opportunities. However, in the present context he cannot in general know his opportunities. He is uncertain about them and must use his meetings with traders to explore those opportunities, that is, to search. Consumers use randomized bidding to try to avoid being trapped in a mistakenly perceived set of opportunities. However, a consumer also uses the information so acquired to guide his further exploration in directions of advantage to him.

I shall suppose that consumer \(i \)'s state of knowledge about his trading opportunities is represented by a subjective conditional probability function, as follows.

Let \(\mathcal{P} \) denote the class of functions

\[\hat{p} : X^* \rightarrow [0,1] \quad i \in \mathcal{C}. \]
Then $\tilde{b} \in \mathcal{P}$ for $i \in \mathcal{C}$ and $t = 0, 1, \ldots$. The interpretation of this function is $\tilde{b}(i) = \text{Prob.} \{s \text{ is accepted by the trader } i \text{ at time } t \text{ given that } \tilde{b} \text{ equals } x_i\}$. A behavior rule or strategy for consumer i is a way of choosing his action, that is, bidding distribution q^i on the basis of his knowledge of his opportunities \tilde{p}. Thus, a behavior rule of agent i is a function:

$$ q^i : \mathcal{P} \times \mathcal{Q} \rightarrow \mathcal{Q} \quad i \in \mathcal{C} $$

where

$$ q^i = q^i(\tilde{p}) \quad i \in \mathcal{C} $$

is the bidding distribution of i chosen when \tilde{p} summarizes his current knowledge. I shall specify the function q^i more particularly below.

THE MEETING PROCESS

Each time t agents meet one another according to a random process. Denote by $\mathcal{C}(t)$ the set of consumers who meet trader j at t. Here $j \in \mathcal{I} = \{0, 1, \ldots, m, m + 1\}$, where $\mathcal{C}(t)$ is the set of consumers who fail to meet anyone at time t.

I shall assume that $\mathcal{E}(\mathcal{C}(t)) = \{\mathcal{E}(\mathcal{C}(t)), \ldots, \mathcal{E}(\mathcal{C}(t+1))\}$ constitutes a random partition of \mathcal{C}. This expresses the assumption, made above, that each consumer can make at most one contact per period.

Let $\pi(i;j;m,n,K)$ denote the probability that agent i meets agent j (assumed to be independent of i) for given values of the parameters n,m,K, where $K = (K^{n^1}, \ldots, K^{n_m})$ and $K^{n+1} = n$. For notational simplicity, I shall assume $K = K$ for all $j \in \mathcal{I}$; that is, all traders have the same capacity. Let

$$ \pi(i;j;m,n,K) = \begin{cases} 1 & \text{if } i \in \mathcal{C}(t) \\ 0 & \text{otherwise} \end{cases} $$

and let $((m,\pi)) = M$.

I assume that $\pi(i;j;m,n,K) = 0$ if $i, j \in \mathcal{C}$ or if $i, j \in \mathcal{I}$ (that is, only a meeting between a consumer and a trader is possible) and that $\pi(i;j;m,n,K)$ is positive for $i \in \mathcal{C}$ and $j \in \mathcal{I}$.

When consumer i and trader j meet, i's bid b_i^j becomes a component of the bid received by j, and the i^j component of j's response is the bid received by i.

STRUCTURE OF OBSERVATION

The potentially observable events in the market consist of

(i) The matrix M, describing the meetings that take place,

(ii) the bids made by each consumer, $b = (b^1, \ldots, b^n)$, and

(iii) the responses made by each trader,

$$(a^{n+1}, \ldots, a^m) = (a^{n+1}, \ldots, a^{n+1}, \ldots, a^n, \ldots, a^m).$$

Let E be the (discrete) space of possible observations, (M,b,a), and denote by E the set of subsets of E.

Stanley Reiter
Given the actions of each agent and the probabilities of meetings, the meetings which take place and the bids made by consumers are probabilistically determined, hence, so are the bids received by traders and so are their responses. Thus, given \(\pi \), the actions \((q, p)\) together determine a probability measure on \(E \). Thus,

\[
\Pi: \mathcal{Q}^n \times \mathcal{Y}^{n-1} \times E \rightarrow [0, 1],
\]

where \(\Pi(q, p, e) \) is the probability of the point \(e \in E \), given \(q, p \), where \(q = (q_1, \ldots, q^n) \) and \(p = (p_{n+1}, \ldots, p^m) \).

Because

\[
q' = \varphi_i(q') \text{ for } i \in \mathcal{I}
\]

and

\[
p' = \varphi_i(q') \text{ for } j \in \mathcal{J},
\]

we may write:

\[
\Psi(q'(d), q'(d)) = \Pi((\varphi_i(q'), \varphi_j(q')), e),
\]

I next define a stochastic process that represents the market process, using the stochastic kernel \(\Psi \) as its transition kernel. The states of the process are

\[
s = ((q'), (q')), i \in \mathcal{I}, j \in \mathcal{J}.
\]

Thus, \(\mathcal{Q} = \mathcal{P}^n \times \mathcal{Q}^{n-1} \) is the set of states, and their projections are

\[
\mathcal{G} = \left\{ q' \right\} \text{ if } i \in \mathcal{I},
\]

\[
\mathcal{G} = \left\{ q' \right\} \text{ if } j \in \mathcal{J}.
\]

To complete the specification of the process, define the function

\[
\kappa: \mathcal{G} \times E \rightarrow \mathcal{F} \text{ for } i \in \mathcal{I},
\]

as follows. Let

\[
\eta_i: E \rightarrow \mathcal{F} : \eta_i E \text{ denote the function which associates with each point in } E \text{ the datum observed by } i \text{ when that event occurs. Thus, if } \eta \text{ observes then } \eta_i \text{ observes } \eta(e) = q' \text{ in } \mathcal{I}.
\]

On the basis of this “new” information, \(i \) can revise his state of knowledge. Let

\[
\bar{k}(q', d_i) = \bar{p}_{i+1} \text{ for } i \in \mathcal{I}
\]

and

\[
\bar{k}(q', d_i) = \bar{q}_{i+1} \text{ for } j \in \mathcal{J}
\]

be the functions which represent this “learning” process. Then

\[
\kappa_i(s, e) = \bar{k}(s', q'(e)) \text{ for } i \in \mathcal{I},
\]

where

\[
s = (s^1, \ldots, s^n)
\]

and

\[
s' = (q' \text{ for } i \in \mathcal{I}, q' \text{ for } j \in \mathcal{J}).
\]

The Markov process just defined is given by the mappings

(1) \(\Phi: \mathcal{G} \times [0, 1] \)

and
(2) $\lambda : \mathcal{G} \times \mathcal{E} \to \mathcal{G}''$

where $\lambda = \lambda' \times \ldots \times \lambda''$.

I am interested in several variants, each of which is in the class of Markov processes given by (1) and (2).

If we impose some additional properties on the mappings (1) and (2), certain general theorems could be applied to establish the existence of stochastic equilibria for these processes (for an exposition of these theorems see Fatu). However, those theorems do not provide the kind of information we would like to have about the set of states to which the system tends in the long run. Therefore, my approach is to specify more particularly the behavior of the various agents in the process and to study the long-run behavior of the process more directly.

The following example helps make clear some of the motivations for the specifications made below.

AN EXAMPLE

Suppose the number of commodities and the number of consumers is 2, that is, $\ell = n = 2$, and that there is just one trader, that is, $m = 1$. Given their characteristics, we can represent the economy, consisting of the two consumers, in an Edgeworth box, as in figure 1. As the trader views this

Figure 1

![Diagram](image-url)
A Dynamic Process of Exchange

situation, he, seeking arbitrage profits, can assure himself of a permanent flow of profit. For example, by inducing the consumers to make bids corresponding to \(a\) and \(b\) respectively. The trader can do this by adopting an action which gives positive probability only to accepting the bids corresponding to \(a\) and \(b\). If the consumers give positive probability to bids \(a\) and \(b\), respectively, they will acquire data which reinforce the belief that their opportunities include \(a\) and \(b\), respectively, and nothing else but the initial endowment.

In terms of trades, as shown in figure 2, the trader can ensure a profit of \((a - \omega_1 + b - \omega_2) < 0\) by allowing the consumers to "learn" that their opportunities are confined to \(a, b\), and the initial endowment.

Figure 2

Consider next a two-commodity economy, consisting of four consumers. Represented in the Edgeworth box in figure 3 are the four consumers. It is assumed that there are two pairs, each with the same initial endowment but different preferences. Thus, the indifference curves, labeled 1, 2, 3, and 4, refer to different agents. The single trader facing this situation could make a profit of \(a + b + c + d\), if he could induce the agents to make those bids persistently. However, if he accepts only the bids \(a\) and \(b\), he must forgo the profit, \(c + d\). If he always accepts \(c + d\), since he cannot identify the agents who are bidding, he will allow agents 1 and 3 to learn that \(c\) and \(d\) are acceptable bids. They will, therefore, tend not to bid \(a\) and \(b\), but rather bid
c and d. In that case, the trader’s arbitrage profit may be expected to tend to $2(c + d)$.

If, however, by sometimes rejecting bids c and d, he can "teach" consumers 1 and 2 that the probability of acceptance of c and d respectively is so small that it is worthwhile for them to continue bidding a and b, at least sometimes, then the trader can make a long-run profit between $a + b + c + d$ and $2(c + d)$. Thus, by falsifying the "true" terms of trade in the economy, a trader can make persistent monopoly profit. He might do this by randomizing his acceptance of bids received.

The question is whether any behavior is open to the consumers which protects them against the trader(s). There is indeed such a course of behavior, and it, in part, motivates the behavior rules prescribed for consumers. We turn now to these specifications.

The functions ψ and λ must be specified more closely. I consider consumers first.

Let

$$\psi : \mathcal{R}_+ \times \mathcal{X} \rightarrow \mathcal{R}_+ \quad \epsilon \in \mathcal{E}$$

be the correspondence that associates to each non-negative utility level of
consumer \(i\) the (upper contour) set of trades, individually feasible for \(i\), which afford him at least that level of utility, that is, for \(r \in R_c\):
\[F(r) = \{ x' \in X' \mid U'(x') \geq r \}. \]

Also, define
\[C : X' \to X' \quad i \in \mathcal{I} \]
by
\[C(y') = \Psi(B(y')). \]

Next, define
\[\gamma_t(\tilde{p}_t) = \max_{x' \in X'} \tilde{p}_t(x')U''(x') \]
and denote the value of \(\gamma_t(\tilde{p}_t)\) by
\[\psi_t = \gamma_t(\tilde{p}_t) \quad \text{for } t \equiv 1 \text{ and } \psi_0 = 0. \]
Then \(\psi_t\) is the maximum expected utility level that consumer \(i\) considers available to him at time \(t\). That \(\psi_t = 0\) is implied by setting
\[\tilde{p}_0(x') = \begin{cases} 1 \text{ if } x' = 0 \\ 0 \text{ otherwise}. \end{cases} \]

ASSUMPTION 1. (1) For all \(\tilde{p}_t \in \tilde{P}^t\) and \(i \in \mathcal{I}\), if \(q' = \varphi(\tilde{p}_t)\), then the support of \(q'\) is \(\Psi(\varphi)\) where \(\varphi = \gamma_t(\tilde{p}_t)\). That is, for any subset \(A \subseteq X'\), \(\varphi(\tilde{p}_t) (A \cap \Psi(\varphi)) > 0\) and \(\varphi(\tilde{p}_t) (A \cap \text{comp. } \Psi(\varphi)) = 0.\)

(2) For each \(i \in \mathcal{I}\), \(\tilde{p}_i(x') = \begin{cases} 1 \text{ if } x' = 0 \\ 0 \text{ otherwise}. \end{cases} \)
Thus, initially, \(\tilde{p}_0\) is positive on \(\Psi(0)\) and, subsequently, bids are selected from a set which \(i\) regards as affording him a sure utility at least as great as the highest level of expected utility he thinks available to him.\(^{13}\)

Figure 4 shows this assumption for the case in which \(X'\) is one dimensional (a case not naturally interpreted in terms of trades, but easy to see).

DEFINITION. We say that \(x' \in X'\) is a basis for \(q'\), or that \(q'\) is based on \(x'\) if \(\text{supp } q' = C(x')\), that is, if \(\text{supp } q' = \Psi(x')\) and \(U'(x') = q'.\)

We say that the joint bidding distribution \(q = (q', \ldots, q_n')\) is based on \(x = (x', \ldots, x_n)\) if \(q'\) is based on \(x'\) for each \(i \in \{1, \ldots, n\}\).

Let \(q_t\) be based on \(x_t\) with \(U'(x_t) = \psi_t\). If \(\psi_{t+1} > \psi_t \) and \(x_{t+1} \) are such that \(U'(x_{t+1}) = \psi_{t+1}\), then \(q_{t+1}(x_{t+1}) \subseteq \Psi(\psi_{t+1})\). Let \(q_{t+1}\) be the conditional measure on \(\Psi(\psi_{t+1})\), corresponding to \(q_t\). Thus, if \(A \subseteq \Psi(\psi_{t+1})\), then
\[q_{t+1}(A) = \frac{q_t(A)}{q_t(\Psi(\psi_{t+1}))}. \]

LEARNING

Let \(B_t\) denote the response received by consumer \(i\) to his bid at \(t\). Then,
\[B_t = \begin{cases} b_t' \quad \text{if } b_t' \text{ is accepted by the trader} \\ 0 \quad \text{if } b_t' \text{ is rejected by the trader} \end{cases} \]
depending on whether \(i\) is a trader or is not accepted by the trader whom he
The function η^i, which represents the structure of observation in the market, determines what agent i observes as a result of his participation in the process. In the present case, for each $i \in \epsilon$

$$\eta(M, A, D) = (\phi^i B^i)$$

where

$$B^i = \beta^i(p^i(1/b^i)) = \begin{cases} x^i & \text{if } \eta^i = 1 \\
\phi^i(p^i(1/b^i)) & \text{otherwise.} \end{cases}$$

Thus,

$$d^i = \begin{cases} (b^i, 0) & \text{if } b^i \text{ was bid by } i \text{ at } t \text{ and rejected} \\
(b^i, x^i) & \text{if } b^i \text{ was bid by } i \text{ at } t \text{ and } x^i = b^i \text{ was accepted.} \end{cases}$$

I consider two types of learning. The first, which may be called probability matching, has two properties.

(1) The revised estimate \tilde{p} is monotone with respect to d^i in the following sense. If $d^i = (b^i, x^i)$, then $\tilde{p}(\tilde{f}^i, x^i) = \tilde{f}^i$ is such that $\tilde{f}^i_i(x^i) > \tilde{f}^i(x^i)$ $(0 < \tilde{f}^i < 1)$, and if $d^i = (b^i, 0)$, then $\tilde{f}^i_i(x^i) < \tilde{f}^i$ for $x^i = b^i$ and all $i \geq 0$.

That is, an accepted bid leads to increased perceived probability of acceptance of that bid, while a rejected bid leads to a decrease in that probability.

(2) Let $\tilde{p}_i(x^i)$ denote the "objective" probability that a bid $x^i = b^i$ will be accepted at i; that is, that i will meet some trader j who will accept x^i in combination with some array of bids received from others. This is just a complicated combination of the true acceptance probabilities (\tilde{p}) of traders.
if

$$\bar{f}(x^t) = \bar{f}(x')$$ for all \(t \geq 1\) and \(x' \in X^t\)

then

$$\bar{f}(x), \neq \bar{f}(x').$$

Thus, the probability matching type of learning is one in which the consumer responds to positive and negative reinforcement in such a way that his estimate of the objective probability of acceptance he faces would converge to the true probability, if it were constant, given sufficient time.

The second type of learning, which may be called *defensive* (or strategic), ignores rejection of offers and responds only to bids accepted. In this case,

$$\lambda(\bar{f}, d) = \bar{h}_{i+1}$$

where \(\bar{h}_{i+1}(x') > \bar{h}_i(x')\), if and only if \(d_i = (b_i, x')\), where \(x' = b_i\) and \(\bar{h}_{i+1}(x') = \bar{h}_i(x')\), if \(d_i = (b_i, x')\) and \(x' \neq b_i\).

A particular function with this property is

$$\lambda(\bar{f}, d)(x') = \begin{cases} \bar{f}(x') + \theta(1 - \bar{f}(x')) & 0 < \theta < 1 \\ \bar{f}(x') & \text{otherwise} \end{cases}$$

According to this learning rule, consumer \(i\) increases his estimate of the probability that a bid of his will be accepted only when such a bid is accepted and never decreases his estimate of such a probability.

Such learning behavior may be partly justified, as follows. If the consumer is aware that he is dealing with traders who may be attempting to take advantage of him by misrepresenting trading opportunities, as in the example, he can realize that, in order to profit from transactions with him, a trader will have to accept his bid sometimes. He might then ignore all rejections as attempts to confuse him and give consideration only to acceptances. He does not take “no” for an answer. 14

BEHAVIOR OF TRADERS

Bidding

The behavior of traders is directed toward arbitrage profit. As the examples above suggest, a trader may attempt to exploit his position by sometimes refusing profitable bids so as to mislead consumers.

ASSUMPTION II. The action \(a_i\) of trader \(j\) at time \(t\) satisfies the following condition.

(1) Let \(x_i = (x_1, \ldots, x_t)\) be the bid received by trader \(j\) at \(t\), if \(y_i\) is a possible response of \(j\) to \(x_i\), that is, \(y_i \neq (x_i, 0)\), and

$$\sum_{i=1}^{x} y_i \leq -c', t$$

then \(b(y_i | x_i) \geq \delta > 0\).
I consider two cases:

1. \(t^j = 0 \)
2. \(t^j > 0 \).

Regarding the learning behavior of traders, I assume that it is of the probability matching type. Thus, for \(j \in \mathcal{J} \),

\[
\gamma(q,t^0) = q^j,
\]
satisfies the monotonicity and consistency conditions above. Here \(d_j = (b_j \mid \gamma(t^j) \mid \gamma(\gamma(t^j))) \); that is, trader \(j \) observes the bids he receives and his response to them.

(Since \(\gamma \) is not permitted to depend on the identities of the consumers who make the bids, we may regard \(\gamma(t^j) \) as a representative element of the equivalence class, consisting of all bids received which are obtained from \(\gamma(b_j) \) by permutation of the names of consumers.)

The learning behavior of traders is not significant in the models considered here, because only the restriction of \(\gamma(t^j) \) by assumption \(t \) will play a role. This restriction is so the effect that any sufficiently profitable array of bids received has a positive probability of being accepted.

What is the long-run behavior of this process? First, if the consumers use the probability matching type of learning, depending on the specific properties of \(\gamma^j \), \(i \in \mathcal{E} \) (and \(\mathcal{N} \) for \(j \in \mathcal{J} \)), the process may or may not converge. Clearly, however, it is possible that the process has recurring stages in which the trader(s) earn monopoly profit. This is suggested by figure 3. Given the four utility functions \(U_i \mid i = 1, 2, 3, 4 \) of consumers and the points \(a, b, c, d \), it is possible to find probabilities \(\gamma(a), \gamma(b), \gamma(c), \gamma(d) \), such that

\[
V^i(a) = V^i(c) \quad V^i(c) \geq 0 \quad V^i(b) = V^i(d) \quad V^i(d) \geq 0.
\]

Suppose the (sole) trader uses these values \(\gamma(t) \) as his acceptance probabilities. Suppose further that all consumers meet the trader in each period. Then each consumer will eventually learn the objective probabilities \(\gamma \); that is, \(\gamma^i(a) = \gamma(a), \gamma^i(c) = \gamma(c) \), etc. Consequently, \(q^i(a) > 0, q^i(c) > 0, q^i(d) > 0, q^i(b) > 0, q^i(d) > 0, \) and \(q^i(d) > 0 \).

It is not difficult to construct a numerical example in which the average profit of the trader is strictly greater than \(2(c + d) \). If there is more than one trader, the acceptable probabilities that face each consumer are a mixture of the acceptance probabilities of traders, the same for each consumer. From their point of view, it is as if there is one trader.

Consider next the case of defensive learning by consumers. Given the current array of bids of consumers \(b = (b_1, \ldots, b_j) \) and the current matrix of meetings \(M \), the behavior of traders determines an array of bids accepted. Call this array the current bids and denote it by \(s = (s_1, \ldots, s_j) \).

\[
s_j = \begin{cases}
 b_j & \text{if there exists } j \text{ such that } i \in \mathcal{E}_j(t) \text{ and } \\
 0 & \text{otherwise.}
\end{cases}
\]
DEFINITION. Let z and x and w be allocations. We say that z K-dominates x from w if there exists a subset $\{x_1, \ldots, x_r\} \subseteq \tilde{x}$ where $r \leq K$, such that

$$
\sum_{u=1}^{v} z^r \geq \sum_{u=1}^{v} x^r
$$

and

$$
U^n(z^r) \geq U^n(x^r) \text{ for each } v \in \{1, \ldots, r\}
$$

with strict inequality for at least one value of v. Let $y_1 = x - w$ and $y_2 = z - w$. We say that y_2 K-dominates y_1 from w if z K-dominates x from w.

PROPOSITION 1. Under assumptions (defensive learning) and II, with $c_j = 0$ for $j \in \mathcal{S}$, let $\{c_j : t \leq t\}$ be a sequence of states and let $q_{ij} = q_i(t) \geq 0$

be the corresponding bidding distributions of consumers. Suppose that for some $t \geq 0$ there are two distinct allocations x and z such that (i) δ bids $y_1 = x - w$ and $y_2 = z - w$ are each in the support of q_i and (ii) y_2 K-dominates y_1 from w; then y_2 is a transient state.

PROOF OF PROPOSITION 1. To show that y_2 is a transient state, it suffices to show that for some consumer r and for some trade y' and time $t' > t$, $\hat{p}_r(y') \neq \hat{p}_r(y')$. This suffices because \hat{p}_r is monotone.

Since y_2 K-dominates y_1, there is a subset $\{i_1, \ldots, i_r\}$ of consumers such that

$$
\sum_{v=1}^{r} y_1^v \leq 0 \text{ and } U^n(y_2^v) \geq U^n(y_1^v), \forall v \in \{1, \ldots, r\}
$$

is individually feasible for i_v from w.

Since $r \leq K$, the probability $\{i_1, \ldots, i_r\} \subseteq \mathcal{E}_i(t)$ is a positive constant (independent of t) for each i_r.

If $\hat{p}_r^i \neq \hat{p}_r^j$ for some i and $r > t$, then i_r is transient. Hence consider the case $\hat{p}_r^i = \hat{p}_r^j$ for all i and for all $r \geq t$. But that implies that \hat{p}_r^i is constant for $r \geq t$. It follows that $q_i(t) = q_i(\hat{p}_r) = q_i(\hat{p}_r^j) = q_i$ for all $r \geq t$, and for all i. In particular, $q_i^r = q_i^r$ for $v \in \{1, \ldots, r\}$ and all $t \geq t$.

By hypothesis, $\hat{y}_2 \in \text{ supp } q_i^r \neq \text{ supp } q_i^j$ for all $t \geq t$. Hence, the probability that $b^r(t)$ equals \hat{y}_2 is a positive number, the same for all $t \geq t$. Hence, the probability that both $b^r(t)$ equals \hat{y}_2 and that $\{i_1, \ldots, i_r\} \subseteq \mathcal{E}_i(t)$ for a given $j \in \mathcal{J}$, is the product of two positive constants (these events are independent)

and, hence, is also a positive number and the same for all $t \geq t$.

Under assumption II, the probability that the combination of bids $\{\hat{y}_2, \ldots, \hat{y}_2\}$ will be accepted by j, given that it is received by him as a positive number bounded away from 0. It follows that the waiting time until the bid containing $\{\hat{y}_2, \ldots, \hat{y}_2\}$ is made to and accepted by the given trader j is finite, with probability 1, since the probability of that event at any one time is bounded from below by a positive constant.

Therefore, with probability 1 there exists some $t' > t$, such that $\hat{p}_r^i \neq \hat{p}_r^j$ for $v \in \{1, \ldots, r\}$, and hence $y_2 \neq y_1$.
Under assumption 1, because of monotonicity, \(\sup \varphi \leq \sup \varphi^* \) for all \(\tau \leq \tau' > \tau \). Hence, the set \(S \), never recurs.

Definition. The K-core from \(w \) is the set of feasible allocations which are not K-dominated from \(w \).

Proposition 2. The set of states \(s \) such that the corresponding bidding distributions \(q = \varphi(s) \) are based on allocations in the K-core from \(w \), is an absorbing set.

Proof of Proposition 2. Suppose \(s \) is a state such that \(q = \varphi(s) \) is based on an allocation \(x \in \text{K-core from } w \). In order to leave \(s \), there must exist a set of consumers \(\{i_n, \ldots, i_r\} \) with \(r \leq K \) and a set of trades \(y^1, \ldots, y^r \), such that \(\sum y^i \leq 0 \) and such that \(y^i \in \sup \varphi^i \). But since \(\sup \varphi^i = C^i(x^i) \), \(U^i(y^i) = U^i(x^i) \) for \(i = 1, \ldots, r \). Hence the allocation \(z \), where \(z^i = \begin{cases} w^i + y^i & \text{if } i \in \{i_n, \ldots, i_r\} \\ y^i & \text{if } i \notin \{i_n, \ldots, i_r\} \end{cases} \), K dominates \(x \) from \(w \), which contradicts the hypothesis that \(x \in \text{K-core from } w \).

Furthermore, under the assumptions on preferences of consumers used in Hartwick, Radner, and Reiter, we conjecture that the reasoning used there can be employed to show that this process actually converges to its set of absorbing states, namely, those based on the K-core from \(w \).

When the cost of trading is positive, that is, \(c^i > 0 \) for \(j \in \mathcal{J} \), trader \(j \) will accept only such combinations of bids that yield at least \(c^j \cdot I \) profit. This is based on costs being costs per period rather than costs per transaction. If the costs are related to the number of transactions, say by \(c^j \cdot \| (i \in \mathcal{J}, (j, i)) | \| \text{ is accepted} \| \), then accepted bids must satisfy the condition

\[
2y^j \leq -c^j \| (i \in \mathcal{J}, (j, i)) | y^i \neq 0 \| \cdot I.
\]

Hence, \(c^j \) is the cost per transaction.

The arguments used in the proofs of propositions 1 and 2 can, with appropriate modifications, be applied to the case where \(c^j \equiv 0 \) for \(j \in \mathcal{J} \) to establish analogous results. In essence, let \(s \) be a state such that the bidding distribution of consumers is based on a point from which an r-lateral trade \(r \leq K \), is possible which yields at least \(-c^j \cdot I \), where \(c^j = \min c^j \), the analogue of proposition 1 states that \(s \) is a transient state.

Similarly, in place of proposition 2 is a result to the effect that states which do not permit the type of improvement just described form an absorbing class.

The quantities \(c^j \) \(j \in \mathcal{J} \) can be interpreted in another way. Each trader \(j \) may regard himself as having monopoly power, that is, the power to re-interpret to consumers the "natural" terms of trade. One way of doing this is for \(j \) to choose a value \(c^j > 0 \) and accept with non-zero probability only combinations of bids that yield \(c^j \) profit at least \(-c^j \cdot h \),
for all j which bid defensively, if for some $j \in \mathcal{J}$, $c' > c = \min_{j \in \mathcal{J}} c$, then the average profit per period of trader j will fall to zero. This follows from proposition 1 in the case $c' \neq 0$, because states such that profits of any trader are more than c are transient.

Suppose that the number of traders is fixed and that the $c', j \in \mathcal{J}$ are chosen, once and for all, at the beginning of trading. Then, the long-run behavior of this process will be one in which all traders j whose $c' = c$, the minimum profit level, will share equally, on average, in the monopoly profits thereby determined, while traders with $c' > 0$ will get no shares.

If we imagine that the choice of c' can be modified, then “competitive pressure” exists, tending to drive c' and hence, to the level of the minimum cost of being a trader, say c^*. However, with a fixed number of traders, many stable situations can exist in which all traders choose $c' = c \geq c^*$. We suppose that if the number of traders increases relative to the number of consumers, then—while each period in which a transaction takes place yields the participating trader a profit of $-c'^{1}$—the average profit per period tends to zero as the number of traders increases.

It would be useful to explore the consequences of different structures of information (representing different institutional arrangements in the market). Public information about transactions or about bids and transactions might be made available to consumers and traders. For example, market reports, similar to the stock exchange reports published in newspapers, might be made available. One interesting question is whether making additional information available to consumers can, by itself, overcome the effects of anonymous trading and insufficient capacity of individual traders in restricting the optimality of the allocations achievable by the process to the K-core. (Allowing supplemetary trading among traders is another interesting possibility.)

It appears to be the case that, in general, if $K < n$, this process cannot be guaranteed to achieve core allocations. In general, multilateral trades involving all n consumers are needed to achieve core allocations. Furthermore, this situation is not improved by having a large number of traders. Only if the capacity of at least one trader exceeds the number of consumers can we be sure that the process does not get stuck at states such that the (joint) bidding distribution of consumers is based on an allocation that is not in the core.

Even if more information is made available to consumers—for example, the structure of observation is such that consumers observe all transactions that take place (or all bids and transactions, for that matter)—we cannot be sure that the process does not get stuck at a non-core state. Based on the greater information, consumers may simultaneously aspire to utility levels which cannot be achieved as a result of K-lateral trades which yield a non-
negative arbitrage profit. It appears to be essential that there be an institution which permits n-lateral trades to be achieved by several simultaneous K-lateral ones. This is, of course, what trading at constant known prices permits.17

Another approach to studying this process, though in a different spirit, would be to set it up as a game in which the learning functions or perhaps the mappings ϕ are strategies of the players and to study the Nash equilibria of that game.

NOTES

1. A bibliography of the job search literature may be found in Lippman and McCall (1976). For a reference on market search, see Rothschild (1974).
3. This paper is a revision of Reiter (1959), whose basic objective was to investigate the equilibria of a process of exchange in unorganized markets. The ideas of bounded rationality, of stochastic behavior as a way of coping with insufficient information, and the stochastic nature of equilibrium are all taken from it, although the present formulation is different.
4. In Reiter (1959), the low-capacity agents were called "flounders" and the high-capacity ones "sharks." The process was visualized as taking place at an ocean in which the flounders form a numerous collection of widely separated and slow-moving individuals, while the sharks circulate among them at high speed. It was assumed that each flounder can make at most one contact per period while each shark is restricted to some number greater than 1.
5. The monopolistic aspects of this process were not explored in Reiter (1959).
7. The K-core is a concept closely related to ψ-stability (Luce and Raiffa, 1958).
8. The symbol ψ, defined in "The Meeting Process" section which follows, denotes the subset of consumers who meet trader j.
9. If trader j knows the meeting process, and if he assumes individual bids to be independent, he can calculate the probability of receiving a given vector of bids from knowledge of ϕ̃. An alternative formulation would express traders’ information in the latter form to begin with, that is, by a subjective probability measure over the vector of bids received.
10. Recall that 2 is the number of contacts trader j can make in a period.
11. The notation (v) denotes the vector whose components are v, where it is understood that 1, ..., n. Similarly for (v), where it is understood that j = n + 1, ..., m. No confusion need result from this abuse of notation.
12. Profit to the trader is measured here from the viewpoint of the consumer; that is, a negative quantity indicates a net loss from consumers to trader.
13. Notice that if consumer i is certain of his alternatives, his bidding distribution is positive on the set of grades, at least as preferred by him as the best trade available to him in a form of the static demand responses.

Stanley Reiter
A Dynamic Process of Exchange

be an instantaneous town prices
b) event spirit, in the market, at equilibrium

and Michael Hein, and an
Lippman and L74.

... was to invest.

the ideas that insufficient from it, al-
ders' of the use in an ocean and slow-
slow speed. It was

Reiter (1959).

Raffier, 1958. no more than
by L. Hurwicz, which follows.

individual bids to
given vector of
xpress traders'
ive probability

period.

e.g., where it is
raised that \(t = 1 \)
the consumer;
trader;
bidding districts
the best trade

14. A class of learning behaviors "between" defensive and probability matching is also possible. It would be interesting to investigate such cases.

15. The number \(t \) denotes the vector whose total components are unity.

16. \(\lambda(t) \) denotes \(V(\lambda(t)) \) where \(\lambda(a) = 1 \); \(p(x) = 0 \) if \(x \neq a \).

17. Vernon Smith pointed out to me that the international gold market is similar to the process presented here. In that market the institution which permits "all bilateral clearing to be achieved with traders who deal with only part of the market is a real stage, consisting of a tâtonnement among the traders.

REFERENCES

