Behavioral Sticky Prices*

Sergio Rebelo ${ }^{\dagger} \quad$ Miguel Santana ${ }^{\ddagger} \quad$ Pedro Teles ${ }^{\S}$

April 2024

Abstract

We study a model where households make decisions according to a dualprocess framework widely used in cognitive psychology. System 1 uses effortless heuristics but is susceptible to biases and errors. System 2 uses mental effort to make more accurate decisions. Through their pricing behavior, monopolistic producers can influence whether households deploy Systems 1 or 2. The strategic use of this influence creates a new source of price inertia and provides a natural explanation for the "rockets and feathers" phenomenon: prices rise quickly when costs increase but fall slowly when costs fall. Our model implies that price stability is not optimal.

J.E.L. Classification: E31, E32, E52, E71

Keywords: Sticky prices, cognitive costs, System 1 and 2, rockets and feathers.

[^0]
1 Introduction

We study a model where households make decisions according to a dual-process framework widely used in the cognitive psychology literature to describe human decision making (see, e.g., Stanovich and West (2000)). System 1 uses heuristics to make quick decisions that require little or no effort but are prone to biases and systematic errors. System 2 uses mental effort to make slower, more deliberate decisions that are more accurate. Our paper builds on the elegant formulation of dual process reasoning proposed by Ilut and Valchev (2023).

In our model, households make errors in their purchase decisions because of cognitive costs. Monopolistic producers, for whom these errors result in high levels of demand relative to the rational optimum, have an incentive to keep their prices constant to discourage households from activating System 2 and reconsidering their purchasing decisions. This behavior generates a novel type of price inertia.

This form of inertia is consistent with the "sticky winners" phenomenon documented by Ilut et al. (2020): firms that receive a high demand realization are less likely to change their prices.

Our model offers a natural explanation for a puzzling empirical regularity documented by Karrenbrock (1991), Neumark and Sharpe (1992), and Peltzman (2000) known as "rockets and feathers": prices increase rapidly when costs rise but decrease slowly when costs fall. This phenomenon arises naturally from the strategic interaction between monopolistic producers and households. ${ }^{1}$

When costs rise significantly in our model, all firms increase prices to avoid losses, so costs and prices rise together. When costs fall, the firms that benefit from

[^1]favorable demand have an incentive to keep their prices constant so that households do not reoptimize their purchase decisions. So, on average, prices decline by less than costs.

Price stability is generally optimal in cashless economies with sticky prices because it eliminates the relative price distortions produced by inflation (see Woodford (2003)). In our model, price stability is not optimal because of the strategic interaction between monopolists and boundedly rational households. When average inflation is zero, firms that receive favorable demand due to behavioral mistakes maintain their prices. The other firms increase or decrease their prices slightly to try to obtain a more favorable demand. As a result, sizeable behavioral mistakes become ingrained, and households choose a significantly inefficient consumption bundle. It is generally optimal to deviate from zero inflation to reduce this inefficiency.

We now discuss three observations consistent with our model's elements. The first is the "shrinkflation" phenomenon whereby manufacturers reduce product sizes while keeping prices constant. The UK Office for National Statistics (2019) found 206 instances between September 2015 and June 2017 where products were downsized, yet their prices remained largely unchanged. This practice suggests that some manufacturers are prepared to incur considerable expenses to keep prices stable, presumably to avoid triggering a re-optimization of household purchasing decisions. ${ }^{2}$

The second observation is the increasing adoption of subscription-based business models, such as streaming or software-as-a-service, and the tendency for subscription prices to remain stable. This stability can be interpreted as a tactic producers use to dissuade households from engaging System 2 and reassessing the value of their subscriptions. ${ }^{3}$

[^2]The Amazon Prime subscription prices are remarkably sticky. Initially offered at an annual rate of $\$ 79$ in 2011, the fee has only been adjusted a few times: to $\$ 99$ in 2014, $\$ 119$ in 2018, and $\$ 139$ in 2022. These adjustments were often accompanied by enhancements in service offerings, including the introduction of Amazon Prime Day, which served to justify the higher fees.

Netflix provides a case study of both price stability and shrinkflation. The standard subscription price remained at $\$ 7.99$ from November 2010 until May 2014. At that point, the price was increased to $\$ 8.99$, but only for new subscribers. Existing subscribers were grandfathered in at the $\$ 7.99$ rate for an additional two years. Concurrently, Netflix rolled out a new basic plan priced at $\$ 7.99$, which offered only standard-definition video on a single screen, a downgrade from the two highdefinition screens available under the regular plan. The price for this basic plan remained unchanged until 2019.

The third observation consistent with the elements of our model is that convenient prices that are slightly below a round number (e.g., $\$ 9.99$ instead of $\$ 10$) are widely used (Kashyap (1995) and Blinder et al. (1998)), and less likely to change than other prices (Levy et al. (2011) and Ater and Gerlitz (2017)). This practice can be interpreted as a way to exploit System 1 thinking, creating the perception that the price is lower than its actual value.

Our paper is organized as follows. Section 2 describes our model. Section 3 shows that our model is consistent with the rockets and feathers phenomenon. Section 4 discusses optimal fiscal and monetary policy. Section 5 summarizes our findings.
of subscription services rationally.

2 Model

In this section, we describe the household problem, the monopolistic producers' problem, the government's fiscal and monetary policy, and the economy's equilibrium.

2.1 Household problem

There is a representative household that maximizes its utility,

$$
U=\frac{C^{1-\sigma}-1}{1-\sigma}-\frac{N^{1+\eta}}{1+\eta}-\int_{0}^{1} \mathcal{I}_{i} d i, \quad \sigma, \eta>0
$$

The variable N denotes the labor supply and \mathcal{I}_{i} is the cognitive cost of using System 2 to choose how much of good i to buy. We discuss this cost in more detail below. Consumption, C, is a composite of differentiated goods, c_{i},

$$
\begin{equation*}
C=\left(\int_{0}^{1} c_{i}^{\frac{\theta-1}{\theta}} d i\right)^{\frac{\theta}{\theta-1}}, \theta>1 \tag{1}
\end{equation*}
$$

The household maximizes utility subject to the budget constraint,

$$
\begin{equation*}
\int_{0}^{1} P_{i} c_{i} d i \leq W N+\int_{0}^{1} \Pi_{i} d i-\mathcal{T} \tag{2}
\end{equation*}
$$

where P_{i} is the nominal price of good i, W is the nominal wage, Π_{i} is the nominal profits of firm i, and \mathcal{T} is nominal lump-sum taxes.

The representative household observes ω, the vector with the relevant state variables,

$$
\omega=\left[W, P_{i}, \int_{0}^{1} \Pi_{i} d i-\mathcal{T}\right]
$$

Fully rational solution The familiar solution to this maximization problem is

$$
c_{i}^{*}(\omega)=\left(\frac{P_{i}}{P}\right)^{-\theta} C^{*}(\omega)
$$

$$
\begin{gather*}
{\left[C^{*}(\omega)\right]^{\sigma}\left[N^{*}(\omega)\right]^{\eta}=w} \tag{3}\\
C^{*}(\omega)=w N^{*}(\omega)+\left(\frac{\int_{0}^{1} \Pi_{i} d i-\mathcal{T}}{P}\right) \tag{4}
\end{gather*}
$$

where we use the superscript * to denote the optimal value of different variables. The price of aggregate consumption, P, is given by

$$
\begin{equation*}
P=\left(\int_{0}^{1} P_{i}^{1-\theta} d i\right)^{\frac{1}{1-\theta}} \tag{5}
\end{equation*}
$$

The variable w denotes the real wage rate,

$$
w \equiv \frac{W}{P} .
$$

Bounded rationality solution Now, consider the household problem with bounded rationality. Throughout, we use the formulation of dual process reasoning proposed by Ilut and Valchev (2023).

Households observe the vector of relevant state variables, ω, but cannot solve for the optimal values of $c_{i}^{*}(\omega)$ and $N^{*}(\omega)$. They have prior beliefs about $x_{i}^{*}(\omega)$, the optimal level of $\ln c_{i}^{*}(\omega)$ and can use costly signals to update these beliefs. Once households choose the values of c_{i}, the labor demand, N, is chosen to satisfy the budget constraint.

Period $t=0 \quad$ In order for System 1 to be well defined at $t=1$, we need to consider a pre-period, $t=0$, in which households observe prices and make purchase decisions. The household is uncertain about the optimal \log demand for good i, so it treats this demand as a random variable. At the beginning of the pre-period, households have a normally distributed prior about \log demand $\mathcal{N}\left(x_{i, t-1}\left(P_{i}\right), \sigma_{i, t-1}\left(P_{i}, P_{i}^{\prime}\right)\right)$. The household observes $P_{i, t}$ and chooses $\sigma_{\epsilon, i, t}^{2}$ the variance of $s_{i, t}$, the noisy signal about $x^{*}\left(P_{i, t}\right)$. This signal is given by

$$
s_{i, t}=x^{*}\left(P_{i, t}\right)+\sigma_{\epsilon, i, t} \epsilon_{i, t}
$$

where $\epsilon_{i, t}$ follows a standard normal distribution.
Once the value of $s_{i, t}$ is realized, the household chooses its log-demand $\widetilde{x}_{i, t}\left(P_{i, t}\right)$ to minimize the expected value of the mean squared error:

$$
\int_{-\infty}^{\infty}\left[z-\widetilde{x}_{i, t}\left(P_{i, t}\right)\right]^{2} g_{i}(z) d z,
$$

where $g_{i}(z)$ is the posterior distribution for the rational \log demand for good i.
The solution to this problem is to set $\widetilde{x}_{i, t}$ equal to the mean of the posterior distribution

$$
\widetilde{x}_{i, t}=x_{i, t}\left(P_{i, t}\right)
$$

The cognitive cost, $\mathcal{I}_{i, t}$, associated with the choice of $\sigma_{\epsilon, i, t}^{2}$ takes the form

$$
\mathcal{I}_{i, t}=\kappa \ln \left[\frac{\sigma_{i, t-1}^{2}\left(P_{i, t}\right)}{\sigma_{i, t}^{2}\left(P_{i, t}\right)}\right], \kappa>0
$$

where $\mathcal{I}_{i, t}$ is proportional to the average entropy reduction produced by the signal. The optimal variance of the signal is as follows:

$$
\sigma_{i, t}^{2}\left(P_{i, t}\right)= \begin{cases}\kappa, & \text { if } \sigma_{i, t-1}^{2}\left(P_{i, t}\right)>\kappa \\ \sigma_{i, t-1}^{2}\left(P_{i, t}\right), & \text { if } \sigma_{i, t-1}^{2}\left(P_{i, t}\right) \leq \kappa\end{cases}
$$

We make two assumptions. First, $\sigma_{i,-1}^{2}\left(P_{i}\right)=\sigma_{c}^{2}>\kappa$, so households draw a signal in the pre-period for all $P_{i, 0}$. Second, $\sigma_{i,-1}\left(P_{i}, P_{i}^{\prime}\right)=0$ for all $P_{i} \neq P_{i}^{\prime}$, so households believe that $x_{i}^{*}\left(P_{i}\right)$ is uninformative about $x_{i}^{*}\left(P_{i, \prime}\right)$. This independence assumption is important to keep System 1 simple. When the covariance $\sigma_{i,-1}\left(P_{i}, P_{i}^{\prime}\right)$ is not zero, using System 1 requires the household to solve a complex inference problem that combines signals obtained for different prices.

The posterior mean for $x_{i, 0}\left(P_{i, 0}\right)$ is

$$
x_{i, 0}\left(P_{i, 0}\right)=x_{i,-1}\left(P_{i, 0}\right)+\alpha\left[x^{*}\left(P_{i, 0}\right)+\sigma_{\epsilon} \epsilon_{i, 0}-x_{i,-1}\left(P_{i, 0}\right)\right],
$$

where

$$
\alpha \equiv 1-\frac{\kappa}{\sigma_{c}^{2}}
$$

$$
\sigma_{\epsilon} \equiv \sqrt{\frac{\kappa}{\alpha}} .
$$

The household does not draw signals for the optimal policy associated with prices not observed in the pre-period. For these prices, the posterior distribution is equal to the prior,

$$
x_{i, 0}\left(P_{i}\right)=x_{i,-1}\left(P_{i}\right), \quad P_{i} \neq P_{i, 0} .
$$

Period $t=1 \quad$ Given the signals drawn in the pre-period, the prior variance at $t=1$ is

$$
\sigma_{i, 0}^{2}\left(P_{i}\right)= \begin{cases}\sigma_{c}^{2}, & \text { if } P_{i} \neq P_{i, 0} \\ \kappa, & \text { if } P_{i}=P_{i, 0}\end{cases}
$$

If $P_{i, 1}=P_{i, 0}$, households find themselves in a familiar situation and rely on System 1 to make decisions. If $P_{i, 1} \neq P_{i, 0}$, the situation is unfamiliar, and the household activates System 2:

$$
x_{i, 1}\left(P_{i, 1}\right)= \begin{cases}x_{i, 0}\left(P_{i, 0}\right), & \text { if } P_{i, 1}=P_{i, 0} \\ x_{i, 0}\left(P_{i, 1}\right)+\alpha\left[x^{*}\left(P_{i, 1}\right)+\sigma_{\epsilon} \epsilon_{i, 1}-x_{i, 0}\left(P_{i, 1}\right)\right], & \text { if } P_{i, 1} \neq P_{i, 0}\end{cases}
$$

As in Ilut and Valchev (2023), we assume that the mean of the prior coincides with the fully rational value of x to ensure that our results are not generated by ex-ante biases, $x_{i,-1}\left(P_{i}\right)=x^{*}\left(P_{i}\right)$. Under this assumption, we obtain

$$
x_{i, 1}\left(P_{i, 1}\right)= \begin{cases}x^{*}\left(P_{i, 0}\right)+\alpha \sigma_{\epsilon} \epsilon_{i, 0}, & \text { if } P_{i, 1}=P_{i, 0} \\ x^{*}\left(P_{i, 1}\right)+\alpha \sigma_{\epsilon} \epsilon_{i, 1}, & \text { if } P_{i, 1} \neq P_{i, 0}\end{cases}
$$

Defining $\gamma \equiv \alpha \sigma_{\epsilon}$ and $p_{i} \equiv P_{i} / P$, we can write the demand for good i as

$$
\begin{equation*}
c_{i}=e^{\gamma \widetilde{\epsilon}_{i}} c_{i}^{*}(\omega)=e^{\gamma \widetilde{\epsilon}_{i}} p_{i}^{-\theta} C^{*}(\omega) \tag{6}
\end{equation*}
$$

where

$$
\widetilde{\epsilon}_{i} \equiv \begin{cases}\epsilon_{i, 0}, & \text { if } P_{i, 1}=P_{i, 0} \\ \epsilon_{i, 1}, & \text { if } P_{i, 1} \neq P_{i, 0}\end{cases}
$$

2.2 Firms' problem

The producers of the differentiated goods are monopolistically competitive and are not subject to behavioral biases. Firm i produces y_{i} units of good i using labor $\left(n_{i}\right)$ according to the production function

$$
\begin{equation*}
y_{i}=A n_{i} . \tag{7}
\end{equation*}
$$

The government provides a labor subsidy at rate τ, which we discuss further below. The firm observes ϵ_{i}, the demand shock in the pre-period, but not ϵ_{i}^{\prime}, the current demand shock.

Suppose that $P_{i, 0}=P_{0}$ for all i. If the firm does not change the price, its relative price is $1 / \pi$, where $\pi \equiv P / P_{0}$. The resulting profits are

$$
e^{\gamma \epsilon_{i, 0}}\left[\left(\frac{1}{\pi}\right)-(1-\tau) \frac{w}{A}\right]\left(\frac{1}{\pi}\right)^{-\theta} C^{*}(\omega) .
$$

If the firm decides to change its price, its relative price is p_{i}, and realized profits depend on the demand shock. The firm's expected profit is

$$
\mathbb{E}\left[e^{\gamma z}\right]\left[p_{i}-(1-\tau) \frac{w}{A}\right] p_{i}^{-\theta} C^{*}(\omega)
$$

where z is a standard normal random variable. The optimal reset price is

$$
\begin{equation*}
p^{*}=\frac{\theta}{\theta-1}(1-\tau) \frac{w}{A} \tag{8}
\end{equation*}
$$

so maximal expected profits given a price change are

$$
\mathbb{E}\left[e^{\gamma z}\right] \frac{1}{\theta}\left[\left(\frac{\theta}{\theta-1}\right)(1-\tau) \frac{w}{A}\right]^{1-\theta} C^{*}(\omega)
$$

There is a demand shock, ℓ, such that whenever $\epsilon_{i, 0} \geq \ell$ the firm chooses to keep its price constant. The firm's optimal pricing policy is

$$
p_{i}= \begin{cases}p^{*}, & \text { if } \epsilon_{i, 0}<\ell \tag{9}\\ \frac{P_{0}}{P} \equiv \frac{1}{\pi}, & \text { if } \epsilon_{i, 0} \geq \ell^{\prime}\end{cases}
$$

and the value of ℓ is given by

$$
\ell= \begin{cases}\frac{1}{2} \gamma+\frac{1}{\gamma} \ln \frac{\frac{1}{\theta}\left[\left(\frac{\theta}{\theta-1}\right)(1-\tau) \frac{w}{A}\right]^{1-\theta}}{\left[\left(\frac{P_{0}}{P}\right)-(1-\tau) \frac{w}{A}\right]\left(\frac{P_{0}}{P}\right)^{-\theta}}, & \text { if } \frac{1}{\pi}>(1-\tau) \frac{w}{A}, \\ \infty, & \text { if } \frac{1}{\pi} \leq(1-\tau) \frac{w}{A} .\end{cases}
$$

If System 1 demand is higher than ℓ, the firm prefers keeping its nominal price constant (and its relative price equal to $p_{i, 0}$) than changing prices and triggering System 2.

When the pre-period price is equal to the optimal price but $\epsilon_{i}<\ell$, the firm changes the price by an infinitesimal amount to get a new demand draw.

Let

$$
\begin{equation*}
\chi \equiv 1-\Phi(\ell) \tag{10}
\end{equation*}
$$

denote the fraction of firms that change prices. Equation (5) implies the following equilibrium relation between inflation, π, and the optimal reset price, $p^{*}=p^{*}(\pi)$:

$$
\begin{equation*}
1=\chi(\pi)\left(\frac{1}{\pi}\right)^{1-\theta}+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta} \tag{11}
\end{equation*}
$$

This expression resembles the one we obtained with Calvo pricing, but there is one important difference. Here, the probability of not changing prices, $\chi(\pi)$, is endogenous.

The following lemma characterizes the properties of $p^{*}(\pi)$.
Lemma 1. For all $\pi \geq \frac{\theta}{\theta-1}, p^{*}(\pi)=1$.
See the Appendix for proof.
This lemma states that if inflation is too high, higher than $\theta /(\theta-1)$, all firms wish to reset their price because otherwise, they would have negative profits.

When there is deflation, firms have an incentive to lower their price to sell a higher quantity. But there are firms with a demand shock, $\epsilon_{i, 0}$, that is high enough to induce them to keep their nominal price constant, even for high levels of deflation.

Lemma 1 implies that ℓ can be written as

$$
\ell(\pi)= \begin{cases}\frac{1}{2} \gamma+\frac{1}{\gamma} \ln \frac{\frac{1}{\theta}\left[p^{*}(\pi)\right]^{1-\theta}}{\left[\left(\frac{1}{\pi}\right)-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)\right]\left(\frac{1}{\pi}\right)^{-\theta}}, & \text { if } \pi<\frac{\theta}{\theta-1} \tag{12}\\ \infty, & \text { if } \pi \geq \frac{\theta}{\theta-1}\end{cases}
$$

Lemma 4 in the Appendix shows that $p^{*}(\pi)$ is a well-defined function.

2.3 Government

The government uses monetary policy to control nominal expenditure. It also implements a uniform ad valorem subsidy on labor costs at a rate τ, which is financed with lump-sum taxes.

$$
\begin{equation*}
\frac{\mathcal{T}}{P}=\tau w N \tag{13}
\end{equation*}
$$

We consider a simple form of monetary policy where the growth rate of money, μ targets nominal expenditure under full rationality,

$$
\begin{equation*}
\mu=\pi \frac{C^{*}(\omega)}{C_{0}} \tag{14}
\end{equation*}
$$

where C_{0} is normalized to 1 . An alternative policy is to target realized nominal expenditure. One drawback of this alternative is that the resulting equilibrium might not be unique.

In the Appendix, we also consider a dynamic version of the model in which the monetary authority follows a Taylor rule. We show that the resulting equilibrium is unique and that our key results are robust to this alternative formulation.

2.4 Equilibrium

We define the equilibrium as follows.
Definition 1. An equilibrium is a set of prices, $\left(p^{*}, \pi, w\right)$, allocations, $\left(c_{i}, y_{i}, n_{i}, \Pi_{i}, N\right)$, and policies, $\left(\tau_{n}, \mathcal{T}\right)$, such that, given productivity A and monetary policy μ, the following are satisfied:

1. Given ω, c_{i} satisfies equation (6) and N is chosen to satisfy (2) with equality, where $C^{*}(\omega)$ and $N^{*}(\omega)$ solve equations (3) (4), and P satisfies (5).
2. Given (A, τ, w, π),

$$
\begin{equation*}
\Pi_{i} \equiv\left(P_{i}-(1-\tau) \frac{W}{A}\right) c_{i} \tag{15}
\end{equation*}
$$

firms produce y_{i} units of output according to (7), and set prices according to (9).
3. Policies $\left(\tau_{n}, \mathcal{T}\right)$ are set to satisfy (13), and (14) holds.
4. The consumption and labor market clear:

$$
\begin{gather*}
y_{i}=c_{i} \tag{16}\\
\int_{0}^{1} n_{i} d i=N \tag{17}
\end{gather*}
$$

Equations (1) and (6) imply that

$$
\begin{equation*}
C=\Delta_{u}(\pi) C^{*}(\omega) \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta_{u}(\pi)=\{ & \chi(\pi) \mathbb{E}\left[\left.e^{\gamma\left(\frac{\theta-1}{\theta}\right) z} \right\rvert\, z \geq \ell(\pi)\right](\pi)^{\theta-1}+ \\
& {\left.[1-\chi(\pi)] \mathbb{E}\left[e^{\gamma\left(\frac{\theta-1}{\theta}\right) z}\right]\left[p^{*}(\pi)\right]^{1-\theta}\right\}^{\frac{\theta}{\theta-1}} }
\end{aligned}
$$

is a utility distortion arising from bounded rationality.
Equations (6), (7), (16), (17) and (18) imply that

$$
\begin{equation*}
C=\frac{\Delta_{u}(\pi)}{\Delta_{c}(\pi)} A N \tag{19}
\end{equation*}
$$

where

$$
\Delta_{c}(\pi)=\chi(\pi) \mathbb{E}\left[e^{\gamma z} \mid z \geq \ell(\pi)\right](\pi)^{\theta}+[1-\chi(\pi)] \mathbb{E}\left[e^{\gamma z}\right]\left[p^{*}(\pi)\right]^{-\theta}
$$

is a production distortion arising from both bounded rationality and price dispersion. The following Lemma shows that the first-best allocation is not attainable due to cognitive costs.

Lemma 2. For any $\pi, \Delta_{u}(\pi)<\Delta_{c}(\pi)$.
Proof. The result follows from the repeated application of Jensen's inequality.
Using the property,

$$
\mathbb{E}\left[e^{a z} \mid z \geq \underline{z}\right]=\mathbb{E}\left[e^{a z}\right] \frac{1-\Phi(\underline{z}-a)}{1-\Phi(\underline{z})}
$$

and defining δ_{u} and $\delta(\pi)$ as

$$
\begin{gather*}
\delta_{u}(\pi) \equiv 1-\Phi\left(\ell(\pi)-\gamma\left(\frac{\theta-1}{\theta}\right)\right) \tag{20}\\
\delta(\pi) \equiv 1-\Phi(\ell(\pi)-\gamma) \tag{21}
\end{gather*}
$$

we obtain,

$$
\begin{gathered}
\mathbb{E}\left[\left.e^{\gamma\left(\frac{\theta-1}{\theta}\right) z} \right\rvert\, z \geq \ell(\pi)\right]=\mathbb{E}\left[e^{\gamma\left(\frac{\theta-1}{\theta}\right) z}\right] \frac{\delta_{u}(\pi)}{\chi(\pi)} \\
\mathbb{E}\left[e^{\gamma z} \mid z \geq \ell(\pi)\right]=\mathbb{E}\left[e^{\gamma z}\right] \frac{\delta(\pi)}{\chi(\pi)} .
\end{gathered}
$$

The distortions $\Delta_{u}(\pi)$ and $\Delta_{c}(\pi)$ can be simplified as

$$
\begin{equation*}
\Delta_{u}(\pi)=\left\{\mathbb{E}\left[e^{\gamma\left(\frac{\theta-1}{\theta}\right) z}\right]\right\}^{\frac{\theta}{\theta-1}}\left\{\delta_{u}(\pi) \pi^{\theta-1}+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}\right\}^{\frac{\theta}{\theta-1}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{c}(\pi)=\mathbb{E}\left[e^{\gamma z}\right]\left\{\delta(\pi) \pi^{\theta}+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{-\theta}\right\} \tag{23}
\end{equation*}
$$

The government's budget constraint, (13), and the definition of nominal profits, (15), imply that

$$
\frac{\int_{0}^{1} \Pi_{i} d i-\mathcal{T}}{P}=\int_{0}^{1}\left(p_{i}-\frac{w}{A}\right) c_{i} d i
$$

Using equation (8) to substitute w and the boundedly rational demands (6) to substitute c_{i}, we obtain

$$
\begin{equation*}
\frac{\int_{0}^{1} \Pi_{i} d i-\mathcal{T}}{P}=[1-\vartheta(\pi)] C^{*}(\omega) \tag{24}
\end{equation*}
$$

where

$$
1-\vartheta(\pi) \equiv \int_{0}^{1}\left[p_{i}-\left(\frac{\theta-1}{\theta}\right) \frac{1}{1-\tau} p^{*}\right] p_{i}^{-\theta} d i
$$

Using equation (24) to substitute profits net of taxes in (4), and using (3) to substitute $N^{*}(\omega)$, we obtain an expression for $C^{*}(\omega)$,

$$
\begin{equation*}
C^{*}(\omega)=\left\{\frac{\left[\left(\frac{\theta-1}{\theta}\right)\left(\frac{1}{1-\tau}\right) p^{*}(\pi)\right]^{1+\eta}}{[\vartheta(\pi)]^{\eta}}\right\}^{\frac{1}{\sigma+\eta}} A^{\frac{1+\eta}{\sigma+\eta}} \tag{25}
\end{equation*}
$$

Equation (25) describes the aggregate consumption that a fully rational household would choose. Using (18) and (14), we obtain the equations

$$
\begin{equation*}
C(\pi)=\Delta_{u}(\pi)\left\{\frac{\left[\left(\frac{\theta-1}{\theta}\right)\left(\frac{1}{1-\tau}\right) p^{*}(\pi)\right]^{1+\eta}}{[\vartheta(\pi)]^{\eta}}\right\}^{\frac{1}{\sigma+\eta}} A^{\frac{1+\eta}{\sigma+\eta}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=\pi \frac{C(\pi)}{\Delta_{u}(\pi)} . \tag{27}
\end{equation*}
$$

Together with equation (11) and the definitions (10), (12), and (20)-(23), these equations characterize the equilibrium aggregate consumption $C(\pi)$ and inflation π.

3 Rockets and Feathers

We now study the impact of cost shocks and show that our model is consistent with the rockets and feathers phenomenon: prices rise quickly when costs increase but fall slowly when costs fall.

We establish our results by doing comparative statics using two levels of productivity: $A=1+v$ and $A=1 /(1+v)$, where $v>0$. Log inflation responds symmetrically to cost shocks in the economy with fully rational households since $\pi^{f}=1 / C_{f}$.

To study the response of our economy, we set $1-\tau=(\theta-1) / \theta$ and the growth rate of nominal expenditure, μ, to one.

Figure 1: The impact of cost shocks on the absolute value of the logarithm of inflation

A cost increase (a productivity fall from $A=1$ to $A=1 /(1+v)$) generates inflation, while a cost decrease (a productivity rise from $A=1$ to $A=1+v$) creates
deflation. To compare the response of prices to these two types of shocks, we plot in Figure 1 the absolute value of the logarithm of gross inflation as a function of the magnitude of the shocks, v. The orange and blue lines correspond to a cost increase and decrease, respectively. In a fully rational model, these two lines coincide. In absolute value, inflation's response is the same for positive and negative cost shocks.

This symmetry is preserved in our model for infinitesimal cost shocks. However, for larger cost shocks, prices respond more to cost increases than declines. When costs rise significantly in our model, all firms increase prices to avoid losses, so costs and prices rise together. When costs fall, the firms that benefit from favorable demand have an incentive to keep their prices constant so that households do not reoptimize their purchase decisions. So, on average, prices decline by less than costs.

For cost shocks higher than 43 percent, all firms change their prices. However, for cost shocks lower than -43 percent, some firms do not lower their prices. As the absolute value of the cost shock increases, the orange and blue lines in Figure 1 eventually converge.

The following proposition shows the main theoretical result for a configuration of parameters that makes the equilibrium analytically tractable.

Proposition 1. Suppose $\sigma=1$ and $\eta=0$. Let $\pi^{*}(A)$ be the equilibrium level of inflation associated with productivity A. There is \bar{v} such that if $v \geq \bar{v}$,

$$
-\ln \left[\pi^{*}(1+v)\right]<\ln \left[\pi^{*}\left(\frac{1}{1+v}\right)\right] .
$$

See the Appendix for proof.
This proposition implies that for large enough shocks, the percentage response of inflation is higher than the percentage response of deflation to cost shocks with the same absolute value.

4 Optimal Monetary Policy

We now characterize the optimal values for the labor subsidy rate, τ, and the growth rate of nominal expenditure, π. We assume that the government has the ability to implement any desired inflation level.

Social welfare is given by

$$
\mathcal{W}(\tau, \pi)=\frac{[C(\tau, \pi)]^{1-\sigma}-1}{1-\sigma}-\frac{[N(\tau, \pi)]^{1+\eta}}{1+\eta}-\kappa[1-\chi(\pi)] \ln \left(\frac{\sigma_{c}^{2}}{\kappa}\right)
$$

where given an inflation level π and a labor subsidy τ, the equilibrium allocations are

$$
\begin{equation*}
C(\tau, \pi)=\Delta_{u}(\pi)\left\{\frac{\left[\left(\frac{\theta-1}{\theta}\right)\left(\frac{1}{1-\tau}\right) p^{*}(\pi)\right]^{1+\eta}}{[\vartheta(\tau, \pi)]^{\eta}}\right\}^{\frac{1}{\sigma+\eta}} A^{\frac{1+\eta}{\sigma+\eta}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\tau, \pi)=\frac{\Delta_{u}(\pi)}{\Delta_{c}(\pi)} A N(\tau, \pi) \tag{29}
\end{equation*}
$$

We can choose τ to satisfy equation (28). The fraction of sticky firms $\chi(\pi)$ does not depend on τ. Therefore, the problem of choosing τ given π can be rewritten as

$$
\max \frac{C^{1-\sigma}}{1-\sigma}-\frac{N^{1+\eta}}{1+\eta} \text { s.t. } C \leq \frac{\Delta_{u}(\pi)}{\Delta_{c}(\pi)} A N .
$$

Lemma 3. Given π, the optimal labor subsidy rate $\tau(\pi)$ solves

$$
\Delta_{u}(\pi)\left\{\frac{\left[\left(\frac{\theta-1}{\theta}\right)\left(\frac{1}{1-\tau(\pi)}\right) p^{*}(\pi)\right]^{1+\eta}}{[\vartheta(\tau(\pi), \pi)]^{\eta}}\right\}^{\frac{1}{\sigma+\eta}}=\left[\frac{\Delta_{u}(\pi)}{\Delta_{c}(\pi)}\right]^{\frac{1+\eta}{\sigma+\eta}}
$$

and consumption and labor are

$$
\begin{aligned}
& C_{o p t}(\pi)=\left[\frac{\Delta_{u}(\pi)}{\Delta_{c}(\pi)} A\right]^{\frac{1+\eta}{\sigma+\eta}} \\
& N_{o p t}(\pi)=\left[\frac{\Delta_{u}(\pi)}{\Delta_{c}(\pi)} A\right]^{\frac{1-\sigma}{\sigma+\eta}}
\end{aligned}
$$

We now discuss some properties of the optimal inflation rate, π.
Proposition 2 (Price stability is better than high inflation). Let \mathcal{W}_{s} be the welfare level attained when gross inflation, $\pi \geq \frac{\theta}{\theta-1}$. There is a value $\bar{\sigma}_{c}^{2}$ such that when the household's prior uncertainty about the optimal consumption is higher than $\bar{\sigma}_{c}^{2}\left(\sigma_{c}^{2} \geq \bar{\sigma}_{c}^{2}\right)$, price stability is better than high inflation, $\mathcal{W}(1)>\mathcal{W}_{s}$.

See the Appendix for proof.
The intuition for this proposition is as follows. Recall that when households opt to gather information regarding the optimal consumption policy, they reduce their uncertainty to κ. When the prior uncertainty is high, this reduction involves significant cognitive effort that the households deem justified in times of high inflation. When inflation is zero, only a few firms adjust their pricing, so households incur low cognitive costs.

Proposition 3 (Price stability is not optimal). There is a value of $\pi<1$ such that $\mathcal{W}(\pi)>\mathcal{W}(1)$.

See the Appendix for proof.
The intuition for this result is as follows. When average inflation is zero, firms experiencing high demand due to household decision errors do not change their prices. Other firms slightly increase or decrease their prices to draw a new demand shock. As a result, sizeable behavioral mistakes become ingrained, leading households to select a highly suboptimal consumption basket. Moving away from zero inflation mitigates this inefficiency by improving consumption choices.

Why is deflation locally better than inflation? The logic is as follows. Due to cognitive costs, households do not choose the optimal value of c_{i}. Instead, they consume an amount of good i that is proportional to the optimal value. The planner would like to reduce the consumption of goods supplied by firms that have sticky prices, since these firms received large demand shocks that drive consumption far
away from the optimum. When inflation is positive, the relative price of the goods produced by firms with sticky prices falls, inducing households to consume more of these goods and exacerbating the impact of behavioral biases. In contrast, when inflation is negative, the relative price of the goods produced by firms with sticky prices rises. As a result, the consumption of these goods falls, mitigating the impact of behavioral biases.

To sharpen our intuition, it is helpful to compare the price distortions that emerge in our economy with those in a model with Calvo (1983) sticky prices. Consider a version of our model in which the threshold value of the shock above which firms keep their prices constant, ℓ, is fixed. We adopt this setup because we are interested in studying the behavior of inflation around zero, and locally, ℓ is constant. In this economy, the firms that change prices are the same for inflation and deflation rates with the same absolute value.

Figure 2 compares the production distortion, Δ_{c}, in this version of our model with that in an analogous model with Calvo pricing. In the Calvo economy, there is no selection-all firms have the same likelihood of changing prices. Consequently, as depicted in Figure 2, the production distortion reaches its lowest point when prices are stable ($\pi^{p}=1$). In contrast, in the version of our economy with constant ℓ, the production distortions are minimized when the rate of inflation is negative $\left(\pi^{p}<1\right)$. The reason is the selection effect. Firms with large demand shocks do not change their prices, resulting in high production distortions under price stability.

5 Conclusion

This paper explores a framework where a dual process mechanism drives household choices. This framework gives rise to a new kind of price rigidity that emerges from the interaction between consumers and monopolistic suppliers. There is a range of cost shocks for which some producers refrain from adjusting prices so that house-

Figure 2: Production distortions as a function of the rate of inflation in a model with Calvo pricing and a version of our economy with ℓ constant
holds do not reassess their purchasing decisions.
Our model explains the intriguing "rockets and feathers" phenomenon: prices rise quickly when costs increase but fall slowly when costs fall. The model is also consistent with an important empirical regularity documented by Ilut et al. (2020): firms that receive a high demand realization are less likely to change their prices.

We show that, unlike in other cashless economies with sticky prices, price stability is not optimal in our model.

The advent of Artificial Intelligence is likely to make the strategic exploitation of consumer behavioral biases suggested by these examples and emphasized in our model more prevalent.

6 Appendix

This appendix contains the proofs of our three propositions and a characterization of the properties of the price distribution generated by the model.

6.1 Proof of lemma 1

Proof. Let

$$
\begin{gathered}
v\left(p, p^{*}\right) \equiv\left[p-\left(\frac{\theta-1}{\theta}\right) p^{*}\right] p^{-\theta} \\
v^{*}(\pi) \equiv v\left(p^{*}(\pi), p^{*}(\pi)\right)
\end{gathered}
$$

and

$$
\bar{v}(\pi) \equiv v\left(\frac{1}{\pi^{\prime}} p^{*}(\pi)\right)
$$

Whenever $\bar{v}(\pi)>0$, we can write

$$
\ell(\pi) \equiv \ln \left\{\mathbb{E}\left[e^{\gamma z}\right] \frac{v^{*}(\pi)}{\bar{v}(\pi)}\right\}
$$

We first show that for all $\pi \geq \frac{\theta}{\theta-1}, \bar{v}(\pi)<0$. Suppose that this property does not hold, ie. $\pi \geq \frac{\theta}{\theta-1}$ but $\bar{v}(\pi)>0$. Then

$$
\begin{gathered}
\bar{v}(\pi)>0 \Longleftrightarrow\left[p-\left(\frac{\theta-1}{\theta}\right) p^{*}\right] p^{-\theta} \Longleftrightarrow p^{*}(\pi)<1 . \text { whichimpliesthat } \\
{\left[p^{*}(\pi)\right]^{1-\theta}>1 .}
\end{gathered}
$$

From equation (11),

$$
\pi^{\theta-1}=\frac{1-[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}}{\chi(\pi)}
$$

Therefore

$$
\pi^{\theta-1}=\frac{1-[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}}{\chi(\pi)}<1
$$

This inequality contradicts the initial assumption that $\pi \geq \frac{\theta}{\theta-1}>1$. Therefore $\bar{v}(\pi) \leq 0$, and $\ell(\pi)=\infty$ for all $\pi \geq \frac{\theta}{\theta-1}$. In addition, $\chi=0$, and equation (11) implies

$$
p^{*}(\pi)=1
$$

6.2 Lemmas Regarding $p^{*}(\pi)$

This section shows additional lemmas regarding $p^{*}(\pi)$. The following Lemma shows that $p^{*}(\pi)$ is well-defined for $\pi<\frac{\theta}{\theta-1}$. Let

$$
f\left(\pi, p^{*}\right)=\chi\left(\pi, p^{*}\right)\left(\frac{1}{\pi}\right)^{1-\theta}+\left[1-\chi\left(\pi, p^{*}\right)\right]\left(p^{*}\right)^{1-\theta}
$$

and

$$
\chi\left(\pi, p^{*}\right) \equiv 1-\Phi\left[\ell\left(\pi, p^{*}\right)\right]
$$

where

$$
\ell\left(\pi, p^{*}\right) \equiv \begin{cases}\frac{1}{\gamma} \ln \left\{\mathbb{E}\left[e^{\gamma z}\right] \frac{v\left(p^{*}, p^{*}\right)}{v\left(\frac{1}{\pi}, p^{*}\right)}\right\}, & \text { if } v\left(\frac{1}{\pi}, p^{*}\right)>0 \\ \infty, & \text { if } v\left(\frac{1}{\pi}, p^{*}\right) \leq 0\end{cases}
$$

We now show that the equation

$$
f\left(\pi, p^{*}\right)=1
$$

has a unique solution $p^{*}(\pi)$ for any $\pi<\frac{\theta}{\theta-1}$.
Lemma 4. For $\pi<\frac{\theta}{\theta-1}, f\left(\pi, p^{*}\right)=1$ has a unique solution for p^{*} that involves $\bar{v}\left(\pi, p^{*}\right)>$ 0.

Proof. For fixed $\pi<\frac{\theta}{\theta-1}$, we have that if

$$
\frac{1}{\pi} \leq\left(\frac{\theta-1}{\theta}\right) p^{*} \Longleftrightarrow p^{*} \geq\left(\frac{\theta}{\theta-1}\right) \frac{1}{\pi}>1
$$

then $\ell\left(\pi, p^{*}\right)=\infty$, and

$$
\begin{aligned}
f\left(\pi, p^{*}\right) & =\chi\left(\pi, p^{*}\right)\left(\frac{1}{\pi}\right)^{1-\theta}+\left[1-\chi\left(\pi, p^{*}\right)\right]\left(p^{*}\right)^{1-\theta} \\
& =\left(p^{*}\right)^{1-\theta}<1
\end{aligned}
$$

On the other hand, as $p^{*} \rightarrow 0$,

$$
v\left(\frac{1}{\pi}, p^{*}\right) \equiv\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right]\left(\frac{1}{\pi}\right)^{-\theta} \rightarrow\left(\frac{1}{\pi}\right)^{1-\theta}
$$

and

$$
v\left(p^{*}, p^{*}\right)=\frac{1}{\theta}\left[\left(\frac{\theta}{\theta-1}\right) p^{*}\right]^{1-\theta} \rightarrow \infty
$$

which means again that $\ell\left(\pi, p^{*}\right) \rightarrow \infty$, and therefore

$$
f\left(\pi, p^{*}\right) \rightarrow \infty
$$

All that is left to be done is to show that $f\left(\pi, p^{*}\right)$ is strictly decreasing for $p^{*} \in$ $\left(0,\left(\frac{\theta}{\theta-1}\right) \frac{1}{\pi}\right)$, in which case we are assured there is a unique solution in this region.

Now
$e^{\gamma \ell\left(\pi, p^{*}\right)}=\mathbb{E}\left[e^{\gamma z}\right] \frac{v\left(p^{*}, p^{*}\right)}{v\left(\frac{1}{\pi}, p^{*}\right)} \Longleftrightarrow \gamma \ell\left(\pi, p^{*}\right)=\ln \left(\mathbb{E}\left[e^{\gamma z}\right]\right)+\ln \left[v\left(p^{*}, p^{*}\right)\right]-\ln \left[v\left(\frac{1}{\pi}, p^{*}\right)\right]$.
Now

$$
\begin{aligned}
\frac{d v\left(p^{*}, p^{*}\right)}{d p^{*}} & =(1-\theta) \frac{1}{\theta}\left[\left(\frac{\theta}{\theta-1}\right)\right]^{1-\theta}\left(p^{*}\right)^{1-\theta} \frac{1}{p^{*}} \\
& =-(\theta-1) v\left(p^{*}, p^{*}\right) \frac{1}{p^{*}}
\end{aligned}
$$

and

$$
v_{p^{*}}\left(\frac{1}{\pi}, p^{*}\right)=-\left(\frac{\theta-1}{\theta}\right)\left(\frac{1}{\pi}\right)^{-\theta}
$$

So

$$
\begin{aligned}
\gamma \ell_{p^{*}}\left(\pi, p^{*}\right) & =-(\theta-1) \frac{1}{p^{*}}+\frac{\left(\frac{\theta-1}{\theta}\right)\left(\frac{1}{\pi}\right)^{-\theta}}{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right]\left(\frac{1}{\pi}\right)^{-\theta}} \\
& =(\theta-1)\left[\frac{\left(\frac{1}{\theta}\right)}{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right]}-\frac{1}{p^{*}}\right] \\
& =(\theta-1)\left[\frac{\left(\frac{1}{\theta}\right) p^{*}}{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right] p^{*}}-\frac{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right]}{p^{*}\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right]}\right] \\
& =(\theta-1)\left[\frac{p^{*}-\frac{1}{\pi}}{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right] p^{*}}\right]
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
f_{p^{*}}\left(\pi, p^{*}\right) & =\chi_{p^{*}}\left(\pi, p^{*}\right)\left(\frac{1}{\pi}\right)^{1-\theta}-\chi_{p^{*}}\left(\pi, p^{*}\right)\left(p^{*}\right)^{1-\theta}-(\theta-1)\left[1-\chi\left(\pi, p^{*}\right)\right]\left(p^{*}\right)^{-\theta} \\
& =-\frac{\phi\left[\ell\left(\pi, p^{*}\right)\right]}{\gamma}(\theta-1)\left[\frac{p^{*}-\frac{1}{\pi}}{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}\right] p^{*}}\right]\left[\left(\frac{1}{\pi}\right)^{1-\theta}-\left(p^{*}\right)^{1-\theta}\right]- \\
& -(\theta-1)\left[1-\chi\left(\pi, p^{*}\right)\right]\left(p^{*}\right)^{-\theta}
\end{aligned}
$$

But

$$
p^{*}-\frac{1}{\pi}
$$

and

$$
\left(\frac{1}{\pi}\right)^{1-\theta}-\left(p^{*}\right)^{1-\theta}
$$

are of the same sign. Therefore $f_{p^{*}}\left(\pi, p^{*}\right)<0$, which completes the proof.
Lemma 5. For $\pi<\frac{\theta}{\theta-1}$, the function $p^{*}(\pi)$ has elasticity

$$
\frac{p^{* \prime}(\pi)}{p^{*}(\pi)} \pi=\frac{\chi(\pi)\left(\frac{1}{\pi}\right)^{1-\theta}-\Omega(\pi)}{\Omega(\pi)+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}}
$$

where

$$
\Omega(\pi) \equiv \frac{\phi[\ell(\pi)]}{\gamma} \frac{\left[p^{*}(\pi)-\frac{1}{\pi}\right]\left\{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}\right\}}{\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}>0
$$

and $\ell(\pi)$ has semi-elasticity

$$
\ell^{\prime}(\pi) \pi=\frac{1}{\gamma}(\theta-1)\left[\frac{p^{*}(\pi)-\frac{1}{\pi}}{\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}\right]\left[\frac{1}{\Omega(\pi)+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}}\right]
$$

Proof. The proof follows from total differentiation of (11).
Lemma 6. The following are true:

1. $p^{*}(1)=1$;
2. If $\pi>1, p^{*}(\pi)>1$;
3. If $\pi<1$, $p^{*}(\pi)<1$.

Proof. These properties follow directly from the manipulation of equation (11).
Lemma 7. $\ell(\pi)$ is minimized at $\pi=1$, in which case $\ell(1)=\frac{1}{2} \gamma$. Therefore $\chi(\pi)$ and $\delta(\pi)$ are maximized at 1 .

Proof. The proof follows from the fact that $\operatorname{sign}\left[\ell^{\prime}(\pi)\right]=\operatorname{sign}\left[p^{*}(\pi)-\frac{1}{\pi}\right]$ from Lemma 5 and the properties described in Lemma 6.

Lemma 8. $p^{* \prime}(\pi)$ has exactly one maximum in $\left(1, \frac{\theta}{\theta-1}\right)$ and exactly one minimum in $(0,1)$.

Proof. At any extremum,

$$
\Omega(\pi)=\chi(\pi)\left(\frac{1}{\pi}\right)^{1-\theta}
$$

Now

$$
\Omega(\pi)=\frac{\phi[\ell(\pi)]}{\gamma} \frac{\left[p^{*}(\pi)-\frac{1}{\pi}\right]\left\{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}\right\}}{\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}
$$

so

$$
\begin{align*}
& \frac{\phi[\ell(\pi)]}{\gamma} \frac{\left[p^{*}(\pi)-\frac{1}{\pi}\right]\left\{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}\right\}}{\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}=\chi(\pi)\left(\frac{1}{\pi}\right)^{1-\theta} \\
\Longleftrightarrow & \frac{\mathbb{E}[z \mid z \geq \ell(\pi)]}{\gamma}=\frac{\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}{\left[p^{*}(\pi)-\frac{1}{\pi}\right]\left\{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}\right\}}\left(\frac{1}{\pi}\right)^{1-\theta} \tag{30}
\end{align*}
$$

Consider the function

$$
g(a)=\mathbb{E}[z \mid z \geq a]=\frac{\phi(a)}{1-\Phi(a)}
$$

The first derivative is

$$
\begin{aligned}
g^{\prime}(a) & =\frac{-a \phi(a)[1-\Phi(a)]-\phi(a)[-\phi(a)]}{[1-\Phi(a)]^{2}} \\
& =\frac{-a \phi(a)}{1-\Phi(a)}+\mathbb{E}[z \mid z \geq a]^{2} \\
& =-a \mathbb{E}[z \mid z \geq a]+\mathbb{E}[z \mid z \geq a]^{2} \\
& =\{\mathbb{E}[z \mid z \geq a]-a\} \mathbb{E}[z \mid z \geq a]>0,
\end{aligned}
$$

so it is increasing. Consider the region $\pi \in\left[1, \frac{\theta}{\theta-1}\right]$. As we have shown before, $\ell(\pi)$ is strictly increasing in this region. Therefore

$$
\frac{\mathbb{E}[z \mid z \geq \ell(\pi)]}{\gamma}
$$

is strictly increasing in π. Moreover,

$$
\lim _{a \rightarrow \infty} \frac{\phi(a)}{1-\Phi(a)}=\lim _{a \rightarrow \infty} \frac{-a \phi(a)}{-\phi(a)}=\infty
$$

Now, let's look at

$$
h(\pi) \equiv \frac{\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}{\left[p^{*}(\pi)-\frac{1}{\pi}\right]\left\{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}\right\}}\left(\frac{1}{\pi}\right)^{1-\theta}
$$

. As $\pi \rightarrow 1$, the numerator is clearly finite and positive, whereas the denominator goes to zero. $\lim _{\pi \rightarrow 1^{+}} h(\pi)=\infty$. As $\pi \rightarrow \frac{\theta}{\theta-1}, h(\pi) \rightarrow 0$. it follows that there must be at least one π in this region that solves equation 30 .

Suppose that we can show that at any solution in $\pi \in\left[1, \frac{\theta}{\theta-1}\right], h^{\prime}(\pi)<0$. It would then follow that there is exactly one solution. For suppose there are two. By continuity, there must be another solution in between. But then, the derivative has to be positive at that solution, which is a contradiction.

Note that $h(\pi)$ has to be strictly positive in $\left(1, \frac{\theta}{\theta-1}\right)$. So we can take logs and differentiate to obtain

$$
\begin{aligned}
\frac{h^{\prime}(\pi)}{h(\pi)} & =\frac{\left[\left(\frac{1}{\pi}\right)^{1-\theta}\right]^{\prime}}{\left(\frac{1}{\pi}\right)^{1-\theta}}+\frac{-\frac{1}{\pi^{2}}}{\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}-\frac{\frac{1}{\pi^{2}}}{p^{*}(\pi)-\frac{1}{\pi}}-\frac{\left[\left(\frac{1}{\pi}\right)^{1-\theta}\right]^{\prime}}{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}} \\
& =\frac{\left[\left(\frac{1}{\pi}\right)^{1-\theta}\right]^{\prime}}{\left(\frac{1}{\pi}\right)^{1-\theta}}-\frac{1}{\pi^{2}}\left[\frac{p^{*}(\pi)-\frac{1}{\pi}+\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)}{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)\right]\left[p^{*}(\pi)-\frac{1}{\pi}\right]}\right]-\frac{\left[\left(\frac{1}{\pi}\right)^{1-\theta}\right]^{\prime}}{\frac{v^{*}(\pi)}{\bar{v}(\pi)}\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}} \\
& =\frac{\left[\left(\frac{1}{\pi}\right)^{1-\theta}\right]^{\prime}}{\left(\frac{1}{\pi}\right)^{1-\theta}}-\frac{1}{\pi^{2}}\left[\frac{\frac{1}{\theta} p^{*}(\pi)}{\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)\right]\left[p^{*}(\pi)-\frac{1}{\pi}\right]}\right]-\frac{\left[p^{1-\theta}\right]^{\prime}}{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}} \\
& =-(\theta-1)\left(\frac{1}{\pi}\right)^{2-\theta}\left\{\frac{\left[p^{*}(\pi)\right]^{1-\theta}}{\left(\frac{1}{\pi}\right)^{1-\theta}\left[\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}\right]}\right\}- \\
& -\frac{1}{\pi^{2}}\left[\frac{1}{\left.\left[\frac{1}{\pi}-\left(\frac{\theta-1}{\theta}\right) p^{*}(\pi)\right]\left[p^{*}(\pi)-\frac{1}{\pi}\right]\right]}\right.
\end{aligned}
$$

which must be strictly negative in this region. The argument is exactly the same for $1 \in\left(0, \frac{\theta}{\theta-1}\right)$.

We have shown that $p^{* \prime}(\pi)$ has exactly one extremum in $\left(1, \frac{\theta}{\theta-1}\right)$ and exactly one extremum in $(0, \bar{\pi})$.

At 1 , we have shown before that $p^{* \prime}(\pi)>0$. Since at $\pi=\frac{\theta}{\theta-1}, p^{*}(\pi)=1$ and the derivative is continuous if there were a minimum in $\left(1, \frac{\theta}{\theta-1}\right)$ there would also have to be a maximum, a contradiction to the assumption that only one extremum exists. Analogously for $(0, \bar{\pi})$.

6.3 Proof of Proposition 1

Proof. Set $\sigma=1$ and $\eta=0$. The equilibrium conditions become

$$
\begin{equation*}
C(\pi)=\Delta_{u}(\pi) p^{*}(\pi) A \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
1=\pi \frac{C(\pi)}{\Delta_{u}(\pi)} \tag{32}
\end{equation*}
$$

Substituting $C(\pi)$ yields the equilibrium condition

$$
\begin{equation*}
\frac{1}{A}=e\left[\pi^{*}(A)\right] \tag{33}
\end{equation*}
$$

where

$$
e(\pi) \equiv \pi p^{*}(\pi)
$$

It is evident that $e(\pi) \rightarrow 0$ as $\pi \rightarrow 0$ and $e(\pi) \rightarrow \infty$ as $\pi \rightarrow \infty$. Therefore, a solution to (33) exists. Moreover,

$$
\frac{e^{\prime}(\pi)}{e(\pi)} \pi=1+\frac{p^{* \prime}(\pi)}{p^{*}(\pi)} \pi=\frac{1}{\Omega(\pi)+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}}
$$

where the last equality follows from (5). Therefore $e(\pi)$ is strictly increasing in π. It follows that the solution to (33) is unique, and that $\pi^{* \prime}(A)<0$.

Consider a shock v such that

$$
\pi^{*}\left(\frac{1}{1+v}\right)=\frac{\theta}{\theta-1}
$$

Substituting in (33) we get

$$
1+v=\frac{\theta}{\theta-1}
$$

Now consider cost shocks $1+v \geq \frac{\theta}{\theta-1}$. We want to show that $\pi^{*}(1+v)>\frac{1}{1+v}$. Since $e(\pi)$ is strictly increasing, we simply need to show that $e\left(\frac{1}{1+v}\right)<\frac{1}{1+v}$. Now

$$
g\left(\frac{1}{1+v}\right)<\frac{1}{1+v} \Longleftrightarrow p^{*}\left(\frac{1}{1+v}\right)<1
$$

But since $1+v \geq \frac{\theta}{\theta-1}, \frac{1}{1+v} \leq 1$. By Lemma $6, p^{*}\left(\frac{1}{1+v}\right)<1$.
There are rockets and feathers when the increase in cost is such that all firms raise prices $\left(\frac{1}{1+v}<\frac{\theta-1}{\theta}\right)$. The reason is that for a symmetric fall in costs, some firms with favorable demand still keep their prices constant. Since $e(\cdot)$ is continuous, $\pi^{*}(A)$ is also continuous. This property implies that even when the cost rise does not induce all firms to increase prices, there are values of \bar{v} that produce rockets and feathers.

6.4 Proof of Proposition 2

Proof. Let

$$
\frac{\Delta_{u}(\pi)}{\Delta_{c}(\pi)} \equiv \zeta(\pi)
$$

At any $\pi \geq \frac{\theta}{\theta-1}, \zeta(\pi)=\zeta_{s}$, a constant that is independent from π. Therefore $C(\pi)=C_{s}$ and $N(\pi)=N_{s}$ are also independent from inflation. We can write

$$
C(1)=\left[\frac{\zeta(1)}{\zeta_{s}}\right]^{\frac{1+\eta}{\sigma+\eta}} C_{s}
$$

and

$$
N(1)=\left[\frac{\zeta(1)}{\zeta_{s}}\right]^{\frac{1-\sigma}{\sigma+\eta}} N_{s}
$$

Substituting $C(1)$ and $N(1)$ in $\mathcal{W}(1)$ we get
$\mathcal{W}(1)-\mathcal{W}_{s}=\left\{\left[\frac{\zeta(1)}{\zeta_{s}}\right]^{\frac{(1+\eta)(1-\sigma)}{\eta+\sigma}}-1\right\}\left[\frac{C_{s}^{1-\sigma}-1}{1-\sigma}-\frac{N_{s}^{1+v}}{1+v}\right]+\frac{\left[\frac{\zeta(1)}{\zeta_{s}}\right]^{1-\sigma}-1}{1-\sigma}+\kappa \chi(1) \ln \left(\frac{\sigma_{c}^{2}}{\kappa}\right)$.
As $\sigma_{c}^{2} \rightarrow \infty$, the first two terms go to a finite number. The third term goes to infinity. Therefore there must be $\bar{\sigma}_{c}^{2}$ such that $\sigma_{c}^{2} \geq \bar{\sigma}_{c}^{2}$ implies that $\mathcal{W}(1)-\mathcal{W}_{s}>$ 0 .

6.5 Proof of Proposition 3

Proof. Let

$$
\widetilde{A}(\pi) \equiv \zeta(\pi) A
$$

For any π,

$$
\begin{gathered}
\qquad \mathcal{W}^{\prime}(\pi)=\widetilde{A}(\pi)^{\frac{(1+\eta)(1-\sigma)}{\sigma+\eta}-1} \widetilde{A}^{\prime}(\pi)+\kappa \ln \left(\frac{\sigma_{c}^{2}}{\kappa}\right) \chi^{\prime}(\pi) . \\
\text { At } \pi=1, \ell^{\prime}(\pi)=0, \text { so } \chi^{\prime}(1)=\delta_{u}^{\prime}(1)=\delta^{\prime}(1)=0 . \text { Since } \widetilde{A}(\pi)=A \zeta(\pi), \\
\\
\mathcal{W}^{\prime}(1) \propto \hat{\zeta}(1),
\end{gathered}
$$

where $\hat{\zeta}(\pi) \equiv \frac{d \ln \zeta(\pi)}{d \ln (\pi)}$.
At $\pi=1$,

$$
\hat{\zeta}(1)=\theta\left[\frac{\delta_{u}(1)-\chi(1)}{\delta_{u}(1)+1-\chi(1)}-\frac{\delta(1)-\chi(1)}{\delta(1)+1-\chi(1)}\right] .
$$

Since $\delta_{u}=1-\Phi\left[\ell-\left(\frac{\theta-1}{\theta}\right) \gamma\right]$ and $\delta=1-\Phi(\ell-\gamma), \delta_{u}(1)<\delta(1)$. Therefore $\hat{\zeta}(1)<0$ and $\mathcal{W}^{\prime}(1)<0$.

7 Price Distribution

We now describe the equilibrium relation between the optimal relative reset price, $f(\pi)$, and the inflation rate. In this section, we measure inflation with the price index
in an economy with fully rational households, which we denote by π for analytical convenience.

Figure 3 illustrates Lemmas 1, 6, and 8.

Figure 3: Reset relative price as a function of the inflation rate

The intuition for the behavior of the reset price is as follows. When inflation is sufficiently high, nominal marginal costs are such that the profit margin at the old price is negative. As a result, all producers reset their prices, and therefore the relative reset price is equal to one.

As gross inflation goes to zero (and inflation goes to -100 percent), the real price
charged by sticky firms, $\frac{P_{0}}{P}=\frac{1}{\pi}$ goes to infinity. In this case, almost no firm has a demand shock ϵ_{i} that makes it worthwhile to keep a real revenue near zero. In the limit, all producers reset their prices, again implying that the relative reset price must equal one.

When gross inflation is equal to one, the definition of P implies that the reset price is also equal to one regardless of the fraction of sticky firms:

$$
1=\chi(\pi) \pi^{\theta-1}+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}
$$

which implies that

$$
p^{*}(1)=1 .
$$

1. In this case, the old price is equal to the nominal reset price, P^{*}, since $p^{*}(\pi)=1$ implies that $P^{*}=P=P_{0}$. Therefore, firms with $\epsilon_{i, 0} \geq \ell(1)$ keep their price, and firms with $\epsilon_{i, 0}<\ell(1)$ change their price by an infinitesimal amount to induce the household to draw a new signal.

Figure 4 shows that the minimum demand shock that makes it worthwhile for firms to keep their price is minimized at $\pi=1$. The old price maximizes the rational component of demand, so it takes a relatively small demand shock to induce firms to keep their price. This fact implies that the fraction of firms with sticky prices and high demand is large around $\pi=1$.

We now explore the non-monotonicity of the reset price with respect to the rate of inflation implicit in lemma 6 . This non-monotonicity reflects the interplay between the intensive and extensive margins of price adjustment. Using the definition of P,

$$
1=\chi(\pi)(\pi)^{\theta-1}+[1-\chi(\pi)]\left[p^{*}(\pi)\right]^{1-\theta}
$$

we obtain another expression for the elasticity $\hat{p}^{*}(\pi) \equiv \frac{p^{* \prime}(\pi)}{p(\pi)} \pi$:

$$
\hat{p}^{*}(\pi)=\bar{p}^{*}(\pi)+\varphi(\pi) \hat{\chi}(\pi),
$$

Figure 4: Fraction of firms with sticky prices as a function of the inflation rate
where

$$
\begin{gathered}
\bar{p}^{*}(\pi) \equiv\left[\frac{\chi(\pi)}{1-\chi(\pi)}\right]\left[\frac{\frac{1}{\pi}}{p^{*}(\pi)}\right]^{1-\theta}>0 \\
\varphi(\pi) \equiv\left(\frac{1}{\theta-1}\right)\left[\frac{\chi(\pi)}{1-\chi(\pi)}\right]\left\{\left(\frac{1}{\pi}\right)^{1-\theta}-\left[p^{*}(\pi)\right]^{1-\theta}\right\},
\end{gathered}
$$

and

$$
\hat{\chi}(\pi) \equiv \frac{\chi^{\prime}(\pi)}{\chi(\pi)} \pi
$$

It is easy to show that $\varphi(\pi)>0$ when $\pi>1$ and $\varphi(\pi)<0$ when $\pi<1$.
The first term of $\hat{f}(\pi), \bar{f}(\pi)$, relates to the intensive margin of price adjustment, and the second term, $\varphi(\pi) \hat{\chi}(\pi)$, to the extensive margin.

On the intensive margin, there is a positive relation between the relative reset price and inflation $\left(\bar{p}^{*}(\pi)>0\right)$. If inflation is high, sticky firms charge a low relative price. In equilibrium flexible firms must charge a high relative price so that $\mathbb{E}_{i}\left[p_{i}^{1-\theta}\right]=1$.

On the extensive margin, for π there is a negative relation between the relative reset price and inflation $(\varphi(\pi) \hat{\chi}(\pi)<0)$. if inflation is high, the fraction of sticky firms is low $(\hat{\chi}(\pi)<0)$ because fewer demand shocks make keeping a low nominal price with high nominal marginal costs worthwhile. Flexible firms must charge a smaller relative price so that in equilibrium $\mathbb{E}_{i}\left[p_{i}^{1-\theta}\right]=1$.

It turns out that there is a gross inflation level $\bar{\pi}>1$ such that if $\pi>\bar{\pi}$, the effect of the extensive margin dominates and $\hat{p}^{*}(\pi)<0$.

The dynamics of deflation are analogous to those of inflation. As inflation becomes more negative, the firms that change prices reduce these prices by more (the intensive margin). But, since more firms change prices (the extensive margin), prices do not have to fall by much to ensure that the harmonic mean of the relative prices is one. Again, there is an inflation level $\underline{\pi}$ such that if $\pi<\underline{\pi}, p^{*}(\pi)>p^{*}(\underline{\pi})$.

7.1 Taylor Rule

To analyze the response of inflation to cost shocks under a Taylor rule, we consider a deterministic infinite-period version of the model. Time is indexed by $t=0,1, \ldots$, with $t=0$ still defined as the pre-period in which System 1 demands are defined.

We assume that the household is fully rational from $t=2$ onwards. In each period t, utility from consumption and labor is

$$
U_{t}=\frac{C_{t}^{1-\sigma}-1}{1-\sigma}-\frac{N_{t}^{1+\eta}}{1+\eta},
$$

where

$$
C_{t}=\left(\int_{0}^{1} c_{i, t}^{\frac{\theta-1}{\theta}} d i\right)^{\frac{\theta}{\theta-1}} .
$$

In each period t, the household invests in nominal government bonds, D_{t+1}, at price $1 / R_{t}$, where R_{t} is the nominal interest rate. The flow-of-funds constraint is

$$
\int_{0}^{1} P_{i, t} c_{i, t} d i+\frac{D_{t+1}}{R_{t}} \leq W_{t} N_{t}+\int_{0}^{1} \Pi_{i, t} d i+D_{t}-\mathcal{T}_{t} .
$$

As in the model in the main text, production of good i is done by a monopolistically competitive firm with production function

$$
y_{i, t}=A_{t} n_{i, t} .
$$

The flow-of-funds constraint of the government is

$$
D_{t}+\tau_{n, t} W_{t} N_{t}=\frac{D_{t+1}}{R_{t}}+\mathcal{T}_{t}
$$

and the government sets interest rates according to the Taylor rule

$$
R_{t}=\frac{1}{\beta} \pi_{t}^{\phi}, \phi>1
$$

We define an equilibrium in this economy as follows.

Definition 2. An equilibrium is a sequence of prices $\left\{W_{t}, P_{i, t}\right\}_{t=1}^{\infty}$, allocations, $\left\{c_{i, t}, N_{t}, D_{t+1}, \Pi_{i, t}\right\}_{t=1}^{\infty}$, and policies $\left\{\tau_{n, t}, \mathcal{T}_{t}, R_{t}\right\}_{t=1}^{\infty}$ such that, given P_{0} and the productivity sequence $\left\{A_{t}\right\}_{t=1}^{\infty}$,

1. For $t \geq 2,\left\{c_{i, t}, N_{t}, D_{t+1}\right\}_{t=2}^{\infty}$ maximize

$$
\sum_{t=2}^{\infty} \beta^{t-2} U_{t}
$$

subject to the flow-of-funds constraints and a transversality condition.
2. For $t=1$,

$$
\begin{gathered}
c_{i, 1}=e^{\gamma \widetilde{\epsilon}_{i, 1}} p_{i, 1}^{-\theta} C_{1}^{*} \\
\widetilde{\epsilon}_{i, 1}= \begin{cases}\epsilon_{i, 0}, & \text { if } P_{i, 1}=P_{0} \\
\epsilon_{i, 1}, & \text { if } P_{i, 1} \neq P_{0}\end{cases} \\
\epsilon_{i, t} \sim \mathcal{N}(0,1) \\
D_{2}=D_{2}^{*}
\end{gathered}
$$

and N_{1} is chosen to satisfy the flow-of-funds constraint in period 1. C_{1}^{*} and D_{2}^{*} are the period-1 aggregate consumption and savings plans for period one that maximize

$$
\sum_{t=1}^{\infty} \beta^{t-1} U_{t}
$$

subject to the flow-of-funds constraints and a transversality condition.
3. In each period t, firms choose $P_{i, t}, n_{i, t}$ and $y_{i, t}$ to maximize expected profits $\mathbb{E}_{t}\left[\Pi_{i, t}\right]$ subject to $y_{i, t}=A_{t} n_{i, t}$ and $y_{i, t}=c_{i, t}$.
4. Policies satisfy the flow-of-funds constraints

$$
D_{t}+\tau_{n, t} W_{t} N_{t}=\frac{D_{t+1}}{R_{t}}+\mathcal{T}_{t}
$$

and the nominal interest rate satisfies

$$
R_{t}=\frac{1}{\beta} \pi_{t}^{\phi}
$$

where $\pi_{t} \equiv \frac{P_{t}}{P_{t-1}}$.
5. The labor market clears: $\int n_{i, t} d i=N_{t}$.

Condition 1 says that the household is fully rational from period two onwards.
Condition 2 says that in period one, consumption of the differentiated goods solve the bounded rationality problem in the main text, nominal government savings are rationally chosen, and labor is chosen to satisfy the budget constraint.

Condition 3 incorporates the fact that because the household is rational from period two onwards, and prices are not physically rigid, the problem of the firm is static.

We consider the equilibrium associated with ad valorem subsidies satisfying

$$
1-\tau_{n, t}=\frac{\theta-1}{\theta}, \quad t \geq 1
$$

and a productivity sequence

$$
A_{t}=1, \quad t \geq 2
$$

Equilibrium For $t \geq 2$ From period two onwards, consumption and labor satisfy the conditions

$$
\begin{gathered}
c_{i, t}=p_{i, t}^{-\theta} C_{t}, \quad t \geq 2 \\
C_{t}^{\sigma} N_{t}^{\eta}=w_{t}, t \geq 2 \\
\frac{1}{\beta}\left(\frac{C_{t+1}}{C_{t}}\right)^{\sigma}=R_{t} . t \geq 2
\end{gathered}
$$

The price level is given by

$$
P_{t}^{1-\theta}=\int_{0}^{1} P_{i, t}^{1-\theta} d i
$$

Since the consumer is fully rational and $1-\tau_{n, t}=\frac{\theta-1}{\theta}$, it follows that all firms set the nominal price to

$$
P_{i, t}=\frac{W_{t}}{A_{t}}
$$

which implies that $p_{i, t} \equiv P_{i, t} / P_{t}=1$ and $w_{t} \equiv \frac{W_{t}}{P_{t}}=A_{t}=1$. It follows that $c_{i, t}=C_{t}=N_{t}=1$.

Since the government sets the nominal interest rate according to an interest rate rule with a zero inflation target, it uniquely implements the sequence

$$
\pi_{t}=1, \quad t \geq 2
$$

Firms' Problem At $t=1$ The problem of the firms in period 1 is identical to the model in the main text. Therefore

$$
p_{i, 1}= \begin{cases}p_{1}^{*}, & \text { if } \epsilon_{i, 0} \geq \ell \\ \frac{1}{\pi_{1}}, & \text { if } \epsilon_{i, 0}<\ell^{\prime}\end{cases}
$$

where

$$
p_{1}^{*} \equiv \frac{w_{1}}{A_{1}}
$$

and

$$
\ell \equiv \begin{cases}\mathbb{E}\left[e^{\gamma z}\right] \frac{\frac{1}{\theta}\left(p_{1}^{*}\right)^{1-\theta}}{\left(\frac{1}{\pi_{1}}-\frac{\theta-1}{\theta} p_{1}^{*}\right)\left(\frac{1}{\pi_{1}}\right)^{-\theta}}, & \frac{1}{\pi_{1}}>\frac{\theta-1}{\theta} p_{1}^{*} \\ \infty, & \frac{1}{\pi_{1}} \leq \frac{\theta-1}{\theta} p_{1}^{*}\end{cases}
$$

Using

$$
P_{1}^{1-\theta}=\int_{0}^{1} P_{i, 1}^{1-\theta} d i
$$

It follows that p_{1}^{*} can be implicitly defined as the same function of inflation as in the main text, i.e., $p_{1}^{*}=p_{1}^{*}\left(\pi_{1}\right)$.

Household's Problem at $t=1$ As before, to obtain the boundedly rational demands in period 1, we need to characterize the rational plans in that period. From the point of view of period 1, the conditions that characterize the solution to the utility-maximization problem include

$$
\begin{gathered}
c_{i, t}^{*}=p_{i, 1}^{-\theta} C_{t}^{*} \\
\left(C_{t}^{*}\right)^{\sigma}\left(N_{t}^{*}\right)^{\eta}=w_{t}
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{\beta}\left(\frac{C_{t+1}^{*}}{C_{t}^{*}}\right)^{\sigma}=\frac{R_{t}}{\pi_{t+1}}, \\
\sum_{t=1}^{\infty} \mathcal{Q}_{1, t} P_{t} C_{t}^{*}=\sum_{t=1}^{\infty} \mathcal{Q}_{1, t}\left[W_{t} N_{t}^{*}+\int_{0}^{1} \Pi_{i, t} d i-\mathcal{T}_{t}\right]+D_{1} \\
\mathcal{Q}_{k, t} \equiv \begin{cases}1 & , \text { if } t=k \\
\prod_{\tau=k}^{t-1} \frac{1}{R_{\tau}} & , \text { if } t>k^{\prime}\end{cases}
\end{gathered}
$$

It is convenient to additionally consider the equations

$$
\begin{gathered}
\sum_{t=2}^{\infty} \mathcal{Q}_{2, t} P_{t} C_{t}^{*}=\sum_{t=2}^{\infty} \mathcal{Q}_{2, t}\left[W_{t} N_{t}^{*}+\int_{0}^{1} \Pi_{i, t} d i-\mathcal{T}_{t}\right]+D_{2}^{*} \\
P_{1} C_{1}^{*}+\frac{D_{2}^{*}}{R_{1}}=W_{1} N_{1}^{*}+\int_{0}^{1} \Pi_{i, 1} d i+D_{1}-\mathcal{T}_{1}
\end{gathered}
$$

Plugging the equilibrium variables in the utility-maximization problem of period 1, we obtain that the rational plans in period 1 satisfy

$$
\begin{aligned}
& C_{t}^{*}=C_{2}^{*}, t \geq 2 \\
& N_{t}^{*}=N_{2}^{*}, \quad t \geq 2 \\
& \left(C_{2}^{*}\right)^{\sigma}\left(N_{2}^{*}\right)^{\eta}=1
\end{aligned}
$$

Combining the intertemporal household and government budget constraints from period two onwards,

$$
\begin{aligned}
& \sum_{t=2}^{\infty} \mathcal{Q}_{2, t} P_{t} C_{t}^{*}=\sum_{t=2}^{\infty} \mathcal{Q}_{2, t}\left[W_{t} N_{t}^{*}+\int_{0}^{1} \Pi_{i, t} d i-\mathcal{T}_{t}\right]+D_{2}^{*} \\
\Longleftrightarrow & \sum_{t=2}^{\infty} \mathcal{Q}_{2, t} P_{t} C_{t}^{*}=\sum_{t=2}^{\infty} \mathcal{Q}_{2, t}\left[W_{t} N_{t}^{*}+\int_{0}^{1} \Pi_{i, t} d i-\tau_{n, t} W_{t} N_{t}\right]-D_{2}+D_{2}^{*} \\
\Longleftrightarrow & \frac{1}{1-\beta} C_{2}^{*}=\frac{1}{1-\beta} N_{2}^{*}+\frac{D_{2}^{*}-D_{2}}{P_{2}} .
\end{aligned}
$$

From condition 2 in the equilibrium definition, $D_{2}=D_{2}^{*}$ and therefore

$$
C_{2}^{*}=N_{2}^{*} .
$$

Combining with the intratemporal condition for consumption and labor in period 2,

$$
C_{2}^{*}=N_{2}^{*}=1
$$

Going back to the intertemporal budget constraint in period 1,

$$
\begin{aligned}
& \sum_{t=1}^{\infty} \mathcal{Q}_{1, t} P_{t} C_{t}^{*}=\sum_{t=1}^{\infty} \mathcal{Q}_{1, t}\left[W_{t} N_{t}^{*}+\int_{0}^{1} \Pi_{i, t} d i-\mathcal{T}_{t}\right]+D_{1} \\
\Longleftrightarrow & P_{1} C_{1}^{*}+\frac{1}{R_{1}} \frac{1}{1-\beta} P_{1} C_{2}^{*}=W_{1} N_{1}^{*}+\frac{1}{R_{1}} \frac{1}{1-\beta} P_{1} N_{2}^{*}+\int_{0}^{1}\left(P_{i, 1} c_{i, 1}-W_{1} n_{i, 1}\right) d i \\
\Longleftrightarrow & C_{1}^{*}=w_{1} N_{1}^{*}+\int_{0}^{1}\left(p_{i, 1}-\frac{w_{1}}{A_{1}}\right) c_{i, 1} d i .
\end{aligned}
$$

Since

$$
c_{i, 1}=e^{\tau \widetilde{\epsilon}_{i, 1}} p_{i, 1}^{-\theta} C_{1}^{*},
$$

We obtain the same expression for rational consumption in period 1:

$$
C_{1}^{*}\left(\pi_{1}\right)=\left\{\frac{\left[A_{1} p_{1}^{*}\left(\pi_{1}\right)\right]^{1+\eta}}{\left[\vartheta\left(\pi_{1}\right)\right]^{\eta}}\right\}^{\frac{1}{\sigma+\eta}}
$$

Equilibrium Conditions in Period 1 From the fact that $C_{2}^{*}=1$, the Euler equation in period 1 implies

$$
\frac{1}{\beta}\left[\frac{1}{C_{1}^{*}\left(\pi_{1}\right)}\right]^{\sigma}=R_{1}
$$

Combining with the Taylor rule, we obtain the two equilibrium conditions

$$
C_{1}^{*}\left(\pi_{1}\right)=\left\{\frac{\left[A_{1} p_{1}^{*}\left(\pi_{1}\right)\right]^{1+\eta}}{\left[\vartheta\left(\pi_{1}\right)\right]^{\eta}}\right\}^{\frac{1}{\sigma+\eta}}
$$

and

$$
C_{1}^{*}\left(\pi_{1}\right)=\pi_{1}^{-\frac{\phi}{\sigma}}
$$

Rockets and Feathers Consider again productivity levels

$$
A_{1, H}=1+v
$$

and

$$
A_{1, L}=\frac{1}{1+v^{\prime}}
$$

with $v>0$. Let $\pi_{1, L}(v)$ be the equilibrium inflation associated with a shock of size v that increases costs, and $\pi_{1, H}(v)$ the equilibrium inflation associated with a shock of size v that decreases costs.We can now show an analogous rockets and feathers proposition.

Proposition 4 (Rockets and Feathers With Taylor Rule). Suppose $\sigma=1$ and $\eta=0$. If $\phi>1$, there is \bar{v} such that if $v \geq \bar{v}$,

$$
\left|\ln \pi_{1, L}(v)\right|>\left|\ln \pi_{1, H}(v)\right|
$$

Proof. With $\sigma=1$ and $\eta=1$, we get

$$
C_{1}^{*}\left(\pi_{1}\right)=A_{1} p_{1}^{*}\left(\pi_{1}\right)
$$

from the intratemporal conditions and

$$
C_{1}^{*}\left(\pi_{1}\right)=\pi_{1}^{-\phi}
$$

from the Euler equation. Combining the two, the equilibrium condition for inflation is

$$
\frac{1}{A_{1}}=p_{1}^{*}\left(\pi_{1}\right) \pi_{1}^{\phi}
$$

Let $e_{\text {Taylor }}\left(\pi_{1}\right) \equiv p_{1}^{*}\left(\pi_{1}\right) \pi_{1}^{\phi}$. If $\phi>1$, it is still true that $e_{\text {Taylor }}$ is strictly increasing in inflation, since

$$
e_{\text {Taylor }}\left(\pi_{1}\right)=e\left(\pi_{1}\right) \pi_{1}^{\phi-1}
$$

As shown in the main text's rockets and feathers proposition, $e\left(\pi_{1}\right)$ is strictly increasing. When $\phi>1$, so is $e_{\text {Taylor }}\left(\pi_{1}\right)$. Therefore, the equilibrium is unique, and inflation decreases in A_{1}.

As before, there is v such that $\pi_{1, L}=\frac{\theta}{\theta-1}$ and $p_{1}^{*}\left(\pi_{1, L}\right)=1$:

$$
1+v=\left(\frac{\theta}{\theta-1}\right)^{\phi}
$$

To show that for this $v,\left|\ln \pi_{1, L}(v)\right|>\left|\ln \pi_{1, H}(v)\right|$, we need only to show that

$$
e_{\text {Taylor }}\left(\frac{\theta-1}{\theta}\right)<\left(\frac{\theta-1}{\theta}\right)^{\phi}
$$

Substituting,

$$
p_{1}^{*}\left(\pi_{1, H}(v)\right)\left(\frac{\theta-1}{\theta}\right)^{\phi}<\left(\frac{\theta-1}{\theta}\right)^{\phi} \Longleftrightarrow p_{1}^{*}\left(\pi_{1, H}(v)\right)<1 .
$$

But this inequality holds, since $\frac{\theta-1}{\theta}<1$, the region in which $p_{1}^{*}<1$. This completes the proof.

References

Ater, I. AND O. Gerlitz (2017): "Round prices and price rigidity: Evidence from outlawing odd prices," Journal of Economic Behavior E Organization, 144, 188-203.

Blinder, A., E. R. Canetti, D. E. Lebow, and J. B. Rudd (1998): Asking about prices: a new approach to understanding price stickiness, Russell Sage Foundation.

CALVO, G. A. (1983): "Staggered prices in a utility-maximizing framework," Journal of monetary Economics, 12, 383-398.

Della Vigna, S. and U. Malmendier (2006): "Paying not to go to the gym," American Economic Review, 96, 694-719.

ILUT, C. AND R. VALCHEV (2023): "Economic agents as imperfect problem solvers," The Quarterly Journal of Economics, 138, 313-362.

Ilut, C., R. Valchev, and N. Vincent (2020): "Paralyzed by fear: Rigid and discrete pricing under demand uncertainty," Econometrica, 88, 1899-1938.

KARRENBROCK, J. D. (1991): "The behavior of retail gasoline prices: symmetric or not?" Federal Reserve Bank of St. Louis Review, 73, 19-29.

KASHYAP, A. K. (1995): "Sticky prices: New evidence from retail catalogs," The Quarterly Journal of Economics, 110, 245-274.

Levy, D., D. Lee, H. Chen, R. J. Kauffman, and M. Bergen (2011): "Price points and price rigidity," Review of Economics and Statistics, 93, 1417-1431.

MATĚJKA, F. (2015): "Rigid pricing and rationally inattentive consumer," Journal of Economic Theory, 158, 656-678.

NeUmark, D. AND S. A. Sharpe (1992): "Market structure and the nature of price rigidity: evidence from the market for consumer deposits," The Quarterly Journal of Economics, 107, 657-680.

PeltZman, S. (2000): "Prices rise faster than they fall," Journal of Political Economy, 108, 466-502.

Stanovich, K. E. and R. F. West (2000): "Advancing the rationality debate," Behavioral and brain sciences, 23, 701-717.

UK Office for National Statistics, T. (2019): "Shrinkflation: How many of our products are getting smaller?" .

Woodford, M. (2003): Interest and Prices: Foundations of a Theory of Monetary Policy, Princeton, NJ: Princeton University Press, 1 ed.

[^0]: *We thank Gadi Barlevy, Cosmin Ilut, and Yueran Ma for their comments.
 ${ }^{\dagger}$ Northwestern University, NBER, and CEPR.
 ${ }^{\ddagger}$ Northwestern University.
 §Banco de Portugal, Catolica-Lisbon School of Business \& Economics, and CEPR.

[^1]: ${ }^{1}$ Matějka (2015) is another interesting example of strategic interaction between producers and households. In his model, monopolistic producers choose prices as a function of unit input costs. However, households cannot observe prices perfectly due to limited information-procession ability. As a result, it is optimal for monopolists to implement simple pricing policies where prices take only a few values. These policies make prices easier to observe for households, thereby reducing pricing uncertainty and increasing sales.

[^2]: ${ }^{2}$ President Biden deemed shrinkflation important enough to merit discussion in a February 2024 Super Bowl video broadcast. The president noted that "sports drinks bottles are smaller, a bag of chips has fewer chips, but they're still charging us just as much [...] ice cream cartons have shrunk in size but not in price. [...] Some companies are trying to pull a fast one by shrinking the products little by little and hoping you won't notice."
 ${ }^{3}$ See Della Vigna and Malmendier (2006) for evidence that consumers often fail to assess the value

