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Motivation
• A number of methods for estimating large-scale 

factor models
– The method accommodate alternative assumptions 

about factor structure
• Cross-sectional heteroskedasticity
• Time-series heteroskedasticity
• Approximate versus strict factor models
• Balanced vs. unbalanced panels

– How do these asymptotic methods perform for various 
sample sizes? (How large is large?)

– How sensitive are they to various data features 
(heteroskedasticity, unbalanced panels)? 

– We use calibrated panel data and a very large simulation 
study to compare their performance under various 
conditions.and “short-horizon” factors?
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Multi-factor Asset Pricing Model

• Return Generating Process; n assets, T time 
periods:

• Asset Pricing Model:

• RGP + APM:
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Calibration
• Number of assets: n = 250,500,750,1000, …, 

10,000
• Number of time periods: T = 240 months
• Number of factors: k = 3

– Calibrate the factors to the Fama/French Market, 
HML, and SMB factors over 1991-2010

• μF×100 = [0.58; 0.31; 0.34]
• σF×100 = [4.46; 3.51; 3.37]
• Draw from N(μF, ΣF), ΣF = Diag(σ2

F)
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Calibration
• Use data from the 1991-2010 period to calibrate the 

random draws of factor loadings, residual risk, and 
patterns of missing data
– Sample 10,937 NYSE/NASDAQ/AMEX stocks with at 

least 36 observations
– Estimate time series regressions of returns on 

Fama/French factors
• Calibrate factor loadings B from the panel of regression 

coefficents
• μB = [1.001; 0.882; 0.210]
• σB×100 = [0.824; 1.204; 1.315]
• Draw from N(μB, ΣB), ΣB = Diag(σ2

B)

• Idiosyncratic risk: estimate σi for each asset in 
CRSP sample
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Simulation
• Simulate 24 different cases, 24=4x3x2, using different 

econometric assumptions
• Four alternative assumptions about idiosyncratic 

heteroskedasticity:
1. Time series and cross-sectional homoskedasticity
2. Cross-sectional heteroskedasticity
3. Time series heteroskedasticity
4. Cross-sectional and time series heteroskedasticity
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Simulation
• Three alternative assumptions about 

idiosyncratic cross-correlations, ρ
• No cross-correlation: ρi,i+1 = 0 (strict factor model)
• ρi,i+1 = 0.25, and ρi,i+1 = 0.50

• Two alternative assumptions on missing data
• No missing data (balanced panel)
• Missing data

– For j=1,…, n draw from CRSP sample (with 
replacement) and use the pattern of missing data 
observed in the CRSP data.
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Simulation
• 5000 samples each.
• 288 billion = 5,000x10,000x240x24 simulated returns are 

used in the study
• All of the estimation methodologies are reasonably 

computation-intensive (e.g., compute leading 
eigenvectors) and some also require iteration. 

• None require numerical search methods
• Computer details here
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Estimators – Balanced Panel
• Asymptotic Principal Components (APC)

– Connor and Korajczyk (1986)
– Approximate k-factor model
– Allows general cross-sectional heteroskedasticity of 

idiosyncratic returns
– Allows limited time-series heteroskedasticity of 

idiosyncratic returns
• Can vary over time at the firm level with the cross-sectional 

average remaining constant.

– Consider case with T fixed and n increasing
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Estimator 1 – APC Balanced Panel
• Asymptotic Principal Components (APC)

– R: nxT matrix of returns
– F: kxT matrix of unobserved factors
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Estimator 2 – APC Balanced Panel 
with Efficiency Gain

• Asymptotic Principal Components (APC-X)
– Connor and Korajczyk (1988)
– Apply APC to weighted returns to improve estimation 

efficiency
– Estimate factor loadings and diagonal idiosyncratic 

variance matrix, D
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Estimator 3 – EM-MLFA Balanced 
Panel

• EM-based Maximum Likelihood Factor Analysis 
(MLFA-S)
– Stroyny (1992)
– Apply Rubin-Thayer EM algorithm rather than the 

(unfeasible) Joreskog algorithm
• No Heywood cases; no nxn-matrix inversion
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Estimator 4 – HFA Balanced Panel
• Heterskedastic Factor Analysis (HFA)

– Jones (2001)
– V: TxT = 
– Scaled Ω matrix:
– Factors:
– Iterate between F and Ω estimation steps
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Estimator 1 – APC Unbalanced Panel
• Asymptotic Principal Components over 

observed data (APC-M)
– Connor and Korajczyk (1987)
– Allows for an unbalanced panel
– Estimate Ωu by averaging component-by-component 

over available data for date pairs t,t*

– Factor estimates from eigenvectors of Ωu
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Estimator 2 – Unbalanced Panel
• Stock and Watson (1998) EM-based estimator 

(APC-EM)
– Allows for unbalanced panels using EM for missing 

data
– Estimate initial factor model (using ACP-M) on the 

balanced subset
– At iteration j define the elements of the return matrix

R*
i,t = Ri,t if not missing

R*
i,t = Bj-1Fj-1

t if missing

15

* * *1 R R
n

′Ω =



*( )
j

kF eigvec= Ω



Estimator 3 – Unbalanced Panel
• Asymptotic Principal Components (APC-MX)

– Connor and Korajczyk (1987, 1988)
– Apply APC to obtain initial idiosyncratic covariance 

matrix D
– Scale returns by D-1/2

– Calculate Ωu over observed data using scaled 
returns

– Does not weaken econometric assumptions, but 
may increase estimation efficiency
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Estimator 4 – Unalanced Panel
• Heterskedastic Factor Analysis (HFA-M)

– Combines Jones (2001) HFA with Connor and 
Korajczyk (1987) missing data method

– Estimate V and Ω over observed data
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Cross-sectional homoskedastic and time series homoskedastic



Cross-sectional heteroskedastic and time series homoskedastic



Cross-sectional homoskedastic and time series heteroskedastic



Cross-sectional heteroskedatic and time series heteroskedastic



Cross-sectional homoskedastic and time series homoskedastic – unbalanced 
sample



Cross-sectional heterskedastic and time series homoskedastic – unbalanced 
sample



Cross-sectional homoskedastic and time series heteskedasticr – unbalanced 
sample



Cross-sectional heteroskedastic and time series heteroskedastic – unbalanced 
sample



Summary and Conclusion
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MKT: intermediate-run factor
HML: long-run factor
SMB and UMD: not priced risk factors

 Alpha or premium for systematic risk?

• In the simplest case of homoskedasticity and balanced 
panels, all estimators perform well.
– Estimating extraneous parameters does not seem to 

degrade performance much.
• Estimators incorporating cross-sectional heteroskedasticity 

generally do better in that setting, particularly for smaller 
sample sizes.

• Estimators incorporating time series heteroskedasticity 
perform only slightly better in that setting.

• Cross-sectional correlation (approximate versus strict factor 
model) does not affect estimation performance much.

• In the unbalanced cases, APC-EM seems to require 
substantially larger samples than the other estimators.



Extensions
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• Dynamics
– Factors
– Factor loadings

• Variation in T

• Performance of alternative tests for k

• Deviations from Asset Pricing Model



Details on Idiosyncratic Return 
Calibration

• Four alternative assumptions about idiosyncratic 
heteroskedasticity
– Time series and cross-sectional homoskedasticity

• With idiosyncratic cross-correlation

– Cross-sectional heteroskedasticity

• With idiosyncratic cross-correlation
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Details on Idiosyncratic Return 
Calibration

– Time series heteroskedasticity

• With idiosyncratic cross-correlation

– Cross-sectional and time-series heteroskedasticity

• With idiosyncratic cross-correlation
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Time Series of Average 
Idiosyncratic Variance
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MKT: intermediate-run factor
HML: long-run factor
SMB and UMD: not priced risk factors

 Alpha or premium for systematic risk?


	���A Performance Comparison of Large-n Factor Estimators
	Motivation
	Multi-factor Asset Pricing Model
	Calibration
	Calibration
	Simulation
	Simulation
	Simulation
	Estimators – Balanced Panel
	Estimator 1 – APC Balanced Panel
	Estimator 2 – APC Balanced Panel with Efficiency Gain
	Estimator 3 – EM-MLFA Balanced Panel
	Estimator 4 – HFA Balanced Panel
	Estimator 1 – APC Unbalanced Panel
	Estimator 2 – Unbalanced Panel
	Estimator 3 – Unbalanced Panel
	Estimator 4 – Unalanced Panel
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Summary and Conclusion
	Extensions
	Details on Idiosyncratic Return Calibration
	Details on Idiosyncratic Return Calibration
	Time Series of Average Idiosyncratic Variance

