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Summary. This paper proposes a preference-based condition for stochastic in-
dependence of a randomizing device in a product state space. This condition is
applied to investigate some classes of preferences that allow for both independent
randomization and uncertainty or ambiguity aversion (a la Ellsberg). For exam-
ple, when imposed on Choquet Expected Utility (CEU) preferences in a Savage
framework displaying uncertainty aversion in the spirit of Schmeidler [27], it
results in a collapse to Expected Utility (EU). This shows that CEU preferences
that are uncertainty averse in the sense of Schmeidler should not be used in
settings where independent randomization is to be allowed. In contrast, Maxmin
EU with multiple priors preferences continue to allow for a very wide variety
of uncertainty averse preferences when stochastic independence is imposed. Ad-
ditionally, these points are used to reexamine some recent arguments against
preference for randomization with uncertainty averse preferences. In particular,
these arguments are shown to rely on preferences that do not treat randomization
as a stochastically independent event.
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1 Introduction

An example seminal to interest in uncertainty (or ambiguity) aversion is Ells-
berg’s [9] “two-color” problem. There is a “known urn” which contains 50 red
balls and 50 black balls, and an “unknown urn” which contains a mix of red and
black balls, totaling 100, about which no information is given. Ellsberg observed
(as did many afterwards, more carefully) that a substantial fraction of individuals
were indifferent between the colors in both urns, but preferred to bet on either
color in the “known urn” rather than the corresponding color in the “unknown
urn”. This violates not only expected utility, but probabilistically sophisticated
behavior more generally. One contemporary criticism of the displayed behavior
was put forward by Raiffa [23] who pointed out that flipping a coin to decide
which color to bet on in the unknown urn should be viewed as equivalent to bet-
ting on the “known” 50-50 urn. One can think of such preferences as displaying
a preference for randomization.

Jumping ahead to more recent work, there is a burgeoning literature attempt-
ing to model uncertainty (or ambiguity) aversion in decision makers using rep-
resentations with non-additive probabilities or sets of probabilities. Some of this
work (e.g. Lo [20], Klibanoff [18]) accepts this preference for mixture or ran-
domization as a facet of uncertainty aversion, while other work (e.g. Dow and
Werlang [6], Eichberger and Kelsey [8]) does not. This has led to several papers,
most directly Eichberger and Kelsey [7], but also Ghirardato [11] and Sarin and
Wakker [24], related to this difference. In particular, all three papers observe
that the choice of a “one-stage” or Savage model as opposed to a “two-stage”
or Anscombe-Aumann model can lead to different preferences when modeling
uncertainty aversion. In Eichberger and Kelsey [7] the authors set out to “show
that while individuals with non-additive beliefs may display a strict preference
for randomization in an Anscombe-Aumann framework they will not do so in a
Savage-style decision theory.”1

This paper was motivated in part by the intuition that the one-stage/two-stage
modeling distinction is largely a red herring, at least as it relates to preference
for randomization. In particular, while appreciating that there can be differences
between the frameworks, one goal of this paper is to relate these differences to
violations of stochastic independence and to point out that they have essentially
no role to play in the debate over preference for randomization in uncertainty
aversion. In making this point, the related finding of the restrictiveness of Choquet
expected utility preferences in allowing for randomizing devices is key.

An additional contribution of the paper is to provide preference based con-
ditions to describe a stochastically independent randomizing device in a non-
Bayesian environment. Section 2 sets out some preliminaries and notation. Sec-
tion 3 describes two frameworks in which a randomizing device can be modeled.
Section 4 provides the key preference conditions and contains the main results
on the restrictiveness of Choquet expected utility when stochastic independence

1 [7, Abstract].
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is required and the relative flexibility of Maxmin expected utility with multiple
priors. Section 5 concludes.

2 Preliminaries and notation

We will consider two representations of preferences, each of which generalizes
expected utility and allows for uncertainty aversion. The first model is Choquet
Expected Utility (CEU). CEU was axiomatized first in an Anscombe-Aumann
framework by Schmeidler [27], and then in a Savage framework by Gilboa [14]
and Sarin and Wakker [24]. In a Savage framework, but assuming a rich set of
consequences and a finite state space, Wakker [29], Nakamura [21], and Chew and
Karni [5] have axiomatized CEU. The second model is Maxmin Expected Utility
with non-unique prior (MMEU). MMEU was first axiomatized in an Anscombe-
Aumann framework by Gilboa and Schmeidler [15]. In a Savage framework, but
assuming a rich set of consequences and allowing a finite or infinite state space,
MMEU has been axiomatized by Casadesus-Masanell, Klibanoff, and Ozdenoren
[4].

Consider a finite set ofstates of the world S . Let X be a set of consequences.
An act f is a function fromS to X . Denote the set of acts byF . A function
v : 2S → [0, 1] is a capacity or non-additive probability if it satisfies,

(i) v(∅) = 0,
(ii) v(S ) = 1, and

(iii) A ⊆ B implies v(A) ≤ v(B ).
It is convex if, in addition,

(iv) For all A, B ⊆ S , v(A) + v(B ) ≤ v(A ∪ B ) + v(A ∩ B ).

Now define the (finite)Choquet integral of a real-valued functiona to be:
∫

adv =
α1v(E1) +Σn

i=2αi [v(
⋃i

j=1 Ej )− v(
⋃i−1

j=1 Ej )], whereαi is thei th largest value that
a takes on, andEi = a−1(αi ).

Let � be a binary relation on acts,F , that represents (weak) preferences. A
decision maker is said to have CEU preferences if there exists a utility function
u : X → 	 and a non-additive probabilityv : 2S → 	 such that, for allf , g ∈ F ,
f � g if and only if

∫
u ◦ fdv ≥ ∫

u ◦ gdv. CEU preferences are said to display
uncertainty aversion if v is convex.2 A decision maker is said to have MMEU

2 This characterization of uncertainty aversion for the CEU model stems from an axiom of Schmei-
dler’s [27] of the same name in an Anscombe-Aumann framework. Casadesus-Masanell, Klibanoff,
and Ozdenoren ([4], [3]) develop analogous axioms for a Savage-style framework. This notion of
uncertainty aversion has been by far the most common in the literature. However, recently, Epstein
[10] and Ghirardato and Marinacci [13] have proposed alternative notions of uncertainty aversion.
In particular, for the case of CEU, Ghirardato and Marinacci’s characterization requires the capacity
v to be balanced. All convex capacities are balanced, but the converse is not true. Epstein’s notion
neither implies nor is implied by convexity ofv. However the reason for this is that he uses a set of
preferences larger than expected utility as an uncertainty neutral benchmark. If (as is the philosophy
in this paper and in Ghirardato and Marinacci) expected utility is the uncertainty neutral benchmark,
then Epstein’s notion also requiresv to be balanced. The reason these notions are weaker than
Schmeidler’s is that they are based solely on preference comparisons for which at least one of the
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preferences if there exists a utility functionu : X → 	 and a non-empty, closed
and convex setB of additive probability measures onS such that, for allf , g ∈ F ,
f � g if and only if minp∈B

∫
u◦fdp ≥ minp∈B

∫
u◦gdp. All MMEU preferences

display uncertainty aversion.3 Finally, note that the set of MMEU preferences
strictly contains the set of CEU preferences with convex capacities.

3 Modeling a randomizing device

Corresponding to the two standard frameworks for modeling uncertainty (Ans-
combe-Aumann and Savage) there are at least two alternative ways to model a
randomizing device. In an Anscombe-Aumann setting, a randomizing device is
incorporated in the structure of the consequence space. Specifically the “conse-
quences”X , are often taken to be the set of all simple probability distributions
over some more primitive set of outcomes,Z . In this set-up, a randomization
over two actsf andg with probabilitiesp and 1− p respectively is modeled by
an acth whereh(s)(z ) = pf (s)(z ) + (1 − p)g(s)(z ), for all s ∈ S , z ∈ Z . Ob-
serve thath is, indeed, a well-defined act because the set of simple probability
distributions is closed under mixture.

Returning to the “unknown urn” of the introduction, Table 1 shows the three
acts (a) “bet on red,” (b) “bet on black,” and (c) “randomize 50-50 over betting
on red or on black” as modeled in this setting.

Table 1. Unknown urn with randomization in the consequence space (Anscombe-Aumann)

R(ed) B(lack)

a $100 $0

b $0 $100

c 1
2$100⊕ 1

2$0 1
2$100⊕ 1

2$0

Alternatively, consider a Savage-style setting with a finite state space (e.g.,
Wakker [28], Nakamura [21], or Gul [16]). Here a convex combination of two
elements of the consequence spaceX need not be an element ofX (and need not
even be defined). Therefore, to model a randomization, we may instead expand
the original state space,S , by forming the cross product ofS with the possible
outcomes (or “states”) of the randomizing device. For example, Table 2 shows
the acts (a) “bet on red,” (b) “bet on black,” (c) “bet on red if heads, black if
tails,” and (d) “bet on black if heads, red if tails” in the case of the unknown urn
with a coin used to randomize.

two acts being compared is “unambiguous.” In contrast, Schmeidler’s approach relies, in addition,
on comparisons between certain pairs of “ambiguous” acts that are implicitly ranked as more or
less ambiguous by his axiom (or its Savage counterpart). See Casadesus-Masanell, Klibanoff, and
Ozdenoren [4] for a more detailed discussion along these lines.

3 This is true using the approach of either Schmeidler [27], Casadesus-Masanell, Klibanoff, and
Ozdenoren ([4], [3]), or Ghirardato and Marinacci [13]. Under the assumption that preferences over
“unambiguous” acts are expected utility, it is true in Epstein’s [10] approach as well.
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Table 2. Unknown urn with randomization in the state space only (Savage)

R(ed), H(eads) B(lack), H(eads) R(ed), T(ails) B(lack), T(ails)

a $100 $0 $100 $0

b $0 $100 $0 $100

c $100 $0 $0 $100

d $0 $100 $100 $0

In comparing the two models, observe that the Anscombe-Aumann setting
builds in several key properties that a randomizing device should satisfy while the
Savage setting does not. In particular, the probabilities attached to the outcomes
of the randomizing device should be unambiguous and the device should be
stochastically independent from the (rest of the) state space. Arguably these two
properties capture the essence of what is meant by a randomizing device. Both
properties are automatically satisfied in an Anscombe-Aumann setting. In a Sav-
age setting, as we will see below, these properties require additional restrictions
on preferences.4

Several recent papers (including Eichberger and Kelsey [7], Ghirardato [11],
and Sarin and Wakker [24]), have noted that CEU need not give identical results
in the two frameworks. Specifically, they suggest that the choice of a one-stage
(Savage) or two-stage (Anscombe-Aumann) model can lead to different behavior.
To see this in the unknown urn example, consider the case where the decision
maker’s marginal capacity over the colors isv(R) = v(B ) = 1

3. In the Anscombe-
Aumann setting this is enough to pin down preferences asc  a ∼ b, (i.e., the
Raiffa preferences or preference for randomization).

In the Savage setting, consider the capacity given by

v(R × {H , T}) = v(B × {H , T}) =
1
3
,

v({R, B} × H ) = v({R, B} × T ) =
1
2
,

v(R × H ) = v(R × T ) = v(B × H ) = v(B × T ) =
1
6
,

v((R × H ) ∪ (B × T )) = v((R × T ) ∪ (B × H )) =
1
3
,

v(any 3 states) =
2
3
.

This capacity yields the preferencesa ∼ b ∼ c ∼ d , and thus does not
provide a preference for randomization as in the Anscombe-Aumann setting.
Why can this occur despite the fact that the marginals are identical in the two
cases and the product capacity is equal to the product of the marginals on all

4 A randomizing devicecould be modeled in an Anscombe-Aumann setting by expanding the state
space in exactly the same way as illustrated for the Savage setting. In this case, the same additional
restrictions on preferences as in the latter setting would be required to ensure that the randomizing
device was unambiguous and stochastically independent.
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rectangles? Mathematically, as Ghirardato [11] explains, the source is a failure
of the usual Fubini Theorem to hold for Choquet integrals. Intuitively, however,
it is not clear what is going “wrong” in the example.

To gain some insight, it is useful to examine the weights applied to each state
when evaluating the randomized acts using the Choquet integral. For example,
as Table 3 shows, “Bet on Red if Heads, Black if Tails” is evaluated usingnon-
product weights. The fact that such non-product weights can be applied suggests
that the CEU preferences with the capacity above reflect ambiguity not only
about the color of the ball drawn from the urn but also about the correlation
between the randomizing device and the color of the ball. This can also be
seen by noting thatv({R, B} × H ) > v((R × H ) ∪ (B × T )), in contrast to
the equality one might expect if H and T are really produced by a symmetric,
independent randomization. While such ambiguity is certainly possible, it runs
directly counter to the stochastic independence we would expect of a randomizing
device. In the next section, therefore, I propose conditions on preferences that
ensure this independence.

Table 3. Non-product weights for randomized act

R, H B, H R, T B, T

c $100 $0 $0 $100

weights 1
6

1
3

1
3

1
6

4 Stochastically independent randomization and preferences

Here I propose conditions on preferences that are designed to reflect two prop-
erties of a randomizing device: unambiguous probabilities and stochastic inde-
pendence. These two properties are essential to what is meant by a randomizing
device.

Formally, consider preferences,�, over acts,F : S → X , on a finite product
state space,S = S1 × S2 × . . . × SN . Let S−i denote the product of all ordinates
other thani . Denote byFSi the subset of acts for which outcomes are determined
entirely by thei th ordinate. This means thatf ∈ FSi implies f (si , s−i ) = f (si , ŝ−i )
for all s−i , ŝ−i ∈ S−i and si ∈ Si . For f , g ∈ F and A ⊆ S , denote byfAg the
act which equalsf (s) for s ∈ A and equalsg(s) for s /∈ A. We now state some
useful definitions concerning preferences.

Definition 1 � satisfies solvability on Si if, for f ∈ FSi , x , y , z ∈ X and Ai ⊆ Si ,
xAi ×S−i z � f � yAi ×S−i z implies f ∼ wAi ×S−i z for some w ∈ X .

Solvability should be seen as a joint richness condition on� and X . It is
satisfied in all axiomatizations of which I am aware of EU, CEU, or MMEU
over Savage acts on a finite state-space. For example, Nakamura [21] imposes
solvability directly, while Wakker ([28], [29]), Gul [16] and Casadesus-Masanell,



Stochastically independent randomization and uncertainty aversion 611

Klibanoff, and Ozdenoren ([4], [3]) ensure it is satisfied through topological
assumptions onX and continuity assumptions on�.

Definition 2 � satisfies expected utility (EU) on Si if � restricted to FSi can be
represented by expected utility where the utility function is unique up to a positive
affine transformation and the probability measure on the set of all subsets of Si

is unique.

While the definition is intentionally stated somewhat flexibly, it could easily
be made more primitive/rigorous by assuming that preferences restricted toFSi

satisfy the axioms in one of the existing axiomatizations of expected utility over
Savage acts on a finite state space such as Wakker [28], Nakamura [21], Gul
[16], or Chew and Karni [5]. This definition is intended to capture the fact that
the decision-maker associates a unique probability distribution withSi and uses
that distribution to weight outcomes. Note that the uniqueness requirement on
the probability measure entails the existence of consequencesx , y ∈ X such
that x  y (where preferences overX are derived from preferences over the
associated constant-consequence acts in the usual way). Furthermore, any of the
axiomatizations cited will imply solvability onSi as well.

Definition 3 si ∈ Si is null if fsi ×S−i h ∼ gsi ×S−i h for all f , g, h ∈ FSi .

Note that given EU, a state is null if and only if it is assigned zero probability.

Definition 4 Si is stochastically independent of S−i if, for all ŝ−i ∈ S−i , f ∈ FSi

and w ∈ X ,
f ∼ w (1)

implies,
fSi ×ŝ−i w ∼ w. (2)

While this is formulated as a general definition of stochastic independence of
an ordinate, this paper will focus only on independence of a randomizing device.
For this purpose, the main definition is the following:

Definition 5 Si is a stochastically independent randomizing device (SIRD) if
Si is stochastically independent and contains at least two non-null states, and �
satisfies solvability and EU on Si .

This condition is designed to differentiate between EU ordinates that are
stochastically independent from the rest of the state space and those that are
dependent, while still allowing for possible uncertainty aversion on other ordi-
nates. A useful way to understand this definition is as follows: There are several
potential reasons why (1) could hold while (2) is violated. First, it might be that
uncertainty aversion overSi leads a different marginal probability measure over
Si to be used when evaluating the acts in (2) than when evaluating acts in (1).
This is ruled out by the assumption that preferences satisfy EU onSi . Second,
it might be that the marginal overSi conditional on ˆs−i is different than the un-
conditional marginal overSi due to some stochastic dependence (or uncertainty
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about stochastic independence) betweenSi andS−i . Since we want to model an
independent randomizing device, it is proper that the SIRD condition does not
allow for such dependence.

Also supporting the idea that this definition reflects stochastic independence
is the observation that if preferences are EU and non-trivial, thenSi an SIRD
is equivalent to requiring that the representing probability measure be a product
measure onSi × S−i . Note also that all of the results that follow will also hold
true if we additionally impose thatS−i is stochastically independent ofSi (by
switching the role ofi and −i in the definition of stochastically independent).
Thus this concept shares the symmetry that a notion of stochastic independence
should intuitively possess.

In the next two sections we develop the implications of SIRD for some
common classes of uncertainty averse preferences.

4.1 MMEU and randomizing devices

This section develops the implications for MMEU preferences of one ordinate
of the state space being a SIRD. MMEU will be found to be flexible enough to
easily incorporate both a SIRD and uncertainty aversion.

Theorem 1 Assume � are MMEU preferences satisfying solvability for some Si

that contains at least two non-null states. Then the following are equivalent:

(i) Si is a SIRD;
(ii) There exists a probability measure on 2Si , p̂, such that all probability mea-

sures, p, in the closed, convex set of measures, B, of the MMEU representa-
tion satisfy p(s) = p̂(si )p(Si × s−i ), for all s ∈ S .

Proof. ((i ) ⇒ (ii )) We first show that allp ∈ B must have the same marginal on
Si . Fix outcomesx , y ∈ X such thatx  y . EU onSi implies that� restricted to
FSi may be represented by

∑
si ∈Si

u(f (si ))p̂(si ) wherep̂ is the unique representing
probability measure on 2Si , andu is unique up to a positive affine transformation.
Using the MMEU representation of� yields a utility function ˜u and a set of
measuresB such that, for allf , g ∈ FSi ,

min
p∈B

∑
si ∈Si

ũ(f (si ))p(si × S−i ) ≥ min
p∈B

∑
si ∈Si

ũ(g(si ))p(si × S−i )

⇐⇒∑
si ∈Si

u(f (si ))p̂(si ) ≥
∑
si ∈Si

u(g(si ))p̂(si ).

Without loss of generality, setu(x ) = ũ(x ) = 1 andu(y) = ũ(y) = 0. Using the
fact thatSi satisfies EU and solvability, combined with the MMEU representation,
allows one to apply Nakamura ([21], Lemma 3) and conclude that, given the
normalization, the two utility functions must be the same (i.e., ˜u(x ) = u(x ) for
all x ∈ X ). Therefore,
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min
p∈B

∑
si ∈Si

u(f (si ))p(si × S−i ) ≥ min
p∈B

∑
si ∈Si

u(g(si ))p(si × S−i )

⇐⇒∑
si ∈Si

u(f (si ))p̂(si ) ≥
∑
si ∈Si

u(g(si ))p̂(si ).

Suppose there is somep′ ∈ B such thatp′(si ×S−i ) �= p̂(si ) for somesi ∈ Si .
Without loss of generality, assume that ˆp(s ′

i ) > p′(s ′
i × S−i ) for an s ′

i ∈ Si .
Consider the actf = xs′

i ×S−i y . Solvability guarantees that there exists az ∈ X
such thatz ∼ f . Thus,

u(z ) = min
p∈B

∑
si ∈Si

u(f (si ))p(si × S−i )

≤ p′(s ′
i × S−i )

< p̂(s ′
i )

=
∑
si ∈Si

u(f (si ))p̂(si )

= u(z ),

a contradiction. Therefore, it must be thatp ∈ B implies p(si × S−i ) = p̂(si ) for
all si ∈ Si . In other words, all the marginals onSi agree.

Now we show that eachp ∈ B is a product measure onSi × S−i . This part
of the argument proceeds by contradiction. Suppose thatp ∈ B does not imply
that p(s) = p̂(si )p(Si × s−i ), for all s ∈ S . Then there must exist ap0 ∈ B and a
ŝ ∈ S such that

p0(ŝ) < p̂(ŝi )p0(Si × ŝ−i ). (3)

According to p0, the probability of ˆsi and ŝ−i occuring together is less than
the product of the respective marginal probabilities. We now show that this is
inconsistent with the assumption thatSi is stochastically independent. Consider
the actf ∈ FSi such thatf = xŝi ×S−i y . Sincex � f � y , solvability onSi implies
there exists aw ∈ X such thatw ∼ f . Observe that our normalization ofu and
the preference representation implyu(w) = p̂(ŝi )u(x ) + (1− p̂(ŝi ))u(y) = p̂(ŝi ).

Define the acth = fSi ×ŝ−i w. By SIRD, f ∼ w implies h ∼ w. We have the
following contradiction:

u(w) = min
p∈B

∑
s∈S

u(h(s))p(s)

≤
∑
s∈S

u(h(s))p0(s)

=
∑

s∈Si ×ŝ−i

u(f (s))p0(s) +
∑

s /∈Si ×ŝ−i

u(w)p0(s)

= p0(ŝ) + u(w)(1 − p0(Si × ŝ−i ))
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= u(w) + (p0(ŝ) − p̂(ŝi )p0(Si × ŝ−i ))

< u(w).

(Note that the last inequality follows from (3).) Therefore eachp ∈ B must
in fact be a product measure onSi × S−i and (ii ) is proved.

((ii ) ⇒ (i )) That (ii ) implies EU is satisfied onSi is clear because ˆp is the
unique representing probability measure. To see that (1) implies (2) is satisfied
on Si , consider anyf ∈ FSi andw ∈ X such thatf ∼ w. Fix an ŝ−i ∈ S−i and
defineh = fSi ×ŝ−i w. By (ii ),

min
p∈B

∑
s∈S

u(h(s))p(s) = min
p∈B

∑
s−i ∈S−i

p(Si × s−i )

[∑
si ∈Si

u(h(si , s−i ))p̂(si )

]

and,

min
p∈B

∑
s∈S

u(w)p(s) = min
p∈B

∑
s−i ∈S−i

p(Si × s−i )

[∑
si ∈Si

u(w)p̂(si )

]
.

Sincef ∼ w,∑
si ∈Si

u(h(si , s−i ))p̂(si ) =
∑
si ∈Si

u(w)p̂(si ) for all s−i ∈ Si .

Therefore the two minimization problems are the same andh ∼ w. ��
Thus, we get quite a natural representation in the MMEU framework:

– All the marginals on the randomizing device agree, reflecting the lack of
ambiguity about the device.

– All the measures inB are product measures onSi × S−i , reflecting the
independence of the randomizing device.

Remark 1. It is not hard to see from the theorem that, in the Ellsberg “un-
known urn” example, if “bet on red” is indifferent to “bet on black” thenany
MMEU preferences that are not EU and for which the coin is a SIRD lead to
the “Raiffa” preference for randomization. As a concrete example, consider the
MMEU preferences with set of measures

{p | p(R × H ) = p(R × T ) =
1
2

x , p(B × H ) = p(B × T )

=
1
2

(1 − x ),
1
3

≤ x ≤ 2
3

}
.

By the theorem, these preferences make{H , T} a SIRD and it is easy to verify
that they exhibit the “Raiffa” preference for randomization.

Remark 2. The set of product measures that emerges from the MMEU character-
ization is consistent with a notion of independent product of two sets of measures
proposed by Gilboa and Schmeidler [15]. Specifically, the setB is trivially the
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independent product (in their sense) of the (unique) marginal onSi and the set
of marginals onS−i used in representing preferences overFS−i . It is worth not-
ing that no purely preference based justification for their broader notion (when
neither of the sets is a singleton) is known.

4.2 CEU, uncertainty aversion, and randomizing devices

This section examines uncertainty averse CEU preferences on a product state
space where one of the ordinates is assumed to be a candidate randomizing de-
vice. In stark contrast to the results of the previous section, this class is shown
to include only expected utility (EU) preferences. This suggests that CEU pref-
erences with a convex capacity are incapable of modeling both a randomizing
device and uncertainty aversion simultaneously.

Theorem 2 If CEU preferences, �, display uncertainty aversion and, for some
i , Si is a SIRD then � must be EU preferences.

Proof. Recall that the state space isS = S1 × S2 × . . . × SN . Without loss of
generality, letS1 be a SIRD. Uncertainty aversion implies that the capacityv in
the CEU representation is convex. Thecore of a capacityv is the set of prob-
ability measures that pointwise dominatev (i.e., {p | p(A) ≥ v(A), for all A ⊆
S ; p a probability measure.}) Any CEU preferences with a convexv are also
MMEU preferences with the set of measures,B , equal to the core ofv (Schmei-
dler [26]). It follows thatv(A) = minp∈core(v) p(A) for all A ⊆ S (i.e., v is the
lower envelope of its core). Since preferences are MMEU andS1 is a SIRD,
Theorem 1 implies that there exists a probability measure on 2S1, p̂, such that all
probability measures,p, in the core ofv satisfyp(s) = p̂(s1)p(S1 × s−1), for all
s ∈ S . Thus the core ofv must be of a very special form. The remainder of the
proof is devoted to showing that convexity ofv and a core of this form are only
compatible when preferences are EU.

First I derive a key equality implied by convexity together with the form
of the core. To this end, fix anys1 ∈ S1 and A−1, B−1 ⊆ S−1. Denote the
complement ofs−1 relative to S−1 by sc

−1 and the complement ofs1 relative
to S1 by sc

1. Define the setsC = s1 × S−1 and D = (s1 × A−1) ∪ (sc
1 × B−1).

Convexity ofv implies that

v(C ) + v(D) ≤ v(C ∪ D) + v(C ∩ D).

Using the structure of the core ofv and the fact thatv is the lower envelope of
its core yields the opposite inequality:

v(C ) + v(D) = p̂(s1) + min
p∈core(v)

[
p̂(s1)p(S1 × A−1) + (1− p̂(s1))p(S1 × B−1)

]
≥ p̂(s1) + p̂(s1) min

p∈core(v)
p(S1 × A−1) + (1− p̂(s1)) min

p∈core(v)
p(S1 × B−1)

= v(C ∪ D) + v(C ∩ D).
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Combining the two inequalities, it must be that, for alls1 ∈ S1 and all
A−1, B−1 ∈ S−1,

min
p∈core(v)

[
p̂(s1)p(S1 × A−1) + (1− p̂(s1))p(S1 × B−1)

]
(4)

= p̂(s1) min
p∈core(v)

p(S1 × A−1) + (1− p̂(s1)) min
p∈core(v)

p(S1 × B−1).

Now, using equation (4), an argument by contradiction shows that the core of
v cannot contain more than one measure. Suppose core(v) contains more than one
probability measure. Then there exists ans ∈ S such that arg minp∈core(v) p(s) ⊂
core(v). Since all the measures in the core are of the formp(s) = p̂(s1)p(S1 ×
s−1), it must be that arg minp∈core(v) p(S1 × s−1) = arg minp∈core(v) p(s). Since
p(S1 × s−1) = 1− p(S1 × sc

−1) for any p ∈ core(v),

arg min
p∈core(v)

p(S1 × s−1) ∩ arg min
p∈core(v)

p(S1 × sc
−1) = ∅.

Thus, for any non-nulls1 ∈ S1,

min
p∈core(v)

[
p̂(s1)p(S1 × s−1) + (1− p̂(s1))p(S1 × sc

−1)
]

> p̂(s1) min
p∈core(v)

p(S1 × s−1) + (1− p̂(s1)) min
p∈core(v)

p(S1 × sc
−1),

in violation of equation (4).
Therefore, the core ofv must be a singleton and, sincev is the lower envelope

of its core,v must be a probability measure and preferences are EU. ��
Remark 3. This theorem shows that CEU with a convex capacity is avery re-
strictive class of preferences in a Savage-like setting. In particular a decision
maker with such preferences must be either uncertainty neutral (i.e., an expected
utility maximizer) or must not view any ordinate of the state space as a stochas-
tically independent randomizing device. Note that this fact is disguised in an
Anscombe-Aumann setting because there the randomizing device is built into
the outcome space and thus automatically separated from the uncertainty over
the rest of the world.

Remark 4. The theorem allows us to better understand the result of Eichberger
and Kelsey [7], who find that convexity ofv, a symmetric additive marginal onS1,
and a requirement that relabeling the states inS1 not affect preference, together
imply no preference for randomization. The result shown here makes clear that
the lack of preference for randomization in their paper comes from the fact
that decision makers having preferences in this class (withv somewhere strictly
convex) cannot act as if the randomizing device is stochastically independent
in the sense of SIRD. In other words, the uncertainty averse preferences they
consider rule outa priori the possibility of a stochastically independent device
and thus of true randomization. In this light, their result arises because all of the
non-EU preferences they considerforce a range of possible correlations (which
are then viewed pessimistically since they are another source of uncertainty)
between the device and the rest of the state space. Once they admit preferences
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like MMEU, which, as shown above, can reflect a proper randomizing device (a
SIRD) as well as uncertainty aversion, preference for randomization reappears.

Remark 5. If convexity of v is replaced by the weaker requirement ofv balanced
(or, equivalently, the core ofv non-empty), as advocated by Ghirardato and
Marinacci [13], preferences do not collapse to EU. For example, if the capacity
used in section 3 is modified by settingv((R ×H )∪ (B ×T )) = v((R ×T )∪ (B ×
H )) = 1

2 rather than1
3, the resulting preferences make{H , T} a SIRD and are

not EU. This capacity has a non-empty core, but is not convex. Note that these
preferences still display a preference for randomization. To the extent that one is
willing to accept this weaker characterization of uncertainty aversion and wants
to use CEU preferences in a Savage-like setting, these findings suggest that the
class of capacities with non-empty cores that are not convex may be of particular
interest.

4.3 Further discussion of the SIRD condition

The key to these results is the definition of an SIRD, in particular the assumption
that (1) implies (2). I argued above that given preferences satisfying EU onSi

and given the restriction of the acts in (1) to beSi -measurable, it is quite natural
to accept (1) implies (2) as reflecting the stochastic independence ofSi from the
rest of the state space.

It is worth elaborating a bit on why SIRD is appropriate for a randomizing
device. Since stochastic independence does concernindependence, and uncer-
tainty aversion fundamentally involves violations of the independence axiom/sure
thing principle of subjective expected utility theory, it is fair to ask whether im-
posing SIRD unnecessarily restricts uncertainty aversion. Does SIRD confound
stochastic independence with the violations of independence inherent in uncer-
tainty aversion? Theorem 1 answers this question in the negative and suggests
that uncertainty aversion is not restricted at all by imposing SIRD. Specifically,
any MMEU preferences5 over FS−i are compatible withSi being a SIRD. No-
tice that it is exactly and only uncertainty aversion overS−i that is unrestricted.
This is appropriate, since any other uncertainty aversion must be either overSi

(ruled out by EU) or over the correlation betweenSi andS−i (incompatible with
the presumption of stochastic independence). There simply is nothing else to be
uncertain about.

It seems that SIRD strikes a reasonable balance – enforcing stochastic inde-
pendence of a randomizing device while allowing uncertainty aversion on the
other ordinates of the state space.

5 Conclusion

This paper has provided preference-based conditions that a randomizing device
should satisfy. When these conditions are applied to the class of CEU preferences

5 Recall that this includes any CEU preferences with a convex capacity as well.
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with convex capacities in a product state-space model a collapse to expected util-
ity results. This does not occur with MMEU preferences in the same setting. In
particular, it appears that some previous results on the absence of preference for
randomization were driven not by some deep difference in Anscombe-Aumann
and Savage style models as they relate to uncertainty aversion, but by the restric-
tiveness, as it relates to stochastic independence, of the CEU functional form
with a convex capacity which is exacerbated in Savage style models. When
stochastic independence is properly accounted for, preference for randomization
by uncertainty averse decision makers arises in both one- and two- stage models.

To my knowledge, Blume, Brandenburger and Dekel [2] are the only others to
have developed a preference axiom for stochastic independence. Their work is in
the context of preferences satisfying the decision-theoretic independence axiom.
This leads their condition to be unsatisfactory in the setting of this paper. In
particular, their axiom asks more of conditional preferences than is reasonable in
the presence of uncertainty aversion and does not need to address the consistency
of conditional with unconditional preferences.

There have been several functional (i.e., non-preference axiom based) notions
of stochastically independent product that have been proposed for the MMEU
or CEU models. For the case where one marginal is additive in the MMEU
model, as was mentioned following Theorem 1, the results of the approach taken
here agree with the notion proposed in Gilboa and Schmeidler [15]. Approaches
specific to the CEU model have been suggested by Ghirardato [11] and Hendon,
Jacobsen, Sloth, and Tranaes [17]. If one marginal is additive and the product
capacity is convex (as in Theorem 2), these approaches are weaker than the one
advocated here. Specifically, preferences that are independent in the sense of
Ghirardato [11] or Hendonet al. [17] may violate SIRD.

Some other recent work on shortcomings of the CEU model in capturing
probabilistic features is Nehring [22]. An analysis relating separability of events
in the CEU model to expected utility is given in Sarin and Wakker [25]. In the
context of inequality measurement under uncertainty, Ben-Porath, Gilboa and
Schmeidler [1] advocate MMEU type functionals and show that they are closed
under iterated application while CEU functionals are not. Differences between
CEU and MMEU are also discussed in Klibanoff [19] and Ghirardato, Klibanoff
and Marinacci [12].

Any discussion of behavior, such as preference for randomization, that departs
from what is considered standard raises some natural questions. First, descrip-
tively, do actual decision makers behave in this way? Unfortunately, there are
no studies that I am aware of that examine this issue. To do so properly would
require: (1) taking some device like a coin and verifying that the decision maker
viewed it as a SIRD; and (2) making it explicit to the decision maker that it is
possible to choose acts that depend, not only on the main feature of interest (e.g.,
the color of ball drawn) but simultaneously on the realization of the coin flip.
It is worth noting that many standard Ellsberg-style experiments do not offer an
opportunity to examine preference for randomization because they tend to ask
only questions such as “Do you prefer betting on red (black) in urn I or red
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(black) in urn II?” rather than allowing a fuller range of choices that provide a
role for randomization.

Second, normatively, is the preference for randomization described here “rea-
sonable” or “rational” behavior or is it normatively unacceptable? In examples
where uncertainty averse behavior seems reasonable, I find preference for ran-
domization to be just as reasonable. Randomization acts to limit the negative
influence of uncertainty on expected payoffs. In a nutshell, if one is afraid that
the distribution over colors will be an unfavorable one, if one does not suffer this
fear regarding the outcome of a coin flip, and if one is sure that the realization of
the coin is independent, then the fact that any joint distribution must respect this
independence limits the extent to which acts that pay based on the coin as well as
the color (“randomizations”) can be hurt by uncertainty over the colors. This pa-
per has shown that to reject this argument, one must either (1) reject uncertainty
aversion as defined here or (2) reject the possibility of committing to acts that are
contingent on a SIRD (i.e., reject the static, Savage-like model of independent
randomization). To argue the former, as in Raiffa [23], one may invoke reasoning
based on the decision-theoretic independence axiom/sure thing principle to reject
Ellsberg-type behavior as irrational. However, at the very least, the normative
force of the independence axiom/sure-thing principle is a topic on which there
are a wide range of opinions. Arguments relying on an inability to commit to
a randomized action bring in an explicit dynamic component that is beyond the
scope of this paper to fully address. Such arguments are not, in my view, partic-
ularly satisfying since they leave open the question of why such acts would not
be introduced, by third-parties if necessary, given that the decision-maker desires
them.

Finally, it is important to emphasize that, although the language of this pa-
per has been in terms of independent randomization, fundamentally a SIRD is
simply an ordinate of a product state space over which preferences are expected
utility and which is viewed as stochastically independent of the rest of the state
space. In many situations where an individual faces a number of uncertainties,
it may be useful to be able to assume that the individual is expected utility on
some dimensions but uncertainty averse on others, and that these facets of the
uncertainty are stochastically independent of others. In this regard, Theorem 2
has shown that CEU with a convex capacity is not an appropriate class of prefer-
ences, while, by Theorem 1, MMEU preferences are capable of reflecting these
features.
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