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Abstract

This paper o®ers a new equilibrium concept for ¯nite normal form games motivated by the

idea that players may have preferences which display uncertainty aversion. More

speci¯cally, it adopts the representation of preferences presented in Gilboa and Schmeidler

(1989). Then an equilibrium with uncertainty aversion is de¯ned and applied to a number

of simple games. This equilibrium concept generalizes both Nash equilibrium and maxmin

play. One interesting feature of the equilibrium is that it provides a new justi¯cation for

some mixed strategy equilibria based on objecti¯cation. It also admits a natural channel

through which some unmodelled aspects of the game can in°uence the analyst's choice of

equilibrium. A re¯nement of equilibrium with uncertainty aversion incorporating the

notion of common knowledge of rationality is introduced. The notion of weak admissibility

is discussed and incorporated into the solution concept. Journal of Economic Literature

Classi¯cation Numbers: C72, D81.



1 Introduction

Traditional decision theory and game theory have treated uncertainty (situations in which

probabilities are unknown or subjective) with the same formalism as they have treated risk

(situations where probabilities are known or objective); indeed, the word \uncertainty" is

often used to describe both. This continues despite the fact that there is strong evidence

which suggests that thoughtful decision-makers react to uncertainty di®erently than they
1react to risk. The classic reference is the Ellsberg Paradox (Ellsberg 1961) a version of

which may be demonstrated by the following choice situation:

Bets

Black Red Yellow

1 $100 $0 $0

2 $0 $100 $0

3 $0 $0 $100

4 $100 $0 $100

5 $100 $100 $0

6 $0 $100 $100

An urn contains ninety balls, identical except for their color. Thirty of these balls are

black. The remaining sixty are either red or yellow in unknown proportion. One ball will

be drawn at random from the urn. You are asked to consider the above six bets, whose

payo®s depend on the color of the drawn ball.

The preference ordering of many decision-makers when faced with these bets is

6 Â 5 » 4 and 1 Â 2 » 3. This ordering cannot be reconciled with any subjective

probability assessment. Moreover, as Ellsberg (1961) recounts:

\The important ¯nding is that, after rethinking all their 'o®ending' decisions in the

light of the axioms, a number of people who are not only sophisticated but reasonable decide

that they wish to persist in their choices. This includes many people who previously felt a

1Knight (1921) and Shackle (1949, 1949-50) were among earlier economists who argued for a distinction

between uncertainty and risk.
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`¯rst-order commitment' to the axioms, many of them surprised and some dismayed to ¯nd

that they wished, in these situations, to violate the Sure-thing Principle." [p. 656]

Further, the fact that many people do not change their behavior even when

confronted with their violation of the standard axioms distinguishes this behavior from
2some other types of violations such as intransitivity in choice. Although intransitivities

are observed experimentally, when the violations of transitivity are pointed out subjects

often wish to change their choices so as to make them transitive. I would argue that

theories of reasoned or rational behavior as well as purely descriptive theories should try to

incorporate those types of violations which persist. The fact that many thoughtful people

are not convinced by the arguments for the standard axioms should cause us to at least

question their predominance in economic analysis.

Fortunately, Schmeidler (¯rst version 1982, 1989) (see also Gilboa 1987 and Gilboa

and Schmeidler 1989) have recently developed axiomatic decision theories which allows for

Ellsberg-type preferences. This paper adopts the multiple priors theory developed in
3Gilboa and Schmeidler (1989). A common explanation for the Ellsberg preferences is that

decision makers dislike uncertainty or ambiguity. This is consistent with the fact that bet 1

(which has a known probability of one-third of paying $100) is preferred to bets 2 and 3

and bet 6 (which pays $100 with probability two-thirds) is preferred to the uncertain bets 4
4and 5. Thus the Gilboa-Schmeidler theory allows for uncertainty aversion on the part of

the decision maker. In the next section, I brie°y review the Gilboa-Schmeidler theory. In

the third section I present a new solution concept for normal form games in which players

are Gilboa-Schmeidler (henceforth, G-S) decision makers. This section also contains

examples to which the concept is applied. The fourth section presents a characterization of

common knowledge of rationality in the sense of G-S preferences and uses this to present a

re¯nement of the solution concept and some more examples. The ¯fth section reconsiders

2For experimental evidence on this point see e.g. Slovic and Tversky (1974).
3Some alternative theories and further experimental evidence are described in the survey paper by

Camerer and Weber (1992).
4One important question which Ellsberg's example does not address is whether this uncertainty aversion

is more than lexicographic. In other words, would a decision maker be willing to give up anything to avoid

uncertainty? Ellsberg himself (1961, p.664) provides evidence for this when he reports that many subjects

maintain the above preferences even after one black ball is removed from the urn. Many subsequent studies

(cited in Camerer and Weber (1992)) have found ambiguity premia which are strictly positive and are

typically around 10¡ 20% in expected value terms.
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the theory in the light of an admissibility criterion and proposes a modi¯cation which is

then applied to games. The sixth section provides a comparison to some related literature

on games with uncertainty aversion, with a focus on the papers of Lo (1995a) and Dow and

Werlang (1994). The seventh section concludes. An appendix contains some proofs.

2 The Gilboa- Schmeidler Decision Theory

First some notation. The basic framework is one of \lottery-acts" (Anscombe and Aumann

1963). Let X be a set of \prizes" (e.g. cash rewards). Let Y be the set of probability

measures over X with ¯nite support. Elements of Y are called lotteries. Let S be a set of

"states of the world" and let § be an algebra (of \events") on S. Let F be the set of

bounded, measurable functions from S to Y . Preferences are de¯ned over F , the set of

\acts." To avoid technicalities, we limit discussion to the set L of ¯nite step functions in0

F . G-S propose six axioms on preferences (axioms A.1-A.6 are provided in the Appendix

for reference). The main result of G-S is the following representation theorem:

Theorem 1 (Gilboa and Schmeidler 1989)

Let º be a binary relation on L . Then the following are equivalent,0

(1) º satis¯es A.1 - A.5 for L = L0

(2) 9 an a±ne function u : Y !R and a non-empty, closed, convex set C of ¯nitely

additive probability measures on § such that 8f; g 2 L , f º g if and only if0

R R
min u ± fdp ¸ min u ± gdp.p2C p2C

Furthermore, the function u is unique up to a positive a±ne transformation and, if

and only if A.6 holds, the set C is unique.

5The reader is referred to the paper for the proof. G-S do not interpret the set of

measures, C , which appears in the representation. For reasons which will become clear

5The ¯rst step in the proof is to observe that, as constant acts may be identi¯ed with the choice set in

the von Neumann-Morgenstern setting, axioms A.1-A.3 applied to constant acts give the function u through

the von Neumann-Morgenstern expected utility theorem. I interpret this theory as implying that a decision

maker behaves as an expected utility maximizer in situations where the probabilities are objective (i.e.

where only risk but not uncertainty is present). This is not the only possible interpretation of the Gilboa-
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later on, I would like to interpret C as the closure of the convex hull of the set of \possible"

subjective probability distributions from the decision maker's point of view. Observe that

C is the closure of the convex hull of exactly those probability measures which are used in

place of an objective probability measure in valuing some subset of mappings from events

to payo®s. In what sense then is C the set of \possible" subjective probability measures?

In the standard theory of decision under uncertainty, a probability measure q is said to be

the subjective probability measure of a decision maker when she behaves as if she were

maximizing the expectation of her a±ne utility function on lotteries (elicited using

standard techniques and objective probabilities) where the expectation is taken with

respect to q. Here, a set C is the set of \possible" subjective probability measures when it

is the closed, convex hull of those measures which are used to calculate expected utility for

some acts and when the choice of which possible measure to use for which act is governed

by which possible measure gives the minimum expected utility for that act. Notice that in

expanding from a single measure to a set of measures I have had to specify a rule for

assigning measures to acts. This is very important in obtaining a notion of the (i.e. unique)

set of possible measures. If one were to allow both the set of measures and the assignment

rule to vary, then there would be di®erent sets of \possible" measures for di®erent

assignment rules even though the preferences being represented were not changing. Thus

we must keep in mind that my interpretation of \possible" is contingent on the adoption of

the G-S assignment rule.

Although the main focus of this paper is on the consequences for game theory, it is

worthwhile to brie°y explore some decision theoretic concerns. Does the G-S theory resolve

the Ellsberg paradox? Is uncertainty aversion related to a preference for mixtures? Recall

Schmeidler theory. Other researchers (see Quiggin 1982, Yaari 1987, Wakker 1990, among others; Fishburn

1988, chapt. 2 has a survey) have interpreted representations which are special cases of the related non-

additive representation of Schmeidler (1989) as models of decision making under risk where the probabilities

are distorted by the decision maker. As the representation considered above is isomorphic to the Schmeidler

(1989) representation under certain conditions, such an interpretation could also be applied here. However,

although these interpretations are attractive from a descriptive point of view (e.g. are consistent with the

Allais Paradox (Allais 1953)), they do not seem normatively compelling as they operationally require a

decision maker to take perfectly known, objective probabilities and distort them before using them to weight

outcomes. This seems much more objectionable than allowing that, in situations where probabilities are not

known, the decision maker may not act as if he subjectively \knows" the probabilities (i.e. has a unique

subjective probability distribution in mind). More importantly for our purposes, perhaps, this interpretation

does not allow for Ellsberg-type behavior.
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the thought experiment described above. Suppose that the decision maker in the

experiment is uncertainty averse and thus is unwilling to use a unique probability measure

in situations where uncertainty is present. In the experiment as described, there is

certainly substantial uncertainty in that the decision maker is given no information about

the relative proportions of the three colors aside from the fact that one-third of the balls

are black. As long as the decision maker's set of possible probability measures includes at

least one in which Prob(red) > Prob(yellow) and another in which the reverse is true

(assuming that all assign one-third to black), the decision maker will display the Ellsberg

preferences. Thus, in this very clear sense, it is the uncertainty about whether there are

more red balls or yellow balls combined with the individual's dislike of uncertainty which

results in the Ellsberg behavior.

Some observers have argued that the Ellsberg Paradox simply points out the need to

teach people to obey the axioms of Savage-Anscombe-Aumann decision theory by

presenting them with compelling examples that will persuade them that treating subjective

probability di®erently than objective probability is a mistake. In a comment (Rai®a 1961)

published along with Ellsberg's original article, Rai®a uses an example similar to ones
6o®ered by Ellsberg to make his argument. I will use it to argue that a G-S decsion maker

may have a preference for randomization. In Rai®a's example, two questions are asked of a

decision maker. First, the decision maker is asked to consider an urn containing ¯fty red

balls and ¯fty black balls and to name the dollar amount that he would pay to be allowed

to name a color and receive one hundred dollars if a ball drawn at random is of the named

color. Rai®a reports that the amounts given clustered around thirty dollars (thus

displaying risk aversion). These same decision makers were then asked to say how much

they would pay for the same opportunity with an urn which contains red and black balls in

unknown proportion. The answers in this case typically involved much smaller dollar

amounts, thus violating the standard axioms. In subsequent discussion, Rai®a ¯nds that

the following argument convinces people to change their answer to the second question so

that it matches their answer to the ¯rst question: Suppose that in the second setting you

draw a ball at random and do not examine its color. Then °ip a coin and say \red" if

heads and \black" if tails. Notice that this results in an objective probability of winning of

one-half independent of the true proportions of red and black balls. Certainly, it should not

matter whether the ball is drawn before or after the coin is °ipped since the processes are

6See also chapter 5 in Rai®a 1968.
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physically independent. Thus the second option (unknown proportions) should always be

worth at least as much as the ¯rst option (known 50-50) since a coin °ip can transform the
7second into the ¯rst.

I ¯nd this argument compelling, and fully agree that an individual who values the

second option less than the ¯rst is not acting rationally in the sense that once she thinks

the problem through carefully (and either discovers or has pointed out to her the strategy

of °ipping a coin to decide) she will revise her decision. Note however that this argument

does not contradict the results of Ellsberg in a similar experiment. In Ellsberg's version the

set-up is the same but individuals are not given as much freedom in that they are asked to

make speci¯c pairwise comparisons between bets. Thus many individuals say they prefer

betting on red in the known urn to betting on red in the unknown one and prefer betting

on black in the known urn to black in the unknown urn. Notice that these responses clearly

violate the standard axioms but cannot be remedied by randomizing since subjects are

asked to compare two ¯xed bets, whereas Rai®a is asking them to compare two betting

environments. Speci¯cally, the reader can check that a decision maker whose preferences

are consistent with the Gilboa-Schmeidler axioms will always value Rai®a's unknown urn

option at least as much as they value the known urn option, and may at the same time

prefer any ¯xed bet on the known urn to the same bet on the unknown one.

The reason for this is simply that randomization between bets which pay o® in

di®erent states of the world (here, black or red drawn from the urn) helps to reduce

uncertainty by spreading the utility over more states, which is exactly what an uncertainty

averse decision maker would like to do. Thus it is possible for such an individual to strictly

prefer the randomization over the two bets on the unknown urn to either of the bets

themselves. This feature of uncertainty aversion will play an important role in our

discussion of game theory.

We note that such a preference for randomization raises the issue of dynamic

inconsistency, in the sense of wanting to randomize again once the outcome of the original
8randomization is known. However, Machina (1989) surveys many such dynamic

inconsistency objections to non-expected utility theories and argues that this notion of

7Throughout this paper, as in decision theory and game theory generally, it is assumed that participants

have costless access to independent, privately-observable randomizing devices.
8For some deeper and separate issues concerning dynamic consistency and updating G-S preferences in

the presence of new information see the brief remarks in the concluding section and the references there.
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consistency is inappropriate for such decision makers. The °avor of his argument can be

expressed here by the notion that strictly preferring a randomization over two acts, A and

B, includes the preference for act A over any mixture conditional on having borne a risk of

B. Thus if the result of the randomization was A, the individual would indeed be willing to

perform A. A similar argument is made for B. The reader who is unconvinced by

Machina's arguments may want to think of the decision and game situations we will look at

as situations in which the participants have available some means of committing to a mixed

strategy. For example, they may be giving instructions to agents.

Now that we have discussed the preferences, some game theoretic notions can be

explored.

3 Game Theory with Uncertainty Aversion

9Game theoretic situations are rife with uncertainty. Almost never can a player publicly

commit to playing a given strategy. Thus, from the point of view of his opponent(s), there

will often be great uncertainty about what this strategy will be. Much of game theory can

be viewed as the search for concepts which try to narrow this uncertainty in convincing

ways. Nash equilibrium, the leading solution concept for non-cooperative games, does this

by combining two fundamental ideas. First, it borrows from decision theory the idea that

rational players will choose a strategy which is the most preferred given their beliefs about

what other players will do. Second, it imposes the consistency condition that all players'

beliefs are, in fact, correct. One major criticism of Nash equilibrium has been the strength

of the consistency condition. In many settings it is far from clear that players will have
10exactly correct beliefs about each other. Moreover, even if it is common knowledge that

all players in a game believe that Nash equilibrium is the proper concept to use in

determining their beliefs about play, the problem of multiple Nash equilibria remains. In a

game with multiple Nash equilibria, even if the players themselves accept (and are

9The only empirical work exploring whether players beliefs re°ect uncertainty aversion in games, as

opposed to decision-theoretic settings, that I am aware of is that of Camerer and Karjalainen (1994). Across

their four experiments they ¯nd that between 40 and 65 percent of subjects display some degree of uncertainty

aversion, though this degree is often modest. Thus they o®er some support for the notion that uncertainty

aversion exists in the context of games.
10For recent work which has investigated conditions under which this will be true in particular repeated

game settings see e.g. Fudenberg and Levine 1993 and Kalai and Lehrer 1993.
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commonly known to accept) the Nash solution concept they may still face substantial

uncertainty about the play of their opponents. Thus, there is wide scope for players'

behavior under uncertainty to a®ect the conclusions of game theory. In this vein, I propose

a solution concept for normal form games which generalizes the notion of Nash equilibrium

by relaxing the consistency condition and allowing for players whose preferences can be
11represented as in theorem 1 above.

Fix a ¯nite normal form game G (i.e. a ¯nite set of players f1;2; : : : ; Ig, a pure

strategy space S for each player i such that S = £ S is ¯nite, and payo® functionsi i i

u : £ S ! R which give player i's von Neumann-Morgenstern utility for each pro¯le ofi i i

pure strategies).

De¯nition: An equilibrium with uncertainty aversion of G is a 2 ¤ I-vector

(¾ ; : : : ; ¾ ; B ; B ; : : : ;B ) where ¾ 2 § (the set of mixed strategies for player i, i.e. the1 I 1 2 I i i

set of probability distributions over S ) and the B are closed, convex subsets of P (thei i ¡i

set of probability distributions over £ S ) such that, for all i,k6=i k

P P 0(1) ¾ satis¯es min u (s ; s )¾ (s )p(s ) ¸ min u (s ; s )¾ (s )p(s )i p2B i i ¡i i i ¡i p2Bi i i ¡i i ¡is si i

0for all ¾ 2 § , andii

Q
(2) ¾ (s ) 2 B .k k ik6=i

Condition (2) relaxes the consistency condition imposed by Nash equilibrium. It says

that each player's beliefs must not be mistaken, in the sense that they contain the truth.

More speci¯cally, the truth must be contained in the closed, convex hull of the set of

possible subjective probability distributions over the strategies of the other players.

Condition (1) simply says that each player's strategy is optimal given her beliefs, assuming

that her preferences can be represented as in theorem 1.

One important thing to note about the sets of beliefs is that elements of these sets

may allow for correlation between the strategies of the other players even though we

require the true strategies to be independent. To see how this might arise, consider a three

player game where each player may move either right or left. Player one might well believe

that either two and three will both play right or two and three will both play left (because,

for example, one knows that two and three grew up with the same social norm but one

does not know what that norm is). Any convex combination of these two priors could only

11The relation to some alternative solution concepts, notably those of Dow and Werlang (1994) and of Lo

(1995a), is discussed in section 6.
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arise from correlation between two and three. In this way, one's uncertainty introduces

subjective correlation into his beliefs even though he knows that only independent mixing

is allowed.

Two polar special cases of this de¯nition { when all the B 's are singletons and wheni

all the B 's equal P { yield familiar concepts as we observe in the following theorem.i ¡i

Theorem 2 (a) In any ¯nite normal form game, a strategy pro¯le ¾ is part of an

equilibrium with uncertainty aversion where B is a singleton for all i if and only if ¾i

is a Nash equilibrium pro¯le.

(b) In any ¯nite normal form game, a strategy pro¯le ¾ is part of an equilibrium with

uncertainty aversion where B = P for all i if and only if, for all i, ¾ is a maximini ¡i i

strategy (i.e. a strategy which maximizes i's minimum payo® given that any

opponents' play is possible).

Proof: (a) and (b) follow directly from the de¯nition of equilibrium with uncertainty

aversion. QED

Theorem 2 shows that equilibrium with uncertainty aversion spans the continuum

between all players playing maximin strategies, a criterion often advocated in situations of

complete ignorance, and Nash equilibrium where all players behave as if they had perfect

knowledge of their opponents' strategies. Exactly when preferences in Theorem 1 coincide

with subjective expected utility maximization, equilibrium with uncertainty aversion

coincides with Nash equilibrium. Existence of an equilibrium with uncertainty aversion

follows from the existence of a Nash equilibrium (Nash 1950).

The next observation shows that equilibria with uncertainty aversion are not often

unique. This is to be expected as they are, by construction, very dependent on beliefs.

Observation 1 A ¯nite normal form game has a unique equilibrium with uncertainty

aversion only if it has a unique Nash equilibrium and that Nash equilibrium consists of each

player playing their unique maximin strategy.

Proof: Any Nash equilibrium is an equilibrium with uncertainty aversion. From

theorem 2, each player playing a maximin strategy is an equilibrium with uncertainty

aversion. QED
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Player 2

X Y Z

A 1,2 4,3 1,4

Player 1 B 1,2 3,3 3,1

C 2,2 4,1 2,1

¯gure 1

Note that the converse is false, as is shown by the game in ¯gure 1.

In this game, the unique Nash equilibrium is (C, X), which is also the unique

maximin pro¯le. However, (B, Y) is an equilibrium with uncertainty aversion if player 1

has a belief set consisting of all distributions over Y and Z, while player 2 has a belief set

consisting of all distributions over A and B.

The best way to see the implications of this de¯nition is through some examples. To

keep things simple I will focus on 2 x 2 games. Consider the pure coordination game in

¯gure 2.

L R

U 2,2 0,0

D 0,0 1,1

¯gure 2

This game has three Nash equilibria, (U, L), (D, R), and (1/3 U, 2/3 D; 1/3 L, 2/3

R). Let us focus on the mixed equilibrium. Notice that in the Nash setting, each player is

indi®erent between any pure or mixed strategy given their beliefs. Thus there is no

a±rmative reason to mix with these proportions. This need not be true with uncertainty

aversion. For example, if each player's belief set, B , consists of all mixtures over theiri

opponents' pure strategies (as it would, for instance, if players are uncertainty averse and
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L R

U 9,9 0,8

D 8,0 7,7

¯gure 3

their sets of possible subjective probability measures include the Nash beliefs) then each

player will strictly prefer to play the mixed strategy. This is true because by equalizing the

payo® to, say, U and D under any distribution over L and R, the uncertainty is eliminated

and the maximin payo® is achieved. In fact, as long as player 1 has some belief which

assigns Prob(L) < 1/3 and some belief which assigns Prob(L) > 1/3, the mixed strategy is

his strict best response. Similarly, if player 2 has some belief which assigns Prob(U) < 1/3

and one which has Prob(U) > 1/3, the mixed strategy is the strict best response. Thus

equilibrium with uncertainty aversion can justify mixing as a response to strategic

uncertainty. In contrast with Harsanyi's (1973) view of mixed equilibria as the limits of

pure strategy equilibria in perturbed games, our setting allows common knowledge of

payo®s to be taken seriously. Another advantage of this view of mixed strategies is that it

can provide information about the likelihood or robustness of a mixed strategy outcome.

Consider the game in ¯gure 3, which has been commented on extensively in the literature.

In this game, unlike the game in ¯gure 2, a mixed strategy will never be strictly

preferred in equilibrium. This can be seen by noting that if any subjective distribution

gives weight more than 1/8 to D (or R) then the best response is to play R (or D) and if all

distributions give weight less than 1/8 to D (or R) then the best response is L (or U). The

only beliefs for which mixing can occur in equilibrium are those which include giving

weight 1/8 to D(or R) and possibly include some distributions which give weight less than

1/8 to D(or R). However mixing is not strictly preferred for these beliefs.

These two examples suggest that equilibrium with uncertainty aversion highlights

mixed equilibria in some games but not in others. We would like to understand what it is

about the game in ¯gure 2 which leads to the possibility of a strict mixed equilibrium.

Observe that, for player 1, U does better if 2 plays L while D does better if 2 plays R. Thus,

as long as U does not weakly dominate D or vice-versa, a mixture over U and D will do

11



better than D against L and will do better than U against R. Since an uncertainty averse

individual cares about the minimum expected utility over her belief set, it is easy to see

that mixing can raise this minimum as compared to either pure strategy for some beliefs.

In the game in ¯gure 3, however, both U and D do better if 2 plays L. In this case,

since both pure strategies are lower under R than under L, a mixed strategy will never

raise the minimum expected utility compared to each of the pure strategies. More

generally, if the expected payo®s to any two pure strategies are minimized (over B ) by thei

same distribution p 2 B , a mixture of the two will never be strictly preferred to each purei

strategy by an uncertainty averse decision maker. This condition is only su±cient,

however. This is easily seen by considering one strategy which strictly dominates another,

but which is not minimized by the same distribution as the other. No mixing involving the

dominated strategy will ever be preferred to the undominated strategy, yet these two

strategies are not minimized by the same distribution. The following theorem gives

necessary and su±cient conditions for not strictly preferring a mixture of two strategies to

each strategy itself. In other words, these conditions characterize exactly when there is no

gain to hedging between two strategies.

0 0Theorem 3 Fix a player i and two strategies ¾ and ¾ such that ¾ º ¾ (i.e. thei ii i

0minimum expected utility of ¾ is at least as big as the minimum expected utility of ¾ ). Noi i

0 0mixture over ¾ and ¾ will be strictly preferred to both ¾ and ¾ if and only if there existsi ii i

some q 2 B such that q minimizes the expected utility of ¾ and such thati i
P P 0u (s ; s )¾ (s )q(s ) ¸ u (s ; s )¾ (s )q(s ).i i ¡i i i ¡i i i ¡i i ¡is s i

Proof: (su±ciency) Let there be such a q. Then the minimum expected utility of
P P 0 0¾ = u (s ; s )¾ (s )q(s ) ¸ u (s ; s )¾ (s )q(s ) ¸ minimum expected utility of ¾ .i i i ¡i i i ¡i i i ¡i i ¡is s i i

P P0Therefore u (s ; s )(®¾ (s ) + (1¡ ®)¾ (s ))q(s ) · u (s ; s )¾ (s )q(s ) =i i ¡i i i i ¡i i i ¡i i i ¡is si

0minimum expected utility of ¾ . This implies that ¾ º ®¾ + (1¡ ®)¾ for all ® 2 (0; 1):i i i i

(necessity) Assume that no mixture is strictly preferred and suppose, to the contrary,

that for all q 2 B such that q minimizes the expected utility of ¾ it is true thati i
P P

0u (s ; s )¾ (s )q(s ) < u (s ; s )¾ (s )q(s ). Then for any such q,i i ¡i i i ¡i i i ¡i i ¡is s i
P P0u (s ; s )(®¾ (s ) + (1¡ ®)¾ (s ))q(s ) > u (s ; s )¾ (s )q(s ) for all ® 2 (0;1).i i ¡i i i i ¡i i i ¡i i i ¡is si

¤Now consider any q 2 B that does not minimize the expected utility of ¾ . By uniformi i

¤continuity, there exists a ± > 0 such that if kq ¡ qk < ± for a q which minimizes the
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P P¤ 0 ¤expected utility of ¾ , then u (s ; s )¾ (s )q (s ) < u (s ; s )¾ (s )q (s ). For anyi i i ¡i i i ¡i i i ¡i i ¡is s i

¤such q (i.e. one within ± of a minimizer),
P P0 ¤u (s ; s )(®¾ (s ) + (1¡ ®)¾ (s ))q (s ) > u (s ; s )¾ (s )q(s ) for all ® 2 (0; 1).i i ¡i i i i ¡i i i ¡i i i ¡is si

¤By de¯nition of a minimizer, there exists an ² > 0 such that for any q 2 B such thati

¤kq ¡ qk ¸ ± for all q which minimize the expected utility of ¾ it is true thati
P P¤u (s ; s )¾ (s )q (s ) > u (s ; s )¾ (s )q(s ) + ². Thus, for ® such thati i ¡i i i ¡i i i ¡i i i ¡is s

P P
0®² + (1¡ ®)(min u (s ; s )¾ (s )p(s )¡ u (s ; s )¾ (s )q(s )) = 0, (whichp2B i i ¡i i ¡i i i ¡i i i ¡is si i

exists and is strictly less than one since the ¯rst term is positive and the second term is
0 0non-positive), it is true that for all ® > ®, ®¾ + (1¡ ®)¾ Â ¾ º ¾ . This contradicts thei ii i

0assumption that no mixture of ¾ and ¾ is strictly preferred to both strategies. This provesi i

necessity. QED

In applying Theorem 3, it is often easier to check the su±cient condition mentioned

above and given in the following corollary.

0 0Corollary 3.1 Fix a player i and two strategies ¾ and ¾ . No mixture over ¾ and ¾ willi ii i

0be strictly preferred to both ¾ and ¾ if there exists some q 2 B such that q minimizes thei ii

0expected utility of both ¾ and ¾ .i i

0Proof: Assume without loss of generality that ¾ º ¾ . Such a q then satis¯es thei i

conditions of Theorem 3. QED

This su±cient condition becomes even easier to check in 2 x 2 games, as reference to

particular beliefs B can be omitted.i

0Corollary 3.2 Fix a player i in a 2 x 2 game. If there is a pure strategy of i s opponent
0which minimizes the payo® to both of i s pure strategies, then i will never strictly prefer a

0mixed strategy to both of i s pure strategies.

Proof: Call the pure strategies of i's opponent a and b. Suppose that a minimizes

the payo® to both of i's pure strategies. No matter what i's set of beliefs is, each of i's pure

strategies will have its expected utility minimized by the distribution in the belief set

which puts the most weight on a. Therefore the existence of a q satisfying the conditions in

Corollary 3.1 is guaranteed for any belief set. QED

0In the special case of ¾ » ¾ , the su±cient condition of Corollary 3.1 is also necessary.i i

0 0Corollary 3.3 Fix a player i and two strategies ¾ and ¾ such that ¾ » ¾ . No mixturei ii i

0 0over ¾ and ¾ will be strictly preferred to both ¾ and ¾ if and only if there exists somei ii i

13



0q 2 B such that q minimizes the expected utility of both ¾ and ¾ .i i i

0 0Proof: If ¾ » ¾ then the minimum expected utilities of ¾ and ¾ must be equal.i ii i
P P 0The only way to satisfy u (s ; s )¾ (s )q(s ) ¸ u (s ; s )¾ (s )q(s ) for a q whichi i ¡i i i ¡i i i ¡i i ¡is s i

minimizes the left-hand side is to have the same q also minimize the right-hand side. QED

We can illustrate Theorem 3 (and Corollary 3.2 in particular) by again considering

the game in ¯gure 2. Suppose we modify this game by increasing player 1's payo® by one

util when 2 plays L and increasing player 2's payo® by one util when one plays U. The

modi¯ed game is as in ¯gure 4.

L R

U 3,3 0,1

D 1,0 1,1

¯gure 4

Noting that each players' pure strategies now have their payo®s minimized by the

distribution placing the most weight on R (or D), Corollary 3.2 tells us that a mixed

strategy will never be strictly preferred. This contrasts with the earlier analysis of the

game in ¯gure 2, in which mixed strategies were strictly optimal for a wide range of beliefs.

In comparing the two games, the reader can check that not only are the Nash equilibria
12unchanged, but each player's best response correspondence is unchanged as well.

However the equilibria with uncertainty aversion are a®ected.

What has happened, intuitively, is that the change in payo®s has turned a game in

which mixing helped hedge against uncertainty into one where it cannot play that role. On

a more formal level, these changes have no e®ect in the standard theory because the

independence axiom requires that preference between two acts (strategies) be preserved

when they are mixed with a common third act. In the setting of Theorem 1 however, the

independence axiom need only hold for mixing with constant acts, whereas adding one to

12I use best response correspondence in the standard sense of a player's optimal strategy as a function

of the opponents' strategies. An alternative notion of best response correspondence, de¯ned as a player's

optimal strategy as a function of that player's beliefs about the opponents' strategies, would, of course, give

di®erent correspondences for the two games.
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player 1's payo® if 2 plays L, for example, is mixing the existing acts with a non-constant

act. Thus such a transformation may change behavior.

The notion that this generalization of the Nash concept may allow for a natural way

of re¯ning predictions about the outcome of a game is another advantage of this approach.

I view this equilibrium notion as allowing sharper prediction in the sense that it allows the

use of information about players' beliefs in a way that the Nash concept does not. For

example, in ¯gure 3, if the players were known to be uncertainty averse and there was no

compelling unmodelled feature of their environment which would lead each to include the

mixed Nash strategy in their beliefs but not include any distribution which puts more

weight on R (or D) (than the mixed Nash strategy), I would be very reluctant to predict

the mixed Nash equilibrium as the outcome of the game. Furthermore, in situations where

the players are likely experiencing substantial uncertainty about others' play (for example,

if they have never previously met their opponent and have not played the game before), I

would be tempted to predict (D,R) as the outcome of the game in ¯gure 3. The reasoning

behind this is that greater uncertainty will be re°ected in a larger set of beliefs, and thus

(D, R) becomes more likely in the sense that if any belief assigns Prob(D) (or R) > 1/8,
13the player's best response switches to R (or D). Thus a compelling feature of equilibria

with uncertainty aversion is that \comparative statics" in uncertainty becomes possible in
14a well-de¯ned sense.

The set of equilibria with uncertainty aversion has been contained in the set of

13There are other reasons why (D, R) is an attractive prediction in this game. Both the risk-dominance

criterion of Harsanyi and Selten (1988) and Aumann's (1990) argument that pre-play communication is

not likely to assist in coordination on (U, L) also lead to a prediction of (D, R). Note that the notion of

risk-dominance in 2x2 games shares some of the °avor of uncertainty aversion but di®ers in important ways.

Risk-dominance always produces a unique prediction, while equilibria with uncertainty aversion depend on

players beliefs and uncertainty aversion. Furthermore, although ¯gure 3 and heuristic considerations might

lead one to think that the risk-dominant equilibrium is always the same as the equilibrium with uncertainty

aversion when there is maximal uncertainty (or ignorance), this is not true. In ¯gure 2, (U, L) is risk-dominant

while the mixed strategy pair is picked out under ignorance and uncertainty aversion.
14This aspect of the theory could conceivably be tested in an experimental setting. After assessing subjects'

utility functions (using objective probabilities) and using examples like those of Ellsberg to detect aversion

to uncertainty, the experimenter would have the subjects play simple games. The level of uncertainty in

their beliefs about their opponent could be manipulated by, say, providing or not providing a record of past

games the opponent played; allowing or not allowing pre-play discussion or face-to-face contact etc. Subjects

might also be asked to explicitly describe (ex-ante or ex-post) their beliefs about their opponent's play.
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15rationalizable outcomes in the examples we have seen so far. This is not necessarily the

case. Consider the game in ¯gure 5.

L R

U 3,0 1,2

D 0,4 0,-100

¯gure 5

In this game the unique Nash equilibrium is (U, R). This outcome can also be found

by iterated strict dominance and is thus the unique rationalizable outcome as well.

However, if any of player 2's subjective probability measures assigns weight at least 1/53 to

D, then (U, L) will be an equilibrium with uncertainty aversion. In fact, letting 2's payo®

from (D, R) approach ¡1, 2 will have to put an arbitrarily high minimum probability on

U to be willing to play R.

This example makes several important points: (1) the set of equilibrium outcomes

with uncertainty aversion is not in general contained in the set of rationalizable outcomes;

(2) as Fudenberg and Tirole (1991, chapter 1) discuss, predicting (U,R) in a game like

¯gure 5 relies crucially on the assumption that it is common knowledge that dominated (or

non-rationalizable) strategies will never be used; and (3) to the extent that this common

knowledge assumption is appropriate, the concept of equilibrium with uncertainty aversion

may be too weak. In the next section, I pursue this line of reasoning by proposing a

re¯nement of equilibrium with uncertainty aversion.

4 Adding Common Knowledge of Rationality

Consider the following de¯nition that is motivated by the concept of correlated

rationalizability (Pearce 1984, Brandenburger and Dekel 1987, Fudenberg and Tirole 1991,

chapter 2). It is a natural generalization to the context where players can be described as

15For a de¯nition of rationalizability see Bernheim (1984) and Pearce (1984) who introduced the concept,

or Fudenberg and Tirole (1991), chapter 2.
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in Theorem 1. The idea is to start from the whole set of strategies and eliminate, in each

round of iteration, those strategies which are never a best response in the sense of Theorem

1 when the set of beliefs B is restricted to those beliefs which are compatible with thei

knowledge that other players only play best responses to the restricted sets of beliefs

derived in the previous round. Thus, in the ¯rst round of iteration, those strategies which

are never best responses to any beliefs are eliminated. In the second round, any strategies

from the remaining set that are never best responses to any beliefs concentrated on that

remaining set are eliminated, and so on. The successive rounds of iteration capture

successive layers of knowledge of the rationality (in the sense of Theorem 1) of the players.

Assume that all payo®s are common knowledge. Then the ¯rst iteration corresponds to the

assumption that each player is rational. The second iteration corresponds to the

assumption that each player is rational and knows that the other players are rational. The

nth iteration corresponds to the assumption that each player is rational and knows that the

other players know that the players know . . . that the players are rational, where n-1 levels

of knowledge are assumed.

0 0De¯nition: Set § = § , P = the set of probability measures on £ S such thati k6=i ki ¡i

for each k6= i the marginal distribution over S is an element of § . Recursively de¯ne fork i

each integer m > 0:

m¡1 m¡1m§ = f¾ 2 § such that there exists a closed, convex subset, B , of P suchi ii ¡ii

that ¾ satis¯es condition (1) in the de¯nition of equilibrium with uncertainty aversion withi

m¡1§ replacing § .g, andii

mP = the set of probability measures on £ S such that for each k6= i thek6=i k¡i

mmarginal distribution over S is an element of the convex hull of § .k k

T1 mThe uncertainty aversion rationalizable strategies for player i are R = § .i m=0 i

T1 mThe uncertainty aversion rationalizable belief set for player i is Q = P .i m=0 ¡i

An alternate and often more useful characterization can be given in terms of iterated
16deletion of dominated strategies.

Theorem 4 In ¯nite normal form games the uncertainty aversion rationalizable strategies

16It is important that we are considering the mixed strategy space. Epstein (1995) considers rationaliz-

ability for G-S preferences restricted to pure strategies and ¯nds non-equivalence with the expected utility

case.
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for player i, R , are exactly those strategies for player i which survive iterated deletion ofi

strictly dominated strategies, (denoted by I ).i

Proof: The de¯nition of uncertainty aversion rationalizable strategies is equivalent to

that of correlated rationalizable strategies when the set B is restricted to be a singleton.i

Since the set of correlated rationalizable strategies for player i is identical to the set of

strategies for player i which survive iterated strict dominance (see Fudenberg and Tirole's

(1991, chapter 2) modi¯cation of a proof by Pearce (1984)), R is a superset of I . As noi i

strictly dominated strategy is a best response in the sense of condition (1) of the de¯nition

of equilibrium with uncertainty aversion, R is a subset of I . QEDi i

Interpreting Q as the beliefs which are not ruled out by common knowledge ofi

procedural rationality (i.e. maximization given beliefs) when preferences are restricted to

obey the axioms in Theorem 1, a re¯nement of equilibrium with uncertainty aversion is

o®ered.

De¯nition: An equilibrium with uncertainty aversion is an equilibrium with

uncertainty aversion and rationalizable beliefs if and only if B is a subset of Q for alli i

players i.

Note that equilibrium with uncertainty aversion and rationalizable beliefs can be

viewed as a re¯nement of correlated rationalizability (and thus, using a result of

Brandenburger and Dekel (1987), of a posteriori equilibria) in that it takes the

rationalizability restrictions and adds to them a consistency requirement (condition (2) in

the de¯nition of equilibrium with uncertainty aversion). Note that correlated

rationalizability already requires a condition equivalent to (2) in the case B = Q .i i

Imposing the consistency condition for beliefs which are subsets of Q allows for knowledgei

about the other players, besides knowledge of their rationality, to be re°ected in beliefs,

and thus in the equilibrium. Condition (2) is an appropriate consistency condition for

equilibrium in the sense that it requires that players not rule out strategies incorrectly. The

basic idea is that the Nash consistency condition makes sense if you are sure of the

distribution over strategies (i.e. B is a singleton), but the idea of not being surprised (i.e.i

not ruling out the strategy pro¯le that is played) is more general than this, in that

knowledge that rules out some, but not all, other options can be incorporated. For

example, suppose I am a baseball player and I know that the opposing pitcher does not

know how to throw a split-¯ngered fastball. Any outcome in which the pitcher does, in fact,
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throw this pitch is surely not much of an equilibrium. On the other hand, I may be unable

or unwilling to summarize my beliefs in the form of a single distribution over the remaining

pitches. Thus, a slider or a curveball or any randomization between the two might not

surprise me, and could be part of what might be reasonably called an equilibrium.

To see that the set of equilibria with uncertainty aversion and rationalizable beliefs

can be strictly smaller than the set of rationalizable outcomes, consider the

\battle-of-the-sexes" game depicted in ¯gure 6.

U D

U 2,1 0,0

D 0,0 1,2

¯gure 6

In this game, (U, D) is rationalizable but is not an equilibrium with uncertainty
17aversion and rationalizable beliefs. To see this, observe that player 1 plays U only if he

has no subjective beliefs which assign weight less than 1/3 to 2 playing U. Similarly, 2

plays D only if she has no subjective beliefs which assign weight less than 1/3 to 1 playing

D. These beliefs fail the consistency condition (2). Thus this condition shares some of the

°avor of Rabin's (1989) point that we might not want to assign an outcome a higher

probability then either of the players could given that they are playing best responses.

Another example where the set of equilibria with uncertainty aversion and rationalizable

beliefs is strictly larger than the set of Nash equilibria is given in ¯gure 7.

This game is a modi¯cation of the "battle-of-the-sexes" game which makes D more

attractive to 1 and U more attractive to 2 than before. (D, U) is an equilibrium with

uncertainty aversion and rationalizable beliefs. Any sets of beliefs that include any

measures which put weight greater than 1/2 on 2 playing D will lead player 1 to play D.

Similarly, if player 2 has any measures which assign probability greater than 1/2 to 1
18playing U then 2 will play U. However, (D, U) is not a Nash equilibrium. In fact, if we

17In fact, (U, D) is not even an equilibrium with uncertainty aversion. This, together with the example

in ¯gure 5, makes it clear that there is no general containment relation between the set of rationalizable (or

correlated rationalizable) outcomes and the set of outcomes of equilibria with uncertainty aversion.
18Note that (U, D), as in ¯gure 6, is rationalizable but is not an equilibrium with uncertainty aversion
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U D

U 2,1 0,0

D 1,1 1,2

¯gure 7

U D

U 1,1 0,1

D 0,0 0,2

¯gure 8

replace the payo® of (1, 1) with a payo® of (k, k) where 0 < k < 2, (D, U) fails to be Nash

but is an equilibrium with uncertainty aversion and rationalizable beliefs for an ever wider

class of beliefs as k approaches 2. Of course the mixed Nash equilibrium does approach (D,

U) as k approaches 2, but it seems that allowing for a wider range of beliefs is much more

helpful in assessing which outcomes would be expected in which environments. From the

point of view of equilibrium with uncertainty aversion, the mixed strategy Nash outcome

for 0 < k < 2 will never be strictly preferred.

5 Weak Admissibility

Consider the game in ¯gure 8.

In this game no strategies are eliminated by iterated strict dominance, thus the

restriction to rationalizable beliefs makes no di®erence. There are lots of Nash equilibria (a

continuum in fact). Thus there are also many equilibria with uncertainty aversion. Notice,

and rationalizable beliefs. Thus the game in ¯gure 7 demonstrates that the set of equilibria with uncertainty

aversion and rationalizable beliefs can lie strictly between the set of rationalizable pro¯les and the set of

Nash equilibria.
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however, that as long as player 1 thinks that U is possible, player 1 should play U in

response. Similarly, as long as player 2 thinks that D is possible, player 2 should play D in

response. This reasoning leads one to think that in any equilibrium with uncertainty

aversion where 1 plays D (or 2 plays U) all beliefs in the belief set must assign probability

0 to 2 playing U (1 playing D). That this is not true is easily seen by considering the case

where both players have belief sets which contain all possible distributions. In this case,

each player is indi®erent between any two strategies since all strategies give a minimum

expected utility of 0. This is one aspect in which I feel that the Gilboa-Schmeidler axioms

are too weak.

A similar point can be made by reconsidering the Ellsberg example. Consider again

the thought experiment of section I, speci¯cally options 1 and 4. It would seem irrefutable

that unless a decision maker is certain that yellow will not be drawn she should prefer 4 to

1. However if the set of measures C simply includes a measure which assigns zero weight to

yellow, even if other measures in C do not, then a Gilboa-Schmeidler decision maker will be

indi®erent between 1 and 4 (assuming that all measures in C assign one-third to black).

Under our interpretation of C, such a decision maker considers it possible that yellow may

occur in the sense that she is willing to use a measure which implies that in evaluating

some acts. The fact that such a decision maker is indi®erent is therefore unreasonable. To

remedy this I use an additional axiom that appears in Schmeidler (1989).

De¯nition: An event E 2 § is null if and only if 8f; g 2 L such that

8s 2 S=E; f(s) » g(s), it is true that f » g.

De¯nition: Denote the set of non-null events by NNE = fE 2 § such that E not

nullg.

B.1 (Weak Admissibility)

8f; g 2 L, if for all s 2 S; f(s) º g(s) then f º g and [f Â g if an only if for some

E 2 NNE, f(s) Â g(s), 8s 2 E].

Intuitively, a null event is a set of states which is never decisive. To be null in the

context of the Gilboa-Schmeidler theory, an event must never be assigned positive

probability by any measure in C . This can be seen by considering two acts, one of which

gives utility 100 if E occurs while the other gives utility 0 if E occurs and both of which

give utility 200 if E does not occur. The distribution in C used to evaluate each of these

acts will be the one(s) which puts the most weight on E. Thus E has probability zero
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according to all measures in C if and only if the decision maker is indi®erent between the

two acts. So we conclude that a null event must be assigned probability zero by all

probability measures in C. Furthermore, any event which is assigned zero probability by all

measures in C is a null event. Weak admissibility says that state-by-state weak dominance

(and indi®erence) holds on the set of events which are given positive probability by some

measure in C. We obtain the following representation theorem:

Theorem 5 Let º be a binary relation on L . Then the following are equivalent,0

(1) º satis¯es A.1 - A.3, A.5 and B.1 for L = L .0

(2) There exists an a±ne function u : Y ! R and a non-empty, closed, convex set C

of ¯nitely additive probability measures on § satisfying [p(E) = 0 if and only if

8p 2 C;p(E) = 0] such that 8f; g 2 L ; f º g if and only if0
R R

min u ± fdp ¸ min u ± gdp.p2C p2C

Furthermore, the function u is unique up to a positive a±ne transformation and, if

and only if A.6 holds, the set C is unique.

Proof: See Appendix.

The new representation is identical to that in Theorem 1 except for the additional

condition that each event be given either zero probability by all measures in C or positive

probability by all measures in C (i.e. the measures in C are mutually absolutely

continuous). This condition serves to impose the weak admissibility axiom (B.1). However,

this requirement seems too strong. It does not allow a decision maker to be uncertain

about whether a given event will occur with positive probability. In a two player game, for

instance, this representation would not allow a player to include both a pure strategy and

any other strategy (mixed or pure) in her belief set. In order to permit this type of

uncertainty while maintaining weak admissibility, A.3 (continuity) will be relaxed. The

intuitive idea is that weak admissibility is a second-order criterion, in the sense that A.4

(monotonicity) ensures that weak admissibility is only used to break ties in the original

representation, thus engendering a possibly discontinuous preference relation.

Unfortunately, simply dropping continuity only when applying weak admissibility directly

to break ties will not allow us to maintain A.1 (weak order), which is in many ways the

most fundamental axiom. To get around this problem, we allow for a ¯nite number of

hierarchically ordered preference relations, while placing conditions on these relations.
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Consider a ¯nite set of preference relations on L: º ; i = 1; : : : ;N:i

De¯nition: The º agree on L if and only if 8y; z 2 L , [y º z if and only ifi c c 1

y º z : : : if and only if y º z]:2 N

De¯nition: The º display non-increasing valuation of certainty if and only ifi

8f 2 L; y 2 L ; [f » y implies y ¹ f ] holds for i = 1; : : : ; N ¡ 1.c i i+1

Now consider the following axiom on the preference relation º on L:

B.2 (N-Hierarchy)

There exist N ¸ 1 preference relations on L: º ;º ; : : : ;º such that,1 2 N

8f; g 2 L; f º g , [g Â f ) 9k < i, such that f Â g]. Furthermore, each º satis¯esi k i

A.1-A.5, and the º agree on L and display non-increasing valuation of certainty.i c

Observe that any preference relation º which satis¯es A.1-A.5 will satisfy B.2 for

N = 1. Thus imposing A.1, A.2, A.4, A.5, B.1, and B.2 is certainly no stronger than

imposing A.1-A.5, and B.1. B.2 limits the way in which continuity can be relaxed. It says

that there are a ¯nite number of preference relations which are combined lexicographically
19to represent º. Furthermore, each of these N relations must satisfy the original axioms

A.1-A.5, must order constant acts the same way, and reward constant acts versus uncertain

ones (weakly) less and less. Thus the decision maker has ¯rst-order G-S preferences,

second-order G-S preferences, etc., and aversion to uncertainty is not as important in

breaking ties as it is in the ordering where the ties occur. One can think of the decision

maker \accounting for" uncertainty in the manner of Theorem 1 with her ¯rst-order

preferences, and, given that prospects are equal by this measure, being willing to venture a

tie-breaking decision on the basis of preferences which do not give as much weight to

uncertainty, since this weight has, in some sense, already been given. This type of

re¯nement could continue through several levels.

An alternate scenario would be to think that instead of reducing uncertainty aversion

at each stage, the decision maker actually became more uncertainty averse in the case of

ties. An important drawback to this case, however, is that weak admissibility would end up

imposing precisely the conditions which we wanted to avoid in Theorem 5. For this reason,

I work with the former case.

19The only restriction beyond weak order in this requirement is that N be ¯nite. See Fishburn (1974) and

Chipman (1971) for more details.
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We obtain the following representation theorem:

Theorem 6 Let º be a binary relation on L . Then the following are equivalent,0

(1) º satis¯es B.1 and B.2 for L = L .0

(2) 9 an a±ne function u : Y !R and N ¸ 1 non-empty, closed, convex sets

C ; i = 1; : : : ; N , of ¯nitely additive probability measures on § such that 8f; g 2 L ; f º g ifi 0

R R
N Nand only if (min u ± fdp) ¸ (min u ± gdp) , where if p(E) > 0 for somep2C L p2Ci i=1 i i=1

E 2 §, p 2 C then there exists an i such that p(E) > 0, for all p 2 C , and where1 i

20C ¶ C ¶ : : : ¶ C :1 2 N

Furthermore, the function u is unique up to a positive a±ne transformation, and, if
21and only if A.6 holds, the set C is unique.1

Proof: See Appendix.

The following corollary makes it clear that A.3 (continuity) is the only one of the G-S

axioms which is being relaxed:

Corollary 6.1

º satis¯es B.1 and B.2 implies º satis¯es A.1, A.2, A.4, and A.5.

Proof: It is straightforward to verify that the representation in Theorem 6 satis¯es

A.1, A.2, A.4, and A.5. QED

This representation satis¯es weak admissibility, while also allowing the set of possible

probability measures, C , to include both measures that assign zero probability to an event1

and ones that give the event positive weight. An interpretation of the subsets C through2

C is that the measures in C are considered in¯nitesimally more likely (or moreN k

important in terms of the decision) than the measures in C =C in the sense that if twok¡1 k

20 NFor a; b 2 R , a ¸ b, [b > a ) 9k < i such that a > b ].L i i k k
21In a context where the independence axiom is assumed to hold for all acts (and thus uncertainty aversion

is ruled out), Blume, Brandenburger, and Dekel (1991) obtain a similar lexicographic representation where

the belief sets are singletons, N · #S, and the superset relations are not required to hold. The added

structure provided by independence allows a more attractive axiomatization than the one here, obviating

the need to refer to a hierarchy of preference relations in the axioms. Unfortunately the properties of an

ordered vector space which they use do not seem applicable here.
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acts are equally ranked using C then the decision maker will use the ranking under Ck¡1 k

to attempt to further discriminate, but if two acts are strictly ranked under C then thek¡1

ranking under C is irrelevant. Viewed in this way, weak admissibility requires only thatk

any event which is given positive weight by some measure in C be considered at least1

in¯nitesimally more likely to occur with positive probability than to occur with zero

probability.

The de¯nition of equilibrium with uncertainty aversion can be extended to the

preferences described in Theorem 6.

De¯nition: An equilibrium with uncertainty aversion of G is a (N + 1) ¤ I -vector

(¾ ; : : : ; ¾ ; B ; : : : ;B ; B ; : : : ;B ; : : : ; B ; : : : ;B ) where ¾ 2 § (the set of mixed1 I 11 1N 21 2N I1 IN i i

strategies for player i, i.e. the set of probability distributions over S ) and the B arei in

closed, convex subsets of P (the set of probability distributions over £ S ) satisfying¡i k6=i k

B ¶ B ¶ : : : ¶ B and [p(s ) > 0 for some p 2 B ) p(s ) > 0 for all p 2 B fori1 i2 iN ¡i i1 ¡i in

some n] such that, for all i,

(1) ¾ satis¯esi
P P

N 0 N(min u (s ; s )¾ (s )p(s )) ¸ (min u (s ; s )¾ (s )p(s )) for allp2B i i ¡i i i ¡i L p2Bi i i ¡i i ¡is si n=1 i n=1

0¾ 2 § , andii

Q
(2) ¾ (s ) 2 B .k k i1k6=i

Using this de¯nition, analogues of all of the theorems in sections 1.3 and 1.4 can be

derived, although the results are not as clean as with the simpler de¯nition. To apply the

new de¯nition, we return to the game in ¯gure 8.

Recall that without weak admissibility, there was a great multiplicity in the equilibria

with uncertainty aversion (with or without rationalizable beliefs) even when no strategy of

the opponent was ruled out by all measures in the belief set. However, with this restriction,

unless all of player 1's beliefs (the set B ) assign probability zero to U, 1 should play U.i1

Similarly, unless all of player 2's beliefs assign probability zero to D, 2 should play D. Thus,

if players are uncertainty averse and any degree of uncertainty exists in each of their minds,

weak admissibility argues that (U, D) will be the outcome.

Note that (U, D) is also the outcome picked out by deletion of weakly dominated

strategies. In general, however, weak admissibility is a much weaker condition than weak

dominance. Weak admissibility allows the play of weakly dominated strategies when a
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player always assigns probability zero to the state(s) where the dominance is strict. The

power of weak dominance in the Nash framework is precisely (and only) that it rules out

the play of weakly dominated strategies even when the relevant states are assigned

probability zero. I believe that weak admissibility is a more accurate formalization of the

ideas which are often used to motivate weak dominance. If the reason that weakly

dominated strategies should not be played is that players will almost never be in a

situation where they can be sure that their opponent(s) will not play a particular strategy

or strategies then that idea should be expressed directly, in terms of beliefs, rather than in

a rule which is to be universally applied regardless of the beliefs in any particular situation.

Weak admissibility makes clear this dependence on beliefs. For example, if only

rationalizable beliefs are allowed, then strategies which would have been eliminated by

weak dominance are allowed if they were strictly dominated only by those actions which

rationalizable beliefs must assign probability zero. For example, consider the game in ¯gure

9.

X Y Z

A 1,1 0,1 1,2

B 0,0 0,2 1,1

¯gure 9

In this game, weak dominance eliminates B for player 1, whereas, since X is

eliminated by iterated strict dominance, B is not eliminated by weak admissibility under

the restriction to rationalizable beliefs.

6 Related Literature

Two closely related papers are Dow and Werlang (1994) and Lo (1995a) which I discuss in

turn:

An alternative notion of equilibrium when players are uncertainty averse has been

proposed by Dow and Werlang (1994). In the context of the G-S multiple priors model
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22their Nash Equilibrium under Uncertainty is de¯ned as follows.

De¯nition: A Nash Equilibrium under Uncertainty is a pair (B ;B ), where B is a1 2 i

closed, convex subset of P (the set of probability distributions over S ) such that, for¡i ¡i

i = 1; 2, there exists a set of pure strategies A µ S satisfyingi i

P P 0(1) Each s 2 A satis¯es min u (s ; s )p(s ) ¸ min u (s ; s )p(s ) fori i p2B i i ¡i ¡i p2Bi i ¡i ¡is si i

0all s 2 S ,ii

(2) p (A ) = 1 for at least one p 2 B and,¡i i ¡i ¡i

23(3) For all C ½ A , p (C ) < 1 for all p 2 B .i i ¡i i ¡i ¡i

As the de¯nition speci¯es beliefs, not behavior, one should interpret any play from

the sets A as consistent with the equilibrium. Observe that condition (1) requires onlyi

that players optimize over the set of available pure strategies. As we have seen above, for

G-S decision makers a mixed strategy may be a strictly better response to beliefs than any

pure strategy. Since they consider only pure strategies, Dow and Werlang naturally do not

consider the issues involving mixed strategies taken up in section 3.

Condition (2) is a consistency condition on beliefs. In the context of the restriction to

pure strategies, it may be interpreted as saying that at least one of the measures in the set

representing beliefs puts full weight on the pure strategies of the opponent that will be

played in equilibrium. This is similar in spirit to the consistency condition o®ered in this

paper for mixed strategies. Note that Dow and Werlang's de¯nition is formulated for two

player games only. N-player extensions and re¯nements have subsequently been proposed
24by Eichberger and Kelsey (1995) and Marinacci (1996).

The two concepts have similar implications in some games, for instance, Dow and

Werlang's Example 1, showing that non-rationalizable outcomes can occur with under their

22Dow and Werlang's de¯nition is given in terms of the non-additive probability model of Schmeidler

(1989). Under the assumption of uncertainty aversion, that model is nested in the G-S multiple priors model

used in this paper. Thus the de¯nition as stated here technically applies to a larger class of decision makers

than the original.
23Note that, as stated, condition (3) is not needed in the de¯nition. If there exists a set satisfying (1)

and (2), then there also exists a subset of that set satisfying (1), (2), and (3). Nonetheless, to move from a

speci¯cation of equilibrium to a speci¯cation of behavior, the identity, and not simply the existence, of such

sets A matter and (3) imposes a restriction on these sets.i
24Other re¯nements, with a focus on lack of knowledge of rationality, are o®ered in Mukerji (1994) and

Lo (1995b).
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solution concept, is similar to the example in ¯gure 5 above. However, they focus on

breaking down backward induction in a ¯nitely repeated Prisoner's Dilemma game, while

the focus here has been on mixed strategies, rationalizability, and admissibility in one-shot

games.

A second paper closely related to this one is by Lo (1995a). He works in the G-S

multiple priors framework and o®ers solution concepts which are re¯nements of the ones

proposed here. Speci¯cally,

De¯nition: A Beliefs Equilibrium is an I-vector (B ;B ; : : : ;B ) where the B are1 2 I i

nonempty, closed, convex subsets of P such that, for all i; j6= i,¡i

(1) For all p 2 B , if ¾ is the marginal probability measure on S generated by p,j i i
P P 0then ¾ satis¯es min u (s ; s )¾ (s )p(s ) ¸ min u (s ; s )¾ (s )p(s ) for alli p2B i i ¡i i i ¡i p2Bi i i ¡i i ¡is si i

0¾ 2 § .ii

In other words, every measure in each player's set of beliefs must generate marginals

that are (mixed strategy) best responses for the other players. Intuitively, this corresponds

to a situation in which the players know each others beliefs and also know that each player

is rational in the sense of a G-S maximizer. All there is left to be uncertain about is which

best response each player is using (and possibly the correlation, if any, among players'

strategies). These strong informational requirements are imposed by Lo to stay as close to

Nash equilibrium as possible, thus re°ecting \... solely the e®ects of uncertainty aversion."

In contrast, as Lo shows formally, the solution concepts proposed here require

essentially no knowledge of other players (or, as in the case of equilibria with uncertainty

aversion and rationalizable beliefs only common knowledge of rationality). The key word

here is require. As was noted in section 3, equilibria with uncertainty aversion span the

continuum between maxmin behavior and Nash equilibrium. Thus they are naturally

compatible with levels of knowledge ranging from complete ignorance (maxmin) to

common knowledge of beliefs and/or rationality. I view this as an advantage of the present

theory, as it allows great °exibility in the type of knowledge and beliefs that can be

assumed/represented. Due to its more stringent requirements, it is easy to see that many

of the phenomena discussed above will not occur under Beliefs Equilibria. For example,

whenever a player has a strict best response to her beliefs, the other players must act as if

they know this response in any Beliefs Equilibrium.
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7 Conclusion

The goal of this paper has been to explore some of the consequences for game theory of an

attractive broadening in the decision theory used to describe the players which also allows

a weakening of the strong consistency requirements of Nash equilibrium. The concept of

equilibrium with uncertainty aversion with or without a restriction to rationalizable beliefs

turns out to have some nice features in normal form games. First, it provides a new

justi¯cation based on reducing uncertainty for some equilibria involving mixed strategies.

Second, the °exibility of belief structure points out certain equilibria which I argue would

not make very good predictions unless very de¯nite information about beliefs were

available. Third, this framework allows for oft-mentioned unmodelled features of the game

environment, such as social norms, past experience of the players, and knowledge of

equilibrium concepts to be incorporated in a natural way through their e®ects on the

uncertainty which uncertainty averse players experience. When rationalizable beliefs are

imposed, this solution concept can be viewed as a re¯nement of correlated rationalizability

which is not as restrictive as Nash equilibrium. Finally, the °exibility of beliefs helps make

weak admissibility a relevant condition.

There is obviously much that needs to be done if these ideas are to form the basis of

a complete theory. The biggest missing piece is an extension of these concepts to extensive

form, and thus dynamic, games. One route to follow here is to develop a satisfactory

notion of updating the sets of probability measures. Gilboa and Schmeidler (1993) have

done some preliminary work on this front. One procedure which they suggest which seems

potentially appealing is, after an event occurs, to rule out some of the measures and update

the rest by applying Bayes' rule to each one. However, it is known (see Epstein and Le

Breton (1993)) that no update rule for sets of measures in the G-S framework guarantees

dynamically consistent preferences. Klibano® (1995) responds to this by axiomatizing an

alternative, explicitly dynamically consistent, representation of uncertainty aversion. Using

such a theory to analyze dynamic games is a topic of future research.

Another thing missing from the present work is a discussion of games of incomplete

information. However, it should not be di±cult to apply a slightly adapted version of the

present theory to such games. The basic change would involve an enlargement of the state
25space of player i, S , to S ££ where £ is the space of unknown parameters. On a¡i ¡i

25Recently, Epstein and Wang (1995) have provided a formal framework to justify a \type-space" approach
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more applied level, it would be good to develop a full-blown application using these

equilibrium concepts.

with non-Bayesian preferences.
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A G-S Axioms

De¯ne F to be the set of constant acts (i.e. acts that yield the same lottery y in each statec

of the world. Note that constant acts involve no uncertainty. Consider the following axioms

on the preference relation º on F :

A.1 (Weak Order) (a) 8f; g 2 F; f º g or g º f or both.

(b) 8f; g; h 2 F; ff º g and g º hg ) f º h.

A.2 (Certainty Independence)

8f; g 2 F and h 2 F and ® 2 (0;1); f Â g, ®f + (1¡ ®)h Â ®g + (1¡®)h.c

A.3 (Continuity)

8f; g; h 2 F , if f Â g and g Â h then 9®; ¯ 2 (0; 1) such that

®f + (1¡ ®)h Â g and g Â ¯f + (1¡ ¯)h.

A.4 (Monotonicity)

8f; g 2 F , if f(s) º g(s) on S then f º g.

A.5 (Uncertainty Aversion)

8f; g 2 F and ® 2 (0; 1), if f » g then ®f + (1¡ ®)g º f .

A.6 (Non-degeneracy)

Not for all f; g 2 F; f º g.

The only non-standard axioms are Certainty Independence and Uncertainty Aversion.

Note that Certainty Independence is a strict weakening of the traditional Independence

axiom when applied to the lottery-acts framework, as it requires that strict preference be

preserved only under mixtures with constant acts.

B Proof of Theorems 5 and 6

Theorem 6 will be proved ¯rst, as it will be used to prove Theorem 5.

Theorem 6 Let º be a binary relation on L . Then the following are equivalent,0
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(1) º satis¯es B.1 and B.2 for L = L .0

(2) 9 an a±ne function u : Y !R and N ¸ 1 non-empty, closed, convex sets

C ; i = 1; : : : ; N , of ¯nitely additive probability measures on § such that 8f; g 2 L ; f º g ifi 0

R R
N Nand only if (min u ± fdp) ¸ (min u ± gdp) , where if p(E) > 0 for somep2C L p2Ci i=1 i i=1

E 2 §, p 2 C then there exists an i such that p(E) > 0, for all p 2 C , and where1 i

26C ¶ C ¶ : : : ¶ C :1 2 N

Furthermore, the function u is unique up to a positive a±ne transformation, and, if

and only if A.6 holds, the set C is unique.1

Proof of Theorem 6:

We will ¯rst prove that (1) implies (2), then that the uniqueness properties of the

representation in (2) are satis¯ed, and ¯nally that (2) implies (1). The proof of (1) implies

(2) is the most involved. We will use theorem 1 applied to each º and B.2 to derive thei

basic form of the representation. Then, to show that the superset relations between the

sets of beliefs hold, we will appeal to a construction of suitable sets C in Chateauneufi

(1991). Finally we use a lemma and B.1 to show that the measures in the C must satisfyi

the conditions stated in (2).

(1)) (2): From B.2 we know that the representation is lexicographic in the º .i

Applying theorem 1 to each º we have that f º g if and only ifi i
R R

min u ± fdp ¸ min u ± gdp, for a non-empty, closed, convex set C and an a±nep2C i p2C i ii i

u : Y ! R which is unique up to a positive a±ne transformation. As B.2 requires all º toi i

agree on constant acts, we can take u = u ; i = 1; : : : ; N . Thus we have the basici 1

representation.

Now we prove the superset condition holds. Consider the space B of all bounded,

§-measurable real functions on S. By Lemmas 3.1-3.4 of Gilboa and Schmeidler (1989),
¤ ¤there exists, for each i, I : B! R such that I (u ± y ) = u(y) for y 2 L with outcomei i c

y 2 Y ; f º g if and only if I (u ± f) ¸ I (u ± g) for f; g 2 L ; I monotonic, superadditive,i i i 0 i

homogeneous of degree 1, and C-independent. Thus I satis¯es the conditions of thei

26 NFor a; b 2 R , a ¸ b, [b > a ) 9k < i such that a > b ]. This is the re°exive relation induced byL i i k k

lexicographic ordering.
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27Fundamental lemma in Chateauneuf (1991), and thus, by his constructive proof, we can
R

take C to be the set fpjp is an additive probability measure on §; bdp ¸ I (b); 8b 2 Bi i

¤ ¤such that I (b) > 0g. As B.2 requires f º y if f » y , I (u ± f) ¸ I (u ± f) if k > i.i i+1 i k i

Thus for all b 2 B, I (b) ¸ I (b) if k > i. From the de¯nition of C , we see that this impliesk i i

C ¶ C ¶ : : : ¶ C . To complete the proof of (1)) (2) we make use of the following1 2 N

result:

Lemma 6.1

An event E 2 NNE , p(E) > 0 for some p 2 C :1

Proof of Lemma 6.1: ()) : p(E) = 0;8p 2 C implies p(E) = 0; 8p 2 C , which1 i

implies E null.

(() : Consider f; g 2 L such that u(f(s)) = u(g(s)) = k on S=E and0

R R
k > u(f(s)) > u(g(s)) on E. min u ± fdp6= min u ± gdp if and only if p(E) > 0p2C p2Ci i

for some p 2 C . Thus p(E) > 0 for some p 2 C implies E not null. QEDi 1

For any E 2 NNE, Lemma 6.1 tells us that p(E) > 0 for some p 2 C . For any such1

E, consider f; g such that u(f(s)) = u(g(s)) = k on S=E and u(f(s)) > u(g(s)) > k on E.

For each C , if there exists p 2 C such that p(E) = 0 theni i
R R

min u ± fdp = min u ± gdp. Since B.1 requires that f Â g, there must be somep2C p2Ci i

i 2 f1; : : : ;Ng such that p(E) > 0, for all p 2 C .i

Uniqueness: that u is unique up to a positive a±ne transformation follows directly

from the vNM representation theorem (von Neumann and Morgenstern, 1947). If A.6 fails

27This lemma says that for I : V ! R, where V is the set of all §-measurable functions from S to the

positive reals, the following two conditions are equivalent:

Condition 1. I satis¯es:
¤ ¤(i) for all ® ¸ 0; ¯ ¸ 0; x 2 V : I(®x+ ¯1 ) = ®I(x) + ¯, where 1 is a function which takes on the

value 1 in all states.

(ii) x; y 2 V ) I(x+ y) ¸ I(x) + I(y).

(iii) If x ¸ y on S, then I(x) ¸ I(y).

Condition 2.

There exists a unique closed, convex set C of additive probabilities on §, such that
R

(iv) I(x) = min xdp, for all x 2 V .p2C

To apply this lemma to I we can simply rescale u so that u takes on only positive values and consider thei

restriction of I to V . Monotonicity, superadditivity, homogeneity, and C-independence ensure Condition 1i

is satis¯ed.
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then any closed, convex set C will do in combination with a constant u. Suppose A.61

holds. We adapt an argument of Gilboa-Schmeidler (1989) to our setting. Assume there
R

0 00 N 0
0exist C 6= C , non-empty, closed, and convex such that (min u ± fdp) , for some C ,p2C1 1 i=1 iiR

0 0 0 N 00
00i = 2; : : : ; N such that C ¶ C ¶ : : : ¶ C and (min u ± fdp) , for some C ,p2C1 2 N i=1 ii

00 00 00i = 2; : : : ; N such that C ¶ C ¶ : : : ¶ C represent º on L in the manner of the01 2 N

0 0 00theorem. Without loss of generality, assume there exists p 2 C =C . By a separation1 1

theorem [Dunford and Schwartz, 1957, V.2.10], there exists a 2 B such that
R R

0
00adp < min adp. Without loss of generality assume a = u ± f for some f 2 L . Letp2C 0
1 R

00 00 00
00y 2 Y be such that u(y) = min u ± fdp. Since C ¶ C ¶ : : : ¶ C , this implies thatp2C 1 2 N
1

¤ ¤f º y where y is the constant act which results in y. But
R R

¤
00 0u(y) = min u ± fdp > min u ± fdp, which implies y Â f , a contradiction. Thusp2C p2C
1 1

C is unique if and only if A.6 holds.1

R R
(2)) (1): We de¯ne f º g , min u ± fdp ¸ min u ± gdp. B.2 is theni p2C p2Ci i

easily veri¯ed (recall that C ¶ C ¶ : : : ¶ C ). The fact that p(E) > 0 for some E 2 §,1 2 N

p 2 C implies there is an i such that p(E) > 0;8p 2 C , means that all non-null events are1 i
R

Ngiven positive weight in some element of (min u ± fdp) ; 8f 2 L . Suppose thatp2C 0i i=1

u(f(s)) ¸ u(g(s));8s 2 S. Since f and g are §-measurable, u ± f ¡ u ± g is §-measurable

and thus fs : u(f(s))¡ u(g(s)) > 0g 2 §. f Â g if and only if fs : u(f(s))¡ u(g(s)) > 0g is

not null. Therefore B.1 holds. QED

Theorem 5 Let º be a binary relation on L . Then the following are equivalent,0

(1) º satis¯es A.1 - A.3, A.5 and B.1 for L = L .0

(2) There exists an a±ne function u : Y ! R and a non-empty, closed, convex set C

of ¯nitely additive probability measures on § satisfying [p(E) = 0 if and only if

8p 2 C;p(E) = 0] such that 8f; g 2 L ; f º g if and only if0

R R
min u ± fdp ¸ min u ± gdp.p2C p2C

Furthermore, the function u is unique up to a positive a±ne transformation and, if

and only if A.6 holds, the set C is unique.

Proof of Theorem 5: First note that B.1 implies A.4 (Monotonicity).

(1)) (2): A.1-A.5 imply B.2 with N = 1 by Theorem 1. B.1 and B.2 with N = 1

imply (2) by Theorem 6.
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Uniqueness: Follows by the same arguments (vNM theorem, separation theorem) as

uniqueness in Theorems 1 and 6.

(2)) (1): (2) implies º satis¯es A.1-A.5 by Theorem 1. (2) implies (by Lemma 6.1)

that for all p 2 C , [p(E) > 0; 8 non-null E 2 §] which implies B.1 (weak admissibility)

since fs : u(f(s))¡ u(g(s)) > 0g is §-measurable. QED
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