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We examine the role of reservations in capacity-constrained services with a focus on restaurants. Although
customers value reservations, restaurants typically neither charge for them nor impose penalties for failing to
honor them. However, reservations impose costs on firms offering them. We highlight ways in which reserva-
tions can increase a firm’s sales by altering customer behavior. First, when demand is uncertain, reservations
induce more customers to patronize the restaurant on slow nights. The firm must then trade off higher sales in
a soft market with sales lost to no shows on busy nights. Competition makes reservations more attractive as
long as enough customers will consider dining at either restaurant. When there are many firms in the market,
it is rarely an equilibrium for none to offer reservations. Second, we show that reservations can increase sales
by shifting demand from a popular peak period to a less desirable off-peak time. This is accomplished by in-
forming diners when all peak reservations have been given out. In this setting, competition may make offering
reservations less attractive, and a market with many firms may have no one offering reservations.
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1 Introduction

Restaurant reservations are a curious phenomenon. Customers value them, but restaurants give them away.

Indeed, firms such as Weekend Epicure have stepped in to profit from the resulting arbitrage opportunity.

These “scalpers” reserve tables at popular spots under fictitious names that they share with the first paying

party. (Fees are on the order of $35 to $40.) What makes offering reservations even more remarkable

is that they are costly to provide. Fischer (2005) identifies three costs to offering reservations. These

include additional staff needed to take reservations and added complexity from having to balance the needs

of walk-in customers with commitments made to reservation holders. The final consideration is no shows.

Customers can generally fail to keep reservations without penalty, but restaurants suffer if they hold capacity

for customers that never come. No shows represent a real problem. Bertsimas and Shioda (2003) report a

no-show rate of 3% to 15% for the restaurant they studied. More generally, rates of 20% are not unusual

(Webb Pressler, 2003) and special occasions such as New Year’s Eve can push rates to 40% (Martin, 2001).

Why then should restaurants offer reservations? One reason is the operational benefits they provide.

Reservations regulate the flow of work. By staggering seatings, a restaurateur can assure that waiters are
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not overwhelmed by a rush of customers followed by the bartender and kitchen being swamped with orders.

Reservations thus allow fast service without excessive capacity (Fischer, 2005). Reservations would then

be appealing when either customers are delay sensitive or the firm’s costs increase with arrival variability.

Further, reservations may allow a restaurant to estimate demand and improve staffing and sourcing decision.

This is particularly important when variable costs are high. Chicago-based Alinea is known for intricate,

multicourse menus. It requires customers make reservations. To the extent that Alinea incurs significant

expense in preparing for its guests, knowing how many are coming on a given night is crucial.

In this paper we abstract from these issues and focus on reservations’ ability to influence consumer be-

havior and thus increase sales. We consider a capacitated restaurant whose sole decision is whether or not

to offer reservations. (Our model also applies to other firms that serve both reservations and walk ins and

whose charges depend on customers’ post-arrival choices.) At the time reservations are made (assuming

they are offered), customers are uncertain how they will value the service at the time of consumption. Cus-

tomers learn their valuations before traveling to the service facility. Since there is a fixed cost to accessing

the facility, those with low realized values fail to honor their reservations. If reservations are not offered,

customers learn their value for the service and decide whether to walk in for service. Walking in incurs a

travel cost and a risk of an additional penalty if one cannot get a seat.

We first study a base case with a known market size and a single sales period and show that reservations

are never offered. We consequently introduce market-size uncertainty with two demand states. The firm

can serve all customers on a slow night, but it lacks the capacity to serve everyone on a busy night. Mar-

ket uncertainty reduces customer willingness to walk in. Reservations counteract this by guaranteeing all

customers a seat on a slow night. The restaurant faces a trade off of selling more on slow nights but losing

sales on busy nights because of no shows. Reservations are hence important to the firm in a soft market but

costly in a strong one. Competition can make offering reservations even more attractive. In a market with

many firms, it is unlikely that no one will offer reservations.

We next split the evening into a capacitated peak and an uncapacitated off peak. All diners prefer the
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peak period. Absent reservations, the peak is oversubscribed. Reservations shift demand by informing some

customers that they must move off-peak to receive service. Reservations thus create value for the restaurant

when customers are unable to get them. If the primary reason for offering reservations is to move demand

off peak, competition may limit the attractiveness of reservations. Indeed, with many small firms in the

market it may now be an equilibrium for no one to offer reservations.

Below, we review the literature. §3 presents the basic model. The following two sections consider,

respectively, uncertain market size and multiple sales periods. §6 concludes. Proofs are in the Appendix.

2 Literature review

The existing literature on reservations or advance sales emphasizes pricing or segmentation. In Png (1989),

a firm with limited capacity sells to risk-averse customers who are uncertain of their need for a service

at some future point. The firm offers reservations and overbooks; bumped customers receive a specified

compensation. Reservations act as insurance and allow for higher prices than either selling outright in

advance or selling in the spot market. Dana (1998) considers a competitive market with capacitated firms.

Market segments differ in their willingness to pay and the certainty with which they need service. If those

with low valuations are more certain to need the service, the firms sell some capacity early at a discount but

raise the price closer to the time of service delivery. In DeGarba (1995), advance selling allows the firm

to capture the same revenue as first-degree price discrimination. Xie and Shugan (2001) and Shugan and

Xie (2005) develop similar ideas. (See Courty, 2000, and Shugan, 2002, for reviews.) None of this work

addresses the restaurant industry. Restaurants do not charge in advance, and menu prices are independent

of holding reservations. Also, they do not publicize compensation schemes for reservation holders denied

service. Further most of these papers focus on monopoly settings (Dana, 1998, and Shugan and Xie, 2005,

are exceptions) while we extend our analysis to competitive environments.

Gale and Holmes (1993) show that advance-purchase discounts with limited refundability can shift de-

mand from a popular flight to a less popular alternative. We demonstrate that reservations can profitability

move some demand from a peak to an off-peak period. This is not accomplished through pricing; reserva-
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tions provide information that is sufficient to induce some customers to move off peak.

Dana and Petruzzi (2001) study a newsvendor model in which customers incur a cost to shop. The stock-

ing level thus affects demand. They focus on determining the stocking level and do not consider altering

the timing of sales. Deneckere and Peck (1995) examine similar issues in a competitive environment. We

take the restaurant’s capacity as exogenous but allow reservations.

Appointment systems have been widely studied. See, for example, Robinson and Chen (2003) or Savin

(2006). This work generally ignores strategic consumer actions. Lariviere and Van Mieghem (2004) con-

sider delay-sensitive consumers choosing arrival times. An appointment system allows them to pick se-

quentially and results in an arrival pattern that minimizes both period-to-period variation in arrivals and

total delay costs. Customers are not allowed to decline seeking service and are assumed to be indifferent

to when they are served. We ignore delay costs but explore how reservations can increase sales either by

encouraging more customers to come in or by inducing customers to avoid crowded times.

Bertsimas and Shioda (2003) consider how many reservations a restaurant should accept and how to

accommodate walk-in customers given reservation commitments. Both demand streams are exogenous.

Here, offering reservations changes the number of customers patronizing the firm.

3 Model fundamentals

We consider one restaurant serving a market of known size θ > 0. All customers are served in a single sales

period. Customers are a priori homogeneous. The net utility from planning to stay home is normalized to

zero. Each customer incurs a cost T ≥ 0 to travel to the restaurant whether or not she holds a reservation.

A walk-in customer who fails to get a seat incurs a cost D ≥ 0, which represents the inconvenience of

changing plans and is not paid to the firm. A strictly positive denial cost implies that the opportunities open

to a customer who has been turned away are not as attractive as planning to eat at home.

While a priori homogeneous, customers are ex post differentiated by their value for dining out. Each

customer draws a valuation independently from a known, continuous distribution, F (V )with density f (V )

and support (0,Ω) for Ω > T . F̄ (V ) = 1 − F (V ). Customers learn their valuations before incurring
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the travel cost. Hence, only those whose realized valuation V exceeds T will even consider patronizing

the restaurant. Customers are atomistic; they are sufficiently small relative to the market that aggregate

uncertainty is trivial. Thus, while it is uncertain whether any specific consumer will have a positive net

utility from dining out, the total number of customers interested in dining out is certain to be θF̄ (T ).

The firm’s sole decision is whether to offer reservations. Its menu and pricing are fixed, and the expected

spending is the same for all customers regardless of their realized value for dining out. The restaurant’s

objective is thus to maximize unit sales. The firm can serve K per evening. θF̄ (T ) > K > 0, i.e., not all

customers who value dining out can be seated.

Events proceed as follows. The firm announces its policy. If it offers reservations, customers simultane-

ously decide whether or not to ask for one. Requesting customers learn immediately if they are successful.

Subsequently, each customer learns her valuation V . Reservation holders then decide whether to honor

them while non-holders simultaneously decide whether to walk in. As customers arrive, reservation hold-

ers are seated first. If the number of walk-in customers exceeds the available capacity, seats are rationed

randomly. Thus, if M reservations have been given out and κ > K −M customers walk in, the probability

of any one walk-in customer being seated is (K −M) /κ. This implicitly assumes the restaurant does not

realize a given reservation holder is a no show until it is too late to give her seat to a walk-in customer. If

reservations are not offered, customers wait to learn their valuations and then decide whether or not to walk

in. If the number of walk ins exceeds capacity, seats are rationed randomly.

3.1 The no-reservation case

When reservations are not offered, a customer with realized valuation V 0 faces a lottery. By spending the

travel cost T , she either receives a benefit of V 0 or incurs a penalty of D. Her perceived probability of

getting a seat is thus critical to her decision. Let δ denote her anticipated probability of getting a seat. Her

expected utility from walking in is δV 0 − (1− δ)D − T , and she will walk in if δ ≥ T+D
V 0+D . Since all

customers have the same chance of getting a seat, anyone with realized valuation V ≥ V 0 will also walk in

if the customer with value V 0 walks in.
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Proposition 1 Suppose the restaurant does not offer reservations.

1. The unique equilibrium has all customers with valuations greater than V 0 walking in to the restaurant,
where V 0 is found from

F̄
¡
V 0
¢
=

K

θ

µ
V 0 +D

T +D

¶
. (1)

2. The equilibrium probability that an arriving customer gets a seat is T+D
V 0+D .

In equilibrium, the marginal customer must be indifferent between walking in and staying home. Hence,

the restaurant is oversubscribed (i.e., θF̄ (V 0) > K). However, if D becomes large, F̄ (V 0) ≈ K
θ ; only the

highest valuation customers attempt to dine out, and essentially all of them are seated.

It is straightforward to show that V 0 increases with θ, T , and D, but falls in K. Further, consider two

valuation distributions, F0 and F1, and let V 00 and V 01 be the corresponding cutoffs. If F0 (V ) ≥ F1 (V )

for all V , V 00 ≤ V 01 . A higher cutoff value does not translate into a smaller crowd. The chance a walk-in

customers gets a seat falls as V 0 increases (holding T constant and D constant). A better restaurant (in the

sense of stochastically larger valuation distribution) is more crowded. Also, as less capacity is available,

fewer customers walking in does not offset the loss of seats; the chance of getting a seat falls as K decreases.

3.2 Reservations and the restaurateur’s problem

Suppose the restaurant’s entire capacity is offered via reservations. (This may not be optimal; see §6.) It

does not overbook, so reservation holders are guaranteed seats. If demand exceeds K, reservations are

rationed randomly. We do not a priori assume reservations eliminate walk-ins; if fewer than K reservations

are given out, the restaurant will accept walk-in customers. However, in equilibrium, a restaurant will

not serve both reservation and walk ins. To see why, let V = E [max {0, V − T}] . V is a representative

customer’s expected value for holding a reservation. Because V ≥ 0, all customer request one, and the

restaurant commits all of its capacity to reservations. A customer who was unable to secure a reservation

consequently does not walk in because she knows that she will not get a seat.

Everyone asks for reservations, but not all reservations are honored. With probability F (T ) , a reserva-

tion holder becomes a no show. The firm’s sales are then KF̄ (T ) with reservations but K without them.

Thus in market of a known size with a single sales period, it is never optimal to offer reservations.
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This outcome is hardly surprising; the model is stacked against reservations. Customers make reserva-

tions before learning their valuations, opening the possibility that they fail to show. We have also limited

the firm’s ability to protect itself from no shows by assuming that it is unable to reassign seats and is un-

able to overbook. Relaxing any of these assumptions would leave the restaurant indifferent between taking

reservations and accepting only walk ins. If customers learnt their valuations before making reservations,

only those who plan on using a reservation would bother requesting one. If the restaurant could identify

no shows in a timely manner and re-offer their seats, customers without reservations would anticipate the

number of no shows and generate enough walk-in business to fill the restaurant. Similarly, the assumption

of atomistic customers implies that if M reservations are given out, exactly MF̄ (T ) diners will show up.

Hence, overbooking with M = K/F̄ (T ) would allow the restaurant to compensate for no shows exactly.

4 Uncertain market size

To develop a role for reservations, we must alter some assumption. Here we introduce demand uncertainty.

Suppose that there are θ > 1 customers in the market. Nature now moves first and determines how many

of these customers are “active”. Only active customers are interested in having a reservation for dining

out and only they may have a positive net utility of dining out at the time of service. With probability

1 − ρ, the number of active customer is one. With probability ρ, all θ customers are active. We assume

1 ≤ K < θF̄ (T ); capacity is sufficient to serve all active customers on a slow night but binds in a large

market. Market uncertainty does not reflect variation over observable conditions (e.g., Fridays are busier

than Tuesdays) but variation given specific circumstances. One should interpret the model as saying that

given that it is Friday night, the restaurant will be busy with probability ρ.Customers cannot learn the market

size unless they request a reservation or walk in. We first consider a monopoly and then competition.

4.1 The monopoly problem

We begin with the no-reservation case. The analysis follows Deneckere and Peck (1995) and begins by

noting that being active allows a customer to update her beliefs about whether the restaurant is busy. If the

number of active customers is high, a customer is certain to be active. If the number of active customers is
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only one, a given customer is active with probability 1/θ (assuming that every customer is equally likely to

be picked). An active customer’s posterior belief that that the market is high is then ρθ
1−ρ+ρθ > ρ. Assuming

that customers again follow a cutoff equilibrium such that only those with values greater than V ∗ walk-in,

an active customer perceives the chance of getting a seat as

F̄ (V ∗) (1− ρ) +Kρ

F̄ (V ∗) (1− ρ+ ρθ)
.

The proof of the following proposition then parallels that of Proposition 1.

Proposition 2 Suppose the restaurant does not offer reservations.

1. The unique equilibrium has all customer with valuations greater than V ∗ walking in to the restaurant,
where V ∗ is found from

F̄ (V ∗) =
ρK (V ∗ +D)

ρθ (T +D)− (1− ρ) (V ∗ − T )
. (2)

2. The cutoff value V ∗ is increasing in ρ and V ∗ ≤ V 0, where V 0 is found from (1).
3. The equilibrium probability that an arriving customer gets a seat is T+D

V ∗+D .

If the restaurant offers reservations, it has F̄ (T ) customers when the market turns out to be small but

KF̄ (T ) customers when the market is large.

Proposition 3 The restaurant prefers offering reservations if

(1− ρ)
¡
F̄ (T )− F̄ (V ∗)

¢
≥ ρKF (T ) . (3)

Reservations are never offered if

F (T ) ≥
(1− ρ)

¡
1− K

θ

¢
1− ρ+ ρK

. (4)

Reservations increase sales in the low demand state but lower sales in the high-demand state. They are

consequently important on evenings in which the firm has plenty of available seats but are costly when the

place is hopping. That is, the firm offers reservations not to manage demand when business is good but to

entice more customers to come in when demand would otherwise be slow.

Costly no shows are essential to our story: The trade off goes away if they are not an issue. If customers

knew their valuations when making reservations, sales in the high state would be K, and the firm would

always offer them. Alternatively, if the no show rate F (T ) is too high, reservations are never offered, as
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the bound (4) demonstrates. The bound is decreasing in K and ρ. Hence, for any given no show rate there

exists a capacity level or chance of a large market sufficiently large that reservations would never be offered.

Proposition 4 If (3) holds for...

1. K0, then it holds for any 1 ≤ K ≤ K0.
2. θ0,then it holds for any θ ≥ θ0.
3. D0, then it holds for any D ≥ D0.
4. F0, then it holds for any valuation distribution F1 larger than F0 in the reversed hazard rate order.1

5. T0, then it holds for any T ≤ T0 if F (ψT ) /F (T ) is decreasing in T for ψ > 1.

Offering reservations is more attractive when small capacity or a high denial penalty limits walk-in

demand. Similarly, when a larger valuation distribution raises the walk-in cutoff, reservations become more

attractive. Together these give the empirical predictions that smaller restaurants or better quality restaurants

(in the sense of higher valuation distributions) are more likely to offer reservations.

The roles of T and ρ are less clear. Increasing T raises V ∗, lowering walk-in sales in the low demand

state, but it also increases no shows in all states. The latter effect dominates and lower travel costs make

reservations more attractive. The required regularity condition holds for many common distributions

While reservation sales increase linearly with the probability of high demand, walk-in sales are not

necessarily monotone in ρ. It is consequently difficult to generate comparative statics analytically. However,

we know that sales with and without reservations are equal as ρ falls to zero but relying on walk ins is always

better for ρ sufficiently high. This suggest that the gains from offering reservations are not monotone in ρ.

Figure 1 show that this can, indeed, be the case. The percentage increase in sales peaks at intermediate

values of ρ while the location of the peak tends to be at lower values of ρ for higher travel costs. Further, as

discussed above, the gain from reservations is higher when capacity is tight.

4.2 Competition

We now suppose there are two restaurants, A and B. Travel and denial costs are the same for both firms.

Restaurant j has capacity Kj for j = A,B. Let K̃ = KA +KB and α = 1 − β = KA/K̃. We assume

1 For distributions F0 and F1 with respective densities f0 and f1, F0 is smaller than F1 in the reversed hazard rate

order if f0(V )
F0(V )

≤ f1(V )
F1(V )

for all V ≥ 0 (Shaked and Shanthikumar, 1994).

9



0.2 0.4 0.6 0.8 1

-20

20

40

60

ρ%
 c

ha
ng

e 
in

 sa
le

s

(K,T) = (1.25, 1/10)

(K,T) = (1.25, 3/10)

(K,T) = (3, 1/10)

(K,T) = (3, 3/10)

0.2 0.4 0.6 0.8 1

-20

20

40

60

ρ%
 c

ha
ng

e 
in

 sa
le

s

(K,T) = (1.25, 1/10)

(K,T) = (1.25, 3/10)

(K,T) = (3, 1/10)

(K,T) = (3, 3/10)

Figure 1: Percent change in sales when moving from not offering reservations to offering reservations. F (v) = v for
0 ≤ v ≤ 1,D = 7/4, and θ = 5.

1 ≤ KA ≤ αθF̄ (T ) and 1 ≤ KB ≤ βθF̄ (T ). Thus either firm could serve the entire market by itself on a

slow night, but together they cannot serve all customers on a busy night even if customers are allocated in

proportion to the fraction of industry capacity they control.

The sequence of events changes slightly. Both firms announce their policies. If at least one offers

reservations, customers wanting one make their requests simultaneously before learning their valuations.

If both offer reservations, customers seek only one reservation. (Although this is largely for simplicity,

OpenTable, a reservation service, does not allow users to hold simultaneous reservations.) Once valuations

are learnt, reservation holders determine whether to honor their reservation, stay home, or patronize the firm

for which they do not hold a reservation. Customers without reservations wait for their realized valuations

and determine whether to walk in and if so to which firm (i.e., they can only patronize A or B). If no one

offers reservations, customers choose whether to walk in (and to which firm) after learning their valuations.

It remains to specify the joint distribution of customer values. We focus on two special cases: identical

values and less than perfectly correlated values.

4.2.1 Identical values

Suppose each customer draws a valuation V from distribution F and her value for dining at A is the same as

her value for B, i.e., VA = VB . We begin with the walk-in equilibrium. Consider a customer with realized
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value V > T. Since she values dining at the two restaurants the same, she goes to the firm offering a better

chance of getting a seat. In equilibrium, the firms must offer the same probability of successfully securing

a seat. Suppose customers with valuations greater than some Ṽ attempt to dine out and go to firm A with

probability α and to B with probability β. The chance of getting a seat at either firm is

F̄
³
Ṽ
´
(1− ρ) + K̃ρ

F̄
³
Ṽ
´
(1− ρ+ ρθ)

.

It remains to find Ṽ . Since the chance of a walk-in customer getting a seat is the same as when there is a

monopolist restaurant with capacity K̃, the cutoff can be found from (2). We take this monopoly setting as

the base case against which to compare the competitive outcome.

Now consider A’s problem. Suppose B does not offer reservations. If A also forgoes reservations, its

sales are (1− ρ)αF̄
³
Ṽ
´
+ρKA. If it offers reservations, A gets the entire market in the low demand state.

Expected sales are (1− ρ) F̄ (T ) + ρKAF̄ (T ), and reservations are preferable if

(1− ρ)
³
F̄ (T )− αF̄

³
Ṽ
´´
≥ ραK̃F (T ) . (5)

Comparing (5) with (3), it is easy to see that if B does not offer reservations, A would find reservations

attractive over a larger range of parameters than a monopolist with capacity K̃.

IfB offers reservations andA does not, A’s sales are ρKA. If both offer reservations, they must offer cus-

tomers the same chance of getting a reservation in equilibrium. A’s sales are consequently (1− ρ)αF̄ (T )+

ρKAF̄ (T ) , and A offers reservations if

(1− ρ)αF̄ (T ) ≥ ραK̃F (T ) . (6)

Proposition 5 Suppose that firm A is the smaller firm so that α ≤ 1/2.

1. The equilibrium has the following structure:

(a) If ρK̃F (T ) ≥ 1−ρ
α

³
F̄ (T )− αF̄

³
Ṽ
´´

, neither restaurant offers reservations.

(b) If 1−ρ
α

³
F̄ (T )− αF̄

³
Ṽ
´´
≥ ρK̃F (T ) > max

n
1−ρ
β

³
F̄ (T )− βF̄

³
Ṽ
´´

, (1− ρ) F̄ (T )
o
,

A offers reservations and B does not.
(c) If 1−ρ

β

³
F̄ (T )− βF̄

³
Ṽ
´´
≥ ρK̃F (T ) > (1− ρ) F̄ (T ), only one restaurant offers reserva-

tions, and it can be A or B.
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Figure 2: Equilibrium outcome with F (v) = v for 0 ≤ v ≤ 1 and parameters ρ = 0.2/5, T = 1/3, D = 1/4, and
θ = 12. Our analysis is not valid in region NA since α < 1/K̃.

(d) If (1− ρ) F̄ (T ) > ρK̃F (T ), both restaurants offer reservations.

2. If a monopolist with capacity K̃ would offer reservations, both restaurants offer reservations.

3. If F (T ) ≥ (1−ρ)(1−K̃/θ)
1−ρ+ραK̃ , reservations are never offered.

Competition makes reservations viable over a larger range of market parameters. This is driven by the

smaller firm. The first firm to offer reservations enjoys a windfall in a soft market if its competitor does

not match its policy. This slow-night windfall is larger for the small firm. Further, the smaller firm pays a

smaller no-show penalty in the high-demand state. Indeed, the no-show penalty for the larger firm may be

sufficiently big that it would rather forego any low demand sales than lose sales in the high demand state.

Figure 2 provides an example, showing the prevailing equilibrium for combinations of industry capacity

and A’s share of capacity. For the given parameters, a monopolist would only offer reservations if K̃ ≤ 1.78

but both firms offers reservations for K̃ ≤ 3 (region “A& B” in the figure). As capacity expands, we move

to the region marked “A or B”; here, only one firm will offer reservations and it can be A or B. This is

the only region in which there are multiple equilibria. As the split of capacity becomes more skewed, only

A offers reservations as the larger firm now finds it unprofitable to match offering reservations. If capacity

expands sufficiently, walk-in business is robust on slow nights and reservations lead to many no shows on

busy nights. Thus, no one offers reservations.
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To generalize these results to N ≥ 2 firms, we consider two cases. In the first, the restaurants are

“lumpy.” Each has capacity greater than one and thus can serve the entire market on a slow night. In the

second case, the firms are arbitrarily small. Any one firm’s capacity is inadequate for serving the entire

market on a slow night, and the amount of industry capacity available via reservations K̃R can take on any

value. In both settings, we assume that in any walk-in equilibrium customers first employ a common cutoff

value and then split in proportion to firm capacities; the cutoff remains Ṽ as discussed above.

Proposition 6 Suppose that there are N ≥ 2 firms in the market and that θF̄ (T ) > K̃ > 1.

1. Suppose the firms each have capacity K̃/N > 1. The equilibrium has the following structure:

(a) If K̃ > N 1−ρ
ρ

µ
F̄ (T )
F (T ) −

F̄(Ṽ )
NF (T )

¶
, no firm offers reservations.

(b) If N
R
1−ρ
ρ

F̄ (T )
F (T ) ≥ K̃ > N

R+1
1−ρ
ρ

F̄ (T )
F (T ) for R = 1, ..., N − 1, then R firms offer reservations.

(c) If 1−ρρ
F̄ (T )
F (T ) ≥ K̃, all N firms offer reservations.

2. Suppose the firms are arbitrarily small and F (T ) ≤ (1− ρ)
³
1− 1/K̃

´
. In equilibrium:

K̃R =
1− ρ

ρ

F̄ (T )

F (T )
. (7)

When restaurants are sizeable, the range of industry capacities in which everyone offers reservations

is independent of the number firms in the market but the region in which no one offers reservations is

decreasing in the number of restaurants. Thus, splitting market capacity more finely makes having at least

one firm offer reservations more likely. The intuition is similar to the duopoly case. The less capacity each

firm has, the less is lost to no shows in the high demand state. However, unless market capacity is severely

limited, not every restaurant offers reservations. Indeed, the amount of capacity available via reservations

RK̃/N will be very close to 1−ρ
ρ

F̄ (T )
F (T ) when N is large.

When firms are small, this holds exactly. A market with many small restaurants will consequently never

have all firms following the same policy. Instead, some will offer reservations and have sales levels that

do not vary with the realized number of customers. Those that do not offer reservations will make do with

boom-and-bust sales. On busy nights, they are turning customers away; on slow nights they are empty.
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4.2.2 Less than perfectly correlated values

We now consider the possibility that customers may ex post have different opinions about the firms. To

facilitate the analysis, we impose a simplified, binary value distribution. In the monopoly case, a given

customer’s valuation for dining out V equals ν > T with probability 1 − τ and zero otherwise. For the

duopoly case, we consider the following joint valuation distribution for 0 ≤ γ ≤ 1/2:

{VA, VB} Probability
{0, 0} τ
{ν, 0} γ (1− τ)
{0, ν} γ (1− τ)
{ν, ν} (1− 2γ) (1− τ)

The fraction of customers with a positive value for dining out remains 1 − τ , and the probability a

customer has no interest in dining out is τ . For those with a positive value for dining out at some restaurant,

γ manipulates the level of correlation between VA and VB. γ = 0 yields the binary analog of the identical

values case while γ = 1/2 results in perfect negative correlation conditional on having a positive value for

dining out. If γ =
√
τ

1+
√
τ

, the values are independent. Note that even though ex post some customers prefer

one firm to the other, all are ex ante indifferent between the firms.

We now examine a monopoly with capacity K̃ for 1 < K̃ < (1− τ) θ and set D = 0. The equilibrium

probability of getting a seat in a walk-in equilibrium must then be at least T/ν. If the chance of the getting

a seat exceeds T/ν, all customers walk in. The following lemma is then immediate.

Lemma 1 Customers with positive values for dining out walk in with probability λ∗ = min
©
1, λ0

ª
where

λ0 =
ρνK

(1− τ) (ρTθ − (1− ρ) (V − T ))
. (8)

With continuous valuations, those whose valuations barely exceed the travel cost stay home. With binary

valuations, all customers with positive values have the same net expected value from walking in. Hence, all

will walk in if the net utility from dining out ν − T is sufficiently high. When the net value to dining out

is low, a mixed strategy equilibrium results. Obviously, the monopolist never offers reservations when all

customers walk in. To see when reservations are valuable, note that they will increase slow-night sales from

(1− τ)λ∗ to (1− τ) but lower busy-night sales by K̃τ . This will be worthwhile when λ∗ is sufficiently
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small, i.e., if λ∗ < 1− ρK̃τ
(1−ρ)(1−τ) .

For the duopoly setting, we assume KA = KB > 1. (Asymmetric capacities make the smaller firm more

likely to offer reservations.) Two factors differentiate this setting from the previous formulation. First, when

a restaurant gives out reservations, there are two sources of no shows. A reservation holder may fail to show

up because she simply has no positive utility from dining out. Alternatively, she may want to dine out but

only at the restaurant for which she does not hold a reservation. The second difference concerns these

consumers holding the “wrong” reservation; they may merely stay home or they may walk into the other

restaurant. Thus, there is the possibility that a firm both offers reservations and has walk-in traffic.

Suppose no one offers reservations. How many customers should entertain walking into A? Clearly,

those who value only A should. Suppose, in addition, that half of those who value both restaurants are

assigned to A. On a busy night, the number of customers considering A will be θ (1− τ)
³
γ + 1−2γ

2

´
=

θ (1− τ) /2. Suppose they all walk in with the same probability λ∗. The chance of getting a seat is then:

(1− ρ) (1− τ)λ∗/2 + ρK̃/2

(1− τ) (λ∗/2) (1− ρ+ ρθ)
=
(1− ρ) (1− τ)λ∗ + ρK̃

(1− τ) (λ∗) (1− ρ+ ρθ)
,

which is the probability of getting a seat when there is a monopoly with capacity K̃ and active customers

randomize with probability λ∗. Consequently, there exists an equilibrium in which customers who value

both restaurants are split evenly between A and B and all customers with a positive value for dining out

walk into their assigned restaurant with probability λ∗. This equilibrium results in a profit of

(1− ρ)
(1− τ)λ∗

2
+ ρK̃/2. (9)

Now suppose that only A offers reservations. A reservation holder will show up if either she values only

A (which occurs with probability γ (1− τ)) or if she values either firm (probability (1− 2γ) (1− τ)). A

thus yields (1− τ) (1− γ) customers for every reservation given out. The firm’s profit is then:

(1− ρ) (1− τ) (1− γ) + ρK̃ (1− τ) (1− γ) /2. (10)

Comparing (9) and (10), we see that A will prefer to offer reservations (assuming B does not) if:

λ∗ < 2 (1− γ)− ρK̃ (τ + γ (1− τ))

(1− ρ) (1− τ)
(11)
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If γ = 0, we have results similar to Proposition 5, and reservations are going to be more attractive for the

duopolist than the monopolist. In particular, one of the duopolists may offer reservations even if λ∗ = 1

and all customers are already walking in. However, as γ increases, the right-hand side of (11) falls; we have

the possibility that neither duopolist offers reservations when a monopolist would.

Now consider the profit of B when it does not offer reservations but A does. Customers holding reser-

vations at A who ultimately only value B will all walk in to B. Thus, unlike the setting above, a firm not

offering reservations sees some traffic on a slow night while still selling out completely on busy nights. The

resulting profit for B is (1− ρ) (1− τ) γ + ρK̃/2.

If B instead matches A and offers reservations, there are two cases depending on the behavior of cus-

tomers who end up holding reservations at one restaurant but only are interested in eating at the other.

Getting a reservation is not independent of demand, allowing reservation holders to update their beliefs

about the market. The revised probability that demand is high is

ρ̂ =
ρK̃

ρK̃ + (1− ρ)
.

A customer holding a reservation for the wrong restaurant bases her decision on whether to try her

preferred firm on ρ̂. Given that both firms are offering reservations, the only way a walk-in customer can get

a seat is if it is a slow night. All customers who prefer the firm for which they do not hold reservations will

try walking in to their preferred restaurant if 1− ρ̂ ≥ T/ν. If this holds, a restaurant’s sales when both firms

offer reservations is (1− ρ) (1− τ) /2 + ρK̃ (1− τ) (1− γ) /2. If 1− ρ̂ < T/ν, the firms see no walk-in

traffic on top of their reservation business and sales are (1− ρ) (1− τ) (1− γ) /2+ρK̃ (1− τ) (1− γ) /2.

Proposition 7 Let Λ = K̃
2 (τ + γ (1− τ)) be the expected number of no shows on a busy night.

1. Suppose that 1− ρ̂ ≥ T/ν.

(a) If ρΛ > (1− ρ) (1− τ) (1− γ − λ∗/2) , neither firm offers reservations.
(b) If (1− ρ) (1− τ) (1− γ − λ∗/2) ≥ ρΛ > (1− ρ) (1− τ) (1/2− γ) , only one firm offers

reservations.
(c) If (1− ρ) (1− τ) (1/2− γ) ≥ ρΛ, both firms offer reservations.

2. Suppose that 1− ρ̂ < T/ν.
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(a) If ρΛ > (1− ρ) (1− τ) (1− γ − λ∗/2) , neither firm offers reservations.
(b) If (1− ρ) (1− τ) (1− γ − λ∗/2) ≥ ρΛ > (1− ρ) (1− τ) (1− 3γ) /2, only one firm offers

reservations.
(c) If (1− ρ) (1− τ) (1− 3γ) /2 ≥ ρΛ, both firms offer reservations.

The results are illustrated in Figure 3. A monopolist offers reservations if K̃ ≤ 3. For low γ and moderate

capacity levels, region D2 produces results similar to those above: Both duopolists offer reservations even

though a monopolist would not. As industry capacity increases further, we enter D1 and only one firm offers

reservation. However, we can also move into D1 by increasing the chance of ex post differentiation. For

example, at K̃ = 3.5, both firms offer reservations if γ < 0.05, but only one firm does for 0.05 < γ < 0.22.

For higher values of γ, neither duopolist offers reservations (region N).

For regions M0, M1, and M2, a monopolist would offer reservations but both duopolists follow suit

only in M2. As γ increases, only one restaurant offers reservations in M1, and neither does in M0. Our

earlier statements must consequently be tempered. Competition makes reservations more attractive as long

as most customers are ex post indifferent between the firms. When it is likely that many customers will

strictly favor one firm over the other, the attractiveness of reservations falls. Further, we can no longer infer

that reservations will be part of a competitive equilibrium just because a monopolist would offer them.

Moving from the first to the second part of the proposition highlights the informational role of reserva-

tions. When capacity is very tight, getting a reservation is informative and a reservation holder is inclined to

put a high probability on the night being slow. Hence, the reservation holder perceives little risk in abandon-

ing a sure seat to walk into her preferred restaurant. Larger values of K̃ (specifically, K̃ > 1−ρ
ρ

¡
V
T − 1

¢
)

make getting a reservation generally easier and consequently less informative. Matching a competitor’s

policy of offering reservations becomes less attractive since customers holding reservations at a restaurant

at which they have no desire to eat now stay home. The jump in the boundary between M1 and M2 at

K̃ = 2.25 illustrates this switch.

5 A two-period evening

We now return to a fixed market size but split the evening into peak and off-peak periods. Dining off peak
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Figure 3: Equilibrium outcome with ν = 17, T = 8, ρ = 1/3, τ = 3/10, and θ = 27.75.

lowers any customer’s net utility. This is reasonable when the off-peak period is unfashionably early or

annoyingly late. We implement the drop in net utility through period-specific travel costs. The peak cost is

Tp ≥ 0 while the off-peak cost is To > Tp. A customer dining off-peak thus has her net utility reduced by

To − Tp. We assume Ω > To so dining off peak is feasible for some customers.

Events proceed as before except walk-in customers must choose a period. The choices are mutually

exclusive. A walk-in customer unable to get a peak-period seat cannot switch to the off-peak period.

5.1 The monopoly problem

We now interpret K as the number of patrons the monopolist restaurant can serve during the peak period

and assume K < θF̄ (Tp). However, the firm has unlimited capacity during the off-peak period. In a walk-

in equilibrium, customers with valuations greater than To face a choice: Walking in during the peak offers

the possibly of receiving V − Tp but walking in off peak delivers the certainty of receiving V − To. When

Ω is finite and K is large, no one may choose to walk in off peak. Specifically, if

K > θF̄ (VΩ)

µ
1− To − Tp

Ω+D

¶
, (12)

where VΩ is found from K
θF̄ (VΩ)

= D+Tp
VΩ+D

, all customers with realized values greater than VΩ walk in during

the peak; those with lower values stay home. When (12) fails, some dine off peak.

Proposition 8 Suppose (12) fails. The unique equilibrium is defined by V and V such that Tp < V ≤
To < V . Customers for whom V ≤ V stay home. Those for whom V < V ≤ V walk in during the peak.
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Figure 4: Walk-in equilibrium demand with D = 3, θ = 30 and valuations normally distributed with a mean of 4 and
a standard deviation of 1.

Those for whom V > V walk in off peak. V and V are found from
K

θ
¡
F
¡
V
¢
− F (V )

¢ =
Tp +D

V +D
(13)

K

θ
¡
F
¡
V
¢
− F (V )

¢ = 1− To − Tp

V +D
. (14)

Walking in during the peak is risky and is traded off against two certain options. At low valuations, cus-

tomers weigh staying home versus walking in during the peak. Customers with extremely high valuations,

in contrast, are unwilling to chance not getting a seat and opt to dine off peak.

The restaurant’s sales in the walk-in equilibrium are ΠW = K + θF̄
¡
V
¢
. Unlike the uncertain market

size model of Section 4, walk-in sales may not increase with capacity. Expanding capacity entices more

low-value customers to venture in but also results in high-value customers switching from off-peak to peak

patronage. When F (V ) = V/Ω for 0 ≤ V ≤ Ω, the equilibrium for K < θ − θTo
Ω is given by

V =
KΩTp + θTo (D + Tp)

KΩ+ θ (D + Tp)
V =

KΩ

θ
+ To.

Off-peak sales are θ −K − θTo
Ω , and total sales are fixed at θ − θTo

Ω . For other distributions, total sales can

be either increasing or decreasing depending on both the distribution and the cost parameters. See Figure

4. Even when sales increase, they may not rise very quickly because of the drop in off-peak sales.

Because the peak is oversubscribed, the firm may want to shift some demand off peak. Reservations

accomplish this. We suppose all customers request peak-period reservations. If they are unsuccessful,
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we may assume they either take an off-peak reservation or decline an off-peak reservation but determine

whether or not to walk in off peak after learning their value for dining out. Since the off-peak period is

uncapacitated, these are equivalent, leading to sales of ΠR = KF̄ (Tp) + (θ −K) F̄ (To) .

Proposition 9 Suppose (12) fails. The restaurant prefers offering reservations if

K

θ
≤

F
¡
V
¢
− F (To)

1− F (To) + F (Tp)
.

The restaurant never offers reservations if:

F (Tp) ≥
θ −K

K
F̄ (To) . (15)

If (12) holds, (15) is both necessary and sufficient for reservations not to be offered.

Reservations increase sales by providing information. Those unable to secure a reservation know the

peak is full and only consider off-peak service. Stated another way, customers value receiving reservations

because they guarantee peak-period seats, but the firm values customers being denied reservations because

this moves demand off peak. Again the price the firm pays for reservation is lower capacity utilization in

some settings due to no shows. Before no shows lowered sales on busy nights. Now they reduce peak-period

sales. If the no-show rate F (Tp) is sufficiently high, reservation are never offered. In particular, when there

are relatively few customers left to serve off peak (i.e., θ −K is small), reservations are not offered.

There are parallels between the uncertain market size and two-period models, but the role of capacity

is different. In the former, reservations are most valuable when capacity is tight; small restaurants are then

more likely to offer reservations. Here, the returns from reservations can be increasing in capacity. With

uniform valuations, reservation sales are θ− θTo
Ω + K

Ω (To − Tp). Reservations are always preferred, and the

gain from offering them is increasing in K. It is not surprising that reservations are valuable when walk-in

sales are flat or decreasing. However, they can offer a higher return even when walk-in sales increase with

capacity. See Figure 5. The empirical prediction is now that if restaurants are relying on reservations to

shift some demand off peak, reservations are more valuable at medium to high capacity levels.

5.2 Competition

We now examine competition using the identical values model. α denotes the fraction of industry peak-
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Figure 5: Percent change in sales from offering reservations with D = 1, θ = 30, and valuations normally distributed
with a mean of 4 and a standard deviation of 1.

period capacity K̃ controlled by A. β = 1 − α is the fraction controlled by B. An important issue is how

off-peak demand is split. Here, we assume off-peak demand is split in proportion to peak-period capacity.

This allows for a simple comparison to the monopoly case.

If no one offers reservations, the restaurants must provide the same chance of a peak-period seat in

equilibrium. This can be accomplished by having customers randomize between A and B in proportion to

their peak-period capacities and then employ the cutoffs found from (13) and (14) assuming the monopolist

has capacity K̃. Let ΠMW denote the profit in the walk-in equilibrium of a monopolist with capacity K̃; the

comparable profit for A [B] is αΠMW [βΠMW ]. If the monopolist earns ΠMR from making her full capacity

available via reservations, A and B’s profits when both offer reservations are αΠMR and βΠMR , respectively.

Now suppose only A offers reservations. To establish a benchmark, consider a monopolist with capacity

K̃ who makes αK̃ seats available via reservations. A customer without a reservation whose realized value

for dining out V is greater than Tp will walk-in during the peak period if there is a sufficiently high chance

of getting a seat. The relevant cutoffs for customers are again found from (13) and (14) but with (1− α) K̃

and θ − αK̃ replacing K and θ, respectively. Let V α and V α denote the equilibrium cutoff values. Note

that the former is increasing in α while the latter decreases. As α goes to one, both cutoff values go to To.

Defining g (α) =
³
θ − αK̃

´
F̄
¡
V α

¢
, the monopolist’s profit is ΠM (α) = αK̃F̄ (Tp) + (1− α) K̃ +
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g (α) . In a duopoly, if only A offers reservations, she earns ΠA (α) = α
³
K̃F̄ (Tp) + g (α)

´
, and B

receives ΠB (α) = β
³
K̃ + g (α)

´
. Thus while A incurs all of the cost in offering reservations (i.e., no

shows), it captures only part of the benefit. Reducing the number of peak-period seats available to walk-in

customers induces a greater fraction of customers to patronize the off-peak period, but some will go to B.

Proposition 10 Suppose that g (α) is increasing in α and assume A has less capacity than B (i.e., α ≤ 1
2 ).

1. If g (α)− g (0) ≥ g (1)− g (β) , the equilibrium has the following structure:

(a) If K̃F (Tp) > g (β)− g (0) , no firm offers reservations.
(b) If g (β)− g (0) ≥ K̃F (Tp) > g (α)− g (0) , B offers reservations and A does not.
(c) If g (α)− g (0) ≥ K̃F (Tp) > g (1)− g (β) , either A or B offers reservations.
(d) If g (1)− g (β) ≥ K̃F (Tp) , both firms offer reservations.

2. If g (α)−g (0) < g (1)−g (β) , the structure is similar unless g (1)−g (β) > K̃F (Tp) > g (β)−g (0)
in which case there are two equilibria. In one, both offer reservations; in the other, no one does.

The results here are distinct from those of the uncertain market size model in several ways. First, now it

is the larger firm that is more likely to offer reservations. Before the smaller firm found reservations more

attractive because it captured a larger windfall in a soft market. Now the bigger restaurant takes the lead

because it captures the lion’s share of the benefits. Reservations create value by providing information,

but a duopolist offering reservations cannot control how customers use that information. The larger firm,

however, can be assured of seeing a bigger increase in off-peak business than the small firm.

Next, since g (α) is increasing, a monopolist would make her full capacity available via reservations, but

competition may result in no seats being offered via reservations. If F (V ) = V/Ω for 0 ≤ V ≤ Ω,

g (α) = θ

µ
1− To

Ω

¶
−K +

αK̃To
Ω

,

and neither A or B offers reservations if Tp > βTo. Only B offers reservations if βTo ≥ Tp > αTo. The

monopoly outcome is only replicated if αTo ≥ Tp.

Assuming that g (α) is increasing is obviously restrictive. The condition is likely to fail when K̃/θ is

large. When valuations are normally distributed, g (α) can be either increasing or U-shaped. In the latter

case, the monopolist favors making all or none of her capacity available. Numerical examples show that the
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equilibrium structure still holds with the larger firm taking the lead in offering reservations. Also, there are

examples in which having everyone or no one offer reservations are both equilibria.

Finally, increasing the number of restaurants in the uncertain market size model made it more likely that

the equilibrium would involve at least some firms offering reservations. With a two-part evening, small

firms find reservations less attractive. Intuitively, this suggests that splitting industry capacity more finely

should make reservations less prevalent. The following proposition shows that for uniformly distributed

values this is so. Indeed, given enough restaurants in the market, no one offers reservations.

Proposition 11 Suppose F (V ) = V/Ω for 0 ≤ V ≤ Ω and that there are N firms in the market each
with capacity K̃/N. If N > To/Tp, no one offers reservations. Otherwise all N firms offer reservations.

6 Discussion and extensions

We have examined whether a restaurant should offer reservations. Reservations are never employed in a

market of a known size with a single sales period. Reservations can be profitable if the market size is

uncertain or the evening is divided into peak and off-peak periods. With uncertain demand, slow nights

are exceptionally slow when reservations are not offered because customers are uninformed of the market

state and fear being denied a seat. Reservations address this problem by guaranteeing potential diners seats,

generating more demand in a slack market. The downside is sales lost to no shows in a large market. Thus,

reservations are valuable to the restaurant when business is slow but costly when the joint is hopping. In

contrast, customers would not value reservations if they knew the market were small but would prize them

highly on a busy night. Trading off lost sales on busy nights for increased sales on slow nights carries

over to competitive environments. With positively correlated values, competition expands the range of

parameters over which reservations are offered. This is particularly true for a smaller firm, and a market

with many small firms almost certainly has some firms offering reservations. However, reservations become

less attractive when customers are likely to favor just one restaurant.

When the evening is split in two, reservations move customers from an oversubscribed peak period to

available seats off peak. In this setting reservations work by providing information. Those unable to get
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a reservation learn that they must come off peak in order to be served. Thus while a customer values the

certainty a reservation provides, the firm values customers being denied reservations because this shifts

demand. In contrast to the uncertain market size variant of the model, reservations here are more valuable

to moderate size firms as opposed to small firms. Further, competition in this setting may reduce the

attractiveness of offering reservations. In a competitive environment, larger firms are more likely to offer

reservations, and no one may offer reservations in a market with many small firms.

All models have limitations, and ours is no exception. There are assumptions that are essential to our

results and several factors that are ignored. We now discuss a number of these.

• Other benefits of reservations. We have purposefully suppressed reservations’ operational benefits
to emphasize their impact on consumers. To the extent that the firm can use reservations to manage
the flow of work or forecast demand, we have systematically underestimated their value.

• No show mitigation. Key to our model is that no shows are costly. The firm would clearly benefit
from reducing them. One possibility is altering how customers make reservations. The reservation
service OpenTable tracks customers and closes accounts of users who fail to be keep four reservations
in a year. The no-show rate for reservations made via OpenTable is just 4%. However, this adds
cost; OpenTable charges a restaurant a dollar per reservation (Webb Pressler, 2003). Alternatively
the firm could call customers to confirm reservations. Chicago-based Tru preemptively cancels any
unconfirmed reservations. While this reduces no shows, it adds costs.

Finally, the restaurant could impose a no-show fee. Another Chicago restaurant Alinea charges $75
per party member if a reservation is not kept. Such a fee, say, P would induce a customer to keep
her reservations if V − T ≥ −P, reducing the no-show rate to F (T − P ) . For P ≥ T, no shows are
eliminated. Such a fee makes reservations more attractive since it both lowers no shows and offers
some compensation for those that do occur. How large a fee to charge depends on the travel cost T
and the firm’s margin per customer π. If π ≥ T, it is optimal to eliminate no shows. Otherwise, we
have T > P > π, and the restaurant profits when reservation holders fail to show.

Any of these changes would lower the cost of reservations and make them more attractive. They
would not eliminate the impact on consumer behavior that we have identified.

• Overbooking. Overbooking does not reduce the no-show rate but provides a hedge against unreliable
customers. Our atomistic customers allow the firm to give out reservations above its capacity without
ever worrying about turning away customers. In reality, overbooking means risking having more
customers than can be accommodated. Such logic has lead industry experts to advise that “[t]he
potential damage from turning away guests who have reservations is too great. It is better to book the
dining room to capacity and replace no-shows with last-minute calls or spur-of-the moment arrivals.”
(The Culinary Institute of America, 2001, page 58.)

• Limiting reservations. Our analysis assumes a restaurant offering reservations makes its entire ca-
pacity available. This is clearly suboptimal when demand is uncertain. Giving out more reservations
than customers in the market on a slow night does nothing to raise sales when demand is soft but
increases no shows on a busy night. It would be better to cap the number of reservations given out at
one or less; limiting reservations increases the range of parameters over which the firm is willing to
offer reservations. Also, limiting reservations provides information to customers since those denied a
seat learn that it is in fact a busy night. Thus, although the firm uses all of its unreserved capacity on
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a busy night, it turns away fewer walk-in customers than when it does not offer reservations.

• Segmentation. A restaurant may use reservations to attract customers with different characteristics.
For example, one might suppose the existence of a segment that will only dine out if they have a
reservation. More subtly, in our model, segments could differ in their travel or denial costs. If a
restaurant does not offer reservations, high-cost customers are under-represented among its customers.
Reservations move the firm’s sales mix closer to the underlying market mix. Tweaking the sale mix
would be worthwhile if the segments differ in both their costs and spending proclivities. If high-
cost customers are more likely to run up large tabs, reservations would be warranted if the gain in
the average bill is sufficient to compensate for the resulting no shows. Note that the motivations for
reservations we have presented increase unit sales and do not depend on spending differences.

• Parties of multiple sizes. We have assumed that all parties consume the same capacity. In reality,
restaurants serve parties of varying sizes. Large parties generally take longer to serve and may be
difficult to accommodate if small tables must be moved together. Reservations (even if only for large
parties) may then allow the restaurant to make more efficient table assignments (Fischer, 2005).

• Selling reservations. Restaurants generally do not charge for reservations. This may well be due
to historical considerations; without broad credit card penetration, selling reservations is simply im-
practical. However, suppose the firm charges φ per reservation. This is an additional charge and not
a pre-payment of the meal. It would seem that a monopolist could charge V, a customer’s expected
value from holding a reservation. One limit on doing so is that for φ sufficiently high, multiple equi-
libria exist. In one equilibrium, customers randomize between requesting a reservation and waiting to
learn their valuation. A high fee may then cause reservation demand to collapse.

Competition will also limit reservation charges. In modeling competition, we assumed all cus-
tomers requested reservations simultaneously. If instead we allow sequential arrivals, a customer
may first request a reservation from A and then B if she was unsuccessful. Consider the setting with
market-size uncertainty and assume that customers are a priori indifferent between the firms. Suppose
that without reservation charges both firms would want to offer reservations. If φA < φB , arriving
customers would first ask A for a reservation and then ask B, allowing A to take the entire market on
a slow night while B would still have no shows on a busy night. B would thus have an incentive to
undercut φA; Bertrand-like competition would result drive φA and φB to zero

There are a number of ways to extend this work. In particular, one could empirically evaluate the model

variants since they lead to distinct predictions. For example, if reservations are driven by market-size

uncertainty, they should be more common at low values of capacity. If shifting demand between peak and

off-peak times is the principal driver, reservations should be more common at higher values of capacity.

The impact of competition also varies across the variants we have developed. In addition, higher quality

restaurants (in the sense of a larger valuation distribution) are more likely to offer reservations.
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Appendix: Proofs Proof of Proposition 1: There are F̄ (T ) θ customers who have a positive net

value for dining out. The chance that any of these have a value greater than V 0 is F̄ (V 0) /F̄ (T ) . Thus if

only those with values greater than V 0 walk in, the chance an arriving customer gets a seat isK/θF̄ (V 0) and

(1) follows. For uniqueness, note that the left-hand side of (1) is decreasing in V 0 while the right-hand side

is increasing. ¤

Proof of Proposition 3: Reservations are preferable if they lead to higher sales:

(1− ρ) F̄ (T ) + ρKF̄ (T ) ≥ (1− ρ) F̄ (V ∗) + ρK =⇒ (1− ρ)
£
F̄ (T )− F̄ (V ∗)

¤
≥ ρK

£
1− F̄ (T )

¤
.

For the bound on F (T ), F̄ (V ∗) ≥ K
θ so (1− ρ) Kθ + ρK underestimates walk-in sales. Reservations are

never offered if F̄ (T ) (1− ρ+ ρK) ≤ (1− ρ) Kθ + ρK,which give the bound. ¤

Proof of Proposition 4: For the first part, as K falls, V ∗ increase. Hence, the left-hand side of (3) increases

and the right-hand side falls as K decreases. Results for θ and D follow similarly. For the rest, note

that (3) implies that F (V ∗)
F (T ) ≥

ρK
1−ρ + 1. Let V ∗j be the equilibrium cutoff for Fj for j = 0, 1. If F1 is

larger than F0 in the reversed hazard rate order, we have that F1 (t) ≤ F0 (t) for all t and F0 (t) /F1 (t)

is decreasing in t (Shaked and Shanthikumar, 1994). The former implies that V ∗1 ≥ V ∗0 ; the latter give

F0 (T ) /F1 (T ) ≥ F0 (V
∗
0 ) /F1 (V

∗
0 ) . We then have

F0 (V
∗
0 )

F0 (T )
≤ F1 (V

∗
0 )

F1 (T )
≤ F1 (V

∗
1 )

F1 (T )
.

For the travel cost, consider T1 < T0 and define ψj = V ∗j /Tj. We first show that ψ1 ≥ ψ0. Since T0 > T1,

it must be that V ∗0 > V ∗1 and T0+D
V ∗0 +D

> T1+D
V ∗1 +D

because a higher cutoff value means fewer customers walking

in which implies a higher probability of getting a seat. If ψ1 < ψ0, it must be

T1 +D

ψ1T1 +D
>

T1 +D

ψ0T1 +D
>

T0 +D

ψ0T0 +D
,

which implies T1+D
V 0
1+D

> T0+D
V 0
0+D

. Given that ψ1 ≥ ψ0. We then have

F (V ∗0 ) /F (T0) = F (ψ0T0) /F (T0) ≤ F (ψ0T1) /F (T1) ≤ F (ψ1T1) /F (T1) = F (V ∗1 ) /F (T1) . ¤

Proof of Proposition 5: First, because F̄ (T ) − αF̄
³
Ṽ
´
≥ αF̄ (T ) , (6) implies (5). Next, the conditions
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for B to offer reservations are

(1− ρ)
³
F̄ (T )− βF̄

³
Ṽ
´´

≥ ρβK̃F (T ) (16)

(1− ρ)βF̄ (T ) ≥ ρβK̃F (T ) . (17)

Comparing (6) and (16), it is evident that the former always holds if the latter does because β ≥ α. Com-

paring (5) and (17), one sees that they are scalings of each other. Hence, the firms would have same best

responses to a competitor offering reservations.

Now suppose (5) fails (as in part 1a of the proposition), it must also be the case that B does not want to be

the first to offer reservations. Also, A (and henceB) would not respond to a competitor offering reservations

by also offering reservations. Thus, no one offering reservations is the only outcome. If, however, (5) holds

while (6) and (16) fail (part 1b), A is willing to offer reservations if B does not, and B never is willing to

offer reservations. If (16) holds but (6) does not, both firms are willing to offer reservations if the other does

not do likewise. Since (6) fails, neither will match the others offering reservations. Hence, one firm will

offer reservations and it can be either A or B. If (5) and (6) both hold, offering reservations is a dominant

strategy for A and B’s best response is to offer reservations (part 1d).

For part 2, (3) immediately implies (6) and both offer reservations. The proof of the final is similar to

the corresponding part of Proposition 3. ¤

Proof of Proposition 6: With lumpy firms and no one offering reservations, a firm earns π0 = (1− ρ)
F̄(Ṽ )
N +

ρ K̃N . If one firm offers reservations, it makes π1 = (1− ρ) F̄ (T ) + ρ K̃N F̄ (T ) . π0 > π1 requires K̃ >

N 1−ρ
ρ

µ
F̄ (T )
F (T ) −

F̄(Ṽ )
NF (T )

¶
. If R ≥ 1 firms offer reservations, a firm offering reservations earns πR =

(1−ρ)F̄ (T )
R + ρ K̃N F̄ (T ). A firm without reservations makes πNoR = ρ K̃N . πR decreases monotonically

with R while πNoR is independent of R. For R firms to offer reservations in equilibrium, it must be the case

that πR ≥ πNoR ≥ πR+1, which leads to (1b). For (1c), one compares πN and πNoR.

For the case of small restaurants, we first show that given F (T ) ≤ (1− ρ)
³
1− 1/K̃

´
the equilibrium

must involve reservations. Suppose that no firm offered reservations in equilibrium. Letting k be the
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capacity of a representative firm, this would require:

(1− ρ)
k

K̃
F̄
³
Ṽ
´
+ ρk ≥ k (1− ρ) F̄ (T ) + ρkF̄ (T ) = kF̄ (T ) ,

which implies F (T ) ≥ (1− ρ)
³
1− F̄

³
Ṽ
´
/K̃
´

but (1− ρ)
³
1− F̄

³
Ṽ
´
/K̃
´
> (1− ρ)

³
1− 1/K̃

´
.

Next, we show that K̃R cannot be less than 1. For 1 > K̃R > 0, the profit of a firm offering reser-

vations is kF̄ (T ) and is constant in K̃R. The profit of a firm not offering reservations is π
³
K̃R

´
=

(1− ρ)
³
1− K̃R

´
k

K̃−K̃R
F̄ (VR) + ρk, where VR is the equilibrium appropriate cutoff value for those cus-

tomers who were not able to get a reservation. One can easily show that π0
³
K̃R

´
< 0. Hence, as more

firms offer reservations but K̃R remains less than one, those not offering reservations have an increasing

gain from offering reservations. Consequently, K̃R < 1 cannot be an equilibrium. In equilibrium, the two

policies must offer the same returns, which leads to (7). ¤

Proof of Proposition 7: If one restaurant offers reservations and the other firm does not, the one of-

fering reservations has an expected increase in sales of ∆a = 1 − τ − (1− τ) γ − (1− τ)λ∗/2 =

(1− τ) (1− γ − λ∗/2) . (1− ρ)∆a < ρΛ implies the slow night gain does not exceed busy night losses.

If the reverse holds, at least one firm will offer reservations. Suppose the other firm does not offer reser-

vations; its slow-night sales are (1− τ) γ. If it offers reservations and 1 − ρ̂ ≥ [<]T/V , its slow-night

sales are 1/2 (1− τ) [1/2 (1− τ) (1− γ)] . The gain in slow-night sales is then ∆1b = (1− τ) (1/2− γ)

if 1− ρ̂ ≥ T/V and∆2b = (1− τ) (1− 3γ) /2 otherwise. Since λ∗ ≤ 1, it is straightforward to show that

∆a ≥ ∆1b ≥ ∆2b. Hence, when ρΛ is greater than the relevant value of (1− ρ)∆jb, the second firm does

not offer reservations. If ρΛ ≤ (1− ρ)∆jb, both firms offer reservations. ¤

Proof of Proposition 8: First, if a customer at V is indifferent between walking in during the peak period

and staying home, anyone with V ≤ V must stay home. Similarly, if a valuation V implies indifference

between walking in during the peak and walking in off-peak, anyone with V ≥ V must come off peak.

K
θ(F(V )−F (V ))

is then the probability of getting a seat in the peak period. (13) and (14) follow from finding

the indifferent customers. We now show uniqueness. There cannot be another equilibrium that offers the

same probability of getting a peak period seat. If there were, there would be a customer who would be
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walking in during the peak period in one equilibrium but not in the other despite having the same utility for

coming in the peak period in both. Now suppose there are two equilibria
¡
V 1, V 1

¢
and

¡
V 2, V 2

¢
that offer

different chances of getting peak period seats. Suppose
¡
V 1, V 1

¢
offers customers a higher probability of

getting a seat. It must then be the case V 1 < V 2 and V 1 > V 2. However, this would give a better chance

of getting a seat under the second equilibrium. Finally, Tp < V and To < V are obvious. A customer at V

has zero net utility from walking in during the peak. If V were greater than To, she would have a positive

utility from dining off peak. Hence, V ≤ To. ¤

Proof of Proposition 9: For the first part, compare ΠW and ΠR. For the second part, reservations will never

be offered if they result in sales less than K (which equals sales when (12) holds), i.e., if

K ≥ KF̄ (Tp) + (θ −K) F̄ (To) =⇒ KF (Tp) ≥ (θ −K) F̄ (To) . ¤

Proof of Proposition 10: B prefers being the only firm offering reservations to having no one offer reser-

vations if K̃F̄ (Tp) + g (β) > K̃ + g (β) . Since g (α) ≤ g (β) , if B is unwilling to be the first to offer

reservations, A will similarly prefer to not offer reservations. If B [A] offers reservations, A prefers not to

offer reservations if K̃F̄ (Tp) + g (1) < K̃ + g (β) [K̃F̄ (Tp) + g (1) < K̃ + g (α)]. Since g (β) ≥ g (α) ,

if A prefers to match B in offering reservations as opposed to being the only firm not offering reservation,

B also prefers that both offer reservations. The results for g (α)− g (0) < g (1)− g (β) are similar. ¤

Proof of Proposition 11: Suppose there are N firms of which j offer reservations. A firm that does not offer

reservations has a profit of πNoR (j|N) = θ
N +

To(Nθ−jK̃)
N2Ω . A firm offering reservations earns πR (j,R) =

θ
N

¡
1− To

Ω

¢
+ K̃(jTo−NTp)

N2Ω . If a firm moves from not offering reservations to offering, the change in its profit

is πR (j + 1, R) − πNoR (j|N) = K̃(To−NTp)
N2Ω , which is positive if N ≤ To/Tp. Note that the change in

profit is independent of j. Hence, if N ≤ To/Tp, all firms offer reservations. Otherwise, no one does. ¤
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