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Abstract

We consider a supply chain consisting of one supplier selling through one retailer who

faces a newsvendor problem. There is a positive probability that the retailer is capable of

gaining improved demand information through costly forecasting. The supplier would like to

induce the retailer to forecast and share that information. Restricting the retailer’s ability

to return unsold product would intuitively appear to be a viable way by which to provide

the desired incentives. However, it is well known that a generous returns policy increases

the supplier’s profit. We explore this tension between providing incentives to forecast and

capturing channel profits. We examine both price-based returns mechanisms (buy backs)

and quantity-based returns mechanisms (quantity flexibility contracts). Thus, a second goal

is to compare the relative performance of these two schemes.

We show that under either contract, inducing forecasting retailers to take a different

contract from non-forecasting retailers requires restricting returns. The forecaster is charged

a lower price than the non-forecaster but has less flexibility in returning product. Using buy

backs, the supplier must sacrifice some channel profit to differentiate between forecasting

and non-forecasting retailers. With quantity flexibility contracts, reducing channel efficiency

is not required to distinguish between the types of retailers. It is consequently some what

surprising that buy backs generally result in greater supplier profit than quantity flexibility

contracts unless forecasting is very expensive.

Key words: Supply-chain contracting; forecasting; buy backs; quantity flexibility; Bayesian

inventory.
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1 Introduction

Precise information facilitates efficiently matching supply and demand. Forecasting is con-

sequently a critical activity in many supply chains. When a supply chain consists of inde-

pendent parties, some or all supply-chain members may not gather as much information as

a centralized system. Even if all parties collect information, individuals may not reveal all

that they have learned. Altering the terms governing supply-chain transactions is a possible

way to induce supply-chain members to both gather and share information.

Consider the approach IBM took when launching of a generation of laptop computers

(Zarley, 1994). Hoping to see “real” demand, Big Blue offered several resellers a special

allocation of laptops if they accepted restricted contract terms. Ordinarily, resellers had

significant freedom to cancel or return orders, but the terms of the special allocation imposed

“abusive” penalties on returns or cancellation. (Machines could still be purchased under the

usual terms.) In the words of IBM’s vice president of channel management, the program

was intended “to help the channel better forecast demand and to more effectively manage

inventory.” Restricting returns would hopefully get people “out of game playing” according

to an executive at one of the resellers (Zarley, 1994).

IBM’s scheme has an intuitive appeal. Limited returns clearly provides an incentive to

forecast accurately, but it also begs the question why IBM offered such easy returns in the

first place. While there are undoubtedly institutional reasons why generous returns policies

have long been standard in the computer industry, there is another important consideration.

A well-designed returns policy can greatly improve the performance of a supply chain for a

short life cycle product. Pasternack (1985) shows that the greater the flexibility that the

upstream player offers the downstream player, the greater the former’s profit. Providing

incentives to forecast is thus at odds with claiming a large share of supply-chain profit.

We examine this trade off in a setting similar to Pasternack (1985). An upstream supplier

sells to a downstream retailer facing a newsvendor problem. The parties agree on an initial

estimate of the demand distribution. If forecasting takes place, information is observed

and beliefs about demand are updated. Only the retailer can forecast, and he incurs some

fixed cost to do so. There is some probability that forecasting is prohibitively expensive, i.e.,

forecasting does not add sufficient profits to the integrated system to cover the retailer’s cost.

The supplier is unable confirm whether the retailer can forecast, whether he has forecasted,
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or what he has learned. She must therefore design a menu of contracts that balances profits

earned from a non-forecasting retailer with profits from a forecasting retailer.

We consider buy back and quantity flexibility (QF) contracts. Both are partial returns

policies. Under a buy back contract, the retailer may return any amount of unsold stock for

a partial refund of the purchase price. Under a QF contract, the retailer may return only

a limited amount of unsold stock but receives a full refund of the purchase price. Thus, a

buy back contract is a price-based mechanism with a higher return rate representing greater

flexibility while a QF contract is a quantity-based mechanism with a higher quantity limit

representing greater flexibility. Pasternack (1985) shows that a buy back policy can coordi-

nate the system (i.e., allow a decentralized supply chain to earn the profit of a centralized

one) and arbitrarily divide profits between the players. Tsay (1999) establishes similar re-

sults for QF contracts. Little has been done on whether one type of contract is preferable

to the other. We examine which has a relative advantage in inducing a retailer to forecast.

We first show that one cannot use coordinating buy back contracts to distinguish between

forecasting and non-forecasting retailers. If one desires a menu of contracts such that a

retailer who is capable of forecasting accepts one contract while a non-forecasting retailer

accepts a distinct contract, then one cannot use coordinating buy back contracts. To assure

separation between the retailers using buy backs, one must sacrifice supply-chain efficiency for

at least one type of retailer. With QF contracts, on the other hand, the supplier can induce

separation with coordinating contracts, but her profit may be maximized by offering at least

one contract that does not coordinate the supply chain. QF contracts would consequently

appear to be better suited for providing incentives to forecast. It is therefore surprising that

there are many instances in which the supplier is better off using buy backs. The cost of

forecasting is key in determining which contract form is better. When forecasting is relatively

cheap, buy backs are preferred. When forecasting is expensive, QF contracts preform better.

The role of the information on contracting has been an important topic in economics and

marketing. Recently, there has been some work in the supply-chain contracting literature.

(See Cachon, 2001, and Chen, 2001a, for reviews.) Donohue (2000) examines a setting with

two production modes, an inexpensive one with a long lead time and an expensive mode

with a short lead time. A signal regarding demand (possibly imperfect) is received when

only the expensive mode is available. She shows that the basic results of Pasternack (1985)
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go through: buy backs can coordinate the system and arbitrarily divide profits. Tsay (1999)

also considers the possibility of an imperfect demand signal. Our setting differs from these

models in that they suppose the demand signal happens automatically and is seen by all; we

suppose that the retailer must choose to forecast and only he observes the outcome.

In Cachon and Lariviere (2001a), a manufacturer is privately informed about demand

and must contract with a supplier to provide capacity for a critical component. They show

that asymmetric information may lead a manufacturer expecting a large market to offer

terms that she would never offer under full information. In particular, she may commit to a

minimum purchase level to demonstrate that her claim of a big market is credible. Here, the

uniformed party offers the contract. Therefore, we concentrate on contracts that “screen”

informed parties as opposed to contracts that “signal” to uninformed parties.

Several recent papers have examined screening in a supply-chain setting. Corbett and de

Groote (2000), Corbett (2001), and Ha (2001) consider screening based on asymmetric cost

information (e.g., buyer holding cost) but assume that the demand distribution is common

knowledge. We have asymmetric information on the cost of forecasting but this leads to

asymmetric information about the demand distribution (assuming forecasting takes place).

Chen (2001b) examines an incentive scheme that induces sales personnel to reveal the po-

tential demand of their assigned territory. In Porteus and Whang (1999), a buyer knows the

size of his market, and a supplier posts a menu of contracts that induces the buyer to reveal

this information. Because a buyer knows his market size, offering contracts with different ab-

solute minimum purchase requirements is an effective screening device. In our model, not all

forecasts are good news; a forecasting retailer may learn that the market is, in fact small. An

absolute minimum purchase quantity is consequently not an attractive contract requirement.

Rather, we consider QF contracts that feature a proportional minimum purchase.

Below, we first present the model and the contracts. §3 then develops a model of forecast-

ing. §4 examines the performance of a decentralized supply chain. Finally, §5 discusses the

results and possible generalizations. Unless otherwise stated, proofs are in the Appendix.

2 Model basics and contracts

We introduce the basics of the model in the context of an integrated supply chain and then

turn to a decentralized structure and contracts.
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2.1 A centralized system

The supply chain sells one product for which demand is random. There is a single selling

season and a single opportunity to produce the good before demand is realized. The marginal

cost of producing the good is c, and it sells at a fixed retail price r. Both salvage and overage

costs are set to zero. An integrated supply chain thus face a newsvendor problem.

LetΦ0 (ξ) denote the initial estimate of the demand distribution and φ0 (ξ) the correspond-

ing density. Φ̄0 (ξ) = 1 − Φ0 (ξ). If no forecasting takes place, the profit of the integrated

system given a stocking level y is:

π0 (y) = −cy + r
Z y

0

ξφ0 (ξ) dξ + ryΦ̄0 (y) , (1)

and the optimal stocking level yI0 satisfies

Φ0
¡
yI0
¢
=
r − c
r
. (2)

If forecasting takes place, a signal σ (possibly vector valued) is observed. The demand

distribution is updated to Φ1 (ξ|σ) with density φ1 (ξ|σ) and Φ̄1 (ξ|σ) = 1 − Φ1 (ξ|σ) . Inte-
grated system profit (gross of forecasting costs) and the optimal stocking level yIσ are defined

analogously to (1) and (2), respectively. Let πI0 denote optimal expected profit without

forecasting, πIσ optimal expected gross profit given an observed demand signal σ, and πI1

optimal expected gross profit given that forecasting will take place. πI1 = E
£
πIσ
¤
, where the

expectation is taken over possible signals σ. For now, we assume that πI1 > πI0. In §3, we

present conditions such that this holds.

Forecasting costs κ. κ equals κF with probability ρ and κN with probability 1 − ρ for

0 < ρ < 1. Its value is observed before forecasting and ordering take place. We assume:

0 ≤ κF < πI1 − πI0 ≤ κN .

Thus if κ = κF , the system should forecast since it expects to cover its cost. If κ = κN , the

supply chain should not forecast as it will not (in expectation) recoup its cost.

2.2 A decentralized system

In a decentralized supply chain, an upstream supplier must sell through a downstream re-

tailer. The supplier is the leader in the channel and gets to set the terms of trade. The

supplier incurs the cost of production while the retailer incurs the cost of forecasting and

collects revenue from the market. The parties agree on the initial demand distribution and
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on the probability ρ that the retailer can forecast, but only the retailer observes the realized

forecasting cost κ. If κ = κF , the supplier cannot observe if the retailer forecasts. If he does

forecast, the supplier cannot observe the realized value of σ.

To achieve channel coordination, we first need to assure that forecasting takes place only

when appropriate. Next we need to assure that the correct stocking level — yI0 or y
I
σ — is

chosen. How the total stocking level for the supply chain is set is therefore critical. This, as

well monetary transfers between the parties, depends on the terms governing transactions.

We next discuss possible contracts beginning with buy backs. To simplify notation we drop

subscripts from distributions and related functions and write, for example, Φ (ξ).

2.2.1Buy back contracts

A buy back contract consists of two parameters, a wholesale price w and a buy back rate

b. r > w ≥ c and w > b ≥ 0. The supplier posts the terms, and the retailer determines
the order quantity y, paying wy to the supplier. The retailer keeps all revenue from selling

the product. If realized demand is D < y, the supplier pays b (y −D) to the retailer.1 All
aspects of the contract are assumed enforceable; the retailer must pay for his order, and the

supplier must buy back excess stock. For more on this point, see Cachon (2001).

Given this contract, the retailer faces a newsvendor problem with acquisition cost w and

salvage value b. His profit may be written as:

ΠR (y|w, b) = −wy + r
Z y

0

ξφ (ξ) dξ + ryΦ̄ (y) + b

Z y

0

(y − ξ)φ (ξ) dξ,

and his optimal order y∗ satisfies Φ (y∗) = (r − w) /(r − b). Let Π∗R (w, b) = ΠR (y
∗|w, b).

The supplier’s expected profit is then

Π∗S (w, b) = (w − c) y∗ − b
Z y∗

0

(y∗ − ξ)φ (ξ) dξ.

The following lemma presents some basic facts about buy back contracts. It requires

the following definition (Shaked and Shanthikumar, 1994): For two random variables X0

and X1, we say that X1 is smaller than X0 in the convex order and write X1 ≤cx X0 if
E [ψ (X1)] ≤ E [ψ (X0)] for all convex functions ψ.

1 Whether the supplier literally “buys back” unsold stock or merely supplements the

retailer’s salvage opportunities is immaterial. For alternative ways of implementing buy

backs, see Lariviere (1999) and Cachon and Lariviere (2001b).

5



Lemma 1 Suppose there are two independent markets with demand random variable in
market i being Xi i = 0, 1. The supplier offers a buy back contract {w, b} to a retailer in
each market, and retailer i orders optimally given this contract and Xi. (The retailers do
not compete for customers.) Let yi be retailer i’s optimal order given {w, b} and ΠiR [ΠiS] be
the resulting retailer [supplier] profit.

1. If X1 ≤cx X0, then Π1R ≥ Π0R.

2. If X1 = θX0 for θ > 0, y1 = θy0, Π1R = θΠ0R, Π
1
S = θΠ0S.

The convex ordering is a variability ordering. It implies that the smaller random variable

has a smaller variance and smaller coefficient of variation. The first part of the lemma is a

generalization of Gerchak and Mossman (1992) and shows that the retailer is better off with

less uncertainty. The second part gives a useful relationship between markets that differ

only on a scale parameter. By considering {w, b} = {c, 0}, one can generalize the results to
a centralized supply chain.

The preceding lemma may be interpreted as allowing a retailer to choose between markets.

The next lemma considers a retailer choosing between contracts.

Lemma 2 Suppose that the retailer must choose between two contracts {w1, b1} and {w2, b2}
such that w1 > w2 and r−w1

r−b1 ≤ r−w2
r−b2 . The retailer prefers {w2, b2}.

The lemma implies that a retailer is only interested in a contract with a high wholesale

price if it offers significant more flexibility, i.e., a return rate generous enough to move the

retailer to a higher critical fractile. If contract 1 has a higher price but results in a higher

critical fractile, then whether the retailer prefers contract 1 or 2 depends on the demand

distribution he faces. This observation will be useful in designing a menu of contracts.

We now characterize buy back contracts that coordinate the supply chain. The proof of

the following can be found in Pasternack (1985).

Theorem 3 Suppose the supplier offers {wε, bε} for 0 ≤ ε < r − c where

wε = c+ ε and bε = ε
r

r − c.

Then the retailer orders the integrated channel quantity, i.e., y∗ = yI. The retailer profit is
Π∗R (wε, bε) =

¡
1− ε

r−c
¢
πI. The supplier profit is Π∗S (wε, bε) =

ε
r−cπ

I.

Theorem 3 is among the most commonly cited results in the supply-chain contracting

literature. Three features of coordinating buy back contracts are noteworthy. First, a party’s

profit is increasing in its responsibility for unsold stock. While the retailer prefers a higher
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back rate for a fixed wholesale price, he prefers the coordinating buy back with the lowest

possible buy back rate (b0 = 0) since it gives him the lowest wholesale price. Second, there

exist a continuum coordinating contracts that only differ with regard to how the supply

chain profit is divided. Consequently, any split of profit can be achieved without any side

payments. Finally, the contract {wε, bε} is independent of the demand distribution Φ. The

same contract will both coordinate the system and yield the same profit split for any Φ.

2.2.2Quantity flexibility contracts

Like buy backs, a quantity flexibility contract {w, d} is a two parameter contract. w again
represents a wholesale price; d is a return limit.2 0 ≤ d < 1. The supplier first posts the

terms, and the retailer then sets the stocking level y and pays the supplier wy. The retailer

keeps all revenue from selling the product. If realized demand D is y > D ≥ y (1− d), the
retailer returns y−D ≤ yd units to the supplier for a full refund of the wholesale price (i.e.,
he receives w (y −D)). If demand is less than y (1− d), the retailer may return yd units and
receives wyd. The retailer salvages the remaining y (1− d)−D units on his own. The return
limit d thus measures the flexibility that the supplier offers with a higher value representing

greater flexibility. The supplier takes responsibility for the first yd unsold units, and the

retailer takes responsibility for the next y (1− d).
Under a QF contract, the retailer’s profit can be written as follows:

ΠR (y|w, d) = (r − w)
Z y

0

ξφ (ξ) dξ + (r − w) yΦ̄ (y)−w
Z y(1−d)

0

(y (1− d)− ξ)φ (ξ) dξ. (3)

ΠR (y|w, d) is concave in y and the optimal retailer order y∗ must satisfy:

(r − w) Φ̄ (y∗) = w (1− d)Φ (y∗ (1− d)) . (4)

The left-hand side may be interpreted as the retailer’s expected marginal benefit of increasing

his order while the right-hand side represents his expected marginal cost. Clearly, if d = 0,

(3) reduces to a standard newsvendor problem, and (4) becomes the usual critical fractile

solution. For d > 0, the problem is somewhat harder since there is generally no explicit

expression of y∗ even if Φ is easily invertible. However, the concavity of ΠR (y|w, d) allows
one to determine y∗ numerically fairly simply. Additionally, implicit differentiation shows

2 Tsay (1999) and Tsay and Lovejoy (1999) define QF contracts as having three pa-

rameters. In our one-period setting, the third parameter is superfluous.
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that y∗ is increasing in d. Let Π∗R (w, d) = ΠR (y
∗|w, d). The corresponding supplier profit is

Π∗S (w, b) = −cy∗ + wy∗ (1− d)Φ (y∗ (1− d)) + w
Z y∗

y∗(1−d)
ξφ (ξ) dξ + wy∗Φ̄ (y) .

The following are the QF counterparts to Lemmas 1 and 2.

Lemma 4 Suppose there are two independent markets with demand random variable in
market i being Xi i = 0, 1. The supplier offers a QF contract {w, d} to a retailer in each
market, and retailer i orders optimally given this contract and Xi. (The retailers do not
compete for customers.) Let yi be retailer i’s optimal order given {w, d} and ΠiR [ΠiS] be the
resulting retailer [supplier] profit.

1. If X1 ≤cx X0, then Π1R ≥ Π0R.

2. If X1 = θX0 for θ > 0, y1 = θy0, Π1R = θΠ0R, Π
1
S = θΠ0S.

Lemma 5 Suppose that the retailer must choose between two contracts {w1, d1} and {w2, d2}
such that w1 > w2 and y1 ≤ y2 where yi is the optimal order under contract i = 1, 2. The
retailer prefers {w2, d2}.

We again have that the retailer is better off in a less variable market and is only interested

in a contract with a higher wholesale price if it results in a higher stocking level. One caveat

to the latter result that is different from the buy back case is that not all retailers will

evaluate two contracts the same way. With buy backs, all retailers will pick the same critical

fractile regardless of their demand distribution. With QF contracts, one retailer given two

contracts may choose y1 > y2 while another retailer facing a different demand distribution

may choose y1 < y2. An example illustrates this possibility. Suppose demand in market j for

j = 1, 2 follows a power function distribution with parameter kj. Φj (ξ) = ξkj for 0 ≤ ξ ≤ 1
and kj > 0. Assume k1 = 1/2 and k2 = 2. The retail price is r = 10, {wA, dA} = {5, 0.1} ,
and {wB, dB} = {9, 0.57}. Let yij denote the optimal order for market j = 1, 2 under contract
i = A,B.

yij =

Ã
r − wi

r − wi + wi (1− d)kj+1
!1/kj

We have:
yi1 Φ1 (y

i
1) yi2 Φ2 (y

i
2)

{wA, dA} 0.290 0.539 0.761 0.578
{wB, dB} 0.080 0.283 0.763 0.583

Thus, while moving from contract A to contract B results in a modest increase in the service

level in market 2, it produces a dramatic drop in the service level in the first market.

We now consider coordinating QF contracts. The following is from Tsay (1999).

8



Theorem 6 If the supplier offers {wd, d} =
n

c
c
r
+(1−d)Φ((1−d)yI) , d

o
for 0 ≤ d < 1, the retailer

orders the integrated channel quantity, i.e., y∗ = yI. The retailer profit is decreasing in d
with Π∗R (w0, 0) = πI and limd→1Π∗R (wd, d) = 0. The supplier’s profit is increasing in d.

Of the three properties of coordinating buy backs identified above, two carry over to

coordinating QF contracts. A continuum coordinating contracts exists, and the contracts

only differ in how they split the supply chain profit. A party’s profit is increasing in the

responsibility it takes for excess inventory. The property that does not carry over is that

coordinating QF contracts depend on the demand distribution. One cannot simply write

down a single contract that works for all markets. As a consequence, to understand whether

one is better off using buy backs or QF contracts, one must first consider how QF contracts

depend on the demand distribution. We now examine this question.

2.2.3The dependence of QF contracts on the demand distribution

We begin with a definition. Given random variables X0 and X1 with respective distribution

Φ0 and Φ1 and respective inverses Φ−10 and Φ−11 , let G (ξ) = Φ−10 (Φ1 (ξ)) /ξ. We say that

X1 is smaller than X0 in the star order and write X1 ≤∗ X0 if G (ξ) is increasing (Shaked
and Shanthikumar, 1994). Many common distributional families can be ordered according

to the star ordering. Consider the Weibull distribution with density

φ (ξ|θ, k) = θkξk−1e−θξ
k

for θ > 0, k > 0, ξ > 0 (5)

or the gamma distribution with density

η (ξ|θ, k) = θkξk−1e−θξ/Γ (k) for θ > 0, k > 0, ξ > 0. (6)

For either family, the parameter k is referred to as the shape parameter. Barlow and Proschan

(1975) show that if Xk is a Weibull or gamma random variable with shape parameter k, then

Xk1 ≤∗ Xk0 if k1 ≥ k0. Lariviere and Porteus (2001) show that if Xi = αi + βiX for some

random variable X and parameters αi ≥ 0 and βi > 0, then X1 ≤∗ X0 if α1/β1 ≥ α0/β0.

Consequently, the normal and uniform families are easily ordered by the star order.

We now present alternative characterizations and some useful properties of the star order.

Theorem 7 Suppose that X0 and X1 are non-negative. X1 is smaller than X0 in the star
order if and only if

1. Φ
−1
0 (β)

Φ−10 (α)
≥ Φ−11 (β)

Φ−11 (α)
for 0 < α ≤ β < 1.
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2. Φ0
¡
Φ−10 (α)λ

¢ ≥ [≤]Φ1 ¡Φ−11 (α)λ
¢
for α ∈ (0, 1) and λ < [>] 1.

3. Assuming X0 and X1 have respective densities φ0 and φ1, Φ
−1
0 (α)φ0

¡
Φ−10 (α)

¢ ≤
Φ−11 (α)φ1

¡
Φ−11 (α)

¢
for α ∈ (0, 1) .

Theorem 8 Suppose that X1 ≤∗ X0.
1. Let X̃i = Xi/E [Xi] . Then X̃1 ≤cx X̃0.
2. θ1X1 ≤∗ θ0X0 for θ0, θ1 > 0.
3. For α ∈ (0, 1) , Φ−10 and Φ−11 can cross at most once. If they do cross at, say, α∗, then
Φ−10 (α) < [>]Φ−11 (α) for α < [>]α∗.

The star order is a variability ordering. The larger random variable X0 limits how fast

Φ−11 may increase as one moves from α to β while Theorem 8 explicitly links the star order

to the more familiar convex ordering. The latter also implies that X1 must have a smaller

coefficient of variation than X0 and (in light of Lemma 1) that a newsvendor makes a higher

profit per unit of mean demand in a smaller market. What distinguishes the star order

from other variability orders is that it implies little about the random variables’ respective

magnitudes. For example, the convex ordering implies that the random variables have the

same mean. If X1 is smaller than X0 in the dispersive ordering3 (subject to some mild

restrictions), it must be that Φ1 (ξ) ≤ Φ0 (ξ) for all ξ (Shaked and Shanthikumar, 1994).

The star order imposes no such restrictions. The star order is useful in a newsvendor setting

because it compares distributions at fractiles as opposed to at quantities, and a newsvendor’s

decisions are dictated by these fractiles. Also, Theorem 7 part 2 allows us to say something

about rescaling of fractiles. It is crucial to proving the following.

Theorem 9 Suppose retailers 0 and 1 are in independent markets and face stochastic de-
mands X0 and X1, respectively. The supplier offers both a QF contract {w, d} with d > 0.
Φj is the distribution of Xj and yj the optimal order for retailer j = 0, 1. If X1 ≤∗ X0, then:
1. Retailer 1 chooses a higher service level, i.e., Φ1 (y1) ≥ Φ0 (y0) .

2. Retailer 1 is more likely to exploit the flexibility the supplier offers, i.e., Φ1 (y1 (1− d)) ≤
Φ0 (y0 (1− d)) .

The theorem suggests that if a retailer faces a smaller market (in the sense of the star

ordering), he is better able to exploit a QF contract. In particular, he finds committing to

3 X1 is smaller than X0 in the dispersive order (X1 ≤disp X0) if Φ−10 (β) − Φ−10 (α) ≥
Φ−11 (β)− Φ−11 (α) for 0 < α ≤ β < 1.
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a minimum purchase less onerous because his demand is more likely to be greater than the

level to which he has committed. Consequently, he can afford to increase his stocking level

and serve a higher fraction of demand.

Theorem 10 Suppose retailers 0 and 1 are in independent markets and face stochastic
demands X0 and X1, respectively. The supplier offers coordinating contracts with return
limit d > 0 in both markets. Let wjd be the corresponding wholesale price in market j = 0, 1.

1. If X1 ≤∗ X0, w1d ≥ w0d.
2. If X1 = θX0 for θ > 0, w1d = w

0
d.

Under a QF contract with d > 0, the retailer in the smaller market sets a higher service

level for a fixed contract. But coordination in a newsvendor setting is all about getting the

retailer to pick choose the correct service level. A higher wholesale price is consequently

needed in the smaller market to rein in the retailer. The second part of the theorem demon-

strates that while a coordinating QF contract depends on the demand distribution, it does

not necessarily depend on all aspects of the distribution. In particular, a scale parameter is

irrelevant in determining the coordinating wholesale price.

Theorem 10 says nothing about how the retailer’s share of supply-chain profit for a given

d varies between the markets. Making such a general statement is difficult since one does

not necessarily have a simple expression for retailer profit under a coordinating QF contract.

However, the case of power function demand is simple. Let Xk have a power function

distribution with parameter k > 0. It is easy to verify that Xk1 ≤∗ Xk0 for k1 > k0.

The integrated integrated system profit is πIk = µky
I
k (r − c) where µk = E [Xk] and yIk =

(1− c/r)1/k. The coordinating wholesale price is wd (k) = r
³
1 + (1− d)k+1 (r−c)

c

´−1
. If the

supplier offers {wd (k) , d} , the resulting retailer profit is

ΠkR =
r

c (1− d)−k−1 + (r − c)π
I
k.

Thus, the retailer’s share of system profit is decreasing in k for a fixed d.

3 A model of forecasting

We now present how the supply chain forecasts. We assume the supply chain knows the fam-

ily of the demand distribution and but not some parameter of the distribution. For example,

it knows that demand is exponentially distributed but not the rate of the exponential. The
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firm, however, has a prior on the missing parameter. If the supply chain were able to see a

demand draw, it could update its beliefs using Bayes formula in the manner of Scarf (1959).

Consequently, we model the forecasting signal σ as n “faux” demand realizations (for

n = 1, 2, . . .). Letting ξi denote the i
th draw, σ = {ξ1, . . . , ξn}. The draws are real in

the sense that they come from the true demand distribution. They are fake in the sense

that no actual transactions take place; the supply chain need not hold stock to serve these

realizations, and no cash changes hands. The n draws are assumed independent of each other

and of the ultimate real draw from the market place. While independent of the eventual

demand realization of demand, the faux draws provide useful information since they allow

the firm to refine its estimate of the missing parameter. We interpret the number of draws as

a measure of the effectiveness of the forecasting technology with a higher value corresponding

to a better technology. Note that n is exogenously specified. The decision is whether or not

to forecast, not how precise a forecast to obtain.

Let φ (ξ|θ) denote the density of the true demand distribution given θ. The true value of

θ is unknown. Let η0 (θ) denote the prior density. For simplicity, assume η0 is taken from a

conjugate family of φ (DeGroot, 1970). Averaging over possible values of θ, we have:

φ0 (ξ) =

Z ∞

−∞
φ (ξ|θ) η0 (θ) dθ.

We call the φ0 (ξ) the predictive density given the prior. If no forecasting takes place, it is

the supply chain’s estimate of the demand distribution. Now suppose that forecasting does

take place. Because we are working with a conjugate family, the posterior distribution of

θ given σ, η1 (θ|σ), is from the same family as the initial prior. Additionally, the updated

predictive density φ1 (ξ) =
R∞
−∞ φ (ξ|θ) η1 (θ|σ) dθ is from the same family as φ0 (ξ).

Given φ1 (ξ) , it is straightforward to evaluate the integrated supply chain’s optimal order

yIσ and the resulting system profit πIσ. For a decentralized supply chain governed by a

buy back or QF contract, it is also straightforward to determine either the supplier’s profit

given σ, ΠSσ , or the corresponding retailer’s profit, Π
R
σ . However, to determine whether the

integrated supply chain should forecast, we require πI1 = E
£
πIσ
¤
. Similarly, in a decentralized

supply chain, we need E
£
ΠSσ
¤
to address what contract the supplier should offer and E

£
ΠRσ
¤

to address whether the retailer should forecast. Unfortunately, yIσ and πIσ are generally

complex functions of the observed market signal (particularly when n > 1), so ascertaining

πI1 is not simple. Calculations for the decentralized case are even more complex. We must
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make some simplifying assumptions to move forward; we turn to the state space reduction

introduced by Scarf (1960) and extended by Azoury (1985).

We henceforth assume that φ (ξ|θ) is a Weibull density as defined in (5) with known shape
parameter k and unknown scale parameter θ. The gamma is a conjugate distribution of the

Weibull (Azoury, 1985), so we assume that η0 (θ) is gamma density as defined in (6) with

scale parameter S0 and shape parameter a0. Assume a0k > 1. Given market signal σ, the

posterior is a gamma distribution with parameters S1 and a1 where:

S1 = S0 +
nX
j=1

ξkj and a1 = a0 + n.

Only the scale parameter of the posterior S1 depends on the observed signal. The shape

parameter a1 depends only on the fact that forecasting has occurred. The coefficient of

variation of a gamma distribution with shape parameter a is 1/
√
a. Hence, “a” stands for

accuracy; the shape parameter represents the precision of information with a higher value

corresponding to lower uncertainty in the supply chain’s estimate of the missing parameter.

Forecasting reduces the uncertainty of the estimate regardless of the actual signal observed.

For a Weibull distribution with a gamma prior, the predictive distribution is a Burr Type

XII distribution (hereafter, simply a Burr distribution; see Burr, 1942). Given the Weibull

parameter k and the gamma parameters S and a, φi (ξ) = φ (ξ|Si, ai) for i = 0, 1 where:

φ (ξ|S, a) = akSaξk−1¡
1 + ξk

¢a+1 . (7)

Lemma 11 Let Xi be a Burr distribution with parameters (Si, ai) for i = 0, 1.

1. If aik > j, then the jth moment of Xi equals aiS
j/k
i

Γ(ai−j/k)Γ(1+j/k)
Γ(ai+1)

.

2. If a1 = a0, then X1 = S
1/k
1 S

−1/k
0 X0.

3. If a1 ≥ a0, X1 ≤∗ X0.

Thus φ0 (ξ) and φ1 (ξ) are related by the star order. Let µ (S, a) denote the mean of

a Burr distribution with parameters (S, a). By our earlier assumption a0k > 1, the mean

of the predictive distribution before forecasting, µ (S0, a0), is in fact well defined. Let X̃a

be a Burr random variable with parameters
³
µ (1, a)−k , a

´
. (Note that the mean of X̃a is

one.) By part 2 of the lemma, if X has a Burr distribution with parameters (S, a) , then

X = µ (S, a) X̃a. The next theorem links the profit under X and X̃a.
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Theorem 12 Let X and X̃a have Burr distributions with respective parameters (S, a) and³
µ (1, a)−k , a

´
. Let πI [π̃Ia] denote the optimal integrated supply-chain profit under demand

X [X̃a]. Similarly, for a given buy back contract, let ΠBR [Π̃
B
R] and ΠBS [Π̃

B
S ] be, respectively,

the retailer and supplier profit in a decentralized supply chain facing demand X [X̃a]. Let
ΠQR, Π̃

Q
R, Π

Q
S , and Π̃BS be the corresponding quantities for a given QF contract.

1. πI = µ (S, a) π̃Ia. π̃
I
a is increasing in a.

2. ΠBR = µ (S, a) Π̃
B
R and ΠBS = µ (S, a) Π̃

B
S . Π̃

B
R is increasing in a.

3. ΠQR = µ (S, a) Π̃
Q
R and ΠQS = µ (S, a) Π̃

Q
S . Π̃

Q
R is increasing in a.

We refer to π̃Ia as the normalized return. It represents the integrated system’s profit per

unit of mean demand. Writing profits in this manner clarifies how forecasting improves

system performance. Given a realized market signal σ and resulting distribution parameters

(S1, a1) , the resulting mean µ (S1, a1) may be more or less than the initial estimate of the

mean µ (S0, a0). However, the post-forecasting normalized return π̃Ia1 is certain to be higher.

Thus, even if the realized forecast suggests that the market is smaller than initially thought,

total expected profit may be higher if the normalized return increases sufficiently.

The normalized returns can be determined up front, making calculating expected profits

relatively simple. In particular, πIσ = µ (S1, a1) π̃
I
a1
, so:

πI1 = E
£
µ (S1, a1) π̃

I
a1

¤
= E [µ (S1, a1)] π̃

I
a1
.

To determine whether forecasting is profitable, we need only examine E [µ (S1, a1)] .

Lemma 13 E [µ (S1, a1)] = µ (S0, a0).

At an intuitive level, the lemma is appealing. It says that one does not expect the size

of the market to change if one forecasts. Of course, one expects the variance to fall. Using

the star ordering, one can show that this is fact the case. We had earlier assumed that

forecasting increased the profitability of the system; we now have that this is a consequence

of our forecasting structure and conclude that the integrated supply chain should forecast if

the cost of forecasting κ satisfies the following:

κ

µ (S0, a0)
≤ π̃Ia1 − π̃Ia0 .

4 Performance of a decentralized supply chain

We now consider a decentralized supply chain that faces the forecasting and stocking problem

modeled above. We assume the retailer is privately informed of his cost to forecast κ. The

14



supplier has a prior 0 < ρ < 1 that κ = κF (i.e., the retailer can afford to forecast). The

players agree on the initial estimate of the market as captured by the parameters (S0, a0).

The sequence of events is:
1. The supplier posts a menu of either buy back or QF contracts.

2. The retailer learns his cost of forecasting κ.

3. The retailer agrees to carry the product (incurring cost τ) if he expects to turn a profit.

4. He commits to a contract and then forecasts (incurring cost κ) if doing so maximizes
his profit.

5. The retailer orders stock and pays the supplier as dictated by the contract he has chosen.

6. Market demand is realized.

7. Returns as allowed by the retailer’s chosen contract take place.

There are some points to note about the assumed sequence. First, we restrict the supplier

to offer only buy back contracts or only QF contracts. She cannot design a menu which offers,

say, a buy back to the forecaster and a QF contract to the non-forecaster. This simplifies

the analysis and allows us to focus on the relative performance of the two types of contracts.

Second, we assume that the retailer incurs an opportunity cost τ when he commits to carry

the product. This represents the costs of handling the inventory, making space on shelves

etc. as well as the profit foregone by carrying the supplier’s product instead of something

else. It does not include the cost of forecasting, κ. We assume that τ < πI0; it is thus efficient

for the integrated system to stock the product even if no forecasting takes place. The retailer

will only carry the product if he expects at stage 3 a return greater than his opportunity

costs. However, because the opportunity cost τ is sunk, he will still offer the product to

the market if he subsequently learns from forecasting that the market will be very small.

Finally, we have assumed that the retailer must commit to a contract before forecasting. An

alternative formulation of the fourth step may be more realistic in some settings:

40.The retailer forecasts if doing so maximizes his profit and then commits to a contract.

As explained below, our formulation can handle this alternative assumption.

4.1 The supplier’s contract design problem

We begin with some notation. We use a superscript R [S] to denote values relevant to the

retailer [supplier]. A subscript F [N ] denotes values relevant to a retailer who has [not]

forecasted. Arguments of function will be contract terms, {w, b} in the case of a buy back
contract and {w, d} in the case of a QF contract. Thus, ΠSF (wF , dF ) is the supplier’s profit
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when the retailer has forecasted and accepted QF {wF , dF} and ΠRF (wN , bN) is the retailer’s
profit when he has forecasted and accepted buy back contract {wN , bN}. As in section 3, we
use a tilde to denote normalized returns.

The supplier’s problem in the case of offering buy backs can now be stated as follows:

max
wF ,bF ,wN ,bN

ρΠSF (wF , bF ) + (1− ρ)ΠSN (wN , bN) (P1)

Subject to:

ΠRF (wF , bF ) ≥ ΠRF (wN , bN) (IC-F )

ΠRN (wN , bN) ≥ ΠRN (wF , bF ) (IC-N)

ΠRF (wF , bF ) ≥ τ + κF (IR-F )

ΠRN (wN , bN) ≥ τ (IR-N)

The formulation for QF contracts would be identical except that {wj, dj} would replace
{wj, bj} for j = F,N . Here we have implicitly relied on the revelation principle, which

(loosely) says that nothing is lost by restricting the analysis to a direct mechanism in which

the retailer truthfully reveals his type by his contract selection (Salanié, 1997). The supplier

thus offers one contract {wF , bF} meant for the forecasting retailer and another {wN , bN}
meant for the non-forecaster. The incentive compatibility constraints (IC) assure that truth-

telling is indeed optimal for both types of retailers. Constraint (IC-F ) says that the fore-

caster prefers the contract intended for him while (IC-N) assures the non-forecaster prefers

{wN , bN}. The last two constraints are individual rationality constraints (IR) and assure
both types of retailers are willing to carry the supplier’s product.

Following our analysis of the forecasting model, an equivalent formulation is:

max
wF ,bF ,wN ,bN

ρΠ̃SF (wF , bF ) + (1− ρ) Π̃SN (wN , bN) (P̃1)

Subject to:

Π̃RF (wF , bF ) ≥ Π̃RF (wN , bN) (IC- eF )
Π̃RN (wN , bN) ≥ Π̃RN (wF , bF ) (IC- eN)
Π̃RF (wF , bF ) ≥ τ̃ + κ̃F (IR- eF )
Π̃RN (wN , bN) ≥ τ̃ (IR- eN)
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where τ̃ = τ/µ (S0, a0) and κ̃F = κF/µ (S0, a0). We can thus work with the simpler, normal-

ized returns. It is this ability to move from the general formulation P1 to the normalized P̃1,

that allows us to handle the alternative sequencing assumption 40. Under this assumption,

the forecaster’s incentive compatibility constraint (IC-F ) would become

ΠRF (wF , bF |S1, a1) ≥ ΠRF (wN , bN |S1, a1) for all S1 > 0. (8)

where ΠRF (wj, bj|S1, a1) denotes retailer profit given market signal σ which leads to posterior
parameters (S1, a1) . However, since ΠRF (wj, bj|S1, a1) = µ (S1, a1) Π̃RF (wj, bj) for all S1 > 0,
(8) reduces to (IC- eF ).
In many ways, the supplier’s problem is a standard contract-design problem as found in

the economics literature (Salanié, 1997). Three outcomes are possible. First, the supplier

may forego differentiating between the forecaster and the non-forecaster and offer only one

contract that is acceptable to both, making the IC constraints moot. Second, she may choose

not to do business with the “unfavorable type” (i.e., the non-forecaster) and offer a contract

that only the forecaster would accept. That is, she intentionally offers terms that violate

(IR- eN). Finally, she may choose to offer incentive compatible contracts that satisfy all the
constraints, so she may screen a forecaster from a non-forecaster based on the contract the

retailer accepts. We focus on this last possibility but will highlight points at which the

supplier might opt for the other alternatives.

Below we establish some properties of the supplier’s problem and determine which con-

straints will bind at the supplier’s optimal solution. This highlights the trade offs she con-

fronts. We first consider buy backs and then QF contracts. We conclude this section with a

numerical example that compares the relative performance of the two contracts.

4.2 Buy back analysis

We begin by considering coordinating buy back contracts as given in Theorem 3.

Theorem 14 Let
©
wεj , bεj

ª
for j = F,N be coordinating buy back contracts as defined in

Theorem 3. If a pair of contracts {wεF , bεF } and {wεN , bεN} satisfies the constraints of P1,
it must be the case εF = εN so {wεF , bεF } = {wεN , bεN} .

The supplier cannot induce the retailer to reveal whether he has forecasted using coordi-

nating contracts. Gaining separation requires sacrificing efficiency for at least one type. The

supplier must offer at least one contract that results in a critical fractile that is distinct from
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the integrated system critical fractile. Lemma 2 offers some insight into the structure that

must be offered. For the retailer’s choice of contract to be dependent on the demand distri-

bution he faces, it must be that one contract features a higher wholesale price with a buy

back rate sufficiently high that it results in a critical fractile higher than the contract with

the lower wholesale price. If it is the case that a forecasting retailer is induced to take the

contract with the lower critical fractile, the supplier does in fact induce forecast revelation

by restricting returns. To see if this does occur, we need to examine the IC constraints.

Theorem 15 Suppose retailers 0 and 1 are in independent markets and face stochastic
demands X0 and X1, respectively. The supplier lets both select from a pair of buy back
contracts {w1, b1} and {w2, b2} such that w1 > w2 and r−w1

r−b1 >
r−w2
r−b2 . Suppose X1 ≤∗ X0.

1. If retailer 1 is indifferent between the two contracts, retailer 0 prefers contract {w1, b1}.
2. If retailer 0 is indifferent between the two contracts, retailer 1 prefers contract {w2, b2}.

The theorem implies that only one of the IC constraints binds and that a forecasting

retailer takes the contract with a lower wholesale price but less generous return terms. The

non-forecaster places greater value on a higher return rate and is consequently willing to

pay a higher wholesale price in order to assure generous terms on returns. Two points are

worthy of note. First, the result holds for a general model of forecasting that leads to the star

ordering and not just for model with Weibull demand we have proposed. Second, the result

implies that the iso-profit curves of the two types of retailers can cross only once. Hence, it

is equivalent to the usual single crossing condition in the agency literature (Salanié, 1997).

Now consider the IR constraints. For the moment, assume that κ̃F = 0. By Lemma 1,

Π̃RF (wN , bN) ≥ Π̃RN (wN , bN) and any contract satisfying the non-forecaster’s IR constraint

also satisfies the forecaster’s. Consequently, the supplier sets {wN , bN} such that (IR- eN)
binds and choose {wF , bF} so that (IC- eF ) binds. Further {wF , bF} is a coordinating con-
tract as given in Theorem 3. To see this, consider the latter point first. Given {wN , bN}, the
forecaster can always guarantee himself at least Π̃RF (wN , bN) . From the supplier’s perspec-

tive, the most efficient way to assure the forecaster that much profit is to offer a coordinating

contract as this leaves the most residual profit for the supplier. Next, there is no reason to set

Π̃RN (wN , bN) strictly greater than τ̃ . If Π̃RN (wN , bN) were greater than τ̃ , the supplier could

increase wN and bN so that χN =
r−wN
r−bN remains constant. By Lemma 2, both Π̃RN (wN , bN)

and Π̃RF (wN , bN) must fall. Since a non-forecaster orders the same quantity as before, total
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system profit with a non-forecaster is unchanged; Π̃RN (wN , bN) falling implies that the sup-

plier must earn more in the event that the retailer cannot forecast. Further, a lower value

of Π̃RF (wN , bN) increases what the supplier makes in the event the retailer is a forecaster.

The above analysis shows that the profits of the parties are driven by χN , the critical

fractile the non-forecaster serves. Define
©
w
¡
χ
N

¢
, b
¡
χ
N

¢ª
as:

©
w
¡
χ
N

¢
, b
¡
χ
N

¢ª(
r − χN

¡
r − b ¡χ

N

¢¢
, r − τ̃R Φ̃−10 (χN )

0
ξφ̃0 (ξ) dξ

)
,

where Φ̃−10 is the inverse of a Burr distribution with parameters
³
µ (1, a0)

−k , a0
´
and φ̃0 is

the corresponding density. It is straightforward to verify that Π̃RN
¡
w
¡
χ
N

¢
, b
¡
χ
N

¢¢
= τ̃ . Let

π̃Ia0 (χN) be the normalized profit for the integrated channel if no forecasting takes place

and the stocking level is Φ̃−10 (χN). π̃Ia0 (χN) is decreasing in χN for χN > χI =
r−c
r
. Let

Π̃RF (χN) = Π̃RF
¡
w
¡
χ
N

¢
, b
¡
χ
N

¢¢
. By Theorem 15, Π̃RF (χN) is decreasing. The supplier’s

problem now reduces to choosing χN to maximize the following:

ΠS (χN) = ρ
³
π̃Ia1 − Π̃RF (χN)

´
+ (1− ρ)

¡
π̃Ia0 (χN)− τ̃

¢
.

The corresponding first order condition yields:

(1− ρ)
dπ̃Ia0 (χN)

dχN
= ρ

dΠ̃RF (χN)

dχN
. (9)

Let χ∗N denote the solution to (9).

The trade off the supplier faces is now clear. Boosting χN lowers the excess rents she must

pay a forecasting retailer. By offering a coordinating contract, she captures every penny she

takes away from the forecaster. Those pennies do not come for free. The non-forecaster’s

profit is fixed τ̃ , and setting χ∗N > χI lowers the supplier’s pay off if the retailer turns out to

be a non-forecaster. The extent to which the supplier is willing to distort the non-forecaster

stocking decision depends in part on the probability the retailer can forecast. If ρ is low, one

would expect little distortion. If ρ is near one, the supplier puts little weight on the drop in

her profit with a non-forecaster and instead focuses on reducing the forecaster’s profit.

Now consider κ̃F > 0. Clearly if Π̃RF (χ
∗
N) > τ̃ + κ̃F , the supplier again chooses χ∗N . If

instead Π̃RF (χI) ≥ τ̃ + κ̃F > Π̃RF (χ
∗
N) , much of the above analysis goes through; the supplier

keeps increasing χN to reduce the forecaster’s excess rents but now stops short of χ
∗
N since

this would violate the forecaster’s IR constraint. Let χ̂N solve Π̃
R
F (χ̂N) = τ̃ + κ̃F , we have

that for κ̃F ≤ Π̃RF (χI)− τ̃ , the supplier choose max {χ∗N , χ̂N}.
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If κ̃F > Π̃RF (χI) − τ̃ , the problem changes, and the forecaster’s IR constraint plays a

bigger role. Suppose the supplier only offered a single coordinating contract, {wε, bε}. He
must choose ε so that the forecaster just breaks even.4 Now the non-forecaster receives a

windfall from the supplier’s attempts to accommodate the forecaster. The supplier could

reduce the non-forecaster’s excess rents by distorting the forecaster’s critical fractile χF .

By Theorem 15, she must set χF < χI in order for the non-forecaster’s IC constraint to

bind. Thus when forecasting is expensive, the nature of the solution reverses: The supplier

sacrifices efficiency with the forecaster to reduce the rents of the non-forecaster. Because a

market with a forecaster is inherently more profitable, distorting the forecaster’s actions may

simply be too costly. The supplier may instead forego screening and offer just one contract.

4.3 Quantity flexibility analysis

We now turn to screening with QF contracts. We begin with an analog to Theorem 15.

Theorem 16 Suppose retailers 0 and 1 are in independent markets and face stochastic
demands X0 and X1, respectively. The supplier lets both select from a pair of QF contracts
{w1, d1} and {w2, d2} . Assume w1 > w2. If for all QF contracts {w, d},

M1

M0
≥ Φ1 (y

∗
1 (1− d))

Φ0 (y∗0 (1− d))
, (10)

where y∗j is retailer j’s optimal order given {w, d} and Mj = 1− 1
y∗j

R y∗j
y∗j (1−d)Φj (ξ) dξ, then

1. If retailer 1 is indifferent between the two contracts, retailer 0 prefers contract {w1, d1} .
2. If retailer 0 is indifferent between the two contracts, retailer 1 prefers contract {w2, d2}.

Unlike the buy back case, we require a more stringent condition then the star order to

assure that the IC constraints can cross only once. This is due in part to the difficultly in

comparing decision across markets and contracts. Retailers 0 and 1, for example, will not

necessarily choose the same service level for a given contract, and it is not the case that

y10 > y
2
0 implies that y

1
1 > y

2
1. However, one can argue that condition (10) is more likely to

hold when X1 ≤∗ X0.5 By Theorem 9, if X1 is smaller in the star order then the right hand
side of (10) is less than one. The value Mj may be interpreted as the expected fraction of

units in the supply chain for which the retailer ultimately pays. There is reason to believe

4 This requires ε = (r − c) (τ̃ + κ̃) /πI1.

5 If X0 and X1 have power function distributions, X1 ≤∗ X0 implies condition (10).
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that this will be higher in a less variable market. For example, if X1 is smaller in the star

order, then retailer 1 is more likely than retailer 0 to sell more than his minimum purchase.

The condition also appears to hold for the examples we consider below.

Theorem 17 Let {wdN , dN} be a coordinating QF contract as defined in Theorem 6 for the
non-forecaster’s distribution such that ΠRN (wdN , dN) = τ . Suppose condition (10) holds. If
ΠRF (wdN , dN) ≤ πI1, then there exists a QF contract {wdF , dF} that is a coordinating contract
for the forecaster’s distribution such that wdF < wdN and dF < dN and {wdN , dN} and
{wdF , dF} together satisfy the constraints of P̃1.

The theorem illustrates that there is something concrete that can be accomplished with co-

ordinating QF contracts that cannot be accomplished with coordinating buy back contracts.

The supplier can screen forecasting from non-forecasting retailers because the coordinating

QF contracts depend on the demand distribution. Thus while dependence on the demand

distribution may initially appear to be a drawback, here it has a benefit: The supplier can

tell forecasters from non-forecasters without sacrificing any supply chain profits.

Although the supplier does not necessarily have to sacrifice supply chain profits, she may

in fact do so. Consider the case of κ̃F = 0. Because Π̃RF (wdN , dN) > τ̃ , the supplier can

earn more in the event that the retailer can forecast if she reduces the attractiveness of the

non-forecaster’s contract. The analysis is similar to the buy back case. By inducing the non-

forecaster to serve a greater fraction of demand, the supplier reduces the rents the forecaster

earns. Her ability to do this is again potentially limited by a positive cost of forecasting.

4.4 Relative performance buy back and QF contracts

We now examine the relative performance of QF and buy back contracts through a numerical

example. We consider the case of exponential demand (i.e., k = 1 in (5)) because, given

a gamma prior, it leads to relatively simple expressions for profit functions (Lariviere and

Porteus, 1999). For example, the normalized return for the centralized system is:

π̃Ia = r − c− ac
µ³r
c

´1/a
− 1
¶
.

We set r = 10 and c = 2.5, yielding a critical fractile of 75%. The parameters of the

gamma prior are (S0, a0) = (100, 1.1), giving a mean demand of 1, 000. Forecasting is

modeled as seeing five independent demand draws. The posterior shape parameter is then

a1 = a0 + n = 1.1 + 5 = 6.1. The probability that the retailer can afford to forecast (i.e.

ρ) is 50%. With this parameter set, forecasting has a significant impact on supply chain
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profitability. The normalized return for a non-forecasting supply chain π̃Ia0 is 0.552 while π̃
I
a1

is 3.609. The normalized return for an exponential distribution would be lima→∞ π̃Ia = 4.034.

Below we vary the retailer opportunity cost τ and the forecaster’s cost κF to determine their

impact on which contractual form performs best.

We first consider the case of very cheap forecasting, i.e., κF = 0. We begin by restricting

the supplier to offering coordinating contracts. In light of Theorems 14 and 17, one might

anticipate that QF contracts will outperform buy backs in this setting. After all, the latter

cannot distinguish between the high and low types while the former can. Consequently, with

buy backs the supplier is only offering one contract while with QF contracts he is offering

a menu of contracts. The results in Table 1 are therefore somewhat surprising. Here we

report the expected profit of the supplier (averaged over realizations of a forecasting and a

non-forecasting retailer) as well as each type of retailer for various values of τ . Profits are

gross of opportunity and forecasting costs and are reported for a mean demand of 1, 000.

The retailer’s opportunity cost is varied from 20% to 80% of πIa0. We see that the supplier

is better off using buy backs in all cases. For a low retailer opportunity costs, the difference

is relatively small but for higher costs moving from QF to buy backs would increase the

supplier’s profit by five to ten percent.

As seen in Table 2, this difference does not go away as one moves to optimal contracts.

Moving from QF to buy back contracts again significantly increases supplier profit when par-

ticipation costs are high. We do not report non-forecaster profit because the non-forecaster

will be driven to indifference. Rather we focus on the steps the supplier takes to limit the

forecaster’s profit. We see that the supplier does indeed induce the non-forecasting retailer

to serve a greater fraction of demand and thus sacrifices some channel efficiency in the event

the retailer does not forecast. This is accomplished by offering the non-forecaster greater

flexibility in returning the product while offering the forecaster a cheaper wholesale price. Ef-

ficiency losses can be considerable. Pushing the service level above 85% lowers the efficiency

of the supply chain (i.e., the fraction of possible profit captured) to around 70%. Foregone

profit from the non-forecaster are only partially offset by rents taken from the forecaster.

For example, when τ equals 60% of πIa0, moving from a coordinating QF contract to an

optimal one reduces the forecasters profits by over $240 but the supplier’s expected profit

increases by less than $70. We infer that the supplier is taking a significant reduction in
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profit when the retailer cannot forecast. In fact, the supplier has an expected loss when the

retailer cannot forecast and τ equals 80% of πIa0. This is true under both buy back and QF

contracts. In this case, she would prefer to offer a contract that only the forecaster would

accept and forego trading with the non-forecater.

Table 3 offers some insight into why buy backs perform better than QF contracts. Here

we report the retailer’s expected share of system profit when the retailer forecasts. Recall

that the general structure of the solution is to force the non-forecaster’s individual ratio-

nality constraint to bind and then offer the forecaster a contract that leaves him indifferent

between the two available contracts. Table 3 shows that the forecaster simply finds the

non-forecaster’s QF more attractive than the non-forecaster’s buy back contract. Consider

first the case of coordinating contracts. Coordinating buy backs cannot separate the types

of retailers but they do cap what the forecaster earns. If the non-forecaster captures, say,

40% of system profit, the forecaster only captures 40% as well. Such is not the case with QF

contracts. If the forecaster were to take the non-forecaster’s contract, he would earn more

than 40% of system profit. This asymmetry carries over to the optimal contracts as well.

Theorem 9 offers some intuition for this. Given the same QF contract, the retailer in the

smaller market (in the sense of the star order) chooses a higher service level. Consequently,

the service level the forecaster picks under the non-forecaster’s QF contract must be greater

than the service level the non-forecaster picks under the same contract. In contrast, the

forecaster picks the same service level as the non-forecaster when buy backs are used. It

must be the case that the forecaster faces a lower marginal cost of increasing the service

level when QF contracts are used. That is, the non-forecaster’s QF contract delivers “cheap”

stock to the forecaster, and any contract that forecaster would prefer to the non-forecaster’s

must equal this windfall profit.

Table 3 does, however, suggest a setting in which QF contracts may perform better than

buy backs: when forecasting is expensive. From Tables 1 and 2, we see that there is a large

range of forecasting costs over which the supplier will be able to implement her preferred

contract. For QF contracts to be preferable, forecasting must be extremely expensive. We

present such an example in Table 4. Here we continue to give τ as a percent of πIa0 but give

τ + κF as a percent of πIa1. We see that both coordinating and optimal buy backs perform

worse than coordinating QF contracts. (Using optimal QF contracts would increase supplier
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profit by less than 0.25%.) Note that under buy backs it is optimal for the supplier to use

only one contract and forego separating forecasters from non-forecasters. QF contracts work

well in this setting since the structure of the solution is the reverse of the cheap forecasting

case. Now the forecaster’s IR constraint binds, and it is the non-forecaster who is indifferent

between the contracts. If the non-forecaster takes the forecaster’s contract, he must lower

the service level he would provide despite the lower wholesale price. It is thus easier for

supplier to induce him to take a different contract.

This example is representative of several that we have examined, but it is worth noting

several features that impact the results. First, and perhaps most importantly, forecasting

dramatically boosts returns because (a) the system starts with a very diffuse prior and

(b) the forecasting technology provides for a relatively large number of draws. There are

decreasing returns in the number of draws. Hence, point (a) is more important. For example,

if the forecasting technology provided for only three draws (i.e., n = 3) and the initial

shape parameter a0 remained 1.1, the supplier would still offer contracts that distort the

non-forecasting retailer’s actions significantly (although less than in the current example).

However, if n = 3 and a0 = 3.1 (so a1 still equals 6.1), we would see relatively little distortion

in the non-forecaster’s actions under the optimal contract since forecasting would deliver a

much lower increase in profit.6

A second consideration is the critical fractile of the integrated system. Beginning from

a service level of 75% leaves room for a large increase. Obviously, if we had started from a

level of, say, 95%, it would be hard to increase the service by, say, 10%. Finally, the prior on

the ability of the retailer to forecast (i.e., ρ) matters. The distortion in the non-forecaster’s

action is increasing in ρ. Indeed, if we pick ρ sufficiently low or high, the supplier will offer

only one contract. If ρ is near zero and forecasting is cheap, she will offer a contract that

is acceptable to both with little or no distortion in the non-forecaster’s actions. If ρ is near

one, she will offer a contract that only the forecaster will accept.

5 Discussion

We have presented a model in which a supplier must offer contracts to a retailer who may

6 π̃I3.1 = 3.130 and π̃I4.1 = 3.376, so moving from π̃I1.1 = 0.552 to π̃I4.1 remains a dramatic

increase while moving from π̃I3.1 to π̃I6.1 = 3.609 is a more modest gain.
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or may not be capable of gathering additional information. We restrict the supplier to two

contractual forms previously studied in the literature, buy backs and quantity flexibility

contracts. It is well know that coordinating buy back contracts are independent of the

demand distribution. We show that coordinating QF contracts depend on the variability of

the demand distribution as measured by the star order. A market that is smaller in the star

order requires a higher wholesale price for a given level of flexibility.

The relation between coordinating contracts and the demand distribution plays a role in

the supplier’s ability to screen retailers who are capable of forecasting from those who are

not. Coordinating buy backs cannot be used to differentiate between forecasters and non-

forecasters while coordinating QF contracts can. Designing terms that do induce forecasters

to take distinct contracts from non-forecasters using either buy backs or QF contracts requires

restricted returns. Forecasters get a cheaper wholesale price but less generous returns while

non-forecasters pay a higher price but have greater flexibility in returning stock.

Which contract form produces a greater profit for the supplier depends on retailer costs.

If forecasting is inexpensive, buy backs do better. Under QF contracts, a forecaster will

choose a higher service level than a non-forecaster facing the same contract. If the forecaster

were to take the contract meant for the non-forecaster, he is able to buy additional stock at

what he perceives to be a low expected cost. This results in a windfall profit. Under a buy

back contract, on the other hand, both types of retailers choose the same service level. The

forecaster consequently does not receive a boon of cheap inventory by switching to the non-

forecasters contract. When forecasting is very expensive, the nature of the solution changes,

and QF contracts perform better. The non-forecaster places a sufficiently high value on

flexibility that he does not gain much from switching to the forecaster’s contract.

Like all models, the one presented here has limitations. The two most obvious are consid-

ering only two contract forms and the model of forecasting employed. To address the former,

we chose to focus on buy backs and QF because they are simple contracts that have been

studied in the literature but not directly compared. In addition, they provide a clean distinc-

tion between flexibility based on price and flexibility based on quantity. Clearly, the supplier

could do no worse if she were free to use one of each (e.g., offering the non-forecaster a buy

back contract but the forecaster a QF contract). Also, one could consider more complex

contracts that offer return rates based on the fraction of the order returned. This alterna-
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tive would likely better enable the supplier to tailor contracts to the demand distributions

that the different types face. However, it would complicate the analysis significantly. For

example, the retailer’s ordering policy could potentially be quite complex.

Here we have used a very specific model of forecasting: a Bayesian inventory approach

with Weibull demand and a gamma prior on the unknown rate. The primary advantage of

this model is that it allows for a state space reduction so that the optimal stocking level

after forecasting and expected profit from forecasting depend on the realized market signal

in a very simple way. This allows us to ignore the exact outcome of forecasting in designing

contracts. The Weibull-gamma pair is not the only combination of distributions for which

this will hold. One could also consider gamma demand with a gamma prior or uniform

demand with a Pareto prior (Azoury, 1985).

That said, many of our results do not rely on the specifics of the forecasting model. For

example, that coordinating buy backs cannot achieve separation while QF contracts can will

hold in general. Additionally, achieving separation with buy backs by offering restricted

returns to the forecaster (Theorem 15), depends only on the star ordering. The Weibull-

gamma assumption, however, is key to the numerical evaluation of contract performance.

Using an alternatively model of information here (e.g., a bivariate normal) would be difficult

since (for at least the QF case) the best contract (whether coordinating or otherwise) would

depend on knowing the exact realization of the forecast.

There are a number of possible ways to generalize the model. One is to make the fore-

casting technology endogenous. Suppose all retailers have the same cost of forecasting which

is increasing in the number of draws seen. One could examine which contracts induce the

appropriate level of forecasting effort. Intuition suggests that a decentralized supply chain

would collect less data than a centralized one even if the ex post stocking quantity is effi-

cient. A second intriguing generalization is to consider multiple retailers. Suppose that each

retailer is a local monopolist but that each faces the same demand distribution. Realized

demands draws are independent across markets. If each forecasts and truthfully reveals the

outcome of that forecast to the supplier, the supplier is much better informed than any one

retailer. Issues to consider include how many retailers should forecast as well as retailer free

riding.
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Appendix A. Proofs

Proof of Lemma 1: Consider retailer profit given stocking level y and realized demand ξ :

g (y, ξ) = −wyy + rmin {y, ξ}+ bmax {y − ξ, 0} .
g (y0, ξ) is piecewise linear and concave in ξ. Hence, E [g (y0, X0)] ≤ E [g (y0,X1)] , but

E [g (y0, X0)] = Π0R and E [g (y
0, X1)] ≤ E [g (y1,X1)] = Π1R, by the optimality of y

1.

For the second part, let Φi denote the distribution of Xi. Φ1 (ξ) = Φ0 (ξ/θ) and φ1 (ξ) =

1
θ
φ1 (ξ/θ). y

1 = θy0 follows immediately. Next, using a change of variables, we have:Z B

A

ξφ1 (ξ) dξ =

Z B

A

ξ

θ
φ1 (ξ/θ) dξ = θ

Z B/θ

A/θ

zφ0 (z) dz,

which together with y1 = θy0 implies that Π1R = θΠ0R and Π1S = θΠ10.

Proof of Lemma 2: Let yi be the retailer’s optimal order under contract i for i = 1, 2.

First, consider the case in which b1 ≤ b2. Clearly the retailer prefers contract 2 since it offers
a cheaper price and greater flexibility. Now suppose that r−w1

r−b1 =
r−w2
r−b2 so y

1 = y2. Write the

optimal expected profit under contract i as

Π∗R (wi, bi) = (r − bi)
Z yi

0

ξφ (ξ) dξ.

Thus, Π∗R (w2, b2)−Π∗R (w1, b1) > 0 and the retailer prefers contract 2. Finally suppose that

b1 > b2 but r−w1
r−b1 <

r−w2
r−b2 . Then there exists a b̂ such that b2 > b̂ and r−w1

r−b1 =
r−w2
r−b̂ . The

retailer prefers
n
w2, b̂

o
to contract 1 and contract 2 to

n
w2, b̂

o
.

Proof of Lemma 4: The proof is similar to that of Lemma 1.

Proof of Lemma 5: Obviously, if d1 ≤ d2, the retailer prefers contract 2. Now suppose
y1 = y2, which implies d1 > d2. We have:

Π∗R (wi, di) = y
i
¡
(r − wi) Φ̄

¡
yi
¢− wi (1− di)Φ ¡yi (1− di)¢¢

+ r

Z yi

0

ξφ (ξ) dξ − wi
Z yi

yi(1−di)
ξφ (ξ) dξ = r

Z yi

0

ξφ (ξ) dξ − wi
Z yi

yi(1−di)
ξφ (ξ) dξ,

where the second equality follows from (4). Consequently,

Π∗R (w2, d2)−Π∗R (w1, d1) = w1

Z y1

y1(1−d1)
ξφ (ξ) dξ − w2

Z y2

y2(1−d2)
ξφ (ξ) dξ > 0.

The remainder of the proof is similar to that of Lemma 2.

Proof of Theorem 7: The first part is Theorem 3.C.1 in Shaked and Shanthikumar (1994).

It is equivalent to Z1 ≤disp Z0, where the dispersive order is as defined in footnote 3 and
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Zi = logXi. Let Φ̂i be the distribution of Zi. Φ̂i (ξ) = Φi
¡
eξ
¢
, φ̂i (ξ) = eξφi

¡
eξ
¢
, and

Φ̂−1i (ξ) = logΦ−1i (ξ) . From Shaked and Shanthikumar (1994), Z1 ≤disp Z0 if and only if
1. Φ̂0

³
Φ̂−10 (α) + λ

´
≥ [≤] Φ̂1

³
Φ̂−11 (α) + λ

´
for α ∈ (0, 1) and λ < [>] 0 or

2. φ̂0
³
Φ̂−10 (α)

´
≤ φ̂1

³
Φ̂−11 (α)

´
for α ∈ (0, 1) .

The first [second] alternative is equivalent to part 2 [3]of the theorem.

Proof of Theorem 8: Part 1 is Theorem 3.C.4 in Shaked and Shanthikumar (1994). For

part 2, the inverse of θiXi is θiΦ−1i (α) . The result follows from Theorem 7 part 1. Part 3

follows from result 5.5 (a) in Barlow and Proschan (1975) and Theorem 7 part 1.

Proof of Theorem 9: Suppose the retailer chose the same service level β∗, i.e., yj =

Φ−1j (β∗). Equation (4) would imply that Φ1 (y1 (1− d)) = Φ0 (y0 (1− d)) , but that cannot
hold by Theorem 7 part 2. For the second part, manipulate (4) to yield:

Φj (yj (1− d)) = (r − w)
w (1− d)Φ̄j

¡
yj
¢
.

The result follows from the first part of the theorem.

Proof of Theorem 10: Let β∗ = r−c
r
be the critical fractile of the integrated channel.

wjd = c/
¡
c
r
+ (1− d)Φi

¡
(1− d)Φ−1j (β∗)

¢¢
. w1d ≥ w0d by Theorem 7 part 2. The second part

follows from Lemma 4.

Proof of Lemma 11: In proving the first part of the lemma, we drop the subscript i. Using

the change of variables t = ξ/S1/k, the jth moment may be written as follows:Z ∞

0

ξjφ (ξ|S, a) dξ = akSj/k
Z ∞

0

tn+k−1
¡
1 + tk

¢−(a+1)
dt.

Employing another change of variables — u =
¡
1 + tk

¢−1
— then yields:

akSj/k
Z 1

0

(1− u)j/k ua−j/k−1du = aSj/kΓ (a− j/k)Γ (1 + j/k)
Γ (a+ 1)

,

where the final equality follows from the definition of the beta function (Mood, Graybill,

and Boes, 1974).

For the second part, note that Φi (ξ|Si, ai) = 1 − Saii
¡
Si + ξk

¢−ai. Let ai = a. It is

straightforward to verify that Φ0
³
S
1/k
0 ξ/S

1/k
1 |S0, a

´
= Φ1 (ξ|S1, a) . Given that this distrib-

ution is scaled in S, Theorem 8 implies that to prove the third part we only need to consider

the case of S0 = S1 = 1. For simplicity, let a0 = a and a1 = a0 + δ for δ ≥ 0. We then have:

G (ξ) = Φ−10 (Φ1 (ξ)) /ξ =

³¡
1 + ξk

¢1+δ/a − 1´1/k
ξ

,
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and

G0 (ξ) =

³¡
1 + ξk

¢1+δ/a − 1´1/k
ξ2a

³¡
1 + ξk

¢1+δ/a − 1´A (ξ, δ) .
where A (ξ, δ) = a +

¡
1 + ξk

¢δ/a ¡
δξk − a¢ . Clearly, the sign of G0 is the same as that of

A (ξ, δ). Note that A (ξ, 0) = 0. Further,

∂A

∂δ
=
¡
1 + ξk

¢δ/a ¡
ξk − ln £1 + ξk

¤ ¡
1− δ/aξk

¢¢ ≥ 0,
since ξk ≥ ln £1 + ξk

¤
. G (ξ) is consequently increasing and X1 ≤∗ X0.

Proof of Theorem 12: First, note that X̃a ≤cx X̃a0 for a ≥ a0 by Theorem 8 part 1. The

first two parts then follow from Lemma 1. The third part follows from Lemma 4.

Proof of Lemma 13: We begin with the case of n = 1 so forecasting yields only one

observation. Consider the expectation of S1/k1 :Z ∞

0

S
1/k
1 φ (ξ|S0, a0) dξ =

Z ∞

0

¡
S0 + ξk

¢1/k
φ (ξ|S0, a0) dξ

=
a0S

1/k
0

a0 − 1/k
Z ∞

0

φ (ξ|S0, a0 − 1/k) dξ

=
a0S

1/k
0

a0 − 1/k .
Consequently,

E [µ (S1, a1)] = E
h
S
1/k
1

i a1Γ (a1 − 1/k)Γ (1 + 1/k)
Γ (a1 + 1)

=
a0S

1/k
0

a0 − 1/k
(a0 + 1)Γ (a0 + 1− 1/k)Γ (1 + 1/k)

Γ (a0 + 2)

=
a0S

1/k
0 Γ (a0 − 1/k)Γ (1 + 1/k)

Γ (a0 + 1)

= µ (S0, a0) .

The penultimate equality follows from the fact that Γ (a+ 1) = aΓ (a). For the case of n > 1,

an induction yields

E
h
S
1/k
1

i
=

Qn−1
j=0 (a0 + j)Qn−1

j=0 (a0 + j − 1/k)
S1/k,

which leads to the desired result.

Proof of Theorem 14: Suppose a pair of contracts existed such that εF > εN and all

constraints are satisfied. (The case for εF < εN is similar.) By Theorem 3, Π̃RF (wεN , bεN ) =¡
1− εN

r−c
¢
π̃Ia1 >

¡
1− εF

r−c
¢
π̃Ia1 = Π̃RF (wεF , bεF ). Hence the forecaster’s incentive compatibility

cannot be satisfied unless εF = εN .
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Proof of Theorem 15: Let Φj denote the distribution for random variable Xj. Given

contract i, retailer j’s optimal expected profit can be written as follows:

(r − bi)
Z Φ−1j (χi)

0

ξφj (ξ) dξ = (r − bi)
Z χi

0

Φ−1j (α) dα,

where we have used the change of variables α = F (ξ). For retailer j to prefer {w1, b1}, it
must be case that

(r − b1)
Z χ1

χ2

Φ−1j (α) dα ≥ (b1 − b2)
Z χ2

0

Φ−1j (α) dα. (A-1)

If retailer j is indifferent, (A-1) holds as an equality. Suppose X0 and X1 are scaled so that

Φ−10 (χ2) = Φ−11 (χ2) . Then by Theorem 8 part 3,Z χ1

χ2

Φ−10 (α) dα ≥
Z χ1

χ2

Φ−11 (α) dα

and Z χ2

0

Φ−11 (α) dα ≥
Z χ2

0

Φ−10 (α) dα.

Thus for this scaling, if retailer 1 is indifferent, retailer 0 prefers contract 1. If retailer 0 is

indifferent, retailer 1 prefers contract 2. By Lemma 1 and Theorem 8, if the results hold for

this scaling, they hold for all scalings.

Proof of Theorem 16: Let {w, dj (w)} be the set of contracts that holds retailer j’s profit
constant at, say, Π̄. Implicit differentiation and the envelope theorem (de la Fuente, 2000)

leads to:

d0j (w) = −∂ΠRj /∂w

∂ΠRj /∂d
=

R y∗j
y∗j (1−d) ξφj (ξ) dξ + y

∗
j Φ̄j

¡
y∗j
¢
+ y∗j (1− d)Φj (ξ) dξ

wy∗jΦj (ξ)

=
Mj

wΦj (ξ)
,

where the last equality follows from an integration by parts. Condition (10) then implies

that d01 (w) ≥ d00 (w) for all w. Consequently, the iso-profit curves of retailer 1 in (w, d)-space
are always steeper than those of retailer 0, which leads to the stated conclusions.

Proof of Theorem 17: Since ΠRF (wdN , dN) ≤ πI1, there exists a coordinating QF contract

{wdF , dF} such that ΠRF (wdF , dF ) = ΠRF (wdN , dN). The forecaster chooses a lower service

level under {wdF , dF} . Hence by Lemma 5, wdF < wdN and thus dF < dN . Satisfying the

constraints of of P̃1 then follows from Theorem 16.
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Table 1 
Supply Chain Performance under Coordinating Contracts 

  
Buy Backs 

 
Quantity Flexibility 

    

 
 
τ 

(% of πI
a0) 

 
Expected 
Supplier 

Profit 

 
Expected 
Forecaster 

Profit 

Expected 
Non-

Forecaster 
Profit 

 
Expected 
Supplier 

Profit 

 
Expected 
Forecaster 

Profit 

Expected 
Non-

Forecaster 
Profit 

20%  1,664.54      721.77      110.50    1,641.09      768.66      110.50  
40%  1,248.40   1,443.54      221.00    1,209.16   1,522.01      221.00  
60%     832.27   2,165.31      331.50       785.99   2,257.86      331.50  
80%     416.13   2,887.07      442.00       376.71   2,965.93      442.00  

 
 
 
 

Table 2 
Supply Chain Performance under Optimal Contracts 

 
 Buy Backs 
 

τ 
(% of πI

a0) 

Expected 
Supplier 

Profit 

Expected 
Forecaster 

Profit 

Non-
Forecaster 
Efficiency

Non-
Forecaster 

Service 
Level {wF,bF} {wN,bN} 

20% 1,673.03 689.55 97.2% 79.3% {8.57,8.09} {8.70,8.36} 
40% 1,279.34 1,330.50 90.7% 82.2% {7.23,6.31} {7.66,7.15} 
60% 896.47 1,937.78 82.1% 84.3% {5.97,4.63} {6.76,6.15} 
80% 522.36 2,519.87 72.0% 85.9% {4.76,3.02} {5.94,5.27} 

 Quantity Flexibility 

 

Expected 
Supplier 

Profit 

Expected 
Forecaster 

Profit 

Non-
Forecaster 
Efficiency

Non-
Forecaster 

Service 
Level {wF,dF} {wN,dN} 

20% 1,647.56 704.67 90.8% 82.2% {8.63,0.828} {8.98,0.920} 
40% 1,243.70 1,390.24 88.7% 82.8% {7.28,0.724} {7.98,0.877} 
60% 850.61 2,010.86 78.7% 84.9% {6.10,0.626} {7.31,0.875} 
80% 468.96 2,602.83 67.7% 86.4% {4.80,0.486} {6.44,0.843} 

 



 
Table 3 

Fraction of Supply Chain Profit Captured by a Forecasting Retailer 
 

τ 
(% of πI

a0)
Coordinating
Buy Backs 

Coordinating
QF 

Optimal Buy 
Backs 

Optimal 
QF 

20% 20.0% 21.3% 19.1% 19.5% 
40% 40.0% 42.2% 36.9% 38.5% 
60% 60.0% 62.6% 53.7% 55.7% 
80% 80.0% 82.2% 69.8% 72.1% 

 
 
 

Table 4 
Supply Chain Performance with Expensive Forecasting 

  
 

Coordinating Buy Backs Optimal Buy Backs Coordinating QF 
              

τ 
(% of πI

a0) 
τ + κF 

(% of πI
a1) 

Expected  
Supplier 

Profit 

Expected 
Forecaster 

Profit 

Expected 
Non-

Forecaster 
Profit 

Expected 
Supplier 

Profit 

Efficiency
Given 

Forecaster 

Efficiency
Given Non-
Forecaster 

Service 
Level 

Expected 
Supplier 

Profit 

Expected 
Forecaster 

Profit 

Expected 
Non-

Forecaster 
Profit 

20% 25% 1,560.50 902.21 138.12 1,560.58 99.997% 99.993% 74.8% 1,567.19 902.21 124.75 
40% 45% 1,144.37 1,623.98 248.62 1,144.63 99.989% 99.978% 74.6% 1,154.05 1,623.98 229.26 
60% 65% 728.23 2,345.75 359.12 728.78 99.977% 99.955% 74.4% 738.51 2,345.75 338.57 
80% 85% 312.10 3,067.52 469.62 313.03 99.961% 99.923% 74.2% 319.27 3,067.52 455.28 

 
 


