Arbitrage Portfolios

Soohun Kim Robert A. Korajczyk Andreas Neuhierl December 2019

Georgia Tech

Northwestern University

University of Notre Dame

Overview

Model

Economy

Estimation

Simulation

Empirical Application

- Large literature on cross-sectional return predictors (e.g. Cochrane (2011), Harvey (2015))
 - probably only few provide independent information for asset returns

- Large literature on cross-sectional return predictors (e.g. Cochrane (2011), Harvey (2015))
 - probably only few provide independent information for asset returns
- Interpretation of predictors (characteristics) is often muddled or not discussed
 - proxy for factor loadings?
 - mispricing?
 - both?
 - often highly restricted tests in the literature

- Large literature on cross-sectional return predictors (e.g. Cochrane (2011), Harvey (2015))
 - probably only few provide independent information for asset returns
- Interpretation of predictors (characteristics) is often muddled or not discussed
 - proxy for factor loadings?
 - mispricing?
 - both?
 - often highly restricted tests in the literature
- Most prevalent approach: portfolio constructions by double sorts on characteristic and associated factor beta (Daniel and Titman 1997)

Sorts of Sorts

Simulate CAPM return as $R_{i,t} = \beta_i f_{M,t} + e_{i,t}$

• Assume β_i is a linear function of characteristic, c_i

•
$$\beta_i = \mu_\beta + \sigma_\beta c_i$$
 and $c_i \sim N(0, 1)$

• Sort stock into portfolio based c_i and then on $\hat{\beta}_{i,t-1}$

				Past Beta									
			Low									High	
Characteristic		1	2	3	4	5	6	7	8	9	10	10	
Low	1	0.24	0.25	0.29	0.34	0.26	0.15	0.34	0.25	0.18	0.14	0.23	-0.
	2	0.36	0.40	0.32	0.39	0.36	0.37	0.39	0.29	0.32	0.25	0.47	0.
	3	0.42	0.37	0.41	0.42	0.41	0.46	0.28	0.47	0.46	0.48	0.46	0.
	4	0.45	0.46	0.45	0.45	0.36	0.42	0.44	0.39	0.45	0.58	0.47	0.0
	5	0.47	0.48	0.37	0.48	0.45	0.52	0.51	0.47	0.48	0.44	0.47	-0.
	6	0.53	0.56	0.51	0.61	0.43	0.47	0.56	0.59	0.47	0.56	0.55	-0.
	7	0.58	0.52	0.54	0.61	0.58	0.60	0.60	0.51	0.56	0.71	0.59	0.0
	8	0.59	0.56	0.54	0.56	0.63	0.60	0.46	0.66	0.70	0.62	0.56	0.0
	9	0.67	0.67	0.68	0.59	0.71	0.66	0.64	0.71	0.69	0.67	0.70	0.0
High	10	0.78	0.78	0.74	0.68	0.83	0.75	0.74	0.85	0.78	0.80	0.86	0.
	10-1	0.54***	0.52***	0.45***	0.33**	0.57***	0.61***	0.40***	0.60***	0.60***	0.66***	0.63***	

 $^{***}p < 0.01, \ ^{**}p < 0.05, \ ^*p < 0.1$

- Large return spread between low and high characteristics
- Small return spread between low and high beta stocks
- Our method estimates $|\widehat{ heta}_{lpha}| < 10^{-16}$ (p-value pprox 0.82)

Goals

- 1. Propose a novel method
 - Individual stocks
 - Handle many characteristics
 - Identify relation between characteristics and both mispricing (α, if any) and risk (β) separately
 - · Accommodate both priced and non-priced factors
 - Allow time-varying cross-sectional relation between characteristics and returns
 - Investors learn about predictors
 - Post publication anomalies often weaker (McLean and Pontiff (2016))

Goals

- 1. Propose a novel method
 - Individual stocks
 - Handle many characteristics
 - Identify relation between characteristics and both mispricing (α , if any) and risk (β) separately
 - Accommodate both priced and non-priced factors
 - Allow time-varying cross-sectional relation between characteristics and returns
 - Investors learn about predictors
 - Post publication anomalies often weaker (McLean and Pontiff (2016))
- 2. Provide simulation evidence in factor economies

Goals

- 1. Propose a novel method
 - Individual stocks
 - Handle many characteristics
 - Identify relation between characteristics and both mispricing (α , if any) and risk (β) separately
 - · Accommodate both priced and non-priced factors
 - Allow time-varying cross-sectional relation between characteristics and returns
 - Investors learn about predictors
 - Post publication anomalies often weaker (McLean and Pontiff (2016))
- 2. Provide simulation evidence in factor economies
- 3. Apply estimator to a large panels of US stocks

Related Literature

- 1. Large panel factor estimation/pricing
 - Chamberlain and Rothschild (1983), Connor and Korajczyk (1986, 1988, 1993)
 - Stock and Watson (2002), Bai (2002), Zhang (2009), Gagliardini, Ossola, and Scaillet (2016), Kim and Skoulakis (2018), Kim, Korajczyk, Pukthuanthong and Roll (2019)

Related Literature

- 1. Large panel factor estimation/pricing
 - Chamberlain and Rothschild (1983), Connor and Korajczyk (1986, 1988, 1993)
 - Stock and Watson (2002), Bai (2002), Zhang (2009), Gagliardini, Ossola, and Scaillet (2016), Kim and Skoulakis (2018), Kim, Korajczyk, Pukthuanthong and Roll (2019)
- 2. Characteristics based (factor) models
 - Rosenberg (1974), Fama and French (1993), Daniel and Titman (1997)
 - Lewellen (2014), Green, Hand and Zhang (2017), Freyberger, Neuhierl and Weber (2019)
 - Connor, Hagmann and Linton (2012), Fan, Liao and Wang (2016), Kelly, Pruitt and Su (2017, 2018), Feng, Polson and Xu (2018), Chen, Liu, Wang, Wang and Yu (2019)

- Our procedure performs well in disentangling alpha and beta in a simulated economy
- For U.S. Equities, characteristics are related to factor loadings
- For U.S. Equities, characteristics are also related to mispricing
- Arbitrage portfolios
 - Sharpe ratios > 1
 - $\bullet~{\sf Alphas}>1\%$ per month against commonly used factor models
 - Returns decline only marginally over time
 - Small firms do not drive the results

Overview

Model

Economy

Estimation

Simulation

Empirical Application

Overview

Model

Economy

Estimation

Simulation

Empirical Application

Setup

Returns follow a K-factor model

$$R_{i,t} = \frac{\alpha_i + \beta_i' f_t + e_{i,t}}{R = \alpha 1'_T + BF' + E}$$

- $R_{N \times T}$ excess returns, $\alpha_{N \times 1}$ mispricing term, $B_{N \times K}$ - factor loadings, $F_{T \times K}$ - factor returns
- α , B, F and E are not observed
 - Alphas the potential existence of mispricing
 - Many papers implicitly assume zero alpha in factor models
- Estimate mispricing component (α) and risk component (B)
- Study mispricing quantitatively
 - large asset market $(N \to \infty)$
 - short time-span (*T* fixed)

Characteristics useful to estimate factor loadings and possible mispricing

$$\begin{split} \boldsymbol{\alpha} &= \boldsymbol{\mathsf{G}}_{\boldsymbol{\alpha}}\left(\boldsymbol{\mathsf{X}}\right) + \boldsymbol{\mathsf{\Gamma}}_{\boldsymbol{\alpha}} \\ \boldsymbol{\mathsf{B}} &= \boldsymbol{\mathsf{G}}_{\boldsymbol{\beta}}\left(\boldsymbol{\mathsf{X}}\right) + \boldsymbol{\mathsf{\Gamma}}_{\boldsymbol{\beta}}, \end{split}$$

- Factor loading function $(G_{\beta}(X))$ maps characteristics into **betas**
 - risk related component of characteristics
- Mispricing function $(G_{\alpha}(X))$ maps characteristics into alphas
 - mispricing related component of characteristics

Existence

$$rac{\mathsf{G}_lpha(\mathsf{X})'\mathsf{G}_lpha(\mathsf{X})}{N} o \delta \geq \mathsf{0} ext{ as } N o \infty$$

- Possible deviation from APT (finite squared pricing errors)
- APT implies $\frac{1}{N}\alpha'\alpha \to 0$ and, therefore, $\frac{G_{\alpha}(X)'G_{\alpha}(X)}{N} \to 0$ as $N \to \infty$
- Non-zero alpha is an empirical question

Existence

$$rac{\mathsf{G}_lpha(\mathsf{X})'\mathsf{G}_lpha(\mathsf{X})}{N} o \delta \geq \mathsf{0} ext{ as } N o \infty$$

- Possible deviation from APT (finite squared pricing errors)
- APT implies $\frac{1}{N}\alpha'\alpha \to 0$ and, therefore, $\frac{G_{\alpha}(X)'G_{\alpha}(X)}{N} \to 0$ as $N \to \infty$
- Non-zero alpha is an empirical question

Identification

$$\frac{\mathsf{G}_{\beta}(\mathsf{X})'\mathsf{G}_{\alpha}(\mathsf{X})}{N} \to \mathsf{0}_{K} \text{ as } N \to \infty.$$

- Separate risk from mispricing
- Maximum explanatory power to the factors

Overview

Model

Economy

Estimation

Simulation

Empirical Application

Constructing the Arbitrage Portfolio Extension of Fan, Liao, Wang (2016)

- 1. Estimate the factor loading function, $G_{\beta}(X)$, from the *de-meaned* & *projected* returns
 - Alpha drops out
 - Use information in characteristics to estimate loadings
- 2. Estimate the mispricing function, $G_{\alpha}(X)$, from the average returns
 - Combination of characteristics to explain average returns beyond risk
- 3. Construct portfolio weights and hold arbitrage portfolio *out-of-sample*
 - Empirically, is arbitrage meaningful, quantitatively?

De-mean returns $(J_T = I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T)'$

$$\begin{aligned} \mathsf{RJ}_{\mathcal{T}} &= \boldsymbol{\alpha} \mathbf{1}_{\mathcal{T}}' \mathsf{J}_{\mathcal{T}} + \mathsf{B}\mathsf{F}'\mathsf{J}_{\mathcal{T}} + \mathsf{E}\mathsf{J}_{\mathcal{T}} \\ &= \mathsf{B}\mathsf{F}'\mathsf{J}_{\mathcal{T}} + \mathsf{E}\mathsf{J}_{\mathcal{T}} \\ &= \left(\mathsf{G}_{\beta}\left(\mathsf{X}\right) + \mathsf{\Gamma}_{\beta}\right)\mathsf{F}'\mathsf{J}_{\mathcal{T}} + \mathsf{E}\mathsf{J}_{\mathcal{T}}, \end{aligned}$$

- Alpha drops out (\checkmark)
- De-meaned returns only related to risk (\checkmark)
- Short time series (X)
- Many loadings to estimate (X)

Use extra information in characteristics

- Characteristics and loadings are related
- Project de-meaned returns onto characteristics $(P = X (X'X)^{-1} X')$

$$\widehat{\mathsf{R}} \equiv \mathsf{P}(\mathsf{R}\mathsf{J}_{\mathcal{T}}) = \mathsf{P}\left(\mathsf{G}_{\boldsymbol{\beta}}(\mathsf{X})\mathsf{F}'\mathsf{J}_{\mathcal{T}} + \mathsf{\Gamma}_{\boldsymbol{\beta}}\mathsf{F}'\mathsf{J}_{\mathcal{T}} + \mathsf{E}\mathsf{J}_{\mathcal{T}}\right)$$
$$\approx \mathsf{G}_{\boldsymbol{\beta}}(\mathsf{X})\mathsf{F}'\mathsf{J}_{\mathcal{T}}.$$

Consistency for $G_{\beta}(X)$

- Apply principal components (PCA) to $\frac{\widehat{R}\widehat{R}'}{N}$
- $\widehat{\mathsf{G}}_{\beta}\left(\mathsf{X}\right) \stackrel{p}{\rightarrow} \mathsf{G}_{\beta}\left(\mathsf{X}\right)$ as $N \rightarrow \infty$ (in MSE)
- *k*-th column of $\widehat{G}_{\beta}(X)$ the *k*-th largest eigenvector of $\frac{\widehat{RR}'}{N}$

Average returns

$$\begin{split} \overline{\mathsf{R}} &= \frac{1}{T}\mathsf{R}\mathbf{1}_{T} = \boldsymbol{\alpha} \frac{1}{T}\mathbf{1}_{T}'\mathbf{1}_{T} + \mathsf{B} \frac{1}{T}\mathsf{F}'\mathbf{1}_{T} + \frac{1}{T}\mathsf{E}'\mathbf{1}_{T} \\ &= \left(\mathsf{G}_{\boldsymbol{\alpha}}\left(\mathsf{X}\right) + \boldsymbol{\Gamma}_{\alpha}\right) \frac{1}{T}\mathbf{1}_{T}'\mathbf{1}_{T} + \left(\mathsf{G}_{\boldsymbol{\beta}}\left(\mathsf{X}\right) + \boldsymbol{\Gamma}_{\beta}\right) \frac{1}{T}\mathsf{F}'\mathbf{1}_{T} + \frac{1}{T}\mathsf{E}'\mathbf{1}_{T} \\ &= \mathsf{G}_{\boldsymbol{\alpha}}\left(\mathsf{X}\right) + \boldsymbol{\Gamma}_{\alpha} + \left(\mathsf{G}_{\boldsymbol{\beta}}\left(\mathsf{X}\right) + \boldsymbol{\Gamma}_{\beta}\right)\overline{\mathsf{F}} + \overline{\mathsf{E}}. \end{split}$$

- Average returns related to risk factors and potential mispricing (X)
- Cannot follow the same strategy as before (X)
- Use information in previously estimated factor loadings

Step 2 - Estimating the Mispricing Function $\mathsf{G}_{\alpha}\left(X\right)$.

Use constrained least squares to estimate $G_{\alpha}(X)$

- Cross-sectional variation in return explained by characteristics
 - NOT explained by risk
 - Orthogonal to estimated factor loadings

Consistency for $G_{\alpha}(X)$

Solve

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \left(\overline{\boldsymbol{R}} - \boldsymbol{X}\boldsymbol{\theta}\right)' \left(\overline{\boldsymbol{R}} - \boldsymbol{X}\boldsymbol{\theta}\right) \quad \text{subject to} \quad \widehat{\boldsymbol{G}}_{\beta}\left(\boldsymbol{X}\right)' \boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{0}_{\mathcal{K}},$$

- $\widehat{\mathsf{G}}_{\alpha}(\mathsf{X}) = \mathsf{X}\widehat{\boldsymbol{\theta}}$
- $\widehat{\mathsf{G}}_{\beta}(\mathsf{X})$ is from before
- $\widehat{\mathsf{G}}_{\alpha}\left(\mathsf{X}\right)\overset{p}{\rightarrow}\mathsf{G}_{\alpha}\left(\mathsf{X}\right)$ as $\mathsf{N}\rightarrow\infty$ (in MSE)
- Equivalent Construction

Would like to have the infeasible portfolio $w = \frac{1}{N}G_{\alpha}(X)$, because

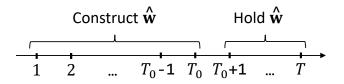
$$w' R = \left(\underbrace{\frac{1}{N} G_{\alpha} (X)' G_{\alpha} (X)}_{\rightarrow 0} + \underbrace{\frac{1}{N} G_{\alpha} (X)' \Gamma_{\alpha}}_{\rightarrow 0} \right) 1'_{T} + \left(\underbrace{\frac{1}{N} G_{\alpha} (X)' G_{\beta} (X)}_{\rightarrow 0} + \underbrace{\frac{1}{N} G_{\alpha} (X)' \Gamma_{\beta}}_{\rightarrow 0} \right) F' + \underbrace{\frac{1}{N} G_{\alpha} (X)' E}_{\rightarrow 0}.$$

Consistency for Arbitrage Profits

•
$$\widehat{\mathsf{w}} = \frac{1}{N}\widehat{\mathsf{G}}_{\alpha}(\mathsf{X})$$

•
$$\widehat{\mathbf{w}}' \mathbf{R} \xrightarrow{p} \delta \mathbf{1}'_T$$

Overview


Model

Economy

Estimation

Simulation

Empirical Application

- 1. Theory does not require large T
- 2. Estimate w over one sample $(t = 1, \dots, T_0)$ and calculate out-of-sample returns over a subsequent sample $(t = T_0 + 1, \dots, T)$
- 3. We use $T_0 = 12$ and T = 13 for a baseline result

Calibration

- 1. Calibration period: 2011-2013
- 2. For the matrix X, we consider 61 characteristics (as in Freyberger et. al. (2019)), which are available at the beginning of 2011
- 3. We take a stance on the return generating process by considering four popular asset pricing models of CAPM, FF3, HXZ4, and FF5
 - 3.1 We use 2,458 individual stocks with full time series over the calibration sample period
 - 3.2 We calibrate α_i , β_i , and the variance of residual returns, $\sigma_{i,\varepsilon}^2 = \mathbb{E}\left[\varepsilon_{i,t}^2\right]$, of individual stocks
 - 3.3 After estimating $\hat{\alpha}_i$ from time series regression, we fit the cross-sectional relation $\hat{\alpha}_i = x_i \hat{\theta} + e_i$ and rescale $\tilde{\alpha}_i = k \hat{\alpha}_i$ where $k = \frac{0.01}{\sqrt{\frac{\hat{\theta}' X' X \hat{\theta}}{N}}}$ so that $\frac{G_{\alpha}(X)' G_{\alpha}(X)}{N} \rightarrow 1$ b.p./month

Simulation

1. In each repetition, we simulate returns from

$$\mathsf{R} = \alpha \mathbf{1}_T' \sqrt{\delta} + \mathsf{B} \mathsf{F}' + \mathsf{E},$$

where α and B are calibrated to match the properties of the CRSP data, F are bootstrapped from the realized factors over the 600-month sample from January 1967 to December 2016, E are drawn from a normal distribution with the calibrated parameters as on the previous slide

- 2. We consider $\delta = 0, 5, and 10$
- 3. \widehat{w} is estimated with the returns over $t = 1, \cdots, 12$ and the return of the arbitrage portfolio is measured in the following month over t = 13
- 4. 10,000 repetitions

- 1. True Model Known • base case
- 2. Too Many Factors • too many factors
- 3. Too Few Factors too few factors
- 4. Time-Varying Characteristics • time varying characteristics
- 5. Correlated errors (industry cluster) Correlated Errors
- 6. Different Calibration Period (financial crisis)
 Different Calibration Period
- 7. Omitted Characteristics • Omitted Characteristics

Overview

Model

Economy

Estimation

Simulation

Empirical Application

- CRSP and Compustat to create 61 characteristics (Freyberger et. al. (2019))
- Sample period: 1965 to 2018
- Characteristics: market cap, book-to-market, profitability, investment, beta, idiosyncratic volatility, turnover, bid-ask spread, short-term reversal, momentum, intermediate momentum, long-run reversal, total assets, cash over assets, D&A over assets, fixed costs to assets, capex to assets, operating leverage, price-to-cost margin, return-on-equity, operating accruals, free-cash flow to book value of equity, Tobin's Q, net payout ratio, assets-to-market cap, total assets, capital turnover, capital intensity, change in PP&E, earnings to price, and others

1. Parametric assumptions

- $G_{\alpha}(X)$ and $G_{\beta}(X)$ linear
- Nonlinear expansions in robustness

2. Choices

- 12-month moving estimation window
- 1 month holding period
- number of estimated factors (# eigenvectors) for $G_{\beta}(X)$ estimation
- scale the estimation period volatility of $\hat{w}'R$ to 20% annualized

# Eigenvectors	Mean $(\%)$	Standard Deviation (%)	Sharpe Ratio	Skewness	Kurtosis	Maximum Drawdown	Worst Month (%)	Best Month (%)
1	20.08	14.70	1.37	1.24	8.30	22.37	-18.77	29.46
2	24.84	17.51	1.42	0.53	6.07	23.16	-22.44	30.06
3	24.02	14.66	1.64	1.28	10.23	20.91	-19.89	34.05
4	27.54	16.56	1.66	1.07	6.71	22.21	-19.61	30.66
5	28.71	17.94	1.60	1.10	7.11	20.08	-20.08	36.16
6	29.48	18.42	1.60	1.29	8.67	20.84	-19.99	41.88
7	30.13	18.31	1.65	1.34	9.04	21.92	-20.21	42.82
8	29.67	19.84	1.50	1.26	10.38	27.92	-26.02	42.74
9	28.75	17.74	1.62	1.32	8.66	27.05	-20.43	36.56
10	24.93	19.02	1.31	0.29	15.72	38.52	-38.52	41.19

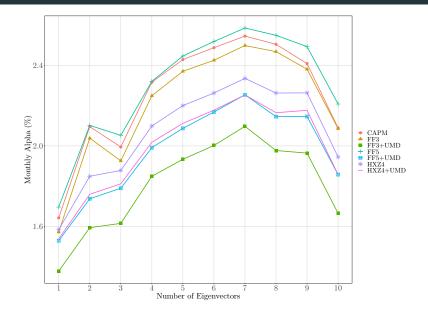
- portfolio properties change from one through five eigenvectors
- · relatively similar portfolios for more than five eigenvectors
- maximum drawdown of common factors
 - 55.68% (market), 55.04% (size), 40.92% (value) and 57.31% (momentum)

Risk Adjusted Returns - 1 Eigenvector

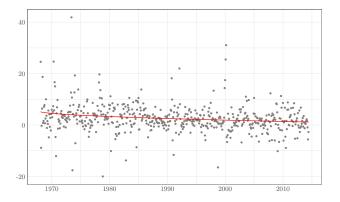
	CAPM	FF3	FF3+UMD	FF5	FF5+UMD	HXZ4	HXZ4+UMD
alpha	1.64***	1.57***	1.38***	1.70***	1.53***	1.58^{***}	1.54***
	(0.22)	(0.21)	(0.20)	(0.23)	(0.23)	(0.25)	(0.25)
mktrf	0.06	0.01	0.06	0.00	0.03		
	(0.07)	(0.06)	(0.05)	(0.07)	(0.06)		
smb		0.36^{**}	0.36**	0.22	0.22^{*}		
		(0.17)	(0.14)	(0.14)	(0.11)		
hml		0.13	0.22	0.05	0.18		
		(0.13)	(0.14)	(0.14)	(0.12)		
umd			0.23^{*}		0.25^{**}		0.33***
			(0.12)		(0.11)		(0.11)
rmw				-0.46^{***}	-0.51^{***}		
				(0.17)	(0.14)		
cma				0.17	0.06		
				(0.21)	(0.19)		
mkt						0.03	0.05
						(0.07)	(0.06)
me						0.29*	0.21*
						(0.17)	(0.11)
ia						0.21	0.22
						(0.22)	(0.20)
roe						-0.15	-0.44^{***}
						(0.16)	(0.14)
Adj. R ²	0.00	0.06	0.11	0.11	0.17	0.06	0.14
Num. obs.	612	612	612	612	612	612	612

 $^{***}p < 0.01, \ ^{**}p < 0.05, \ ^*p < 0.1$

	CAPM	FF3	FF3+UMD	FF5	FF5+UMD	HXZ4	HXZ4+UMD
alpha	2.49^{***}	2.43^{***}	2.00^{***}	2.52^{***}	2.17^{***}	2.26^{***}	2.18***
	(0.28)	(0.27)	(0.23)	(0.30)	(0.26)	(0.32)	(0.28)
mktrf	-0.06	-0.10	-0.01	-0.10	-0.03		
	(0.07)	(0.06)	(0.05)	(0.07)	(0.06)		
smb		0.31	0.32^{**}	0.17	0.15		
		(0.20)	(0.15)	(0.15)	(0.12)		
hml		0.12	0.30^{*}	-0.04	0.25^{*}		
		(0.13)	(0.15)	(0.17)	(0.13)		
umd			0.50^{***}		0.52^{***}		0.61^{***}
			(0.12)		(0.10)		(0.11)
rmw				-0.47^{**}	-0.59^{***}		
				(0.20)	(0.15)		
cma				0.32	0.10		
				(0.24)	(0.22)		
mkt						-0.06	-0.01
						(0.07)	(0.06)
me						0.31	0.17
						(0.20)	(0.13)
ia						0.34	0.36
						(0.26)	(0.24)
roe						0.02	-0.53^{***}
						(0.18)	(0.15)
Adj. R ²	0.00	0.03	0.18	0.07	0.23	0.04	0.21
Num. obs.	612	612	612	612	612	612	612

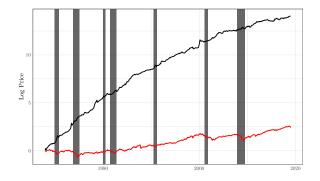

 $^{***}p < 0.01, \, ^{**}p < 0.05, \, ^*p < 0.1$

Many, many Factors


	CAPM	FF3	FF3+UMD	FF5	FF5+UMD	HXZ4	HXZ4+UMD
alpha	1.48^{***}	1.42^{***}	1.39^{***}	1.59^{***}	1.55^{***}	1.58^{***}	1.56***
	(0.26)	(0.23)	(0.24)	(0.24)	(0.25)	(0.26)	(0.27)
mktrf	0.26^{***}	0.12	0.13^{*}	0.08	0.09		
	(0.08)	(0.08)	(0.08)	(0.08)	(0.08)		
smb		0.75^{***}	0.75^{***}	0.65^{***}	0.65^{***}		
		(0.17)	(0.16)	(0.18)	(0.18)		
hml		0.06	0.07	0.13	0.16		
		(0.13)	(0.12)	(0.16)	(0.15)		
umd			0.04		0.06		0.14
			(0.11)		(0.10)		(0.11)
rmw				-0.37^{***}	-0.38^{***}		
				(0.13)	(0.13)		
cma				-0.17	-0.19		
				(0.20)	(0.21)		
mkt						0.11	0.12
						(0.07)	(0.07)
me						0.64^{***}	0.60***
						(0.18)	(0.18)
ia						-0.09	-0.09
						(0.17)	(0.17)
roe						-0.28^{*}	-0.41^{***}
						(0.15)	(0.15)
Adj. R ²	0.03	0.15	0.15	0.16	0.16	0.15	0.15
Num. obs.	612	612	612	612	612	612	612

 $^{***}p < 0.01, \, ^{**}p < 0.05, \, ^*p < 0.1$

Alpha for Alternative Numbers of Factors



$G_{\alpha}(X)$ - Declining Returns?

- Test for time trend: $r_t = a + b \times t^{\gamma} + \varepsilon_t$.
- Point estimates
 - $\hat{a} = 5.22\%$ (p-value<0.01).
 - $\hat{b} = -0.11$ (insignificant) and $\hat{\gamma} = .57$ (insignificant)

Properties of the Arbitrage Portfolio - Price Path

- Black line arbitrage portfolio, Red line market return
- Arbitrage portfolio not strongly related to economy
- Relation to NBER recessions: $r_t = \alpha + \beta \times \text{NBER}_t + \varepsilon_t$

•
$$\hat{lpha} = 2.36\%$$
 (p-value < 0.01)

• $\hat{\beta} = 0.71\%$ (p-value = 0.26)

- Asymptotic Principal Components (Connor, Korajczyk (1986))
- Risk Premium Principal Components (Lettau, Pelger (2019))
- Instrumented Principal Components (Kelly, Pruitt, Su (2019))

	APC			RP-PC				IPCA				
	1 PC	5 PCs	10 PCs	20 PCs	1 RP-PC	5 RP-PCs	10 RP-PCs	20 RP-PCs	1 KPS-PC	5 KPS-PCs	10 KPS-PCs	20 KPS-PCs
Panel A: Arbitrage Portfolio												
alpha	2.45^{***}	2.08^{***}	1.28^{***}	1.12^{***}	2.45^{***}	1.15^{***}	1.06^{***}	1.01***	2.39^{***}	2.31***	2.15***	1.57***
	(0.29)	(0.25)	(0.26)	(0.25)	(0.29)	(0.30)	(0.27)	(0.26)	(0.25)	(0.26)	(0.42)	(0.33)
Adj. R ²	-0.00	0.29	0.34	0.37	-0.00	0.31	0.34	0.36	0.02	0.13	0.14	0.23
Num. obs.	612	612	612	612	612	612	612	612	612	612	612	612

- Arbitrage Portfolio passes higher bar
- Economically and statistically significant alphas

Time Variation (FF5+UMD- α)

Lag in X						Lag	in θ_{α}					
	1	2	3	4	5	6	7	8	9	10	11	12
1	2.17	1.45	1.26	1.32	1.35	1.31	1.39	1.03	1.25	1.38	1.30	1.27
2	1.42	1.00	0.73	0.81	0.52	0.60	0.61	0.42	0.49	0.64	0.39	0.49
3	1.08	0.70	0.64	0.66	0.71	0.56	0.55	0.31	0.31	0.38	0.25	0.24
4	1.14	0.80	0.67	0.85	0.67	0.70	0.68	0.42	0.47	0.58	0.50	0.57
5	1.14	0.80	0.68	0.83	0.75	0.73	0.74	0.47	0.49	0.53	0.49	0.50
6	1.14	0.75	0.68	0.72	0.73	0.84	0.80	0.52	0.47	0.50	0.43	0.52
7	1.11	0.76	0.82	0.79	0.80	0.89	0.97	0.62	0.62	0.62	0.45	0.46
8	1.17	0.76	0.75	0.66	0.73	0.76	0.88	0.59	0.56	0.56	0.40	0.47
9	1.00	0.62	0.66	0.54	0.57	0.60	0.73	0.42	0.39	0.42	0.26	0.25
10	1.11	0.72	0.59	0.71	0.61	0.73	0.81	0.54	0.54	0.66	0.45	0.52
11	1.17	0.83	0.73	0.81	0.75	0.80	0.85	0.62	0.66	0.64	0.63	0.63
12	1.23	0.78	0.77	0.81	0.60	0.69	0.77	0.49	0.40	0.53	0.41	0.58

- Each period we can update
 - $\hat{\theta}_{\alpha}$ the cross-sectional relationship between characteristics and α (and β)
 - X the characteristics (time-varying betas)

- Drop all firms below the 10% NYSE market cap quantile
- Reduces sample size from 1.75 million to about 1 million

# Eigenvectors	Mean $(\%)$	Standard Deviation (%)	Sharpe Ratio	Skewness	Kurtosis	Maximum Drawdown	Worst Month (%)	Best Month (%)
1	15.76	15.19	1.04	0.64	7.18	22.15	-21.62	31.03
2	19.92	18.42	1.08	0.27	5.18	25.33	-25.33	31.05
3	19.25	14.91	1.29	0.82	7.07	22.52	-22.52	31.49
4	22.00	17.45	1.26	0.68	5.49	23.80	-21.63	34.55
5	22.52	18.70	1.20	0.53	5.51	30.49	-21.93	36.71
6	22.01	19.31	1.14	0.38	5.49	27.17	-25.96	36.41
7	23.64	20.15	1.17	0.76	6.47	27.56	-27.56	41.44
8	23.25	20.61	1.13	0.79	6.75	28.05	-28.05	43.37
9	19.26	20.20	0.95	-0.51	12.34	48.41	-37.55	41.01
10	16.69	20.17	0.83	0.33	8.52	58.59	-28.68	42.82

- Only slightly slower alphas
- Results not driven materially by small firms

# Eigenvectors	CAPM	FF3	FF3+UMD	FF5	FF5+UMD	HXZ4	HXZ4+UMD
1	1.27	1.21	0.95	1.34	1.12	1.16	1.10
2	1.65	1.62	1.09	1.74	1.30	1.38	1.28
3	1.58	1.54	1.17	1.65	1.34	1.40	1.33
4	1.84	1.82	1.33	1.93	1.52	1.61	1.51
5	1.90	1.89	1.35	1.99	1.54	1.62	1.52
6	1.86	1.85	1.26	1.94	1.45	1.56	1.44
7	2.00	2.01	1.43	2.15	1.66	1.74	1.63
8	1.97	1.99	1.42	2.09	1.62	1.72	1.61
9	1.62	1.66	1.07	1.74	1.25	1.35	1.24
10	1.37	1.39	0.80	1.43	0.95	1.03	0.92

- Fourth order Legendre polynomials to capture nonlinearities
 - $f(x) \approx 1 + x + \frac{1}{2}(3x^2 1) + \frac{1}{2}(5x^3 3x) + \frac{1}{8}(35x^4 30x^2 + 5)$

# Eigenvectors	CAPM	FF3	FF3+UMD	FF5	FF5+UMD	HXZ4	HXZ4+UMD
1	2.31	2.28	1.89	2.36	2.05	2.11	2.04
2	2.76	2.75	2.15	2.78	2.30	2.44	2.32
3	2.54	2.51	2.07	2.57	2.21	2.33	2.24
4	2.78	2.75	2.20	2.76	2.31	2.45	2.34
5	2.82	2.78	2.20	2.80	2.32	2.44	2.33
6	2.94	2.93	2.32	2.96	2.46	2.60	2.49
7	3.01	3.02	2.41	3.01	2.52	2.64	2.53
8	2.91	2.93	2.27	2.92	2.38	2.49	2.37
9	2.76	2.76	2.13	2.74	2.23	2.32	2.21
10	2.49	2.48	1.91	2.44	1.98	2.02	1.92

• Slightly higher alphas

Comparison with other "Characteristic Aggregators"

- Lewellen (2015) rolling Fama-MacBeth slopes
- Stambaugh, Yuan (2016) aggregate rank

	APC					RP-PC				IPCA				
	1 PC	5 PCs	10 PCs	20 PCs	1 RP-PC	5 RP-PCs	10 RP-PCs	20 RP-PCs	1 KPS-PC	5 KPS-PCs	10 KPS-PCs	20 KPS-PC		
						Panel A:	Arbitrage Por	tfolio						
alpha	2.45^{***}	2.08^{***}	1.28^{***}	1.12^{***}	2.45^{***}	1.15^{***}	1.06***	1.01***	2.39^{***}	2.31***	2.15***	1.57***		
	(0.29)	(0.25)	(0.26)	(0.25)	(0.29)	(0.30)	(0.27)	(0.26)	(0.25)	(0.26)	(0.42)	(0.33)		
Adj. R ²	-0.00	0.29	0.34	0.37	-0.00	0.31	0.34	0.36	0.02	0.13	0.14	0.23		
Num. obs.	612	612	612	612	612	612	612	612	612	612	612	612		
						Pan	el B: Lewellen							
alpha	3.01***	2.25^{***}	0.50^{*}	0.58***	3.01***	0.38	0.14	0.49*	3.00***	3.06***	2.36***	0.85**		
	(0.31)	(0.20)	(0.27)	(0.22)	(0.31)	(0.28)	(0.28)	(0.25)	(0.29)	(0.28)	(0.60)	(0.41)		
Adj. R ²	0.01	0.61	0.72	0.75	0.01	0.68	0.71	0.75	0.03	0.19	0.25	0.46		
Num. obs.	612	612	612	612	612	612	612	612	612	612	612	612		
						Panel C:	Stambaugh/	ruan						
alpha	1.44***	0.90^{***}	0.09	-0.05	1.44***	-0.29^{***}	-0.09	-0.12^{*}	1.46^{***}	0.95***	0.62^{**}	-0.17		
	(0.20)	(0.08)	(0.07)	(0.06)	(0.20)	(0.09)	(0.08)	(0.07)	(0.18)	(0.18)	(0.25)	(0.16)		
Adj. R ²	0.12	0.92	0.96	0.97	0.12	0.94	0.96	0.97	0.31	0.47	0.61	0.85		
Num. obs.	612	612	612	612	612	612	612	612	612	612	612	612		

 $^{***}p < 0.01, \ ^{**}p < 0.05, \ ^*p < 0.1$

- Stambaugh, Yuan and Lewellen method forecast both well, but not lpha
- Arbitrage portfolio remains significant

Outline

Overview

Model

Economy

Estimation

Simulation

Empirical Application

Conclusions

- New methodology to estimate mispricing/risk in factor models
 - Role of characteristics may change
- Characteristics contain information about
 - factor loadings
 - mispricing
- Perfoms well in simulated economy
- Economically and statistically large alphas
- Extensions
 - ML technique for estimating G_α and G_β
 - International Market

• Re-arrange

$$\overline{\mathsf{R}}=\mathsf{G}_{\alpha}\left(\mathsf{X}\right)+\mathsf{\Gamma}_{\alpha}+\left(\mathsf{G}_{\beta}\left(\mathsf{X}\right)+\mathsf{\Gamma}_{\beta}\right)\overline{\mathsf{F}}+\overline{\mathsf{E}}$$

• to

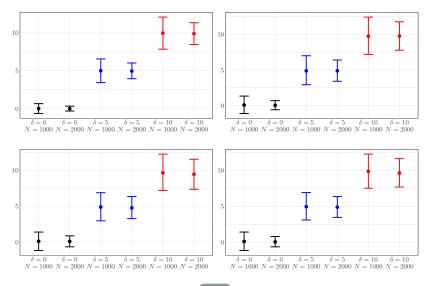
$$\overline{\mathsf{R}}-\mathsf{G}_{\beta}\left(\mathsf{X}\right)\overline{\mathsf{F}}=\mathsf{G}_{\alpha}\left(\mathsf{X}\right)+\left(\mathsf{\Gamma}_{\alpha}+\mathsf{\Gamma}_{\beta}\overline{\mathsf{F}}\right)+\overline{\mathsf{E}}$$

• Then regress

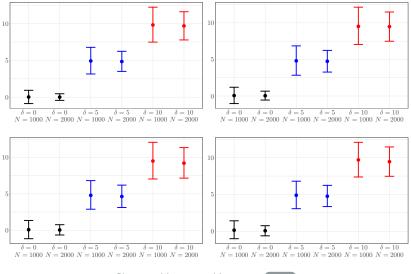
 $\overline{\mathsf{R}} - \mathsf{G}_{\beta}\left(\mathsf{X}\right)\overline{\mathsf{F}}$ on X

IPCA

$$\begin{aligned} r_{i,t+1} &= \alpha_{i,t} + \beta_{i,t} f_{t+1} + \varepsilon_{i,t+1} \\ \alpha_{i,t} &= x'_{i,t} \theta + \nu_{\alpha,i,t} \\ \beta_{i,t} &= x'_{i,t} \gamma + \nu_{\beta,i,t} \end{aligned}$$

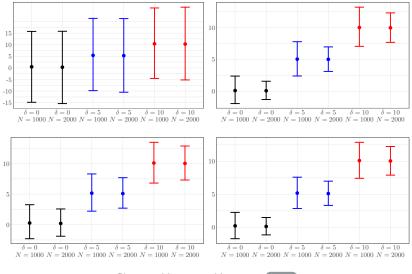

- Asymptotic setting $N, T \rightarrow \infty$
- Variation in α and β through variation in characteristics
- Relationship between characteristics and returns is fixed over time (θ,γ)
- Estimate α indirectly and iteratively

PPCA


$$r_{i,t+1} = \alpha_i + \beta_i f_{t+1} + \varepsilon_{i,t+1}$$
$$\alpha_i = x'_i \theta + \nu_{\alpha,i}$$
$$\beta_i = x'_i \gamma + \nu_{\beta,i}$$

- Asymptotic setting $N \to \infty$, T fixed
- Variation in α and β through rolling estimation of θ and γ
- Relationship between characteristics and returns can change over time
 - learning
 - diminishing predictability
- Consistent estimator for α
 - Simulation evidence in favor of PPCA to estimate over short time windows

True Model Known

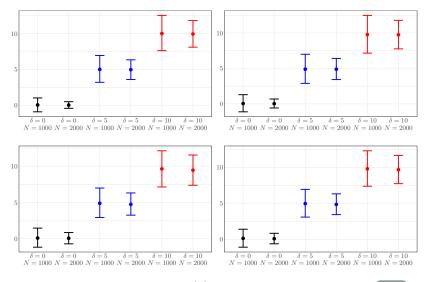


Too Many Factors

Choose $K_{\text{wrong}} = K_{\text{true}} + 1$

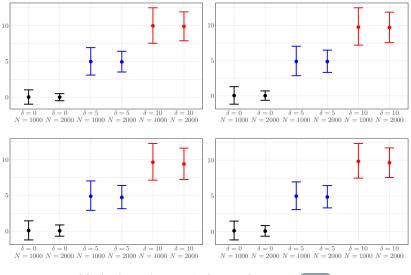
Too Few Factors

Choose $K_{\text{wrong}} = K_{\text{true}} - 1$

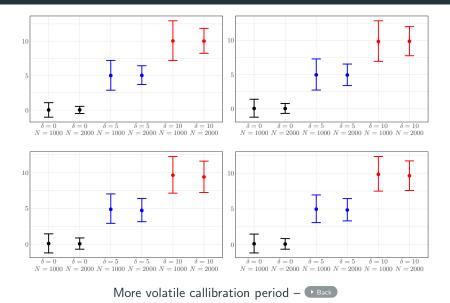

Simulation - Time-Varying Characteristics

- Reasonable robustness to non-constant characteristics
- Fix the initial characteristic over the calibration period as X
 - $x_{i,c}$ and $x_{i,c,t}$ denote the (i, c) element of X and X_t
- Generate X_t with $x_{i,c,t} = x_{i,c} + \rho_c (x_{i,c,t} x_{i,c}) + \sigma_c \varepsilon_{i,t}$
 - ρ_c the estimated AR(1) coefficient of a certain characteristic c
 - σ_c^2 and variance of residuals of a certain characteristic c
 - $\varepsilon_{i,t}$ is drawn from N(0,1) as i.i.d over i and t
- We then generate R_t, the t-th column of R, as follows:

$$\mathsf{R}_t = \alpha_{t-1}\sqrt{\delta} + \mathsf{B}_{t-1}\mathsf{f}_t + \mathsf{E}_t,$$


where $\alpha_{t-1} = X_{t-1}\theta_{\alpha}$, $B_{t-1} = X_{t-1}\Theta_{\beta} + \Gamma_{\beta}$, and E_t is the *t*-th column of E.

Simulation - Time-Varying Characteristics

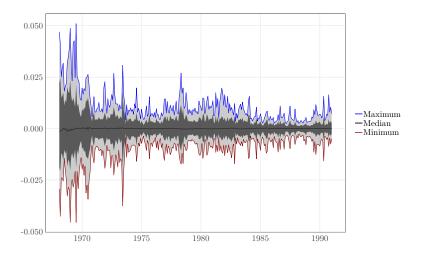

Results are not sensitive to AR(1) time-varying characteristics-

Simulation - Correlated Errors

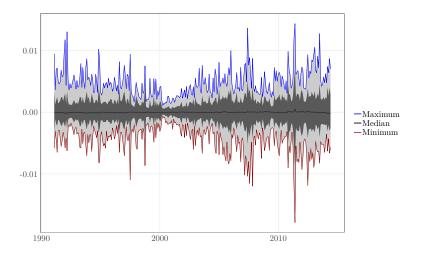

Method is robust to industry clusters – • Back

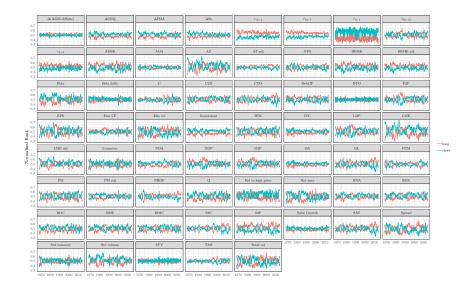
Simulation - Callibration (2006 - 2008)

52/56


Simulation - Omitted Characteristics • Back

- Drop randomly selected characteristics
- Slight underestimation of δ
- Omitting x's does not mechanically introduce $\alpha > 0$, when the true $\alpha = 0$


Arbitrage Portfolio - Portfolio Weights (I)


Portfolio weights from 1968 - 1990

Arbitrage Portfolio - Portfolio Weights (II)

Portfolio weights from 1991 - 2018

