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Abstract
The in�uential Krugman-Flood-Garber (KFG) model of balance of pay-

ment crises assumes that a �xed exchange rate is abandoned if and only
if international reserves reach a critical threshold value. From a positive
standpoint, the KFG rule is at odds with many episodes in which the cen-
tral bank has plenty of international reserves at the time of abandonment.
We study the optimal exit policy and show that, from a normative stand-
point, the KFG rule is suboptimal. We consider a model in which the
�xed exchange rate regime has become unsustainable due to an unexpected
increase in government spending. We show that, when there are no exit
costs, it is optimal to abandon immediately. When there are exit costs,
the optimal abandonment time is a decreasing function of the size of the
�scal shock. For large �scal shocks, immediate abandonment is optimal.
Our model is consistent with evidence suggesting that many countries exit
�xed exchange rate regimes with still plenty of international reserves in the
central bank�s vault.
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1. Introduction

Consider an open economy with a �xed exchange rate that su¤ers an unexpected

�scal shock. This shock consists of an increase in government expenditures that

has to be �nanced with seignorage. When, if at all, should the �xed exchange rate

regime be abandoned? Further, suppose that, with some probability, a future �scal

reform or a �nancial package from the International Monetary Fund (IMF) can

restore the sustainability of the �xed exchange rate regime. For how long should

policy makers wait for this scenario to materialize?

The decision to exit a �xed exchange rate regime is one of the most impor-

tant policy issues in open-economy macroeconomics. A recent case in point is

Argentina�s abandonment in early 2002 of its 10-year old �Convertibility plan�

that had tied the peso to the U.S. dollar at a one-to-one rate since April 1991.

Most analysts agree that �xing the exchange rate was an e¤ective strategy to

eliminate runaway in�ation. However, in the mid 1990s, as the �scal situation

began to deteriorate, the question of whether Argentina should abandon the �xed

exchange rate began to surface with increasing frequency.1 The IMF rescue pack-

ages of December 2000 and August 2001 bought Argentina some time but, in the

end, the �xed exchange rate had to be abandoned in January 2002.

Economic theory o¤ers surprisingly little guidance as to the optimal time to

exit a �xed exchange rate regime. The dominant paradigm for understanding this

issue is the model proposed by Krugman (1979) and Flood and Garber (1984),

which we refer to as the KFG model. This model, which builds on work by Salant

and Henderson (1978), makes two central assumptions. The �rst is that the root

cause of the eventual abandonment of the �xed exchange rate is an unsustainable

�scal policy. The second assumption is that the central bank follows an ad-hoc

exit rule, whereby the �xed exchange rate regime is abandoned only when the

central bank exhausts its foreign exchange reserves and its ability to borrow.

To study the empirical plausibility of these two hypotheses, Table 1 collects

1See Mussa (2002) for a detailed analysis of Argentina�s lax �scal policy during the mid 1990s.
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data for 51 episodes in which �xed exchange rate regimes were abandoned. Such

episodes are typically referred to as �currency crises.�These episodes were selected

from an updated version of Kaminsky and Reinhart�s (1999) list of crisis episodes

according to the criteria outlined in Appendix 7.1. Table 1 reports the change

in the exchange rate in the month in which the �xed exchange rate regime was

abandoned, as well as the change in the exchange rate in the 12 months before and

after the abandonment.2 Table 1 also reports the rate of change in real government

spending in the three years prior to the crisis and the reserve losses that occurred

in the 12 months prior to the crisis.

We view the �scal data in Table 1 as lending empirical support to the �rst KFG

assumption. There were increases in real government spending in the three years

prior to the abandonment of the peg in 80 percent (37 out of 46) of the episodes

for which we have �scal data. Therefore, �scal shocks are plausible suspects as

the root cause of the decision to abandon a �xed exchange rate.

On the other hand, we think of the reserve-loss data in Table 1 as suggesting

that the second KFG assumption is empirically implausible. While the KFG

model is not explicit about the critical lower bound for international reserves (is

it zero? is it negative?), it is clearly in the spirit of the model that the monetary

authority holds on to the peg for as long as it can. We would thus expect to see

central banks exhaust their international reserves before the �xed exchange rate

is abandoned. Figure 1 depicts a histogram of the fraction of initial reserves lost

during the 12 months prior to the crisis. In 12 out of 51 episodes, countries had

non-positive reserve losses (i.e., they gained reserves). In 38 out of the 51 episodes

(or roughly 75 percent), reserve losses were less than 40 percent of initial reserves.

While there were cases in which the monetary authority was willing to lose a

large amount of reserves before devaluing, in most cases the peg was abandoned

with plenty of ammunition left in the central bank�s co¤ers. In other words, the

evidence suggests that the monetary authority chooses to devalue as opposed

2In some of the episodes included in Table 1 the exchange rate was not literally �xed but
followed a crawling peg or �uctuated within a narrow band.
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to being forced to devalue by literally exhausting its reserves and its ability to

borrow. We conclude that the KFG exit rule, a critical component of the KFG

model, is inconsistent with the empirical behavior of reserves in countries that

have abandoned �xed exchange rates. In addition, and given that it assumes an

exogenous exit rule, the KFG model is unsuitable for understanding the decision

to abandon a �xed exchange rate regime.

In this paper, we study the optimal exit from a �xed exchange rate regime.3

Our analysis is in the spirit of the literature on optimal monetary and �scal

policy pioneered by Lucas and Stokey (1983). We argue that the assumption that

central bankers choose the optimal time to abandon the peg generates empirical

implications that are more plausible than those associated with the KFG exit

rule.4

Our analysis is based on a standard cash-in-advance small-open-economymodel,

extended to incorporate rational policymakers. We �rst consider the case where

there are no costs of abandoning the peg. In this case it is optimal to abandon the

peg as soon as the �scal shock occurs and without incurring any reserve losses.

This policy is optimal independently of the level of international reserves and of

whether the central bank faces a borrowing constraint.

We then consider the case in which there are costs of abandoning the peg.

These exit costs can re�ect, for instance, output losses or the cost of bailing out

the banking system.5 We choose to abstract from the source of these costs and

simply assume that devaluing entails some �scal and social cost. In this case,

there is a certain threshold value for the �scal shock beyond which it is optimal to

3Lahiri and Végh (2003) and Flood and Jeanne (2005) study whether it is feasible and/or
optimal to delay the abandonment of the �xed exchange rate regime (i.e., to �defend the peg�).
However, they continue to assume that abandonment is governed by the KFG rule. Pastine
(2002) considers an optimizing policymaker who is posited to dislike reserve losses and prefers
�xed to �oating exchange rates into an otherwise standard KFG model.

4While second-generation models of speculative attacks introduce an optimizing central
banker (Obstfeld (1986)), they assume that currency crises do not have a �scal origin.

5See Kaminsky and Reinhart (1999) and Gupta, Mishra, and Sahay (2007) for evidence on
output and banking crises during currency crises.
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abandon immediately, thus incurring no reserve losses. For �scal shocks smaller

than this threshold, the optimal exit time is a decreasing function of the size of

the �scal shock. In other words, the smaller the �scal shock, the longer is the

optimal delay.

Intuitively, the optimal exit time results from the trade o¤between two factors.

For a given �scal shock, delaying the abandonment of the peg reduces the present

discounted value of the cost of abandoning. However, a longer delay requires a

permanently higher level of in�ation once the peg is abandoned. This increase

in the post-abandonment rate of in�ation produces a larger intertemporal distor-

tion in consumption decisions. For large �scal shocks, the cost of delaying (i.e.,

the larger intertemporal distortion) dominates because the gain from delaying is

bounded by the economy�s resources.

We then present some back-of-the-envelope calculations based on our model,

the �scal data in Table 1, and empirical estimates of the cost of balance of payment

crises. These calculations suggest that immediate abandonment should be at

least as common as delayed abandonment. Our model is therefore consistent

with the observation that many pegs are abandoned when there are still plenty of

international reserves at the central banks�disposal.

To study the theoretical robustness of our results, we then consider four ex-

tensions of the basic model: (i) time-varying exit costs, (ii) social, but non-�scal,

costs of abandoning the peg, (iii) more general preferences, and (iv) the case in

which the exist cost depends positively on the �scal shock itself. In every single

case, our main results go through which attests to the theoretical robustness of

the paper�s main message.

We then consider a stochastic version of our model in which the costs of aban-

doning arise endogenously. There are no �scal or social exit costs but �scal fun-

damentals are random. These fundamentals are governed by a stochastic process

that captures the idea that a �scal reform is more likely to occur while the econ-

omy has a �xed exchange rate. In particular, we assume that, while the exchange

rate is �xed, there may be a �scal reform that restores the sustainability of the
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�xed exchange rate.6 This reform arrives according to a Poisson process. Once

the economy abandons the �xed exchange rate regime, there is no hope of a �s-

cal reform and the initial �scal shock must be �nanced with seignorage revenues.

There is thus an option value to maintaining the peg. In this context, the cost of

abandoning the peg consists in giving up this option value. We show that there

is a close connection, both formally and in terms of the properties of the opti-

mal exit time, between this model and our benchmark model. In the stochastic

model there is also a threshold value of the �scal shock above which it is opti-

mal to abandon as soon as the �scal shock occurs. For shocks with values below

this threshold, there is a negative relation between the size of the shock and the

optimal exit time.

The paper proceeds as follows. Section 2 introduces the model. Section 3

derives the basic results for the deterministic case. Section 4 examines the the-

oretical robustness of our results. Section 5 develops and solves the stochastic

version of the model. Section 6 concludes.

2. The Basic Model

Consider a standard, optimizing, small-open-economy model in which money is

introduced via a cash-in-advance constraint. All agents, including the government,

can borrow and lend in international capital markets at a constant real interest

rate r. There is a single consumption good in the economy and no barriers to

trade. The law of one price holds: Pt = StP
�
t , where Pt and P

�
t denote the

domestic and foreign price level, respectively. The exchange rate, St, is de�ned

as units of domestic currency per unit of foreign currency. For convenience we

assume that P �t = 1; hence Pt = St.

Before the �scal shock occurs at time t = 0�, the exchange rate is �xed at a

level S. For t < 0, the economy has a sustainable �xed exchange rate regime and

the government can satisfy its intertemporal budget constraint without resorting
6See Flood, Bhandari, and Horne (1989) and Rigobon (2002) for analyses that also emphasize

the link between �xed exchange rates and �scal discipline.
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to seignorage. At t = 0 the economy su¤ers a ��scal shock�: an increase in

government spending that must be �nanced with seignorage revenues. Generating

these revenues requires abandoning the �xed exchange rate regime at some point in

time. Denote by T the time at which the �xed exchange rate regime is abandoned.

We wish to solve for the optimal value of T , which we denote by T �.

2.1. Households

The representative household maximizes its lifetime utility, V , which depends on

its consumption path, ct:

V �
Z 1

0

log(ct)e
��tdt. (2.1)

The discount factor is denoted by �. The household�s �ow budget constraint is

�bt = �(Mt �Mt�)=St,
_bt = rbt + y � ct � _mt � "tmt,

if t 2 J ,
if t =2 J . (2.2)

Throughout the paper, a dot over a variable represents the derivative of that

variable with respect to time. Here bt denotes the household�s holdings of net

foreign bonds that yield a real rate of return of r and y is a constant, exogenous

�ow of output. The variable mt represents real money balances, de�ned as mt =

Mt=Pt, where Mt denotes nominal money holdings. The variable "t denotes the

rate of devaluation, which coincides with the in�ation rate, "t = _Pt=Pt = _St=St.

To eliminate inessential dynamics, we assume that r = �.

As in Drazen and Helpman (1987), equation (2.2) takes into account the pos-

sibility of discrete changes in bt and Mt at a �nite set of points in time, J . Below

we see that this set contains t = 0 and the time at which the peg is abandoned,

T . These jumps are de�ned as �bt � bt� bt�, where bt� represents the limit from
the left. Since at any point in time after t = 0, the total level of real �nancial

assets cannot change discretely, bt� +mt� = bt+mt.7 At time t = 0�, just before

7At t = 0, the total level of real �nancial assets may change discretely due to an unanticipated
jump in the exchange rate, which changes the value of real money balances from M0�=S to
M0�=S0.
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the household�s time zero decisions are made, agents hold an amount b0� in real

bonds. Their holdings of nominal money balances are M0� and their real money

balances are therefore m0� =M0�=S.

Consumption is subject to a cash-in-advance constraint:

mt � ct. (2.3)

Since we only consider environments in which the nominal interest rate is positive,

equation (2.3) will always hold with equality.

The �ow budget constraint, (2.2) and the transversality condition, lim
t!1

e�rtbt =

0, implies the following intertemporal budget constraint:

b0� + y=r =

Z 1

0

(ct + _mt + "tmt)e
�rtdt+

X
j2J

e�rj(Mj �Mj�)=Sj. (2.4)

This budget constraint can be further simpli�ed by using the cash-in-advance

constraint (2.3) and imposing the condition that lim
t!1

e�rtmt = 0:8

b0� +
M0�

S0
+ y=r =

Z 1

0

ct(1 + r + "t)e
�rtdt. (2.5)

This expression makes clear that, as is typical of cash-in-advance models, the

e¤ective price of consumption is given by 1 + r + "t.

The �rst-order condition for the household�s problem is

1=ct = � (1 + r + "t) , (2.6)

where � is the Lagrange multiplier associated with (2.5).

2.2. Government

The government collects seignorage revenues and carries out expenditures, gt. To

simplify, we assume that government spending yields no utility to the representa-

tive household. The government�s �ow budget constraint is given by

�ft = (Mt �Mt�)=St;
_ft = rft � gt + _mt + "tmt;

if t 2 J ,
if t =2 J , (2.7)

8This condition is always satis�ed in equilibrium since (2.3) holds as an equality.
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where ft denotes the government�s net foreign assets. This �ow budget constraint,

together with the condition lim
t!1

e�rtft = 0; implies the following intertemporal

budget constraint for the government:

f0� +

Z 1

0

( _mt + "tmt)e
�rtdt+

X
j2J

e�rj(Mj �Mj�)=Sj = �0�, (2.8)

where, by de�nition, �0� is the present value of government spending:

�0� �
Z 1

0

gte
�rtdt.

If the peg is abandoned at time zero the jump in the money supply (M0�M0�)

is controlled by the central bank through its choice ofM0. In contrast, if the peg is

abandoned at T > 0, the jump in the money supply (MT �MT�) is endogenously

determined. Under perfect foresight, the path for the exchange rate must be

continuous for all t > 0 to rule out arbitrage opportunities. This requirement

implies that, in equilibrium, the household reduces its money holdings at time T

in anticipation of the higher in�ation rate for t � T .

2.3. Equilibrium Consumption

Combining the household�s and government�s intertemporal constraints (equa-

tions (2.4) and (2.8), respectively), we obtain the economy�s aggregate resource

constraint:

b0� + f0� + y=r =

Z 1

0

cte
�rtdt+ �0�. (2.9)

This constraint implies that the present value of output plus the total net foreign

assets in the economy must equal the present value of consumption and govern-

ment expenditures.

2.4. A Sustainable Fixed Exchange Rate Regime

Before time zero, the economy is in a sustainable �xed exchange rate regime, so

agents expect " to be permanently zero. Sustainability of the peg requires that
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the government�s net foreign assets be su¢ cient to �nance the present value of

government expenditures; that is: f0� = �0�. Further, in the �xed exchange rate

regime, equations (2.3) and (2.9) imply that consumption and real balances are

given by:

c0� = y + rb0�, (2.10)

m0� = c0�.

Using the household�s intertemporal constraint we can write consumption before

time zero as:

c0� =
ra0� + y

1 + r
, (2.11)

where a0� � b0� +M0_ =S.

2.5. Optimal Monetary Policy

Suppose that at time 0 there is an unanticipated increase in the present value

of government expenditures from �0� to �0 that must be �nanced with seignor-

age. Clearly, the peg has to be abandoned at some point because �0 cannot be

intertemporally �nanced with " = 0. What is the optimal exit time? Throughout

the paper we focus on the perfect commitment solution to this question.

After the �scal shock takes place, the aggregate constraint for the economy is

b0� + y=r =

Z 1

0

cte
�rtdt+��, (2.12)

where �� = �0 � �0� represents the increase in the present value of government
expenditures. Suppose that the government could �nance this extra expenditure

with lump sum taxes. Consumption would be constant over time at a level given

by c0 = c0� � r��. Since �� > 0, the new level of consumption is lower than

before. The economy has the same resources as before the �scal shock, so the rise

in government spending has to be accommodated by a fall in private consumption.

Assuming, without loss of generality, that the exchange rate remains �xed at t = 0,
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the corresponding fall in real money balances occurs through a fall in the nominal

money supply at t = 0.

It is easy to check (see Rebelo and Végh (2006)) that the government can

replicate the lump sum taxes outcome by either expanding the money supply at

a constant rate from t = 0 on, by printing money at t = 0, or by combining

these two strategies. So, there are multiple ways for monetary policy to achieve

the optimal outcome but all these policies require that the �xed exchange rate be

abandoned at time zero.

In contrast, abandoning the peg at time T > 0 yields a lower level of wel-

fare than the policies just discussed. To show this result we use the following

proposition.9

Proposition 2.1. Once the �xed exchange rate regime is abandoned at time
T > 0, it is optimal to expand the money supply at a constant rate, "T . The

optimal path for money growth, conditional on abandonment at time T , is thus:

"t = 0, for 0 � t < T
"t = "T , for t � T , (2.13)

We now show that any positive "T generates an intertemporal distortion on

consumption. The value of "T has to satisfy the government�s intertemporal budget

constraint, (2.8), which can be written as:

"TmT

r
e�rT = �� +

M0� �M0

S
+
M0 �MT

S
e�rT . (2.14)

The term (M0� �M0)=S + [(M0 �MT )=S]e
�rT represents the net reserve losses

incurred by the government as the household rearranges its money balances while

the exchange rate is �xed in response to the changes in the path for in�ation.

The �rst-order condition for the household�s problem, (2.6), implies that con-

sumption is constant within the subperiods 0 < t < T and t � T . Let us denote
9To prove this proposition solve the planner�s problem for an economy with no cash-in-

advance constraint. Then show that the cash-in-advance economy with constant " can replicate
the solution to the planner�s problem. See Rebelo and Xie (1999) for details of a closed economy
version of this result.
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by c1 and c2 the level of consumption in the periods 0 < t < T and t � T , respec-
tively. Using equations (2.10), (2.12), and the cash-in-advance constraint, (2.3),

we can show that, independently of the form of the momentary utility function

and the value of T , the net reserve loss incurred by the government is given by:

M0� �M0

S
+
M0 �MT

S
e�rT = r��. (2.15)

Using this result, we can rewrite the government budget constraint (2.14) as:

"TmT

r
e�rT = ��(1 + r). (2.16)

This equation implies that "T > 0. The �rst-order condition for the household�s

problem, (2.6), implies that c2 < c1. Since the present value of resources that are

available for consumption is independent of T , this non-�at path of consumption

results in lower welfare compared to the case where the peg is abandoned at time

zero.

The net reserve loss described in (2.15) is a cost that the government incurs

when the abandonment of the �xed exchange rate regime is either delayed or, in the

case of immediate abandonment, if real money balances fall through a reduction

in nominal money balances. However, since this cost represents a transfer from

the government to households, it is not a cost to the economy as a whole. As a

result, this cost does not a¤ect the optimal exit time. The next section considers

the case in which there are social costs associated with the abandonment of the

peg.

3. Exit Costs

In this section we introduce costs of abandoning the �xed exchange regime into

our model. We assume that when the �xed exchange rate is abandoned, the

government incurs a �scal cost of � which also represents a social loss for the

economy as a whole. This exit cost can be given several interpretations. First,

it can re�ect a fall in output and tax revenues following the abandonment of the
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peg. Second, since banking crises are typically a by-product of currency crises

(Kaminsky and Reinhart (1999)), these costs can stem from bailing out domestic

banks (Burnside, Eichenbaum and Rebelo (2004)). Third, these costs can result

from bailing out foreign creditors. A devaluation can make it optimal for domestic

�rms to default on foreign loans that had been guaranteed by the government. In

these circumstances, a devaluation creates a �scal liability for the government.10

We proceed by setting up the Ramsey problem, starting with the condition

that guarantees that the Ramsey solution is implementable as a competitive equi-

librium.

3.1. The Implementability Condition

We need to distinguish between two cases: T = 0 and T > 0. If the �xed exchange

rate is abandoned at T = 0, the government sets a constant, positive rate of de-

valuation "0 from time zero onwards. Given this policy, �rst-order condition (2.6)

indicates that consumption is constant over time and, from (2.5), this constant

level, denoted by �c, is given by

�c =
ra0 + y

1 + r + "0
, (3.1)

where a0 � b0�+M0�=S0. We assume, without loss of generality, that the exchange

rate remains constant (S0 = S) when the abandonment occurs at time 0. This

assumption implies that a0 = a0�. Solving for "0, we obtain:

"0 =
ra0 + y

�c
� (1 + r). (3.2)

This equation is the implementability condition when T = 0.

The optimal path for "t, conditional on the peg being abandoned at T > 0, is

given by equation (2.13) in Proposition 2.1. The consumer�s �rst-order condition

(2.6) implies that the levels of consumption within each subperiod (0 < t < T

and t � T ) are constant. As before, denote these constant levels of consumption
10We develop this interpretation in a previous version of this paper, available upon request.
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by c1 and c2, respectively. Using this notation, we can rewrite the household�s

intertemporal constraint (2.5) as:

a0 + y=r =
c1(1 + r)

r
(1� e�rT ) + c

2(1 + r + "T )

r
e�rT . (3.3)

Since equation (2.6) implies that c1(1 + r) = c2(1 + r + "T ), the values of c1 and

c2 are given by

c1 =
ra0 + y

1 + r
, (3.4)

c2 =
ra0 + y

1 + r + "T
. (3.5)

Equation (3.4) has two implications. First, c1 is determined by the household�s

problem (recall that a0 = a0�) and so it is not a choice variable for the Ramsey

planner. Second, c1 is equal to c0� (see (2.11)).

Equation (3.5) is the implementability condition for the case of T > 0, which

can be re-written as:

"T =
ra0 + y

c2
� (1 + r). (3.6)

3.2. Government�s Budget Constraint

We can write the government�s budget constraint, (2.8), as:

"0m0

r
= �� + �+

M0� �M0

S
; if T = 0, (3.7)

"TmT

r
e�rT = �� + �e�rT +

M0� �M0

S
+
M0 �MT

S
e�rT ; if T > 0, (3.8)

wherem0 andmT denote the real money balances associated with �c and c2, respec-

tively. The exit cost, �, is included in this constraint since it is a �scal cost that

the government incurs at time T . Notice that, as T tends to zero, constraint (3.8)

reduces to (3.7) indicating that the government�s budget constraint is (right-hand)

continuous at T = 0.
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Using the cash-in-advance constraint, the implementability conditions (3.2)

and (3.6), and taking into account that c1 = c0�, we can rewrite the government�s

budget constraint as

c0� � �c
r

= �� + �; T = 0, (3.9)

e�rT

r
(c0� � c2) = �� + �e�rT ; T > 0. (3.10)

Again, since c2 converges to �c as T tends to zero, constraint (3.10) tends to (3.9),

which enables us to just use constraint (3.10) below for all T � 0:

3.3. The Ramsey Problem

Taking into account that c1 = c0�, we can rewrite the household�s lifetime utility

(2.1) as

V =
log(c0�)

r
(1� e�rT ) + log(c

2)

r
e�rT . (3.11)

The Ramsey planner then chooses fc2; Tg to maximize the household�s lifetime
utility, (2.1), subject to constraint (3.10) and a non-negativity constraint on T .11

Once the optimal value of c2 has been determined, we can use (3.6) to determine

the value of " for any t � 0.
The �rst-order condition with respect to c2 can be written as:12

1

c2
= �. (3.12)

The Kuhn-Tucker condition with respect to T is given by:

log(c0�)� log(c2) + �[r�� (c0� � c2)] � 0, T � 0, (3.13)�
log(c0�)� log(c2) + �[r�� (c0� � c2)]

	
T = 0.

11Note that since the RHS of constraint (3.10) is always non-negative, then c2 � c0�. In
addition �and to ensure that c2 is always positive �we restrict parameter values such that the
condition �+ erT�� < c1=r is always satis�ed.
12To obtain conditions (3.12) and (3.13), we have divided by e�rT . This term is di¤erent

from zero since T must be �nite. Otherwise, given that �� > 0, the government�s intertemporal
constraint (3.10) would be violated.
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The optimal exit time is characterized by the following proposition, which includes

the case of � = 0 discussed in the previous section as a special case.

Proposition 3.1. The optimal exit time, T �, is given by:

Low �� High ��
Optimal Exit Time �� < c0�=er �� � c0�=er

Low � (0 � � � ��) T � = 0 T � = 0

Intermediate � (�� < � < ���) T � > 0 T � = 0

High � (� � ���) T � = 0 T � = 0

Proof. See Appendix 7.2.

According to this proposition, delaying is optimal only when the �scal shock

is low (�� < c0�=er) and � takes on an intermediate value. In all other cases, it

is optimal to abandon immediately. To understand the intuition underlying this

result, it is useful to rewrite the Kuhn-Tucker condition, (3.13), using (3.12), as:

r�

c2|{z}
bene�t of delaying

�
�c0�
c2
� 1
�
� log

�c0�
c2

�
| {z }

cost of delaying

. (3.14)

Since c2 < c0�, the term labeled �cost of delaying�is always positive and captures

the intertemporal distortion associated with delaying. Of course, even if abandon-

ment were immediate, this term is positive because of the negative wealth e¤ect

resulting from higher government spending. But delaying increases this term fur-

ther because the intertemporal distortion becomes larger as c2 becomes smaller.

The bene�t of delaying is the �ow saving, r�, relative to post-crisis consumption,

c2. This bene�t results from reducing the present discounted value of the cost of

abandonment. If the cost of delaying is larger than the bene�t of delaying, then
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immediate abandonment is optimal.13

When �� � c0�=er, the intertemporal distortion introduced by delaying is so
large that it dominates the bene�t of delaying for any admissible �. To see this,

notice that as �� increases, c2 converges to zero. As a result, both the bene�t

of delaying and the cost of delaying become arbitrary large. However, the cost of

delaying prevails because r� < c0� and hence the net bene�t of delaying tends to

�1. In other words, the fact that the bene�t of delaying is bounded relative to
c1 explains why the cost of delaying prevails.

When �� < c0�=er, the intertemporal distortion imposed by abandoning the

peg for some T > 0 is smaller and therefore the decision comes down to a trade-o¤

between the costs and bene�ts of delaying. Clearly, if � = 0, there are no bene�ts

from delaying and immediate abandonment is optimal. For small values of �, the

bene�ts are still small relative to the intertemporal distortion that needs to be

imposed and immediate exit is still optimal. There is some threshold level of �, ��,

beyond which the bene�t of delaying becomes large enough to warrant a delayed

exit. For values of � larger than ���, that is values of � close to the maximum

admissible value, once again both the cost of delaying and the bene�t of delaying

become arbitrarily large but the cost of delaying dominates. The intuition is

analogous to the one just discussed.

3.3.1. Some illustrative calculations

The table in proposition 3.1 shows that delaying the abandonment and incurring

some reserve losses is optimal in only one out of six possible cases. However, the

proposition says nothing about the empirical relevance of each of the six cases. We

now provide some back-of-the-envelope calculations to illustrate the predictions

of our model for T � using empirically-plausible values of the cost of abandoning

(�) and the �scal shock (��). While admittedly crude, these calculations shed

light on how often it is optimal to abandon immediately. The choice of values

13It is important to keep in mind that admissible values of � are bounded from above since
c2 must be positive (see Appendix 7.2 for details).
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for � and �� is far from trivial and forces us to make some stark connections

between the model and reality. For the �scal shock we focus our attention on

the 37 episodes underlying Table 1 for which there was a positive increase in

government spending during the three years before the crisis. We compute ��

by assuming that there is a once-and-and-for-all increase in (annual) government

spending equivalent to the (geometric) average of the increase in the three-year

period before the crisis. For example, for the Argentinean crisis of June 1970,

the increase in real government spending during the three years prior to the crisis

was 15.9 percent. The corresponding geometric average is 5.0 percent per year.

Assuming that the annual real interest rate is four percent, a once-and-for-all

increase of 5.0 percent in government spending implies a present discounted value

of 131.1 percent. Hence �� takes the value 1.311. We follow the same procedure

for each of the other 36 episodes.

We choose values of � based on the existing literature. Using a sample of

195 crises in 91 countries, Gupta, Mishra, and Sahay (2007) compute empirical

estimates of the output costs entailed by currency crises. They report that the

average output fall that can be attributed to crisis episodes in the 1970s, 1980s, and

1990s is, respectively, 3:0, 1:1, and 0:8 percent. Hutchinson and Neuberger (2001)

focus exclusively on emerging markets and examine 51 crises in 24 countries over

the period 1975-1997. They conclude that, controlling for other factors, a crisis

leads to output falls of between �ve and eight percent. Based on these studies,

we consider values of � ranging from one to eight percent. Table 2 reports the

percentage of cases (among the 37 episodes of Table 1) for which T � = 0. For

example, for � = 0:01, T � = 0 for 59 percent of the cases and T � > 0 for the

remaining 41 percent. For � = 0:08 immediate abandonment is optimal in eight
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percent of the cases.14

Table 2. T � for various values of �
�

0:01 0:03 0:05 0:08
T � = 0 59 27 14 8
T � > 0 41 73 86 92

We thus conclude that the model predicts immediate abandonment for a broad

range of values of �, which is consistent with the evidence shown above indicat-

ing that many countries have abandoned exchange rate pegs with still plenty of

international reserves in their co¤ers.15

3.4. Properties of the Optimal Policy

We can now analyze how the values of T �, post-abandonment in�ation, and reserve

losses depend on � and �� for the admissible range of parameter values. Formal

proofs are relegated to Appendices 7.3 and 7.4.

Figure 2 shows the behavior of the optimal values of T , ", and the reserve

loss as a function of � for a small �scal shock (�� < c0�=er). Panel A shows

the behavior of the optimal exit time. Up to � = ��, it is optimal to abandon

immediately. In the region in which T � > 0, the value of T � is a non-monotonic

function of �. For values of � larger than ���, it again becomes optimal to

abandon immediately.

Panel B of Figure 2 shows that the optimal in�ation rate (") is always an

increasing function of � (i.e., for T � = 0 and T � > 0).

Finally, Panel C in Figure 2 illustrates the behavior of the loss of reserves,

which equals c0� � c2, at the time of abandonment. Since c0� is independent of
T and �, the reserve loss when T � > 0 depends only on the behavior of c2. The

14These calculations assume that the elasticity of intertemporal substitution is 0.30, which is
consistent with the estimated reported in Reinhart and Végh (1995).
15Of course, even when T � > 0 there are many cases in which the reserve losses are small.

Hence, the cases of immediate abandonment constitute a lower bound for instances of abandon-
ment with small or no reserve losses.
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reserve loss is an increasing function of �. When T � = 0 there are of course no

reserve losses.

Figure 3 illustrates the behavior of T , ", and the loss of reserves as a function

of the �scal shock for a given value of �.16 Panel A shows that, when T � > 0, the

optimal exit time is a decreasing function of the �scal shock. In other words, the

larger the �scal shock the sooner it is optimal to abandon the peg. Intuitively, a

larger �scal shock requires a higher in�ation rate once the peg is abandoned, which

imposes a larger intertemporal distortion. As a result, it is optimal to abandon

earlier to reduce the intertemporal distortion. When the value of the �scal shock

reaches ���(� c0�=er), it becomes optimal to abandon immediately.
The rate of in�ation after the regime is abandoned does not depend on ��

whenever T � > 0. This property re�ects two opposing forces that cancel each

other out. First, for a given T , a larger �scal shock tends to increase the in�ation

rate. Second, since T � falls as the �scal shock increases, the in�ation rate falls. In

this case of logarithmic preferences, these two e¤ects exactly cancel each other out.

When it is optimal to abandon immediately (i.e., for �� � ���), the in�ation

rate is an increasing function of the �scal shock. When �� = 0, it is not optimal

to abandon the peg and hence the optimal in�ation rate is zero.

We conclude by discussing the e¤ects of introducing a borrowing constraint

on the government. To simplify we consider the case in which government expen-

diture is constant at a level g0� before the �scal shock and at a level g0 > g0�

after the �scal shock. Suppose that there is a binding borrowing constraint that

dictates that ft � �f . It can be shown that lifetime utility, V , is an increasing

function of T for values of T below the optimal. Once the regime is abandoned, ft
becomes constant, ft = fT for t � T . The value of fT is a decreasing function of
T . Thus, whenever T � > 0, a borrowing constraint forces the economy to abandon

the �xed exchange rate regime before T �. In this situation we can think of central

bankers as following the KFG abandonment rule, since they maintain the regime

16The given value of � is (c0�=r)(1 � 2=e). As shown in Appendix 7.4, the Kuhn-Tucker
condition is exactly equal to zero for this value of �.
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for as long as possible and, at the time of abandonment, exhaust their ability to

borrow. In general, however, appealing to the presence of a borrowing constraint

does not justify the KFG exit rule since, when T � = 0, borrowing constraints have

no impact on the decision to exit the �xed exchange rate.

4. Model Extensions

In order to assess the theoretical robustness of our key results, we explore in this

section several extensions of the basic model analyzed in Section 3.

4.1. Time-Varying Exit Costs

Consider the case in which the exit cost, �, varies over time. On the one hand,

the exit cost can decline over time if postponing the abandonment of the peg

gives �rms time to prepare for the change in regime by changing prices or hedging

exchange rate risk. On the other hand, the costs associated with a currency crisis

can increase with the post-crisis rate of in�ation. To simplify we assume that �t
grows at a constant rate � that can be positive or negative:

�t = �e
�t. (4.1)

Here �t is the cost of abandoning the peg at time t, � is a positive constant, and

� is the rate at which the cost changes over time.

The consumer�s problem remains the same as in Section 3. The government�s

budget constraint now reads as:

e�rT

r
(c0� � c2) = �� + �e�(r��)T ; T � 0. (4.2)

The �rst-order condition for the Ramsey problem, (3.12), remains valid and the

Kuhn-Tucker condition is given by:

log
�c0�
c2

�
�
�
c0�

c2
� 1� (r � �)�e

�T

c2

�
� 0. (4.3)

The following proposition generalizes the results in Proposition 3.1.
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Proposition 4.1. If � � r, it is optimal to abandon at T = 0 for any value of

�� > 0. If � < r the optimal exit time, T �, is given by:

Low �� High ��

Optimal Exit Time �� <
c0�
r

�
e
��r
r � �

r

�
� � �� � c0�

r

�
e
��r
r � �

r

�
� �

Low � (0 � � � ��) T � = 0 T � = 0

Intermediate � (�� < � < ���) T � > 0 T � = 0

High � (� � ���) T � = 0 T � = 0

Proof. Start with expression (4.3) and proceed in exactly the same way as in

Proposition 3.1 (see Appendix 7.2).

When � = r, the present discounted value of the exit cost is independent of

T , so there is no bene�t from delaying. If � > r, delaying increases the present

discounted value of the exit cost. In both of these cases, it is optimal to abandon

right away. When � < r, delaying reduces the present discounted value of the exit

costs, so delaying can be optimal.

To illustrate the e¤ect of di¤erent values of �, Figure 4 plots T � as a function of

the �scal shock (��) for three values of � (� = 0, � = 0:03, and � = �0:03).17 The
� = 0 case is the case studied in Section 3. When � is negative (� = �0:03), the
threshold value of �� beyond which it is optimal to abandon right away is larger

than that for the � = 0 case. The opposite is true when � is positive (� = 0:03).

The intuition for these results can be explained using equation (4.3), which

can be rewritten as:
(r � �)�e�T

c2| {z }
bene�t of delaying

�
�c0�
c2
� 1
�
� log

�c0�
c2

�
| {z }

cost of delaying

. (4.4)

For � = 0, this condition reduces to (3.14). The cost of delaying is the same as

before. The bene�t of delaying captures the �ow saving, now given by (r� �)�e�T

17Parameter values for Figure 4 are r = 0:037, a0 = �0:35; y = 1, and � = 0:002.
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which, in light of (4.1), can also be written as (r � �)�t. Compare the � = 0

case with the � < 0 case. When � < 0 the �ow saving from delaying for an

additional moment for a given �t is higher for the � = 0 case. This e¤ect calls for

an additional delay. However, a negative � implies that, all else equal, the current

cost of devaluing, �e�T , is smaller than it would be in the � = 0 case. By making

the �ow saving smaller, this e¤ect calls for a smaller delay. For small values of T

(and in particular around T = 0), the �rst e¤ect dominates, which implies that the

threshold value beyond which it is optimal to abandon immediately is a decreasing

function of �, as illustrated in Figure 4 (notice that the threshold is the largest

for � = �0:03 and the smallest for � = 0:03). When comparing � = �0:03 and
� = 0, this �rst e¤ect continues to dominate up to the value of �� corresponding

to point A in Figure 4. Below this point the second e¤ect dominates and, for a

given �scal shock, T is smaller for � = �0:03 than for � = 0.18

4.2. The Exit Cost is Not a Fiscal Cost

So far we have assumed that the exit cost � is both a �scal cost and a social cost.

One could think that the �scal nature of the exit cost drives our main results since

delaying the abandonment reduces the exit cost that has to be �nanced by the

�scal authority. To show that our results do not depend on the exit cost being

a �scal cost, we brie�y discuss a version of the model presented in Section 3 in

which the cost of abandonment, �, is a reduction in the economy�s endowment and

does not enter the government�s budget constraint. This cost can be interpreted

as a loss in output that occurs when the peg is abandoned.

Formally, the only modi�cation to the model of Section 3 is in the household�s

intertemporal constraint which is now given by

b0� +
M0_

S0
+
y

r
� �e�rT =

Z 1

0

ct(1 + r + "t)e
�rtdt. (4.5)

Here y=r � �e�rT is the present discounted value of the endowment net of the
18See Rebelo and Vegh (2006) for a discussion of the behavior of T � as a function of the cost

of abandonment, �.
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cost of abandoning the peg. Households take T as given, so they view �e�rT as

exogenous to their decisions. However, the Ramsey planner takes the exit cost

into account.

The main complication introduced by this formulation is that the Ramsey

planner�s problem is not continuous in T at time zero. The reason is that c1

depends on T since the term �e�rT a¤ects the household�s budget constraint.

Therefore, c1 is a choice variable for the Ramsey planner when T > 0 but not

when T = 0. We thus opted to solve the model numerically by �rst computing T �

analytically assuming that the solution is interior and then comparing the value

of V associated with this solution with the value of V for T � = 0.

We veri�ed that our main results hold for a wide range of parameters. Figure 5

shows that T � falls with the �scal shock until a certain threshold, beyond which it

is optimal to abandon immediately. In Rebelo and Végh (2006), we also illustrate

T � as a function of the cost of abandonment, �, and show how, as in the model of

Section 3, it is optimal to abandon immediately for small values of �. Beyond a

certain threshold of �, the optimal time of abandonment is an increasing function

of �.

Intuitively, even though � is not a �scal cost, it still has �scal repercussions.

An increase in � reduces c2, which is the tax base for the post-crisis in�ation tax.

Increasing T raises households�wealth, and hence c2, which increases tax revenues

for a given post-crisis in�ation rate. This e¤ect needs to be traded-o¤ against the

fact that delaying implies a higher post-crisis devaluation rate and hence a larger

intertemporal distortion.

4.3. Non-Unitary Elasticity of Intertemporal Substitution

Up to this point, we have assumed that momentary utility is logarithmic. Consider

the more general case in which utility is given by:

V �
Z 1

0

c
1�1=�
t � 1
1� 1=� e��tdt, (4.6)
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where � > 0 denotes the intertemporal elasticity of substitution. When � is

di¤erent from one, the Ramsey planner�s problem is discontinuous at T = 0

because the level of consumption before abandonment (c1) di¤ers from the initial

level of consumption (c0�). We therefore solved the model numerically.

The results that we obtained for a very wide range of parameters are quali-

tatively the same as those discussed in Section 3 for the logarithmic case.19 In

particular, it is still the case that T � is a decreasing function of the �scal shock

until certain threshold value beyond which T � = 0. For interior solutions, a lower

(higher) elasticity of substitution increases (decreases) T � > 0 because it implies

a smaller (larger) intertemporal distortion for any given in�ation rate. Similarly,

there is a certain threshold value of � below which T � = 0. Above this threshold,

T � is an increasing function of �. Further, for a given value of �, the smaller

(larger) is the intertemporal elasticity of substitution, the higher (lower) is T �

because the lower (larger) is the impact on utility of a given rate of post-crisis

in�ation. Hence, it is optimal to delay more.

4.4. The Exit Cost Increases with the Fiscal Shock

So far we have assumed that the exit cost is independent of the �scal shock.

However, one can imagine scenarios in which the exit cost depends positively on

the �scal shock. We now analyze this case and show that our main results continue

to hold.

Suppose that the cost of abandoning the peg is given by:

�t = �0 + ���,

for some � > 0. For simplicity, we analyze the case in which �0 = 0. (When

�0 > 0, the same results go through since the presence of a positive cost of exiting

when �� = 0 reinforces the results described below.)

The consumer�s problem remains the same as in Section 3. The Kuhn-Tucker

19See Rebelo and Vegh (2006) for a more detailed discussion.
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condition for the Ramsey planner becomes:

r���

c2| {z }
bene�t of delaying

�
�
c0�

c2
� 1
�
� log

�
c0�

c2

�
| {z }

cost of delaying

. (4.7)

This equation is analogous to equation (3.14). We now show that, as in the case

discussed in Section 3, there is a threshold value of the �scal shock beyond which

it is optimal to abandon immediately.

Proposition 4.2. For any given � > 0, there is a threshold value of ��, ���,

such that for any �� � ���, it is optimal to abandon immediately.
Proof. See Appendix 7.6 in Rebelo and Végh (2006).

For a su¢ ciently large �scal shock, both the cost and bene�t of delaying be-

come arbitrary large, but the former dominates and hence it is optimal to abandon

right away. The intuition parallels the discussion following equation (3.14) in Sec-

tion 3. In other words, the key is that the �ow saving is bounded relative to c1

and, hence, for large �scal shocks, the cost of delaying dominates and immediate

abandonment is optimal.

Finally, we also show (see Appendix 7.7 of Rebelo and Végh (2006)) that when

the solution is interior the optimal T is a decreasing function of the �scal shock.

5. Stochastic Fiscal Reform

In sections 3 and 4 we study the optimal monetary policy in models where there are

both �scal and social costs of abandoning the �xed exchange rate regime. We now

consider an economy where these costs are absent but where government spending

is stochastic. As in the previous sections, we assume that before time zero the

�xed exchange rate regime was sustainable, so the government�s net foreign assets

were su¢ cient to �nance the present value of government spending. At time zero

the economy learns that the present value of government spending has increased

by ��. The new element introduced in this section is that while the exchange
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rate is �xed (after time zero but before the peg is abandoned) there can be a

reduction in government spending that makes the peg, once again, sustainable.

This expenditure reduction occurs according to a Poisson process with arrival

rate �. If the peg is abandoned, the increase in government spending becomes

permanent and has to be �nanced with seignorage revenues. There is thus an

option value of holding on to the peg. This formulation captures in a simple way

the idea that a �xed exchange rate regime exerts pressure on the �scal authorities

to enact reforms to make the peg sustainable. This pressure disappears once the

exchange rate �oats. An alternative interpretation is that the country can receive

a bailout transfer from abroad that pays for the increase in government spending

and renders the peg sustainable. This external bailout arrives according to a

Poisson process.

The size of the �scal reform or of the external bailout that has to occur to

make the �xed exchange rate regime sustainable depends, naturally, on the path

of government spending. If the reform occurs at time t, the present value of

government spending from time t on has to be reduced to a value �t given by:

�t = f0e
rt � ert

Z t

0

gse
�rsds. (5.1)

Expression (5.1) implies that if there has been no new spending between time zero

and time t, all that is necessary to make the peg sustainable is to cancel the plans

for new government spending in the future. However, if new spending has already

taken place in the time interval up to time t the government needs to reduce the

present value of government spending below its level before the �scal shock.

The optimal policy consists in choosing the time T at which the �xed ex-

change rate regime is abandoned, if a �scal reform has not materialized in the

meantime. A higher value of T makes a �scal reform more likely. However, the

longer the horizon T , the larger the intertemporal consumption distortion that

the government has to introduce if the reform does not occur.
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The Time When Reform Occurs We start by characterizing the case in

which a �scal reform has just occurred making the �xed exchange rate sustainable.

Consumption is constant and its level, which we denote by c�, can be computed

using the household�s budget constraint:

b+ y=r = c�=r + (c� �m).

Here b and m denote the levels of net foreign assets and real balances that house-

holds had in the period where the reform took place. The term (c��m) represents
the jump in real balances that occurs when agents learn that the �xed exchange

rate regime has become sustainable. Lifetime utility is given by:

V �(b+m) =
log [(rb+ rm+ y)=(1 + r)]

r
.

The t � T Regime Suppose that we have reached time T and a reform has

not occurred. The �xed exchange rate regime is abandoned and the growth rate

of money rises to a level " such that the government�s intertemporal budget con-

straint is satis�ed. Consumption is constant at a level which we denote by c2.

This level can be computed using the household�s budget constraint:

b+ y=r = c2(1 + ")=r + (c2 �m), (5.2)

where (c2�m) represents the jump in real balances that takes place at time T in
response to a permanent increase in in�ation from zero to ". Using (5.2) to solve

for c2, we can compute lifetime utility at time T :

V (b+m;T ) =
log [(rb+ rm+ y)=(1 + r + ")]

r
. (5.3)

The value function (5.3) bears a simple relation with the value function associated

with the reform regime:

V (b+m;T ) = V �(b+m)� log(p)
r

,
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where p is given by

p � 1 + r + "

1 + r
. (5.4)

The fact that r = � and that in�ation is constant means that for any time

period t � T the value function coincides with V (b+m;T ):

V (b+m; t) = V (b+m;T ) for t � T .

The Regime for t � T and No Reform The optimality equation for the

household�s problem during this period is:

rV (b+m; t) = max
c1
flog(c1) + V2(b+m; t) +

[r(b+m) + y � c1(1 + r)]V1(b+m; t) +
�[V �(b+m)� V (b+m; t)]g.

The �rst order condition with respect to consumption (c1) is:

1=c1 = V1(b+m; t)(1 + r).

It is easy to verify that the value function has the form:

V (b+m; t) =
log [(rb+ rm+ y)=(1 + r)]

r
� e

�(�+r)(T�t) log(p)

r
. (5.5)

This equation has a simple interpretation. Consider �rst an economy in which

a �scal reform has no chance of occurring (� = 0) and which will switch to the

�oating regime with certainty at time T . Since utility declines by log(p)=r at time

T , lifetime utility at time t would be:

log [(rb+ rm+ y)=(1 + r)]

r
� e

�r(T�t) log(p)

r
. (5.6)

Our value function is similar to (5.6) but the discount factor applied to log(p)=r

incorporates � to re�ect the fact that there is an ongoing probability of a �scal

reform until time T .
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5.1. Optimal Monetary Policy

At time zero, when the economy learns that there has been an increase in the

present value of government spending, the lifetime utility of the household declines

from V �(b+m) to V (b+m; 0) (given by equation (5.5)).

The central bank chooses T , the maximum length of time that it is optimal

to wait for a �scal reform to occur. If the economy reaches time T > 0 without

a �scal reform, the central bank has to print money to satisfy the government�s

intertemporal budget constraint. Since it is optimal to choose a constant growth

rate of money, the government�s present value resource constraint is:

"c2

r
e�rT + (c1 �m0�) + (c

2 � c1)e�rT = ��. (5.7)

There are no stochastic elements in this equation. This constraint is only relevant

when the economy reaches time T without a �scal reform, in which case all un-

certainty has been resolved. Since the economy is in a sustainable �xed exchange

rate regime at t = 0�, m0� = c1. Hence, c1 = c0�. Using this fact, and the

equation c2 = c1=p together with (5.4) we can rewrite (5.7) as:

p =
c0�=r

c0�=r ���erT
. (5.8)

This equation de�nes p as a function of T .

The optimal policy can be characterized by maximizing V (b+m; 0), given by

(5.5), with respect to T , subject to (5.8). The optimal value of T is given by:

log
�c0�
c2

�
�
�c0�
c2
� 1
�
+

�

r + �

r��erT

c2
� 0. (5.9)

This equation holds with equality whenever T � > 0. Equation (5.9) is similar to

the one that characterizes the case in which the exit cost is increasing with the

�scal shock (see equation (4.7)). The term erT re�ects the fact that, as time passes,

the size of the �scal reform has to increase in order to restore the sustainability

of the �xed exchange rate.

The optimal abandonment time is characterized by the following proposition.
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Proposition 5.1. For every �nite positive value of �, there is a threshold value
for the present value of government spending, ��, such that for �0 > �� it is

optimal to abandon the peg at time zero (T = 0), while for �0 � �� it is optimal
to delay abandoning the peg (T � 0). The value of �� is increasing in �.

Proof: See Appendix 7.5.

The intuition for this proposition is similar to that of the case in which the

exit cost is increasing with the �scal shock. Take � as given and evaluate (5.9)

for T = 0:

log
�c0�
c2

�
+ 1 +

c0�

c2

�
�

r + �

r��

c0�
� 1
�
� 0, (5.10)

If (5.10) takes on a negative value it is optimal to choose T = 0. Since the �scal

cost cannot exceed the wealth of the economy, r�� < c0�, and the coe¢ cient on

c0�=c
2 is negative. For a given �, as �� increases c2 converges to zero, while c0�

remains constant. As a result, c0�=c2 becomes arbitrarily large and the left-hand

side of (5.10) converges to �1.20 Since the �ow saving of delaying is bounded
relative to c0�, the cost of delaying dominates and immediate abandonment is

optimal for large values of ��. The fact that �� is increasing in � is also intuitive:

it means that when the reform arrival rate is higher, the range of �scal shocks for

which it is optimal to delay abandoning the peg is larger.

6. Conclusion

Versions of the Krugman-Flood-Garber currency crisis model are widely used to

study the abandonment of �xed exchange rate regimes. This class of models

assumes that the central bank follows a mechanical exit rule: a peg is abandoned

if and only if international reserves reach a critical lower bound. From a positive

standpoint the KFG rule is at odds with many episodes in which the central bank

20It should be clear that in this case T = 0 is the global optimum. In order for c2 to be
positive, it must be the case that ��erT < c0�=r, so for any T > 0 the left-hand side of (5.9)
converges to �1.
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has plenty of international reserves at the time of abandonment. From a normative

standpoint, our analysis suggests that the KFG rule is suboptimal.

We characterize the optimal exit strategy in a model in which the �xed ex-

change rate regime has become unsustainable due to an unexpected increase in

the present value of government spending. We show that when there are no exit

costs, it is optimal to abandon immediately. When there are exit costs, the opti-

mal abandonment date is a decreasing function of the size of the �scal shock. In

particular, immediate abandonment is optimal for large �scal shocks.

In this paper, we have studied a basic monetary model where the only impact

of in�ation is to distort intertemporal consumption allocations. This analysis

provides us with a point of departure to study richer environments in which tax

revenue and the cost of �nancing public debt are endogenous and where monetary

policy may a¤ect the level of economic activity.
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7. Appendices

7.1. Episode selection

Our original sample consists of the 96 currency crisis episodes identi�ed in Kamin-

sky and Reinhart (1999) and updates. Since the selection criteria used by Kamin-

sky and Reinhart is based on a weighted average of reserve losses and changes in

the exchange rate, we chose a sub-sample based exclusively on changes in the ex-

change rate. Speci�cally, we chose those episodes in which the devaluation in the

month of abandonment is at least 10 percent and that meet one of the following

criteria: (a) there was a �xed exchange rate (or a negative rate of change in the

exchange rate) for at least 12 months before the devaluation; and (b) devaluation

in the 12 months following and including the month of abandonment is at least

twice as large as the devaluation in the previous 12 months.

7.2. Proof of Proposition 3.1

We �rst outline some preliminary steps that consist in expressing the Kuhn-Tucker

condition solely as a function of the parameters. We then let �� > 0 and T = 0

and show the following: 1) If � = 0, it is optimal to abandon right away; 2) if

�� � c0�=er, it is optimal to abandon right away regardless of the value of �; and
3) if �� < c0�=er; whether the solution is interior or not depends on the value of

�:

7.2.1. Preliminaries

Our starting point is the Kuhn-Tucker condition (3.14) which, using the govern-

ment budget constraint, (3.10), can be expressed as:

log

�
c0�

c0� � r(erT�� + �)

�
�
��

c0�

c0� � r(erT�� + �)
� 1
�
� r�

c0� � r(erT�� + �)

�
� 0.

To simplify notation, let:

p(T; �;��) � c0�

c0� � r(erT�� + �)
, p� =

rp2

c0�
.
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Then de�ne:

	(T; �;��) � log(p)� (p� 1) + r�p
c0�

. (7.1)

This expression implies:

	�(T; �;��) =
p�
c0�
(c0� � �r � 2rerT��). (7.2)

We need to impose bounds on � and �� to ensure that c2 is positive. Equation

(3.10) implies:

c2 = c0� � r(erT�� + �) > 0. (7.3)

For a given ��, � is bounded by:

� <
c0�

r
� erT��. (7.4)

For a given �, �� is bounded by: �� < e�rT (c0�=r � �).

7.2.2. � = 0 case

We now show that if � = 0, it is always optimal to abandon at time 0 for any

strictly positive �scal shock. Evaluate (7.1) at � = T = 0 to obtain 	(0; 0;�� >

0) = log (p)� (p� 1) < 0.

7.2.3. Case �� � c0�=er

We now show that if �� � c0�=er, then it is optimal to abandon at time 0

regardless of the value of �. To this end, we need to consider two sub-cases.

Case a: �� > c0�=2r. Evaluate expression (7.2) at T = 0 to obtain	�(0; �;��) =
(p�=c0�) (c0� � �r � 2r��) < 0 since �� > c0�=2r. Hence, �� > c0�=2r is a suf-
�cient condition for 	� < 0. Recall that 	(0; 0;�� > 0) < 0. The Kuhn-Tucker

condition is thus always negative and the solution is always a corner solution at

T = 0.

35



Case b: c0�=er � �� � c0�=2r. In this case, notice that 	� becomes zero

for a value of � which we denote by �max, given by �max = c0�=r � 2��.21 Now
evaluate p at �max to obtain: p(0; �max;��) � c0�=r��: Using this expression,

evaluate 	 at �max to obtain 	(0; �max;��) = log [p(0; �max;��)] � 1. Hence
	(0; �max;�� = c0�=er) = 0 and 	(0; �max;�� > c0�=er) < 0: The solution is

T � = 0 (a boundary solution for �� = c0�=er and a corner solution for �� >

c0�=er).

7.2.4. Case �� < c0�=er

We now show that if �� < c0�=er, the Kuhn-Tucker condition as a function of �

has two roots, which we denote by .�� and ���, with �� < ���.

Notice that if �� < c0�=er, then: p(0; �
max;��) � c0�=r�� > e. This

inequality implies that: 	(0; �max;�� < c0�=er) > 0. Since we know that

	(0; 0;�� < c0�=er) < 0, by continuity it follows that �� exists. To establish

existence of the second root, ���, we now show that the limit of 	(T; �;��) as �

approaches the upper bound given in (7.4) is �1. This limit is given by:

lim
��!

c
0�
r
���

	(T; �;��) = log (p)� (p� 1) + r�p
c0�

.

Since p �!1 as � �! c0�=r���, we need to collect terms in p to evaluate the
resulting coe¢ cient:

lim
��!

c
0�
r
���

	(T; �;��) = 1 + log (p) + p

�
�1 + r�

c0�

�
.

The coe¢ cient on p is always negative because, from (7.4), � < c0�=r. Hence, the

limit is �1. It follows that for �� < � < ���, the solution is interior (T � > 0),
whereas for 0 � � � �� and � � ��� (with an upper bound given by � <

c0�=r ���), the solution is T � = 0.
So far we have established that for some ranges of parameter values, we have

�local�corner solutions (i.e., around T = 0). To show that these corner solutions

21It is easy to check that the second-order condition is satis�ed.
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are also global (i.e., that they hold for any T ), it is enough to show that for any

given � and ��, 	(T; �;��) is strictly decreasing in T for any T � 0. This is

indeed true as this derivative can be shown to be given by �pT r��erT=c0� < 0
(since, as can be easily veri�ed, pT > 0).

7.3. Behavior of T , ", and Reserve Loss as a Function of �.

Behavior of T: Take as given �� 2 (0; c0�=er) and consider the ranges

for � (established above) for which the solution for T is interior. In that case,

	(T �; �;��) = 0 implicitly de�nes T � as a function of � (notice that 	T � < 0).

Totally di¤erentiating,
dT �

d�
=

	�c0�

pT r��erT
;

where the behavior of 	� has been derived above. Hence, T is an increasing

function of � for � 2 [��; �max) and a decreasing function for � 2 [�max; ���). For
all other values of �, the value of T � = 0, as established above. Figure 2, Panel

A, shows T � as a function of �.

Behavior of ": For the range of interior solutions �and taking into account

that p = (1 + r + ") =(1 + r) �it follows from (7.1) that:

d"

d�
=
r(1 + r)p2

c0� log(p)
> 0.

When T � = 0, " is also an increasing function of �, as can be easily checked. Figure

2, Panel B, illustrates the optimal " as a function of �. Clearly, at � = �� = ���,

this function need not be di¤erentiable.

Behavior of loss of reserves. By de�nition, the reserve loss at T is equal

to c0� � c2. Since c0� is independent of both T and �, we just need to check the
behavior of c2 as a function of � for interior solutions (naturally, for T = 0, the

reserve loss is zero). Since c2 = c0�=p, it follows that:
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dc2

d�
= � c0�

p2(1 + r)

d"

d�
< 0.

Hence, the reserve loss is an increasing function of � when the solution is interior

(see Figure 2, Panel C).

7.4. Behavior of T , ", and the Loss of Reserves as a Function of ��

Behavior of T We now derive the behavior of the optimal values of T , ",

and the loss of reserves as a function of �� for a given � 2 (��; ���). As shown
above, the solution is interior for �� � c0�=er. In this range, setting (7.1) to zero
yields:

dT

d��
= �p��

pT
< 0.

Further, recalling the expression for c2 from (7.3) and taking into account that,

at an interior optimum, p and hence c2 do not depend on T , it follows that

lim
��!0

T =1:

For any �� � c0�=er, the solution is T = 0, as shown above. In Figure 3,

and without loss of generality, the given value of � has been taken to be � =

(c0�=r) (1 � 2=e). It can be checked that 	[(c0�=r) (1 � 2=e); c0�=er] = 0 and

hence in Panel A, T (��� = c0�=er) = 0:

Behavior of " From (7.1), it follows that when the solution is interior, p and

hence " are fully determined by � and are therefore independent of ��. Hence,

for 0 < �� < c0�=er, the optimal " does not depend on ��.22 For �� � c0�=er,
T � is zero. In that case �as can be easily checked �" is an increasing function of

��. (See Panel B in Figure 3.)

22For �� = 0, the optimal " is zero since T � =1, i.e. the peg is never abandoned.
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Behavior of the loss of reserves Finally, consider the reserve loss (� c0��
c2). Clearly, for �� � c0�=er, the reserve loss is zero since the peg is abandoned
right away. For 0 < �� < c0�=er, the reserve loss equals c0�(p�1)=p > 0. Since
p is independent of �� when the solution is interior, then the reserve loss is also

independent of �� in this range.

7.5. Proof of Proposition 5.1

It is useful to de�ne the functionK(p) asK(p) � (1�p)r+(r+�) log(p). Equation
(5.9) can be re-written as: K(p) � 0: This function is concave and, for � > 0,

it intersects the x-axis twice, at p = 1 and at a value of p greater than 1 which

we denote by p�. The maximum value of K(p) is achieved for p = (r + �)=r. To

check whether T = 0 is optimal we can set T = 0 in (5.8) to compute the value of

p that would be consistent with the government budget constraint if the peg was

abandoned immediately. We denote this value of p by p0:

p0 =
c0�=r

c0�=r � (�� +m0� � c0�)
:

Using the fact that b0�+ m0� + y=r = c0�(1+ r)=r we can rewrite this expression

as:

p0 =
c0�=r

b0� + y=r ���
.

We can then use this expression for p0 to evaluate the Kuhn-Tucker condition. If

K(p0) < 0, T = 0 is optimal, otherwise T > 0 is optimal. The variable p0 is an

increasing function of �� which takes the value 1 when �� = 0 (in this case there

is no expenditure shock at time zero and the regime continues to be sustainable).

The value of p0 converges to in�nity as �� ! b0� + y=r. This limiting value of

�� is such that government spending exhausts all the resources of the economy.

De�ne ��� as the value of �� such that p0 = p�. Then for �� > ���, K(p0) < 0

so it is optimal to abandon immediately. For �� < ���, K(p0) > 0 and T � > 0.

Finally, it is easy to see that p� is an increasing function of �. This property

implies that ��� is also an increasing function of �.
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      Table 1.  Currency crises episodes

Change in Change in
Loss Change exch. rate exch. rate

Change in of in real gov 12 months 12 months
exch. rate reserves spending before after

Country Date (in %) (in %) (in %) (in %) (in %)
Argentina Jun 70 14.3 7.3 15.9 0.0 17.7

Jun 75 160.0 75.6 3.9 100.0 1,301.7
Feb 81 11.3 53.3 35.7 22.1 393.6
Apr 89 386.7 15.8 34.0 200.0 29,324.8
Jan 02 40.1 45.9 13.7 0.0 232.2

Bolivia Nov 82 358.3 -33.3 24.0 76.2 358.3
Nov 83 155.1 -32.1 36.8 358.3 2,483.4
Sep 85 1421.3 24.1 -29.9 1,282.2 2,605.7

Brazil Feb 83 38.6 50.8 -16.4 104.8 292.3
Jul 89 42.6 -19.1 106.8 680.4 3,917.2
Oct 91 38.7 11.9 -17.1 452.0 1,276.6
Jan 99 64.1 34.1 24.4 8.3 48.0

Chile Set 72 66.6 60.4 NA 0.0 900.0
Dec 74 28.2 66.2 NA 100.0 400.0
Jun 82 19.1 15.6 20.4 0.0 62.4

Finland Oct 82 13.7 16.9 16.0 8.2 16.7
Sep 92 16.3 10.1 33.3 -8.3 50.4

Indonesia Nov 78 50.6 3.6 12.6 0.0 51.1
April 83 37.8 54.1 27.3 7.8 42.3
Sep 86 44.3 8.9 9.5 1.2 44.9

Israel Nov 74 42.9 24.1 NA 0.0 66.7
Nov 77 47.6 -11.1 NA 23.0 78.6
Oct 83 31.5 2.3 NA 119.2 530.2

Malaysia Aug 97 12.4 15.8 15.1 5.4 57.2
Mexico Sep 76 58.7 39.0 16.8 0.0 82.9

Feb 82 67.7 27.7 82.7 13.8 277.6
Dec 94 54.4 75.0 13.2 10.8 121.8

Norway May 86 12.2 -3.5 20.5 -22.1 -3.6
Peru Jun 76 44.4 54.5 17.8 16.3 73.4

Oct 87 25.9 49.2 6.3 13.9 1,473.3
Sep 88 657.6 42.8 -17.5 107.6 10,719.9

Philippines Feb 70 46.7 -29.9 15.0 0.3 63.3
Oct 83 27.3 80.7 0.4 26.6 63.6
Jul 97 15.4 7.4 17.1 0.7 59.5

Spain Feb 76 11.3 0.4 2.3 6.3 15.1
Jul 77 22.0 15.7 -9.4 2.5 13.2

Sweden Aug 77 11.5 13.4 20.0 -2.0 3.7
Oct 82 18.2 -5.7 13.9 12.3 24.3
Nov 82 18.8 -49.7 13.5 -5.4 41.1
Nov 84 17.7 -38.8 21.2 0.0 15.3
July 97 24.3 23.2 33.9 1.7 64.1

Turkey Aug 70 65.1 -84.1 17.8 0.0 65.1
Jan 80 100.0 28.0 -9.4 40.0 155.0
Mar 84 21.2 53.3 3.7 98.8 126.3
Feb 01 36.1 6.4 58.7 21.2 93.0

Uruguay Mar 72 99.6 -119.4 14.1 0.0 241.1
Nov 82 38.7 37.4 44.1 18.4 176.3

Venezuela Feb 84 74.4 -40.0 -19.0 0.2 74.4
Dec 86 93.3 37.2 13.5 0.0 93.3
Mar 89 154.3 35.7 -9.8 0.0 197.3
Dec 95 70.6 22.1 -3.2 0.0 178.1

Source: Authors' calculations based on data from International Financial Statistics  (IFM)



Figure 1. Histogram of reserve losses 
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