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1. A Discrete Time Approximation to the Model

In this section we describe a discrete time approximation to our model. We divide time into
small intervals each of length n years. So, for example, n = 1/12 would imply that time was
being measured in months. The variable t is used here to index these time intervals. All flow
variables defined in the main text are measured as flows per small interval but are expressed
at annual rates.

1.1. The Household’s Problem

Define the dollar prices of nontraded and traded goods:

pNt = PN
t /St (1.1)

pTt = P T
t /St = (P̄t + δPN

t )/St = 1 + δpNt . (1.2)

Also define the CPI measured in dollars as

pt = Pt/St = (p
T
t )

ω(pNt )
1−ω. (1.3)

The household’s disposable income is

yDt = yt + rB/St + vt − τ t. (1.4)

where

yt = yTt + yNt p
N
t , (1.5)

vt = v̂tpt + ṽt, and (1.6)

τ t = τ yyt + τLt . (1.7)
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The representative household’s flow budget constraint for t ≥ 0 is given by:

ft = (1 + nrt−1)ft−1 + Zt − (Mt −Mt−1)/St, (1.8)

where
Zt = n

¡
yDt − pTt c

T
t − pNt c

N
t

¢
. (1.9)

Here Zt/n represents household saving, measured at annual rates. Iterating on the flow
budget constraint starting at time 0, we have:

f−1 = (1 + nr−1)−1f0 − (1 + nr−1)−1 [Z0 − (M0 −M−1)/S0]
= (1 + nr−1)−1(1 + nr0)

−1f1 − (1 + nr−1)−1(1 + nr0)
−1 [Z1 − (M1 −M0)/S1]−

(1 + nr−1)−1 [Z0 − (M0 −M−1)/S0]
...

= Ξt−1ft−1 −
t−1X
j=0

Ξj [Zj − (Mj −Mj−1)/Sj] .

where

Ξt =
tY

j=0

(1 + nrj−1)−1 = (1 + nr−1)−1(1 + nr0)
−1 · · · (1 + nrt−1)−1. (1.10)

When the interest rate is constant (as in the primary example explored in the paper) Ξt

reduces to (1 + nr)−(t+1). Imposing the condition limt→∞ Ξt−1ft−1 = 0, we obtain the in-
tertemporal budget constraint:

f−1 +
∞X
t=0

ΞtZt =
∞X
t=0

Ξt(Mt −Mt−1)/St. (1.11)

The cash-in-advance constraint is η(P T
t c

T
t + PN

t cNt ) ≤ Mt which we assumed is binding
and rewrite as

η(pTt c
T
t + pNt c

N
t ) =Mt/St. (1.12)

The household’s problem is to choose {Mt, ft, c
T
t , c

N
t }∞t=0 to maximize:

∞X
t=0

(1 + ρn)−tn
c1−σt − 1
1− σ

, (1.13)

where
ct = (c

T
t )

ω(cNt )
1−ω, (1.14)

subject to its lifetime budget constraint, (1.11), and the cash-in-advance constraint, (1.12).
The household takes the initial values of f−1, B and M−1, the paths for rt, yTt , y

N
t , v̂t, ṽt,

τLt , p
T
t , p

N
t , pt and St and the value of τ y as given.
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1.2. Solving the Household’s Problem

The Lagrangian for the household’s problem is

L =
∞X
t=0

(1 + ρn)−tn

£
(cTt )

ω(cNt )
1−ω¤1−σ − 1

1− σ
+

+
∞X
t=0

Λt [(1 + nrt−1)ft−1 + Zt − (Mt −Mt−1)/St − ft]

+
∞X
t=0

Θt

£
Mt/St − η(pTt c

T
t + pNt c

N
t )
¤

subject to the definition of Zt, (1.9).
The first-order conditions, other than the constraints, are

cTt : (1 + ρn)−tn
£
(cTt )

ω(cNt )
1−ω¤1−σ ω(cTt )−1 = (Λtn+Θtη)p

T
t ,

cNt : (1 + ρn)−tn
£
(cTt )

ω(cNt )
1−ω¤1−σ (1− ω)(cNt )

−1 = (Λtn+Θtη)p
N
t ,

ft : Λt = Λt+1(1 + nrt),

Mt : Λt = Λt+1St/St+1 +Θt.

It is convenient to define λt = Λt(1 + ρn)t and θt = Θt(1 + ρn)t. We then have:

n
£
(cTt )

ω(cNt )
1−ω¤1−σ ω(cTt )−1 = (λtn+ θtη)p

T
t , (1.15)

n
£
(cTt )

ω(cNt )
1−ω¤1−σ (1− ω)(cNt )

−1 = (λtn+ θtη)p
N
t , (1.16)

λt = λt+1(1 + nrt)/(1 + ρn), (1.17)

λt = (1 + ρn)−1λt+1St/St+1 + θt. (1.18)

1.3. The Government Budget Constraint

The government’s flow budget constraint is:

bt = (1 + nrt−1)bt−1 +Xt − (Mt −Mt−1)/St, (1.19)

where
Xt = n

¡
gTt + pNt g

N
t + ptv̂t + ṽt − τ t + rB/St

¢
. (1.20)

Here Xt/n represents the government’s primary deficit. The government’s lifetime budget
constraint at time 0 is given by

b−1 +
∞X
t=0

ΞtXt =
∞X
t=0

Ξt(Mt −Mt−1)/St. (1.21)
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1.4. Aggregate Resource Constraints

The equilibrium condition for nontradables is given by:

yNt = cNt + δcTt + gNt . (1.22)

If we aggregate (1.8) and (1.19) we get a flow resource constraint for tradables:

ft − bt = (1 + nrt−1)(ft−1 − bt−1) + Zt −Xt,

or
at = (1 + nrt−1)at−1 + Zt −Xt, (1.23)

where at = ft − bt is the country’s net foreign asset position. Notice that, using (1.4), (1.5),
(1.9), (1.20), (1.22), and the definitions of pNt and p

T
t , we can show that Zt−Xt = n(yTt −gTt −

cTt ). From (1.23), the lifetime resource constraint for tradables is a−1+
P∞

t=0 Ξt(Zt−Xt) = 0.

2. Equilibrium

Given the initial values of b−1, B, f−1, and M−1, the paths of yTt , y
N
t , g

T
t , g

N
t , v̂t, ṽt, and τLt

and the value of τ y, a competitive equilibrium consists of paths for bt, Mt, ft, cTt , c
N
t , p

T
t , p

N
t ,

pt and St such that:
(a) the paths for Mt, ft, cTt , and cNt solve the household’s problem,
(b) the government’s flow and lifetime budget constraints are satisfied,
(c) the market clearing condition for nontraded goods is satisfied,1

(d) the paths of Mt and St are consistent with the government’s threshold rule for aban-
doning the fixed exchange rate regime.

3. A Sustainable Fixed Exchange Rate Regime

It is straightforward to characterize an equilibrium in which the fixed exchange rate regime
is sustained indefinitely. For our purposes it is convenient to characterize an equilibrium of
this type that corresponds to a steady state for the economy. We assume that rt = r = ρ,
yTt = yT , yNt = yN , gTt = gT , gNt = gN , v̂t = v̂, ṽt = ṽ, and τLt = τL for all t, and assume
values for τ y, b−1, B, f−1 andM−1. Since the exchange rate is fixed (by assumption), St = S
for all t, for some arbitrary S. We conjecture that the competitive equilibrium has the
following properties: bt = b = b−1, ft = f = f−1, Mt = M = M−1, cNt = cN , cTt = cT ,
pNt = pN , pTt = pT = 1 + δpN and pt = p = (pT )ω(pN)1−ω for all t.
Given our conjectures, the resource constraint for tradables, (1.23), implies

cT = ra−1 + yT − gT , (3.1)

where, recall, at = ft − bt. From (1.22) the consumption of nontradables is given by

cN = yN − gN − δcT . (3.2)

1The lifetime resource constraint for traded goods is not a separate constraint, as it holds as long as the
household obeys its lifetime budget constraint and the government satisfies its lifetime budget constraint.
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From these it is convenient to solve for

c = (cT )ω(cN)1−ω. (3.3)

Next consider the household’s problem. Notice that the household’s first-order condition
for ft implies λt = λ for all t, when rt = ρ for all t. From this result and the first-order
condition for Mt we have θt = θ = ρnλ/(1 + ρn) for all t. Eliminating θ, the household’s
first-order conditions for cT and cN can be rewritten as:

nc1−σω/cT = λ(n+
ρn

1 + ρn
η)
¡
1 + δpN

¢
,

nc1−σ(1− ω)/cN = λ(n+
ρn

1 + ρn
η)pN .

Given our previous results, the unknowns in these two equations are λ and pN . Taken
together the two equations imply:

pN =
(1− ω)cT

ωcN − (1− ω)cT δ
. (3.4)

Hence
pT = 1 + δpN . (3.5)

and p = (pT )ω(pN)1−ω.
When we calibrate the model we choose the arbitrary normalization yT = yN = 1 and

set the relative price of nontradables to a value pN consistent with the share of nontradables
in GDP in the model, pN/(1 + pN), being equal to the corresponding value in our data set.
We set gT and gN consistent with the data. Notice that this implies that (3.2), (3.1), and
(3.4) then form a system of three equations which can be solved for three unknowns: cT , cN ,
and a−1.
Our results thus far can be used to determine the steady state values of

λ =
n(1− ω)

(n+ ρn
1+ρn

η)pNcN
c1−σ, (3.6)

and
θ = ρnλ/(1 + ρn). (3.7)

Notice that at this point we can pin down the money supply from the cash-in-advance
constraint:

M = ηS(pT cT + pNcN). (3.8)

We have τ t = τ = τ y(yT + pNyN) + τL, gt = gT + pNgN , and vt = v = v̂p + ṽ. Hence, the
government’s lifetime budget constraint implies that

τ = rb−1 + g + v + rB/S. (3.9)
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4. Calibration

Our calibration of the model is also discussed in the main text. Here we describe some
of the details useful in understanding our programs for solving the model. The particular
parameter values are justified in the main text.
We set the steady state value of r = 0.055 and let ρ = r. We set σ = 1, δ = 0.5, ω = 0.5,

S = 1, yT = 1, and yN = 1. We assume that the share of tradables output in GDP is
sT = 0.358. Since GDP is y = yT + pNyN this implies that yT = sT (yT + pNyN) or

pN =
(1− sT )yT

sTyN
=
1− sT

sT
.

Hence
pT = 1 + δpN .

Also PN = pNS, and y = yT + pNyN . We set the steady state value of total government
spending g = 0.154y. Then we set gT = 0.132g and gN = (g − gT )/pN . Equations (3.4),
(3.1) and (3.2) imply

a−1 =
ωpN(yN − gN)− ¡1− ω + δpN

¢
(yT − gT )

(1− ω + δpN) r
.

We set b−1 = −0.057y, implying f−1 = a−1 + b−1. We have cT and cN from (3.1) and (3.2)
and c from (3.3). We setM−1 = 0.067Sy and set η consistent with (1.12) in the steady state:
η = M/[S(pT cT + pNcN)]. We set v = 0.043y, and, when we incorporate indexed transfers
we choose v̂pN = 0.027y (in the program we define V = 0.027yS, so this V is equivalent to
v̂PN). The remaining dollar transfers, in the steady state, are ṽ = v − v̂pN . When we have
nominal debt we set B = 0.075Sy.
Our previous assumptions allow us to determine λ and θ in the steady state using (3.6)

and (3.7). We set steady state taxes, τ , consistent with the lifetime budget constraint, 3.9.
We set τ y = 0.216 and set τL = τ − τ yy. We set the size of the banking sector bailout to
φ = 0.135y and MT = 1.12. We set t∗ = 0.35/n and T = 0.5/n, where 1/n is the number of
periods in a year.

5. A Competitive Equilibrium with a Crisis

We assume that the crisis involves an increase in the present value of transfers. In particular,
we assume that ½

ṽt = ṽ for 0 ≤ t < T 0,
ṽt > ṽ for t ≥ T 0,

and that ∞X
t=0

Ξtnṽt =
∞X
t=0

Ξtnṽ + φ. (5.1)

Here φ represents the total cost of a bailout of the banking sector.
Once the information about the increase in prospective deficits arrives at time 0, the

government initially adjusts monetary policy to defend the fixed exchange rate regime. We
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will denote the level of the money supply to which the government adjusts at date 0 as M0,
but this will, of course, be endogenously determined. The government uses a threshold rule
for abandoning the fixed exchange rate regime. Let date t∗ be the first date at which, with
the exchange rate still fixed at S, the demand for money falls to the level M0(1− χ), with
χ > 0. In the following period the government abandons the fixed exchange rate regime and
leaves the money supply unchanged until date T . The government sets the money supply
equal to Mt =MT (1 + µn)t−T for t ≥ T .
We assume that yTt = yT , yNt = yN , gTt = gT , gNt = gN , v̂t = v̂ and τLt = τL for

all t, and assume values for τ y, b−1, B, f−1 and M−1. For simplicity, we will assume that
rt = r for t < t∗ and for t ≥ Tr > t∗, but we will allow for a more general process for rt at
intervening dates, t∗ ≤ t < Tr. We treat t∗ as a parameter to be calibrated and determine
χ endogenously, across experiments, rather than vice versa. By definition we set St = S, an
arbitrary value, for 0 ≤ t ≤ t∗. We choose calibrated values for T and MT .
We must solve for 11 paths bt, Mt, ft, cTt , c

N
t , p

T
t , p

N
t , pt, St, λt and θt such that the

household’s first order conditions, (1.15)—(1.18), its budget constraint, (1.8), the cash-in-
advance constraint, (1.12), the equations defining pTt and pt, (1.2) and (1.3), the resource
constraint for nontraded goods, (1.22), and the government budget constraint, (1.19), are
satisfied. These represent 10 equations, suggesting that the 11 paths might be underdeter-
mined. However, the exchange rate, St, is exogenous for 0 ≤ t ≤ t∗. Also, given a value of
µ, the process for Mt is exogenous for t ≥ T . Finally, we have Mt = Mt−1 for t∗ < t < T .
These restrictions represent, in a sense, an additional equation.
As with any system of dynamic first order conditions, given a conjectured value of µ there

will be infinitely many paths for our 11 variables satisfying our 11 equations. The trick is
to find the unique path for which the government and household lifetime budget constraints
hold. This involves iterating over µ and the long-run level of tradables consumption until
we find a path along which these constraints are satisfied. We will also indicate, below, how
we solve for χ.

5.1. The Post-Crisis Steady State: t ≥ T̄

Define T̄ = max{Tr, T}. Our assumptions about rt mean that, from (1.17), λt = λ̄ for t ≥ Tr
and, therefore, λt = λ̄ for t ≥ T̄ . We do not yet solve for λ̄. Instead we conjecture a solution
in which cTt = c̄T for t ≥ T̄ + 1. Our algorithm for solving the model begins with an outer
loop in which we guess the value of c̄T .
It follows from (1.22) that

cNt = c̄N ≡ yN − gN − δc̄T , for t ≥ T̄ + 1. (5.2)

It follows that ct = c̄ ≡ (c̄T )ω(c̄N)1−ω for t ≥ T̄ + 1. We conjecture that St+1/St = 1 + µn
for t ≥ T̄ + 1. Defining N ≡ (1 + ρn)(1 + µn), we then have, from (1.18),

θt = θ̄ = λ̄
N − 1
N

, for t ≥ T̄ + 1. (5.3)

The first-order conditions for cTt and cNt , (1.15) and (1.16), combined with (5.3), imply that
pNt is constant and equal to p̄

N for t ≥ T̄ + 1 and that p̄N satisfies:

nc̄1−σω/c̄T = λ̄

µ
n+

N − 1
N

η

¶¡
1 + δp̄N

¢
(5.4)
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nc̄1−σ(1− ω)/c̄N = λ̄

µ
n+

N − 1
N

η

¶
p̄N . (5.5)

Equations (5.4) and (5.5) can be solved for λ̄ and p̄N :

p̄N =
(1− ω)c̄T

ωc̄N − δ(1− ω)c̄T
, (5.6)

and

λ̄ =
nNc̄1−σ(1− ω)

[nN + (N − 1)η] p̄N c̄N . (5.7)

It follows that θ̄ can then be determined using (5.3). The cash-in-advance constraint, (1.12),
implies Mt/St = m̄ for t ≥ T̄ + 1, where

m̄ = η[(1 + δp̄N)c̄T + p̄N c̄N ]. (5.8)

Hence St = Mt/m̄ for t ≥ T̄ + 1. This, of course, verifies our guess that St+1/St = 1 + µn
for t ≥ T̄ + 1, since Mt+1/Mt = 1 + µn for t ≥ T and T ≤ T̄ .
We also note, now, that the solution for λ̄ allows us to compute λt for all t using (1.17).

The recursion: λt−1 = λt(1 + nrt−1)/(1 + ρn) can be used to generate the sequence λT̄−1,
λT̄−2, . . . , λt∗, using the initial condition λT̄ = λ̄. We use the notation λ to denote the
solution for λt∗. Since rt = ρ for 0 ≤ t < t∗, we have λt = λ for 0 ≤ t < t∗.

5.2. The Period Between T and T̄ + 1

This interval is just the point T if T = T̄ . On the other hand, if Tr > T , implying that
T̄ = Tr > T this interval corresponds to more than one point. We have already used (1.17)
to solve for the entire {λt} sequence. We also know thatMt =MT (1+µn)

t−T in this interval.
Hence we can use (1.15), (1.16), (1.18), (1.22) and (1.12) to solve recursively for cTt , c

N
t , p

N
t ,

θt and St starting at t = T̄ and working backward in time until we get to date T .
Let x denote the unknown value of cTt . Given a conjectured value of x, from (1.22) we

have
cNt (x) = yN − gN − δx. (5.9)

We can then solve for pNt (x) using (1.15) and (1.16)

pNt (x) =
(1− ω)x

ωcNt (x)− δ(1− ω)x
. (5.10)

From (1.16) this implies

θt(x) =
n

η

∙
[xωcNt (x)

1−ω]1−σ(1− ω)

pNt (x)c
N
t (x)

− λt

¸
. (5.11)

From (1.18) we then have

St(x) = (1 + ρn)[λt − θt(x)]St+1/λt+1. (5.12)
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Finally, given (1.12) we get

cTt (x) =
Mt/St(x)− ηpNt (x)c

N
t (x)

η[1 + δpNt (x)]
. (5.13)

We solve the equation cTt (x) = x to find the value of cTt . Once we have cTt we have the
values of all the other variables. We can proceed with this scheme until we have solved for
all variables for T ≤ t ≤ T̄ . In our code, we define a function FlexTTB which computes
cTt (x)− x for a given x. We find the zero of this function using fzero.

5.3. The Pre-Crisis Period: 0 ≤ t < t∗

We have assumed that St = S for 0 ≤ t ≤ t∗. Hence we have

θt = θ = λ
ρn

1 + ρn
for 0 ≤ t < t∗. (5.14)

The conditions (1.15), (1.16) and (1.22) imply that cTt , c
N
t and p

N
t are constant and equal to

cT , cN and pN , respectively, for 0 ≤ t < t∗. Let x denote the unknown value of cT . We can
write cN as cN(x) using (1.22):

cN(x) = yN − gN − δx (5.15)

and then use (1.15) and (1.16) to write pN as:

pN(x) =
(1− ω)x

ωcN(x)− δ(1− ω)x
(5.16)

We can then use (1.15) to define a nonlinear equation in x:

n
£
xωcN(x)1−ω

¤1−σ
ω/x = (λn+ θη)[1 + δpN(x)]. (5.17)

We define a MATLAB function Flexlow as the difference between the two sides of (5.17)
and find its zero using the routine fzero. Once we have the solution for x this is the value
of cT and it is then straightforward to again use (5.15) and (5.16) to solve for cN and pN .
The cash-in-advance constraint, (1.12) implies that

Mt =M ≡ η
£
(1 + δpN)cT + pNcN

¤
S, for 0 ≤ t < t∗. (5.18)

5.4. The Transition Period: t∗ ≤ t < T

By construction Mt = M(1− χ) for t∗ ≤ t < T so the money supply path in the transition
period is fully determined given a value of χ. We recursively generate St starting from t∗,
where we have assumed St∗ = S. We then work forward, allowing us to take St as given
when solving for the other variables. Starting from t = t∗, we solve for θt, cTt , c

N
t , p

N
t , and

from these determine the next value of St.
We use (1.12), (1.15) (1.16) and (1.22), to solve for cTt , c

N
t , p

N
t , and θt. Let x denote

the unknown value of cTt . Equation (1.22) implies than cNt is given by (5.9). We also know
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that (1.15) and (1.16) imply that pNt is given by (5.10). But pNt is also given by (1.12):
(η−1mt − x)/[δx + cNt (x)] where mt = Mt/St is real balances. When these equations are
combined we find that x is the solution to the quadratic equation

δx2 − ¡yN − gN + δη−1mt

¢
x+ ωη−1mt(y

N − gN) = 0. (5.19)

When δ = 0 we have the simple solution x = ωmt/η. When δ > 0 there are two solutions to
the quadratic equation:

x =

¡
yN − gN + δη−1mt

¢±q(yN − gN + δη−1mt)
2 − 4δ(yN − gN)ωη−1mt

2δ

It is easy to establish that since ω < 1 the larger root is greater than (yN − gN)/δ, violating
feasibility.2 The smaller root is bounded below by 0 and above by (1+ω)η−1mt/2.3 Clearly
the only possibility is to use the smaller root.
Once we have cTt we generate c

N
t , p

N
t and θt from:

cNt = yN − gN − δcTt , (5.20)

pNt =
Mt/St − ηcTt
η(δcTt + cNt )

, (5.21)

θt =
n

η

µ
c1−σt (1− ω)

pNt c
N
t

− λt

¶
, (5.22)

where ct = (cTt )
ω(cNt )

1−ω. This allows us to generate St+1 using (1.18):

St+1 =
λt+1

λt − θt

St
1 + ρn

. (5.23)

5.5. Iterating on χ

When we are done generating the data for the “transition period” we will have a sequence
{St} for t∗ < t ≤ T . Notice that the ST generated this way, S

(2)
T may not match the ST we

generated in the “period between T and T̄ ,” denoted S
(1)
T . If it does not match, then the

value of χ must be changed. If S(2)T > S
(1)
T we have found that in practice we must make χ

smaller to find a fixed point.

5.6. Iterating on c̄T

The lifetime budget constraint of the household, (1.11), must be satisfied. We have assumed
that

P∞
t=0 Ξtnṽt =

P∞
t=0 Ξtnṽ + φ. Using (1.4)—(1.7) and (1.9) we can rewrite the lifetime

budget constraint, (1.11), as

f−1+φ+
∞X
t=0

Ξtn

½
(1− τ y)yT − (1 + δpNt )c

T
t + pNt

£
(1− τ y)yN − cNt

¤− τLt + v̂pt + ṽ +
rB

St

¾
2To see this one can set ω = 1 making the larger root as small as possible. In this case, one obtains

x = (yN − gN )/δ.
3To see this one can set ω = 0 making the smaller root as small as possible. In this case, one obtains

x = 0. On the other hand it is easy to show that the smaller root is less than (1 + ω)
¡
δη−1mt

¢
/(2δ) and

that it is also less than
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=
∞X
t=0

Ξt
Mt −Mt−1

St
. (5.24)

It will be useful to note that given the rt sequence we can define the Ξt sequence ahead of
time as

Ξt =

⎧⎨⎩ (1 + nr)−(t+1) for 0 ≤ t ≤ t∗

Ξt∗(1 + nrt∗)
−1 · · · (1 + nrt−1)−1 for t∗ < t ≤ Tr

ΞTr(1 + nr)−(t−T ) for t > Tr.

The right hand side of (5.24), which I will denote by RHS, is seigniorage. It equals

RHS = Ξ0
M −M

S
− Ξt∗

Mχ

S
+ ΞT

MT −M(1− χ)

ST
+

T̄X
t=T+1

Ξt
Mt −Mt−1

St
+ ΞT̄

µm̄

(1 + µn)r
. (5.25)

We can compute the relevant pieces of the left-hand side as follows. Define LHS1 ≡P∞
t=0 ΞtZ1t, where

Z1t = n
©
(1− τ y)yT − (1 + δpNt )c

T
t + pNt

£
(1− τ y)yN − cNt

¤− τL
ª
.

Since

Z1t =

½
Z1 for 0 ≤ t < t∗

Z̄1 for t ≥ T̄ + 1
,

Z1 = n
©
(1− τ y)yT − (1 + δpN)cT + pN [(1− τ y)yN − cN ]− τL

ª
,

Z̄1 = n
©
(1− τ y)yT − (1 + δp̄N)c̄T + p̄N [(1− τ y)yN − c̄N ]− τL

ª
,

we have

LHS1 = (1− Ξt∗−1)
Z1
nr
+

T̄X
t=t∗

ΞtZ1t +
ΞT̄

nr
Z̄1. (5.26)

We also have LHS2 ≡
P∞

t=0 ΞtnrB/St so that

LHS2 =
B

S
(1− Ξt∗) + nrB

T̄X
t=t∗+1

Ξt/St + nrB
ΞT̄

(N − 1)MT̄/m̄
. (5.27)

We have LHS3 ≡
P∞

t=0 Ξtn(v̂pt + ṽ) so that

LHS3 = (1− Ξt∗−1)
v̂p+ ṽ

r
+ n

T̄X
t=t∗

Ξt(v̂pt + ṽ) +
ΞT̄

r
(v̂p̄+ ṽ), (5.28)

where p = (1 + δpN)ω(pN)1−ω and p̄ = (1 + δp̄N)ω(p̄N)1−ω.
If we find that the household’s lifetime budget constraint in not satisfied, we change our

guess for c̄T .

11



5.7. Iterating on µ

Using (3.9), (5.1), (5.25), (5.27), (5.28), we can rewrite the government’s lifetime budget
constraint, (1.21), as

φ+ LHSG
1 + LHSG

2 + LHS2 + LHS3 − 1
r
(g − τ + rB/S + v) = RHS,

where LHSG
1 ≡

P∞
t=0 Ξtn

¡
gT + pNt g

N
¢
and LHSG

2 ≡ −
P∞

t=0 Ξtn[τ
y
¡
yT + yNpNt

¢
+ τLt ]. We

can show that

LHSG
1 = (1− Ξt∗−1)

g

r
+

T̄X
t=t∗

Ξtn(g
T + pNt g

N) + ΞT̄

ḡ

r

where g = gT + pNgN and ḡ = gT + p̄NgN , and

LHSG
2 = −

(
(1− Ξt∗−1)

τ

r
+

T̄X
t=t∗

Ξtn
£
τ y(yT + yNpNt ) + τL

¤
+ ΞT̄

τ̄

r

)
where τ = τ y(yT + yNpN) + τL and τ̄ = τ y(yT + yN p̄N) + τL. If the government’s lifetime
budget constraint is not satisfied, we adjust our guess for µ.

6. Sticky Prices

We make the same assumptions regarding yTt , y
N
t , g

T
t , g

N
t , v̂t, τ

L
t , τ

y, b−1, B, f−1, M−1 and
rt as in the case of the competitive equilibrium. When nontradable prices are sticky they do
not clear the market for nontradables after the crisis. There will either be excess demand,
in which case nontradables are rationed to households (whose first-order conditions for cNt
don’t hold), or there will be excess supply, in which case resources are wasted (the market
clearing condition for nontraded goods is slack).
We must solve for 10 paths bt, Mt, ft, cTt , c

N
t , p

T
t , pt, St, λt and θt such that the house-

hold’s first order conditions, (1.15), (1.17) and (1.18), its budget constraint, (1.8), the cash-
in-advance constraint, (1.12), the equations defining pTt and pt, (1.2) and (1.3) and the
government budget constraint, (1.19), are satisfied. Additionally, the resource constraint for
nontraded goods, (1.22), must be satisfied if (1.16) is not satisfied, while (1.16) must be
satisfied if (1.22) is slack.
We add the following condition to capture price stickiness in the nontraded goods sector:

PN
t = PN for 0 ≤ t ≤ Tp. For t > Tp we assume that PN

t = PN(1 + µn)t−Tp. We define
T̄ = max {Tr, T, Tp − 1} so that if Tp > max {Tr, T}, Tp = T̄ + 1.

6.1. The Post-Crisis Steady State: t ≥ T̄

As in the competitive equilibrium, (1.17) implies λt = λ̄ for t ≥ T̄ . We conjecture a solution
in which cTt = c̄T , cNt = c̄N , θt = θ̄, St+1 = (1+µn)St, and pNt = p̄N for t ≥ T̄ +1. Generally
speaking nontraded goods will be underpriced in the long-run steady state (p̄N will be “too
low” due to price stickiness), so we will impose (1.22) and relax (1.16). Given a value for c̄T ,
(1.22) implies

c̄N = yN − gN − δc̄T ,

12



while (1.12) implies

ST̄+1 =
MT̄+1 − η

¡
δc̄T + c̄N

¢
PN
T̄+1

ηc̄T
.

Here MT̄+1 = MT (1 + µn)T̄+1−T while PN
T̄+1

= PN(1 + µn)T̄+1−Tp . We then have p̄N =

PN
T̄+1

/ST̄+1. Then (1.15) and (1.18) can be solved for λ̄ and θ̄:

λ̄ =
nNc̄1−σω/c̄T

[Nn+ (N − 1)η] (1 + δp̄N)
(6.1)

and
θ̄ = λ̄(N − 1)/N. (6.2)

6.2. The Period Between T and T̄ + 1

Once we obtain λ̄ we can again use (1.17) to solve for the entire {λt} sequence. We also know
that Mt = MT (1 + µn)t−T in this interval and PN

t is either PN if t ≤ Tp or PN(1 + µn)t−Tp

if t > Tp. Generally speaking nontraded goods will be underpriced so we will impose (1.22)
and relax (1.16). We can use (1.15), (1.18), (1.22) and (1.12) to solve recursively for cTt , c

N
t ,

θt and St starting at t = T̄ and working backward in time until we get to date T . Let x
denote the unknown value of cTt . Given a conjectured value of x, (1.22) implies

cNt (x) = yN − gN − δx.

Equation (1.12) then implies that

St(x) =
Mt − η[δx+ cNt (x)]P

N
t

ηx
.

We can then use (1.18) to solve for θt

θt(x) = λt − (1 + ρn)−1λt+1St(x)/St+1.

If our conjecture is correct then from (1.15):

n
£
xωcNt (x)

1−ω¤1−σ ω/x− [λtn+ θt(x)η][1 + δPN
t /St(x)] = 0. (6.3)

In our code, we define a function StickyTTB which is the left-hand side of (6.3) for a given
x. We find the zero of this function using fzero. Once we have cTt we have the values of all
the other variables. We can proceed with this scheme until we have solved for all variables
for T ≤ t ≤ T̄ .

6.3. The Pre-Crisis Period: 0 ≤ t < t∗

We have assumed that St = S for 0 ≤ t ≤ t∗. As with flexible prices, the fact that λt = λ
for t ≤ t∗ implies that θt = θ as given in (5.14). Since PN

t = PN for 0 ≤ t ≤ t∗, we have
pNt = pN = pN = PN/S for 0 ≤ t ≤ t∗. We conjecture that cTt = cT and cNt = cN for
0 ≤ t ≤ t∗.
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To solve for cT and cN we first assume that (1.15) and (1.16) hold and that (1.22) does
not hold with equality. Solving (1.15) and (1.16) for cT and cN we get:

cT =

"
(λn+ θη)(1 + δpN)

nω

# (ω−1)σ−ω
σ ∙

n(1− ω)

(λn+ θη)pN

¸(ω−1)σ−1
σ

, (6.4)

cN =

∙
n(cT )ω(1−σ)(1− ω)

(λn+ θη)pN

¸ 1
ω+(1−ω)σ

. (6.5)

Using these solutions we check whether yN − gN − δcT − cN ≥ 0. If it is we stop.
If the condition we checked in the previous paragraph is violated, then we abandon the

household’s first order condition for cNt , (1.16), and impose the resource constraint, (1.22),
instead. Letting x be the unknown value of cT we use (1.22) to determine

cN(x) = yN − gN − δx

and use (1.15) to get the following nonlinear equation in x:

nω
£
xωcN(x)1−ω

¤1−σ
= (λn+ θη)(1 + δpN)x. (6.6)

We define a MATLAB function Stickylow as the difference between the two sides of (6.6)
and find its zero using the routine fzero. The solution, x, is cT . We solve forMt =M using
(5.18).

6.4. The Transition Period: t∗ ≤ t < T

When prices are sticky we will use (1.12), (1.15), and either (1.16) or (1.22) to solve for θt,
cTt , and c

N
t . We always know the current value of St, so we also know pNt = PN

t /St. We also
know that Mt =M(1− χ).

n
£
xω(cNt )

1−ω¤1−σ ω = (λtn+ θtη)(1 + δpNt )x, (6.7)

cNt =
1− ω

ω

1 + δpNt
pNt

cTt , (6.8)

ηpNt c
N
t + η(1 + δpNt )c

T
t =Mt/St

Assuming that (1.22) is the equation that does not hold with equality, we can combine
(1.15) and (1.16) to get:

cNt =
1− ω

ω

1 + δpNt
pNt

cTt

Using (1.12), this implies

cTt =
ωMt/St

η (1 + δpNt )

We can then use (1.16) to obtain θt:

θt =
n

η

∙
c1−σt (1− ω)

cNt p
N
t

− λt

¸
,
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where ct = (cTt )
ω(cNt )

1−ω.
If at any point (1.22) is violated, in that cNt is too large, we must let the first-order

condition for cNt be violated. In this case we solve (1.12), (1.15), and (1.22) for θt, c
T
t , and

cNt . Since (1.12) and (1.22) are linear in cTt and cNt , and do not involve θt we easily obtain

cTt = η−1Mt/St − ηpNt (y
N − gN)

cNt = (1 + δpNt )(y
N − gN)− δη−1Mt/St.

We then solve for θt using (1.15):

θt =
n

η

∙
c1−σt ω

(1 + δpNt )c
T
t

− λt

¸
,

where ct = (cTt )
ω(cNt )

1−ω. Once we have θt, cTt and cNt we can generate St+1 using (5.23).

7. The Model without Nontraded Goods

We also conduct some experiments in which there is only a single tradabale good. For
simplicity, in these experiments we assume that rt = r = ρ for all t. PPP holds at the
level of the CPI, since all goods are traded and there are no distribution costs. So Pt =
St. The household’s disposable income is still given by (1.4). Now there is no distinction
between indexed transfers and lump-sum transfers, nor between proportional taxes and lump-
sum taxes. The representative household’s flow budget constraint for t ≥ 0 is given by
(1.8), but now Zt = n

¡
yDt − ct

¢
. The cash-in-advance constraint is just ηct ≤ Mt/St. The

household’s problem is to choose {Mt, ft, ct}∞t=0 to maximize (1.13), subject to its lifetime
budget constraint, (1.11), and the cash-in-advance constraint. The household takes the
initial values of f−1, B and M−1 and the paths for yt, vt, τ t and St as given.
The first-order condition for consumption is

ct : (1 + ρn)−tnc−σt = Λtn+Θtη,

ft : Λt = Λt+1(1 + nr),

Mt : Λt = Λt+1St/St+1 +Θt.

The first-order conditions for ft and Mt are the same as before. If we again define λt =
Λt(1 + ρn)t and θt = Θt(1 + ρn)t we get λt = λ for all t,

nc−σt = λn+ θtη, (7.1)

and (1.18).
The government’s flow budget constraint is still (1.19) but withXt = n (gt + vt − τ t + rB/St).

The government’s lifetime budget constraint is still given by (1.21).
The flow resource constraint is still (1.23).

7.1. The Sustainable Fixed Exchange Rate Regime

The resource constraint implies c = ra−1+ y− g. As before, θt = θ = ρnλ/(1+ ρn) for all t.
Eliminating θ from (7.1) we get λ = c−σ/[1 + ηρ/(1 + ρn)]. We set S = 1, y = 1, and g and
v consistent with their shares of output in the data. The money supply must be M = ηSc.
The government’s lifetime budget constraint implies that τ = rb−1 + g + v + rB/S.
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7.2. The Post-Crisis Steady State: t ≥ T

Our assumptions imply λt = λ for all t. We do not yet solve for λ. Instead we conjecture
a solution in which ct = c̄ for t ≥ T . Our algorithm for solving the model begins with
an outer loop in which we guess the value of c̄. Given this guess, and the conjecture that
St+1/St = 1+µn for t ≥ T , we can solve (7.1) and (1.18) to get λ = nNc̄−σ/[nN+(N−1)η],
and θt = θ̄ = λ(N − 1)/N , for t ≥ T , where N = (1 + ρn)(1 + µn). The cash-in-advance
constraint implies Mt/St = m̄ = ηc̄ for t ≥ T , where m̄ = ηc̄. Hence St =Mt/m̄ for t ≥ T .

7.3. The Pre-Crisis Period: 0 ≤ t < t∗

We have assumed that St = S for 0 ≤ t ≤ t∗. Hence we have, θt = θ = λρn/(1 + ρn). So
ct = c = [(λn+ θη)/n]−1/σ. The cash-in-advance constraint implies thatMt =M = ηcS, for
0 ≤ t < t∗.

7.4. The Transition Period: t∗ ≤ t < T

By construction Mt = M(1− χ) for t∗ ≤ t < T so the money supply path in the transition
period is fully determined given a value of χ. We recursively generate St starting from t∗,
where we have assumed St∗ = S. We then work forward, allowing us to take St as given when
solving for the other variables. Starting from t = t∗, we solve for ct using the cash-in-advance
constraint: ct = Mt/(ηSt). Then, from (7.1), we get: θt = (n/η)(c−σt − λ). Finally, from
(1.18), we have St+1 = Stλ/[(λ− θt)(1 + ρn)].

7.5. Iterating to Find the Equilibrium

Iterating over χ works exactly as in the previous cases. To find the equilibrium value of c̄,
we require that the lifetime budget constraint of the household is satisfied. We can rewrite
it as

f−1 + φ+
∞X
t=0

Ξtn

µ
y − ct − τ + v +

rB

St

¶
=

∞X
t=0

Ξt
Mt −Mt−1

St
. (7.2)

The right hand side of (7.2) is

RHS = Ξ0
M −M

S
− Ξt∗

Mχ

S
+ ΞT

MT −M(1− χ)

ST
+ ΞT

µm̄

(1 + µn)r
,

but now we have the much simpler expression Ξt = (1 + nr)−(t+1) for all t. The left-hand
side is just f−1 + φ + (y − τ + v)/r + LHS1 + LHS2 where LHS1 ≡ −

P∞
t=0 Ξtnct and

LHS2 =
P∞

t=0 ΞtnrB/St. We have ct = c, for 0 ≤ t < t∗, and ct = c̄ for t ≥ T̄ + 1, so

LHS1 = −(1− Ξt∗−1)
c

r
−

T̄X
t=t∗

Ξtnct − ΞT̄

r
c̄.

We also have

LHS2 =
B

S
(1− Ξt∗) + nrB

TX
t=t∗+1

Ξt/St + nrB
ΞT

(N − 1)MT/m̄
.
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If we find that the household’s lifetime budget constraint in not satisfied, we change our
guess for c̄.
To find the equilibrium value of µ we require that the government’s lifetime budget

constraint, be satisfied. It can be written as φ+LHS2 −B/S = RHS. If the government’s
lifetime budget constraint is not satisfied, we adjust our guess for µ.
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