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1. Introduction

We describe and provide axiomatic foundations for a subjective version of the recursive expected
utility model. In a seminal paper, Kreps and Porteus [12] provide an axiomatic analysis of prefer-
ences in a dynamic framework that delivers recursive expected utility with exogenously speci�ed
probabilities. The Kreps-Porteus framework has been tremendously in�uential in the exploration
of recursive preference models and it or its extensions have been successfully applied to �nance,
macroeconomics, game theory and behavioral economics1 . Recursive expected utility allows for
a number of features not present in the standard discounted expected utility model including
discount factors that may vary with payo¤s, the separation of intertemporal substitution from
intratemporal risk aversion, and preferences for the timing of the resolution of uncertainty. It
does all this while retaining tractability, especially the ability to use dynamic programming and
optimization.
Extending recursive expected utility to subjective domains is important for a number of rea-

sons. First, issues of learning, updating beliefs and information acquisition cannot be e¤ectively
addressed in a solely objective framework. Second, many applications and real-world problems
do not come with probabilities pre-speci�ed. Moreover, in atemporal models of decision-making
under risk, the importance of providing foundations for models with subjective beliefs has been
well-recognized. For example, subjective analogues to the objective probability expected utility
foundations of von Neumann and Morgenstern were provided by (among others) Savage [15] and
Anscombe and Aumann [1].
The main body of the paper is organized as follows. In Section 2.1 we develop an appropriate

space of objects of choice: the space of temporal acts. In the Kreps-Porteus framework, pref-
erences are de�ned over objects called temporal lotteries that are essentially probability trees.
Risk is modelled through exogenously speci�ed objective probabilities. Our temporal acts gen-
eralize temporal lotteries by introducing a state space and temporal resolution of uncertainty
about the state in addition to the temporal risk structure of Kreps-Porteus. In section 2.2, we
formally de�ne a subjective recursive expected utility (SREU) representation of preferences over
temporal acts. In section 3, we lay out the set of preference axioms that, in section 4.1, we show
characterizes SREU for subsets of temporal acts restricted to a given �ltration specifying how
information is revealed over time. In addition to standard weak order and continuity axioms, we
introduce four axioms: a temporal sure-thing principle, a temporal substitution axiom, and two
axioms which together yield state independence of preferences at each time. In section 4.2, we
give examples in which there is more than one �ltration, and show that without further assump-
tions, direct information e¤ects may interact with preference for the timing of the resolution of
uncertainty. Such interaction is not allowed by overall (i.e., cross-�ltration) SREU preferences.
This motivates two additional axioms that, in section 4.3, we show are necessary and su¢ cient to
extend these within �ltration representations to a single SREU representation across �ltrations
(and thus covering the whole domain of temporal acts). The �rst of these axioms says that how
information is revealed does not matter if the prize received does not depend on the state of
the world. This axiom added to the earlier ones characterizes an SREU representation across
�ltrations where only the prior distribution on the state space may vary with the �ltration. The
second axiom requires consistency across �ltrations in the way that bets on one event conditional

1 To name just a few see Dumas, Uppal and Wang [5], Du¢ e, Schroder and Skiadas [4], Epstein and
Zin [8], Chew and Epstein [3], Epstein and Zin [7], Caplin and Leahy [2], Grant, Kajii and Polak [9] .
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on another are evaluated relative to lotteries. With this �nal axiom added to the others, full
SREU obtains. The prior distribution no longer may vary with the �ltration. Section 5 discusses
related literature, including previous foundations for subjective recursive representations devel-
oped by Skiadas [18], Wang [19] and Hayashi [10]. Proofs and some mathematical descriptions
are contained in an Appendix.

2. The Model

2.1. The objects of choice

In this section we present a model where the objects of choice are temporal acts �acts that encode
an explicit timing structure for the resolution of uncertainty. We do this in an Anscombe-Aumann
(lottery acts) framework, thus acts pay o¤ in terms of lotteries. Speci�cally, our temporal acts are
a generalization of Anscombe-Aumann style acts in the same sense that Kreps-Porteus temporal
lotteries are a generalization of standard lotteries. In the following, for an arbitrary set X we
denote the set of all lotteries with �nite support on X by � (X) : For a lottery l 2 � (X) ;
we denote the probability that l assigns to outcome x 2 X by l (x) : A lottery that assigns
probability pi to outcome xi 2 X with

Pn
i=1 pi = 1 may be written (x1; p1; :::;xn; pn) :

The state space that represents all subjective uncertainty is denoted by a �nite set 
: Let F
be an algebra on 
: Events in this formulation are elements of F . Suppose time is indexed by
t 2 f0; : : : ; Tg : Let Zt be the set of possible time t prizes. We assume that each Zt is a compact
Polish (i.e., complete separable metric) space.
Let I = fFI;0;FI;1; : : :FI;T g be a �ltration, i.e., each FI;t is an algebra on 
 and FI;t �

FI;t+1 � � � � � FI;T = F : Denote the set of all �ltrations by I: Note that there is a unique
partition that generates the algebra FI;t. Denote this partition by PI;t and let PI;t (!) denote
the element of this partition that contains ! 2 
. The interpretation is that, just after time t
(i.e., after any time t uncertainty/risk is resolved), the decision maker will know that the state
lies in PI;t (!).
Let F�1 be the trivial algebra, that is F�1 = f;; 
g, and let FI;�1 = F�1 for all I 2 I:

Therefore PI;�1 = f
g and PI;�1 (!) = 
 for all ! and all I:
Fixing I 2 I, we de�ne the set of all temporal acts with respect to the �ltration I recursively:
The set of time T -temporal acts, where the information thus far revealed is given by A 2

PI;T�1, is denoted by FI;T;A: An element, f , of the set FI;T;A is a function f : A ! � (ZT )
measurable with respect to FI;T . Thus the set of all time T -temporal acts given �ltration I is
simply FI;T � [A2PI;T�1FI;T;A: For f 2 FI;T , we write f (!; z) to denote the probability of
receiving the prize z in state !.
The set of time t-temporal acts, where the information thus far revealed is given by A 2

PI;t�1; is denoted by FI;t;A: An element, f , of the set FI;t;A is a function f : A! � (Zt; FI;t+1) ;
measurable with respect to FI;t; with the property that if for any ! 2 A; (z; g) 2 supp f (!)
then g 2 FI;t+1;PI;t(!):We write f (!; z; g) to denote the probability of receiving the prize/t+1-
temporal act pair, (z; g) ; at state !. We write f (!; z) to denote the marginal probability of
receiving the prize z at state !. The set of all time t-temporal acts with respect to �ltration I
is FI;t � [A2PI;t�1FI;t;A:
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Since PI;�1 = f
g notice that the set of all time 0-temporal acts with respect to �ltration
I, FI;0 = FI;0;
 : We sometimes denote this set by simply FI .2

De�nition 1 (Temporal Acts) The set of all temporal acts is [I2IFI;0 and is denoted F:

Figure 1 illustrates a temporal act where there are three states, two time periods 0 and
1; and the partitions that generate the �ltration are given by PI;0 = ff!1; !2g ; f!3gg and
PI;1 = ff!1g ; f!2g ; f!3gg : The oval nodes are "uncertainty" nodes, depicting the evolution
of information about the state. The triangular nodes are "risk" nodes, depicting lotteries. The
�gure also illustrates time 1-temporal acts.

Insert �gure 1 about here

2.2. Subjective Recursive Expected Utility

We now write down formally what is meant by a SREU representation of preferences over
temporal acts:

Notation 1. Em denotes the expectation operator with respect to the measure m. (Similarly,
EmjA denotes the expectation with respect to the measure m conditional on the event A.)

De�nition 2 (SREU Representation) A preference relation, �, over temporal acts has a subjec-
tive recursive expected utility (SREU) representation if there exists a probability measure � on
the state space, a continuous utility function U : ZT ! R and continuous aggregator functions
ut : Zt�R! R for t = 0; :::; T �1 that combine current outcomes with continuation values such
that (i) each ut is strictly increasing in the continuation value, (ii) if we de�ne UT : ZT ! R by
UT (zT ) = U (zT ) and recursively Ut : Zt � [I2IFI;t+1 ! R by,

Ut (zt; f) = ut
�
zt; E�jA

�
Ef(!)Ut+1 (zt+1; h)

��
(1)

where A is the domain of f , then the following holds:
For any temporal acts f; g 2 F;

f � g ()
E�
�
Ef(!)U0 (z0; h)

�
� E�

�
Eg(!)U0 (z0; k)

�
: (2)

Observe that equation (1) is what makes the representation recursive, while equation (2)
makes it recursive expected utility. It is subjective because the probability measure � is sub-
jective. Thus the name subjective recursive expected utility. This representation is related to a
number of historically prominent recursive utility representations. Koopmans [11] is the �rst, to
our knowledge, to provide foundations for a recursive utility representation. His objects of choice

2 In general, FI;T;A \FI0;T;A 6= ;, so the same function may be a time T -temporal act with respect to
several �ltrations. The same will be true for times t > 0, but at time 0, we have FI;0 \ FI0;0 = ; for all
I 0 6= I. This last fact is true because since the �ltrations di¤er, there must exist a time t� < T and a
state !� such that PI;t� (!�) 6= PI0;t� (!�). So, at time t� + 1, the continuation acts at state !� will be
di¤erent because under �ltration I they will have domain PI;t� (!�) while under �ltration I 0 they will
have domain PI0;t� (!�).
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are in�nite-horizon consumption streams and his model does not consider risk or uncertainty.
Epstein [6] generalizes Koopmans�approach in order to incorporate (objective) risk and con-
siders choice among lotteries over consumption streams. He provides foundations for expected
utility representations over such lotteries where the utility function is recursive with aggregators
of particular forms. Most directly related to the representation above, Kreps and Porteus [12]
model choice among temporal lotteries and provide foundations for the special case of SREU in
which it is as if there is only a single state of the world, and so � plays no role.3 In Kreps and
Porteus, as here, the timing of the resolution of lotteries (i.e., objective risk) may matter. SREU
brings subjective uncertainty into the model and similarly allows the timing of the resolution of
such uncertainty to matter.

2.3. Further notation and de�nitions

This subsection collects some de�nitions and notation used in the axiomatization and analysis
that follows.
We de�ne mixtures over elements of FI;t;A (t-temporal acts with common domain A and

common �ltration I).

De�nition 3 (�-Mixture) Let f; g 2 FI;t;A where A 2 PI;t�1:We denote the �-mixture of f and
g by �f + (1� �) g 2 FI;t;A where � 2 [0; 1] and the mixture is taken statewise, over probability
distributions (as in Anscombe and Aumann [1]).

To conserve on notation and so as to treat time T together with times t < T , we will
sometimes write as if an element of FI;T has range in � (ZT � FI;T+1). Since FI;T+1 is formally
unde�ned, read ZT � FI;T+1 as ZT :
It will often be useful to be able to refer to time s-temporal acts that are, in a natural sense,

continuations of time t-temporal acts where s � t. Loosely, a time s continuation should tell
everything that may happen from time s onward. Since what may happen may depend on the
state, we will want to talk about continuations at a given state. Furthermore, since even given
the state, past randomizations may a¤ect what may happen from s onward, it is important to
note that there may be many such continuations. Formally:

De�nition 4 (1-Step Continuation) For f 2 FI;t, say that g is a 1-step continuation of f in
state ! if there exists a prize zt such that (zt; g) 2 supp f (!).

De�nition 5 (Continuation) For f 2 FI;t, say that g is a continuation of f at time s in state
! if either (i) s = t and g = f or (ii) s = t + 1 and g is a 1-step continuation of f in state !
or (iii) s � t+ 2 and there exist ht+1; : : : ; hs�1 such that ht+1 is a 1-step continuation of f in
state !, ht+i is a 1-step continuation of ht+i�1 in state ! for i = 2; : : : ; s � t � 1, and g is a
1-step continuation of hs�1 in state !.

3 In its most general form, the Kreps and Porteus representation also allows utilities and aggregators
to depend on the history of realized outcomes. We do not consider such history dependence here mainly
because it simply adds to already heavy notation without adding much conceptual insight. If one
wished (so as to capture habit formation for example), history dependence could be easily incorporated
by adding the realized history as an additional argument of the functions above. Furthermore, the
axiomatic foundations that we provide later in the paper could be similarly modi�ed.
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We also refer to any continuation of f at time s as a time s continuation of f . Of special
interest will be continuations that are �constant� in the sense that they do not depend on the
state.

De�nition 6 (Constant Continuation) For f 2 FI;t;A, say that f is constant if there exists
l = (lt; lt+1; : : : ; lT ) 2 �Zt ��Zt+1 � � � � ��ZT such that, for all times s � t and for all states
! 2 A, for any g that is a continuation of f at time s in state !, g (!; �) = ls (�). We say that f
is associated with l.

Denote the set of all constant elements of FI;t;A by F �I;t;A and the set of all constant elements
of FI;t by F �I;t: Notationally, we write l 2 �Zt ��Zt+1 � � � � ��ZT to stand for a constant t-
temporal act associated with l where the domain A will be clear from the context. For example, if
f 2 F �I;t;PI;t�1(!) is associated withm 2 �Zt��Zt+1�� � ���ZT , and g 2 FI;t�1;PI;t�2(!); when
we write g (!; zt�1;m) we mean g (!; zt�1; f). Note that this association makes sense because
there is a bijection between F �I;t;PI;t�1(!) and elements of �Zt��Zt+1�� � ���ZT . Similarly, if

all elements in the support of g (!) are in �
�
Zt�1 � F �I;t;PI;t�1(!)

�
we may refer to g (!) as an

element of � (Zt�1 ��Zt � � � � ��ZT ) without any confusion resulting. Thus g (!; zt�1; l) is
the probability of receiving (zt�1; l) 2 Zt�1��Zt�� � ���ZT in state !: Similarly, if g (!) yields
(zi; li) with probability pi for i = 1; :::; n; then we may write g (!) = ((z1; l1) ; p1; :::; (zn; ln) ; pn) :

De�nition 7 (Constant Act) A temporal act f is a constant act if f is constant. We use lf to
denote the associated vector of lotteries.

Denote the set of all constant acts by F �.
Next we de�ne some additional subsets of temporal acts, speci�cally those where all lotteries

are degenerate up to (but not including) time t. For a �xed �ltration I we denote the set of
such temporal acts by F tI : We call this set F

t
I the temporal acts degenerate up to time t (with

respect to �ltration I).4 Any element of this set, given a time s � t and a state !; has a unique
continuation at time s in state ! denoted by fs!. To lighten the notation, whenever it is clear
from the context, we refer to the time t continuation of an act f 2 F tI in state ! by f!: When
two acts in F tI agree on the immediate prizes that they give at all states and times up to (but
not including) time t; we say that they share the same prize history. Clearly, two acts that share
the same prize history may have di¤erent continuations at time t: Also note that F 0I = FI;0; i.e.,
the set of all temporal acts degenerate up to time 0 is nothing but the set of all temporal acts.
Figure 2 illustrates, f 2 F 2I ; a temporal act degenerate up to time 2. There are four states,

three time periods 0; 1 and 2; and the partitions that generate the �ltration I are given by PI;0 =
ff!1; !2; !3g ; f!4gg ; PI;1 = ff!1; !2g ; f!3g ; f!4gg and PI;2 = ff!1g ; f!2g ; f!3g ; f!4gg : At
times 0 and 1, the act gives prizes 5 and 7 respectively at all states. The �gure also illustrates,
f1!1 ; the unique time 1 continuation in state !1; and, f!4 = f

2
!4 ; the unique time 2 continuation

in state !4:

Insert �gure 2 about here

4 Formally, f 2 F tI if, for all ! and s < t, each time s continuation of f in state ! assigns probability
1 to some element of its range, Zs � FI;s+1;PI;s(!).
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3. Preference axioms

Our primitive is �, a binary relation over the temporal acts, F: The following axioms will be
imposed on �:

Axiom 1. (Weak Order) � is complete and transitive.

Axiom 2. (Continuity) � is continuous. That is, for any f 2 F; the sets,

M (f) = fg 2 F jg � f g
and

W (f) = fg 2 F jf � g g

are closed5 .

The weak order and continuity axioms are standard axioms in the literature and ensure the
existence of a continuous real-valued representation of preferences. To understand our next ax-
iom, consider two acts that are identical except on event A 2 PI;t�1 and contain only degenerate
lotteries before time t: The Temporal Sure-Thing Principle says that preference between such
acts is preserved under any common change occurring in any part of the tree other than the
continuation following event A. This axiom implies (i) separability from past prizes, and (ii)
separability from unrealized events. Figures 3 and 4 provide an illustration of the axiom.

Axiom 3. (Temporal Sure-thing principle) Fix a �ltration I and time t: Let A 2 PI;t�1: Sup-
pose f̂ ; ĝ; ~f; ~g 2 F tI are such that, f̂ and ĝ share the same prize history, ~f and ~g share the same
prize history, and

f̂! = ~f!, ĝ! = ~g! for all ! 2 A;
f̂! = ĝ!; ~f! = ~g! otherwise,

then f̂ � ĝ if and only if ~f � ~g:

Insert �gures 3 and 4 about here

Using the Temporal Sure-Thing Principle, we may extend � from temporal acts to �contin-
uation acts�(i.e., t-temporal acts) by �lling in the rest of the tree in a common way as long as
no risk resolves (i.e., only degenerate triangular nodes in the �gures) before time t:

De�nition 8 (Conditional Preference) For any f; g 2 FI;t;A where A 2 PI;t�1 we say that f � g
if there exist temporal acts, f̂ ; ĝ 2 F tI , degenerate up to t and sharing the same prize history,
such that f̂ � ĝ, f̂! = f , ĝ! = g for all ! 2 A;and f̂! = ĝ! otherwise.

Note that we use � to indicate both the overall preference relation on FI and the induced
preference relation on continuation acts in FI;t;A. This should create no confusion. The next
lemma proves that the preference relation induced on conditional acts by the de�nition of con-
ditional preferences (De�nition 8) is indeed a continuous weak order.

5 The metric on F is de�ned in the appendix.
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Lemma 1 For any time t; �ltration I and event A 2 PI;t�1; � on FI;t;A is a continuous weak
order.

In what follows, we sometimes refer to the preference relation on FI;t;A; rather than the overall
preference relation on FI : This is done just for notational convenience. Any statement involving
the preference relation on FI;t;A may easily be restated in terms of the overall preference relation
on FI ; by plugging the continuation acts into an overall reference act in F tI . The temporal sure-
thing principle would then make sure that it does not matter which reference act is used in these
comparisons.
Next we formulate a temporal substitution axiom for � on continuation acts. This axiom

generalizes the temporal substitution axiom of Kreps and Porteus to our framework with sub-
jective uncertainty. When there is only one state of the world, our axiom reduces to theirs. Just
as in a static framework, substitution is crucial in characterizing an expected utility treatment
of risk. The temporal aspect of the axiom is that the risk in question is limited to that occurring
at a given time and event. This temporal aspect makes the axiom weaker than the well-known
atemporal substitution/independence axiom to the extent that the decision maker is not indif-
ferent to the timing of the resolution of uncertainty and risk (see e.g., the discussion on this
point in Kreps and Porteus [12]).

Axiom 4. (Temporal Substitution) Fix any �ltration I and time t: Suppose � 2 [0; 1] and
A 2 PI;t�1: For any f; g; h 2 FI;t;A:

f � g if and only if �f + (1� �)h � �g + (1� �)h:

Figures 5-7 illustrate axiom 4.

Insert �gures 5-7 about here

In an atemporal Anscombe-Aumann style model, in addition to the basic weak order, con-
tinuity and substitution axioms, one needs an axiom implying state independence of preference
over lotteries to deliver expected utility. The following monotonicity axiom is a temporal version
of such state independence. Like temporal substitution, it is weaker than its atemporal counter-
part. Speci�cally it requires state independence only within a given time, event and �ltration.
It does this by imposing monotonicity of preference with respect to dominance in constant
continuations at a given time, event and �ltration.

Axiom 5. (Monotonicity) Fix any �ltration I and time t: Given A 2 PI;t�1; suppose that
f; g 2 FI;t;A and that all time t + 1 continuations of f and of g are constant6 . De�ne, for each
! 2 A, f!; g! 2 FI;t;A as follows: For all !0 2 A;

f! (!0) = f (!) ;

and,
g! (!0) = g (!) :

If f! � g! for all ! 2 A then f � g: Moreover if f! � g! for some ! 2 A then f � g:
6 Recall that this implies f (!) ; g (!) 2 � (Zt ��Zt+1 � � � � ��ZT ) for each ! 2 A.
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Our next axiom, Event Independence, is also a form of state independence. It works across
events, while still requiring a common time and �ltration. One reason why we write Monotonicity
and Event Independence as separate axioms is that they play distinct roles in proving the main
representation theorem. The �rst intermediate result in the proof is to show that the axioms up
to Monotonicity deliver a set of expected utility representations, one for each time, event and
�ltration. When Event Independence is additionally imposed, we show that the utilities in such
representations may be taken to be event independent in the sense that they assign the same
value to any given (prize, constant continuation) pair irrespective of the event on which it is
realized.

Axiom 6. (Event Independence) Fix any �ltration I and time t: Given A;A0 2 PI;t�1; suppose
that f; g 2 FI;t;A and f 0; g0 2 FI;t;A0 have all time t+1 continuations constant. Further suppose
that for all ! 2 A;!0 2 A0;

f (!) = f 0 (!0)

and,

g (!) = g0 (!0) :

Then f � g if and only if f 0 � g0:

Finally, as is standard, to rule out the case where all acts are indi¤erent and deliver appro-
priate uniqueness of the representation a non-degeneracy axiom is needed. The version below
is stronger than usual as it requires some strict preference at each event, time and �ltration,
thus implicitly ruling out events that are assigned zero weight by the preferences. This is done
primarily for convenience, as dealing with null-events can be involved and is not the focus of our
analysis.

Axiom 7. (Non-degeneracy) For every �ltration I, time t, and event A 2 PI;t�1 there exist
f; g 2 FI;t;A for which all time t+ 1 continuations are constant and such that f � g:

4. Representation results

4.1. Representation for a �xed �ltration

Observe that except for continuity and weak order, all axioms so far concern only comparisons
of temporal acts within the same �ltration. We prove that the �rst six axioms yield a SREU
representation within each �ltration. Below we state the result and give a brief sketch of the
main steps in the argument. The proof itself is contained in the Appendix.

De�nition 9 (Within-Filtration SREU Representation) A SREU representation within a �ltra-
tion I is a SREU representation where the domain of the representation is restricted to temporal
acts in FI , the functions �, U , and ut in the representation are subscripted by I, and the domain
of the derived UI;t is Zt � FI;t+1 rather than Zt � [I2IFI;t+1.
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Proposition 1 (Characterization of Within-Filtration SREU) Suppose preference � satis�es
axioms weak order and continuity. Then � satis�es axioms temporal sure-thing principle, tem-
poral substitution, monotonicity and event independence if and only if, for each �ltration I, the
restriction of � to FI has a SREU representation within I.

Furthermore, the following uniqueness properties hold. If
�
�I ; UI ; fuI;tg

T�1
t=0

�
and

�
�0I ; U

0
I ;
�
u0I;t

	T�1
t=0

�
both yield SREU representations of � restricted to FI ; then, for each t, the derived U 0I;t must
be a positive a¢ ne transformation of the derived UI;t: If non-degeneracy holds, �I is strictly
positive on its domain and �0I must equal �I .

Remark 1 The weak order and continuity axioms are stronger than necessary for the proposition
above because the conclusion does not refer to any cross-�ltration comparisons. If we had used
versions of weak order and continuity that apply only within each FI , the six axioms would
together be necessary and su¢ cient for SREU within each I. We do not do so here because the
stronger versions are needed for the overall SREU representation.

The proof works by �rst showing the SREU representation restricted to t-temporal acts for
which all t + 1 continuations are constant. Then this is extended to cover all temporal acts.
To begin, we apply mixture space techniques (as in Anscombe-Aumann style theories) to show
that, together with weak order and continuity, the next three axioms characterize continuous
expected utility on the subset of FI;t;A having all t+ 1 continuations constant. This gives a set
of subjective expected utility representations with the utilities and beliefs indexed by I; t; A.
Next, �xing I, we construct a measure �I over the whole state space such that for any event

A known coming in to time t (i.e., A 2 PI;t�1), the measure �I;t;A is the conditional �I jA .
Then, we show that adding the axiom event independence is equivalent to being able to

replace all the UI;t;A with a common UI;t that assigns the same value to any given pair of
immediate prize and continuation stream of lotteries irrespective of the event on which the
continuation is realized.
Next we show that there is a recursive relationship between UI;t and UI;t+1 that holds

when evaluating constant continuations. The proof works by exploiting the nested structure of
temporal acts degenerate up to t+ 1 with constant time t+ 1 continuations (nested since they
are also temporal acts degenerate up to t with constant time t+1 continuations). Consider two
such temporal acts di¤ering only in their time t + 1 continuation on some event B 2 PI;t and
let A be the event in PI;t�1 containing B. By the temporal sure-thing principle these may be
compared either by comparing their time t + 1 continuations on B or by comparing their time
t continuations on A and, furthermore, these comparisons must come out the same. Applying
the subjective expected utility representations derived above to these two pairs of continuations
then yields the relation between the time t and t + 1 utilities on event B. As described in the
preceding step, event independence ensures that this holds across events as well. This relation
across time is what determines the aggregator functions uI;t.
Finally, we show that the representations that apply in the constant continuation case may

be extended to cover all temporal acts for a �xed �ltration. In broad strokes, the argument uses
continuity together with temporal substitution to show that �constant act equivalents�exist and
that replacing continuations by their constant equivalents preserves the representations derived
in the earlier steps.
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4.2. Filtration-dependence and timing attitudes

Kreps and Porteus [12] show that the curvature of an aggregator like uI;t characterizes attitude
towards timing of the resolution of risk. Speci�cally, if the aggregator is convex (resp. concave) in
its second argument then the decision maker prefers early (resp. late) resolution of risk. In their
model, risk (through lotteries) is the only source of uncertainty, whereas our model contains
states of the world in addition to lotteries. This leads to at least two di¤erences regarding
attitude towards timing.
First, attitude towards timing of the resolution of (lottery) risk may vary with the timing

of the resolution of uncertainty about the state of the world (i.e., with the �ltration). In our
model, this will occur when the aggregators depend on the �ltration.
Second, even when the aggregators do not depend on the �ltration, attitude towards timing of

the resolution of (lottery) risk may be distinct from attitude towards the timing of the resolution
of uncertainty about the state of the world. The latter is in�uenced not only by the aggregators,
but also by the way beliefs, �I , may vary with the �ltration.
The next example illustrates the �rst di¤erence mentioned above. In it, the aggregator is

convex for one �ltration and concave for the other �ltration. Using temporal acts for each
�ltration that do not depend on the state (analogues in our setting of Kreps-Porteus temporal
lotteries) the example shows that the decision maker prefers early resolution of risk in the �rst
�ltration, but late resolution of risk in the other �ltration.

Example 1 Suppose there are two states of the world, i.e., 
 = f!1; !2g and two time pe-
riods, i.e., T = 1: Let �ltration I describe a situation where the decision maker learns the
true state of the world coming out of time 0: Thus, I can be generated by the partitions
PI;0 = PI;1 = ff!1g ; f!2gg : In contrast, let �ltration I 0 describe a situation where the de-
cision maker does not learn the true state until the end. Thus, I 0 is generated by the partitions
PI0;0 = ff!1; !2gg and PI0;1 = ff!1g ; f!2gg :
We de�ne two pairs of temporal acts, one pair on �ltration I and the other on I 0. All four
temporal acts ultimately result in the payo¤ stream (0; 0) with probability 1

2 and (0; 9) with
probability 1

2 . Within each pair, the �rst temporal act resolves this risk only at time 1 while
the second resolves it at time 0. For all four acts, the resolution and timing of this risk does not
depend on the state of the world. Yet, we will see that the timing of the resolution of information
about the state of the world will a¤ect preference.
Recall that (z1; p1; : : : ; zn; pn) denotes a lottery and f(!; z; (z1; p1; : : : ; zn; pn)) denotes the prob-
ability that, in state !, temporal act f yields time 0 prize z followed by the constant continuation
that yields the lottery (z1; p1; : : : ; zn; pn) at time 1. In reading the following de�nitions it may
be helpful to look at Figures 8 and 9.
Let h 2 FI be de�ned by

h

�
!1; 0; (0;

1

2
; 9;

1

2
)

�
= 1 = h

�
!2; 0; (0;

1

2
; 9;

1

2
)

�
;

and h0 2 FI be de�ned by

h0 (!1; 0; (0; 1)) = h
0 (!1; 0; (9; 1)) =

1

2
= h0 (!2; 0; (0; 1)) = h

0 (!2; 0; (9; 1)) :
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Similarly, let k 2 FI0 be de�ned by

k

�
!1; 0; (0;

1

2
; 9;

1

2
)

�
= 1 = k

�
!2; 0; (0;

1

2
; 9;

1

2
)

�
;

and k0 2 FI0 be de�ned by

k0 (!1; 0; (0; 1)) = k
0 (!1; 0; (9; 1)) =

1

2
= k0 (!2; 0; (0; 1)) = k

0 (!2; 0; (9; 1)) :

Suppose that UI (z) = UI0 (z) = z; uI;0 (z; ) = z + 2 and uI0;0 (z; ) = z +
p
: Applying

Proposition 1, we see that h0 � h but k � k0since

40:5 =
1

2
(0 + 92) +

1

2
(0 + 02) > (0 +

�
1

2
9 +

1

2
0

�2
) = 20:25

and

1:5 =
1

2
(0 +

p
9) +

1

2
(0 +

p
0) < (0 +

s�
1

2
9 +

1

2
0

�
) � 2:121:

So, with �ltration I the decision maker prefers early resolution of risk, while with �ltration I 0

late resolution of risk is preferred.

Insert Figures 8 and 9 about here.

One of the things we do in the next section is provide an additional axiom that rules out
dependence of attitude toward the timing of the resolution of (lottery) risk on the �ltration. This
is an important step in characterizing an SREU representation that applies across �ltrations.

4.3. Representations across �ltrations

Having obtained a representation for preference over temporal acts that share the same �ltra-
tion, we now turn to comparisons of temporal acts across di¤erent �ltrations. Such comparisons
are crucial in many economically relevant choices. For example, any problems involving costly
information acquisition �where an important decision is whether to bear a cost to learn in-
formation about the state of the world versus having the information revealed only later �are
inherently comparisons between temporal acts de�ned on di¤erent �ltrations. So far, the only
axioms restricting cross-�ltration preferences are weak order and continuity. They alone only
guarantee an ordinal representation. To allow the recursive forms derived above to apply across
�ltrations as well, two invariance properties are required.
The �rst concerns acts that give a deterministic sequence of prizes up to time t and then

give a lottery over time t prize/constant continuation pairs. For such acts, even though some
information about the state of the world may be learned over time, this information has no
consequences for the lotteries over prizes that the decision maker will receive. In theory, one
could imagine that a decision maker might have some preference over the way information
about the true state ! 2 
 unfolds even when the state is utterly payo¤ irrelevant in this way.
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Or one might imagine that the way that information unfolds might somehow interact with the
tastes (e.g., attitude toward timing of the resolution of risk (as in Example 1) or attitude toward
risk) of the decision maker causing them to change with the �ltration �a kind of dynamic state
dependence. We wish to rule out such �pure information e¤ect�behaviors, so that we may focus
on the treatment of information in terms of what it conveys about outcomes and when it conveys
it. This is done through the following axiom.

Axiom 8. (Invariance to Irrelevant Information) For any I; I 0,t and
` 2 � (Zt ��Zt+1 � � � � ��ZT ) ; if f 2 F tI and g 2 F tI0 give the same deterministic stream
of prizes up to time t and f! (!) = g! (!) = ` for all ! then f � g:

This axiom says that preference over acts giving a �xed stream of prizes followed by a lottery
over prize/constant continuation pairs depends only on the identity of the stream of prizes and
lottery, and in particular is independent of the �ltration on which the acts are de�ned.
The next proposition shows that adding this axiom to the others is equivalent to SREU over

all temporal acts with the modi�cation that the beliefs may depend on the �ltration.

Proposition 2 (Characterization of SREU with Filtration-Dependent Beliefs) Preferences �
satisfy axioms weak order, continuity, temporal sure-thing principle, temporal substitution, monotonic-
ity, event independence, and invariance to irrelevant information if and only if � has an SREU
representation with the modi�cation that instead of a single probability measure � there is a
collection of probability measures f�IgI2I such that measure �I is used in evaluating temporal
acts in FI .
Furthermore, the following uniqueness properties hold. If

�
f�IgI2I ; U; futg

T�1
t=0

�
and

�
f�0IgI2I ; U 0; fu0tg

T�1
t=0

�
both yield such an SREU representation of � then, for each t, the derived U 0t must be a positive
a¢ ne transformation of the derived Ut: If non-degeneracy holds, each �I is strictly positive and
each �0I must equal the corresponding �I .

Consider the state space and �ltrations in Example 1. We de�ne two temporal acts, one on
�ltration I and the other on I 0. Let f 2 FI be de�ned by f (!1; 0; (9; 1)) = 1 and f (!2; 0; (0; 1)) =
1. Let g 2 FI0 be de�ned by g (!1; 0; g1) = g (!2; 0; g1) = 1 where g1 (!1; 9) = g1 (!2; 0) = 1:
Note that f and g both give a payo¤ of 0 at time 0 regardless of the state of the world, and

at time 1 they both give 9 if the state is !1 and 0 if the state is !2: Yet, they di¤er in terms of
when the payo¤ uncertainty is resolved. For f the resolution is immediate, whereas for g it is
delayed.

Example 2 Suppose that U (z) = z1=2; u0 (z; ) = z + 2; and �I (!1) = 0:5 and �I0 (!1) = 0:8:
Applying Proposition 2, we see that f � g; since

0:5

�
0 +

�
91=2

�2�
+ 0:5

�
0 +

�
01=2

�2�
< 0 +

�
0:8
�
91=2

�
+ 0:2

�
01=2

��2
:

In example 2, the decision maker�s beliefs are �ltration dependent, and in particular, he
assigns higher probability to !1 when the information is revealed later. Since these acts give a
much better payo¤ in state !1, the decision maker prefers later resolution of uncertainty when
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comparing these two acts. This occurs even though these preferences re�ect a preference for
early resolution of (lottery) risk (since the aggregator, u0, is convex in the continuation value).
We now turn to a second invariance property. This requires that uncertainty generated

through the state space is calibrated with uncertainty generated through lotteries in the same
way across �ltrations.

Notation 2. Let Ie 2 I be the �ltration where all information is learned at the earliest possible
time, i.e., coming out of time 0. Formally, FIe;0 = F :

Axiom 9. (Consistent Beliefs) Fix any time t; �ltration I, � 2 [0; 1], event A 2 PI;t, prizes
w; x 2 Z0 and y; z 2 Zt and streams of lotteries l;m 2 �Z1 � � � � ��ZT and l0;m0 2 �Zt+1 �
� � � ��ZT : Denote by B the unique event such that B 2 PI;t�1 and B � A: Consider temporal
acts f; g; h; k 2 FIe and f 0; g0; h0; k0 2 F tI where the latter share the same deterministic stream
of prizes up to time t. Further suppose7 :

h (!) = ((w; l) ; 1) and k (!) = ((x;m) ; 1) for all !;

h0! (!) = ((y; l
0) ; 1) and k0! (!) = ((z;m

0) ; 1) for all !;

f (!) =

�
((w; l) ; 1) if ! 2 A
((x;m) ; 1) if ! =2 A ,

g (!) =

�
((w; l) ; �; (x;m); (1� �)) if ! 2 B

f (!) if ! =2 B

f 0! (!) =

�
((y; l0) ; 1) if ! 2 A
((z;m0) ; 1) if ! =2 A , and

g0! (!) =

�
((y; l0) ; �; (z;m0); (1� �)) if ! 2 B

f 0! (!) if ! =2 B :

Then
h � k and h0 � k0

=)
f � g () f 0 � g0:

As long as the decision maker cares which prize/continuation pair she gets (so as to rule out
the trivial cases where, for example, f � g no matter what � is), the axiom says that the lottery
odds judged equivalent to betting on event A conditional on B are the same under any �ltration.8

To see this, note that given the representation from Proposition 2, f � g () �Ie (A jB ) = �
7 Recall that ((w; l) ; 1) is a lottery yielding (w; l) with probability 1. Similarly,
((w; l) ; �; (x;m); (1� �)) is a lottery yielding (w; l) with probability � and (x;m) with probabil-
ity (1� �).
8 This axiom is related to the "Horse/Roulette Replacement Axiom" of Machina and Schmeidler [13]
that they use as the main driver in characterizing probabilistically sophisticated beliefs in an Anscombe-
Aumann setting and shares the same �avor of calibrating beliefs using lotteries to impose consistency.
In their case consistency is across outcomes while in our case it is across �ltrations.
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and f 0 � g0 () �I (A jB ) = �. Therefore this axiom allows us to show that beliefs over the
state space do not depend on the �ltration, ruling out examples such as example 2.
With the addition of this axiom we can now state our main result, the SREU representation

theorem:

Theorem 1 (Characterization of SREU) Preferences � satisfy axioms weak order, continuity,
temporal sure-thing principle, temporal substitution, monotonicity, event independence, invari-
ance to irrelevant information and consistent beliefs if and only if � has an SREU representation.
Furthermore, the following uniqueness properties hold. If

�
�;U; futgT�1t=0

�
and

�
�0; U 0; fu0tg

T�1
t=0

�
both yield SREU representations of � then, for each t, the derived U 0t must be a positive a¢ ne
transformation of the derived Ut: If non-degeneracy holds, � is strictly positive and �0 must equal
�.

5. Discussion of Related Literature

To our knowledge, there are three previous papers that have provided foundations for subjective
recursive classes of preferences that include recursive expected utility. These papers are Skiadas
[18] (see also the related Skiadas [17]), Wang [19] and Hayashi [10].
We �rst discuss the Skiadas [18] paper that, in a highly innovative framework, develops

axioms describing a very general recursive form. Theorem 3 of Skiadas [18] derives an SREU
representation as a special case and, to our knowledge, is the �rst SREU result in the literature.
There are substantial di¤erences from our development in both the nature of the framework
and the axioms. The whole �avor of the approach is quite di¤erent. For example, a crucial
axiom for Skiadas�s approach is Event Coherence. To state it, a little notation is required. In
his framework, an act is a mapping from states and times into consumption together with a
�ltration that it is adapted to. Skiadas takes as primitive conditional preference relations over
acts at any given time t and event E and denotes such preference by �Et . Event Coherence says
that for any disjoint events F and G and acts f and g where the associated �ltrations have F
and G as events in their respective time t algebras, if f �Ft g and f �Gt g then f �F[Gt g (and
a similar version with all preferences strict). In our framework, we do not refer to objects like
�F[Gt as we condition only on elements of partitions rather than general events in the algebras
generated by the partitions (in terms of our trees, we condition only on oval nodes, not sets of
oval nodes at a given time). Thus, the parts of the preferences considered in the axioms are quite
distinct in the two theories. One consequence is that the two approaches make connections with
other theories more or less apparent. One thing that we feel is attractive about our approach is
(as elaborated below) that it becomes quite easy to compare with the objective formulation of
Kreps and Porteus and with standard timeless Anscombe-Aumann style models.
We next discuss the Wang and Hayashi papers. Each successfully integrates the treatment of

ambiguity with that of timing of the resolution of uncertainty. To do so they axiomatize recursive
forms including representations involving multiple priors. The relevant points of comparison with
our work are those aspects of their results that do not involve ambiguity.
Both Wang and Hayashi work in in�nite horizon environments and impose stationarity on

preferences, while we work in a �nite horizon setting. A key axiom for both Wang and Hayashi is
a version of dynamic consistency. The essence of dynamic consistency is that if one continuation
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is preferred to another by tomorrow�s preference no matter what is learned between today and
tomorrow then a current outcome followed by the preferred continuation should be preferred
according to today�s preference to the same current outcome followed by the other continuation.
Thus, dynamic consistency ties together conditional preference at di¤erent times. We don�t
assume dynamic consistency in our approach (though it is clearly satis�ed by SREU). In fact,
none of our axioms make explicit comparisons of conditional preferences (as derived in our
De�nition 8) across time. In contrast, the key axiom of our approach is temporal substitution at
each time and event. Additionally, as we describe below, neither Wang nor Hayashi characterizes
a full SREU representation.
The representation in Wang�s Theorem 4.1 can be specialized to a representation like SREU

by taking his "state-aggregator" � to be conditional subjective expected utility. However, the
conditions under which � takes this form are not fully investigated by Wang. The most closely
related result in his paper (Theorem 5.2) yields an expected utility form for � with a conditional
measure that varies with the �ltration, but this is obtained through two assumptions �timing
indi¤erence and future independence � that are not generally satis�ed by SREU. Conditions
connecting beliefs across �ltrations are also not investigated.
Hayashi�s paper works with a �xed �ltration. He describes how to specialize his main repre-

sentation theorem to a SREU representation theorem within that �xed �ltration. There are no
developments comparable to the representations across �ltrations described in our Section 4.3.
Compared to all of the above papers, the foundations we provide are more directly related

to axioms familiar from timeless models of decision making under uncertainty. In particular,
our approach emphasizes a temporal version of the usual substitution/independence axiom. We
hope that this connection with timeless models allows more of the intuition and understanding
built up there to be pro�tably exploited in the dynamic setting.
We think that the perspective o¤ered by our development is especially useful in clarifying

the distinction between an objective recursive expected utility model as in Kreps and Porteus
[12] and SREU. In particular, Theorem 2 in Kreps and Porteus shows that (with the addition
of history independence) weak order, continuity and temporal substitution de�ned over their
temporal lotteries are equivalent to (objective) recursive expected utility. Our framework and
axioms are constructed in such a way that it is easy to see exactly how temporal substitution
should be generalized and what other requirements are needed to obtain a version including
subjective probabilities. Of special note is that our analysis makes clear what is needed in going
from a representation that applies within a single �ltration to an across �ltration representation.

6. Appendix

6.1. Topology on the space of temporal acts

Let (S; d) be a metric space. For " > 0 let

A" = fy 2 S jd (x; y) < " for some x 2 Ag :

The Prohorov metric � on the set of Borel probability measures is de�ned as follows. For any
two Borel probability measures �1 and �2 on S let

� (�1; �2) = inf f" > 0 j�1 (A) � �2 (A") + " for all Borel sets Ag :
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Suppose (Zt; dt) is a metric space for each t 2 f0; : : : ; Tg. As in Kreps and Porteus [12], let
� (ZT ) be endowed with the Prohorov metric. For any I and any A 2 PI;T�1; let �I;T;A be a
metric on FI;T;A; de�ned by,

�I;T;A (f; g) = sup
!2A

� (f (!) ; g (!)) :

Iteratively, for any A 2 PI;t; de�ne the metric on Zt � FI;t+1;A to be the product metric
pI;t;A, speci�cally,

pI;t;A ((zt; f); (z
0
t; f

0)) =
1

2

dt(zt; z
0
t)

1 + dt(zt; z0t)
+
1

4

�I;t+1;A (f; f
0)

1 + �I;t+1;A (f; f 0)
:

and take the metric on � (Zt � FI;t+1;A) to be, �I;t;A the Prohorov metric with respect to pI;t;A:
Then, for any I and any A 2 PI;t�1; let �I;t;A be a metric on FI;t;A; de�ned by,

�I;t;A (f; g) = sup
!2A

�I;t;PI;t(!) (f (!) ; g (!)) :

Iterating, we now have a metric on FI;0;
 for any given I. Finally, de�ne a metric on F , by

� (f; g) =

�
�I;0;
 (f; g) if 9I 2 I such that f; g 2 FI

1 otherwise

Observe that this is indeed a metric since the fact that �I;0;
 is bounded above by 1 for any I
(because any Prohorov metric is) ensures that � satis�es the triangle inequality.

6.2. Proof of Lemma 1

Weak order follows immediately from the weak order and temporal sure-thing principle axioms.
To show that � on FI;t;A is continuous we need to prove that for any f 2 FI;t;A the sets
fg 2 FI;t;A jg � f g and fg 2 FI;t;A jf � g g are closed.
To show that the former set is closed, �x an f 2 FI;t;A and a sequence gn 2 FI;t;A such that

gn � f for each n. Suppose gn ! g (i.e., �I;t;A (g; gn) ! 0): We now show g � f . Construct
f̂ 2 F tI and ĝn 2 F tI for each n sharing the same prize history (z0; : : : zt�1) as follows. Let f̂! = f ,
ĝn! = g

n for all ! 2 A and for all n: For each n; let ĝn! = f̂! for all ! =2 A. Also construct ĝ 2 F tI
having prize history (z0; : : : zt�1) so that ĝ! = g for all ! 2 A;and ĝ! = f̂! otherwise.
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Next, let A � At�2 � At�3 � � � � � A0 � 
 with As 2 PI;s denote the unique path to the
event A in �ltration I: Let �! 2 A and observe that9

� (ĝ; ĝn) = �I;0;
 (ĝ; ĝ
n)

= sup
!2


�I;0;PI;0(!) (ĝ (!) ; ĝ
n (!))

= �I;0;A0
(ĝ (�!) ; ĝn (�!))

= pI;0;A0

�
(z0; ĝ

1
�!); (z0; ĝ

n;1
�!

�
)

=
1

4

�I;1;A0

�
ĝ1�!; ĝ

n;1
�!

�
1 + �I;1;A0

�
ĝ1�!; ĝ

n;1
�!

�
� �I;1;A0

�
ĝ1�!; ĝ

n;1
�!

�
� � �

� �I;t;A
�
ĝt�!; ĝ

n;t
�!

�
= �I;t;A (g; g

n) :

Since �I;t;A (g; gn)! 0 by assumption, the above shows that � (ĝ; ĝn)! 0 as well.

By the temporal sure thing principle axiom, ĝn � f̂ for each n: Since ĝn ! ĝ; the continuity
axiom implies ĝ � f̂ : By the construction of ĝ and f̂ and the de�nition of � on FI;t;A, g � f:
This proves that fg 2 FI;t;A jg � f g is closed. The analogous arguments may be used to show
closure for fg 2 FI;t;A jf � g g :

6.3. Proof of Proposition 1

The proof works by �rst showing the SREU representation restricted to t-temporal acts for
which all t + 1 continuations are constant. Then this is extended to cover all temporal acts.
To begin, we apply mixture space techniques (as in Anscombe-Aumann style theories) to show
that, together with weak order and continuity, the next three axioms are su¢ cient for continuous
expected utility on the subset of FI;t;A having all t+ 1 continuations constant. This gives a set
of subjective expected utility representations with the utilities and beliefs indexed by I; t; A.

Proposition 3 Suppose preference � satis�es axioms weak order, continuity, temporal sure-
thing principle, temporal substitution, and monotonicity. Then there exists, for each t 2 f0; :::; Tg
and for each A 2 PI;t�1 a function UI;t;A : Zt � [!2AF �I;t+1;PI;t(!) ! R; continuous in both
arguments, and a probability measure �I;t;A on the restriction of FI;t to A such that if all time

9 Recall that, for g 2 F tI ; gs! denotes the unique continuation of g in state ! at time s < t: So, ĝn;s�! is
the unique time s continuation of ĝn in state �!.
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t+ 1 continuations of f; g 2 FI;t;A are constant then;

f � g ,Z
A

X
(zt;h)2supp f(!)

f (!; zt; h)UI;t;A (zt; h) d�I;t;A

�
Z
A

X
(zt;k)2supp g(!)

g (!; zt; k)UI;t;A (zt; k) d�I;t;A

with UI;t;A (zt; h) = UI;t;A (zt; k) if h and k are constant and associated with the same vector
of lotteries. Moreover, each UI;t;A is unique up to positive a¢ ne transformations and if non-
degeneracy holds each �I;t;A is unique and strictly positive on its domain.

Proof Fix I 2 I: Fix an event A 2 PI;T�1: Elements of FI;T;A are functions from A to �ZT . Ob-
serve that these are "Anscombe-Aumann"-style acts. By Lemma 1 � on FI;T;A induced from �
on temporal acts via the temporal sure-thing principle satisfy weak order and continuity on that
domain. Together with axioms Temporal Substitution and Monotonicity this allows us to apply
a known Anscombe-Aumann-style expected utility representation theorem (see e.g., Schmeidler
[16]) to deliver UI;T;A and �I;T;A satisfying the Proposition. Continuity ensures that UI;T;A is
continuous. Given non-degeneracy, UI;T;A is unique up to positive a¢ ne transformations. The
uniqueness of �I;T;A follows from nondegeneracy in the usual way. The strict positivity of �I;T;A
follows from the strict part of monotonicity.
Next, �x a time t = 0; :::; T�1 and an event A 2 PI;t�1: Elements of FI;t;A where all time t+1

continuations are constant are functions from A to�(Zt�[!2AF �I;t+1;PI;t(!)): Since each element
of [!2AF �I;t+1;PI;t(!) has an associated element of �Zt+1 � � � � ��ZT ; these functions may be
taken to be maps from A to �(Zt��Zt+1�� � ���ZT ): As above, taking the state space to be A
and the outcome set to be Zt��Zt+1� � � ���ZT we are in an Anscombe-Aumann setting. As
there is a bijection relating F �I;t+1;PI;t(!) and�Zt+1�� � ���ZT for each ! 2 A; the Monotonicity
axiom applied to the functions from A to �(Zt�[!2AF �I;t+1;PI;t(!)) yields the monotonicity in
e.g., Schmeidler [16] applied to the functions from A to �(Zt��Zt+1�� � ���ZT ): Noting that
the subset of FI;t;A where all time t+ 1 continuations are constant is closed under the mixture
operations in the Temporal Substitution axiom, the other Anscombe-Aumann properties follow
just as for the T case yielding an expected utility representation where the outcomes are elements
of Zt ��Zt+1 � � � � ��ZT . Denoting by VI;t;A (zt; l) the utility function in this representation
and setting UI;t;A (zt; h) = VI;t;A (zt; l) if h is constant and associated with the the vector of
lotteries l then the representation holds. Uniqueness follows as usual.

Remark 2 Since the above Proposition shows that UI;t;A (zt; h) = UI;t;A (zt; k) if h and k are
constant and associated with the same vector of lotteries, we may write UI;t;A (zt; l), for l 2
�Zt+1 � � � � ��ZT , to mean UI;t;A (zt; h) for any h associated with l.

Next we show that, �xing I, the �I;t;A are the conditionals of a single �I de�ned over the
whole state space.
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Proposition 4 There exists a probability measure �I (unique given �I;t;A�s) on F such that,
for all t 2 f0; : : : ; Tg and A 2 PI;t�1,

�I jA � �I
�I (A)

= �I;t;A; (3)

on the domain of �I;t;A:

Proof For C 2 F , set

�I (C)

=

Z



Z
PI;0(!)

: : :

Z
PI;T�2(!)

h
�I;T;PI;T�1(!) (C \ PI;T�1 (!))

i
d�I;T�1;PI;T�2(!) : : : d�I;1;PI;0(!)d�I;0;
 :

It is straightforward to check that this is a probability measure and that �I jA = �I;t;A (on the
domain of �I;t;A) for any A 2 PI;t�1: To show uniqueness given the �I;t;A�s, suppose that �I is
another such measure satisfying (3). Applying equation 3 to �I and plugging into the de�nition
of �I (C) gives

�I (C)

=

Z



Z
PI;0(!)

: : :

Z
PI;T�2(!)

�
�I (C \ PI;T�1 (!))
�I (PI;T�1 (!))

�

d

�
�I

�I (PI;T�2 (!))

�
: : : d

�
�I

�I (PI;0 (!))

�
d�I

=

Z



Z
PI;0(!)

: : :

Z
PI;T�2(!)

[�I (C jPI;T�1 (!) )] d�I jPI;T�2 (!) : : : d�I jPI;0 (!) d�I

= �I (C)

for any C 2 F :
The next result shows that adding the axiom event independence is equivalent to being able

to replace all the UI;t;A with a common UI;t that assigns the same value to any given pair
of immediate prize and continuation stream of lotteries irrespective of the event on which the
continuation is realized.

Proposition 5 Given the representation in Proposition 3, Event Independence holds if and only
if, for t 2 f0; :::; Tg, there exist UI;t : Zt � F �I;t+1 ! R such that, for all A 2 PI;t�1; B 2 PI;t;
and B � A if f 2 F �I;t+1;B then UI;t (zt; f) = UI;t;A (zt; f) and UI;t (zt; f) = UI;t (zt; g) whenever
f and g are associated with the same vector of lotteries. Such UI;t�s are unique up to positive
a¢ ne transformations.

Proof ( =) ) Fix I, t and `1; `2 2 � (Zt ��Zt+1 � � � � ��ZT ) : Given A;A0 2 PI;t�1; suppose
that f; g 2 FI;t;A and f 0; g0 2 FI;t;A0 have all time t+ 1 continuations constant and that, for all
! 2 A;!0 2 A0,

f (!) = f 0 (!0) = `1
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and,

g (!) = g0 (!0) = `2:

By Event Independence, f � g if and only if f 0 � g0: By the representation in Proposition 3,

f � g

()
Z
A

X
(zt;h)2supp f(!)

f (!; zt; h)UI;t;A (zt; h) d�I;t;A

�
Z
A

X
(zt;h)2supp g(!)

g (!; zt; h)UI;t;A (zt; h) d�I;t;A

()
X

(zt;l)2supp `1

`1 (zt; l)UI;t;A (zt; l) �
X

(zt;l)2supp `2

`2 (zt; l)UI;t;A (zt; l) :

Similarly,

f 0 � g0

()
Z
A0

X
(zt;h)2supp f 0(!)

f 0 (!; zt; h)UI;t;A0 (zt; h) d�I;t;A0

�
Z
A0

X
(zt;h)2supp g0(!)

g0 (!; zt; k)UI;t;A0 (zt; k) d�I;t;A0

()
X

(zt;l)2supp `1

`1 (zt; l)UI;t;A0 (zt; l) �
X

(zt;l)2supp `2

`2 (zt; l)UI;t;A0 (zt; l) :

Since the above holds for any `1 and `2; UI;t;A and UI;t;A0 order
� (Zt ��Zt+1 � � � � ��ZT ) identically. Therefore, any UI;t;A must be a positive a¢ ne transfor-
mation of any UI;t;A0 :Normalize all the UI;t;A�s so that they are equal on� (Zt ��Zt+1 � � � � ��ZT )
and call this common normalization UI;t. By Remark 2, specifying UI;t;A on� (Zt ��Zt+1 � � � � ��ZT )
determines it everywhere, and thus we have determined a common UI;t with the property that
UI;t (zt; f) = UI;t (zt; g) whenever f and g are associated with the same vector of lotteries. Since
any choice of normalization works, the UI;t are unique only up to positive a¢ ne transformations.
((=) Follows immediately from substituting the UI;t in the representation of Proposition 3.

Next we show that there is a recursive relationship between UI;t and UI;t+1 that holds
when evaluating constant continuations. The proof works by exploiting the nested structure of
temporal acts degenerate up to t+ 1 with constant time t+ 1 continuations (nested since they
are also temporal acts degenerate up to t with constant time t+ 1 continuations).

Proposition 6 Suppose preference � satis�es axioms weak order, continuity, temporal sure-
thing principle, temporal substitution, monotonicity and event independence. Then for each
I 2 I; there exist continuous functions UI : ZT ! R, and for t = 0; :::; T � 1 functions
uI;t : Zt�R! R continuous in both arguments and a measure �I on F such that (i) each uI;t is
strictly increasing in its second argument, (ii) if we de�ne UI;T : ZT ! R by UI;T (zT ) = UI (zT ),
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and UI;t : Zt � F �I;t+1 ! R for t = 0; :::; T � 1 recursively by

UI;t (zt; f) = uI;t

0@zt; X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h)

1A ; (4)

where f 2 F �I;t+1;B, B 2 PI;t and ! 2 B then the representations in Proposition 3 hold using
these UI;t: Moreover, if another collection

�
U 0I ; u

0
I;t; �

0
I

�
satis�es the above, then the derived U 0I;t

must be positive a¢ ne transformations of the corresponding UI;t: If non-degeneracy holds, �I is
unique.10 ,11

Proof From Propositions 3, 4, and 5, obtain UI;T : ZT ! R, and for t = 0; : : : ; T � 1, UI;t :
Zt � F �I;t+1 ! R; and a measure �I on F : Fix these UI;t�s and �I and use them to de�ne the
uI;t through equation (4). Observe that this will de�ne the uI;t only for values of its second
argument that correspond to continuation utilities that may be attained using constant acts.
Denote the set of such continuation values by R�

t ; i.e.,

R�
t =

8<:x 2 R
������

X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h) = x for some f 2 F �I;t+1

9=; :

We now show that such uI;t�s are indeed functions on Zt � R�
t and, given the UI;t�s and

�I , are unique. Speci�cally, we show that the value of uI;t is completely determined by its two
arguments. We then show the continuity of uI;t in its �rst argument. The proof that uI;t is
continuous in its second argument will be delayed until the proof of Proposition 1. Given that
continuity, uI;t may be continuously extended to Zt�R yielding the functions in the statement
of the proposition.

Fix t = 0; : : : ; T �1 and B 2 PI;t: Let f; g 2 F �I;t+1;B : Suppose f̂ ; ĝ 2 F t+1I are two temporal

acts degenerate up to t+ 1 with the same prize history up to time t+ 1. Note that both f̂ and
ĝ are also therefore temporal acts degenerate up to t with the same prize history up to time
t. Suppose that for each ! =2 B, f̂! and ĝ! are constant and f̂! = ĝ!. Further suppose that
f̂! = f and ĝ! = g for each ! 2 B: That is, f̂ and ĝ have constant time t+1 continuations that
are identical on Bc and equal to f and g respectively on B: By Propositions 3, 4, and 5, the

10 For the case t = T � 1 the h arguments in equation 4 are super�uous and should be ignored.
11 Since f is constant, by Proposition 3 and Proposition 5 the value of the second argument of uI;t is
the same no matter which ! 2 B is considered.
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temporal sure-thing principle and the de�nition of � applied to F �I;t+1;B ;

f̂ � ĝ () f � g

()
Z
B

0@ X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h)

1A d�I jB
�

Z
B

0@ X
(zt+1;h)2supp g(!)

g (!; zt+1; h)UI;t+1 (zt+1; h)

1A d�I jB (5)

()
X

(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h)

�
X

(zt+1;h)2supp g(!)

g (!; zt+1; h)UI;t+1 (zt+1; h) ;

where the last equivalence follows from the constancy of f and g.
Let A be the unique element in PI;t�1 such that A � B: Observe that f̂ and ĝ have unique

time t continuations on the event A: Denote these by h; j 2 FI;t;A respectively and note that all
time t+1 continuations of h and j are constant and the lotteries given at time t by h and j are
degenerate. Also recall that f̂ and ĝ agree outside of A by construction. Applying the de�nition
of conditional preferences (De�nition 8) and the temporal sure thing principle yields,

f̂ � ĝ () h � j.

Applying Propositions 3, 4, and 5,

f̂ � ĝ () h � j

()
Z
A

UI;t

�
zt; f̂!

�
d�I jA �

Z
A

UI;t (zt; ĝ!) d�I jA (6)

()
Z
B

UI;t

�
zt; f̂!

�
d�I jA �

Z
B

UI;t (zt; ĝ!) d�I jA

() UI;t (zt; f) � UI;t (zt; g)

where the third equivalence follows because f̂ and ĝ agree on Bc; and the fourth because f̂! = f
and ĝ! = g when ! 2 B 2 PI;t: Equations 5, 6 together imply that,

UI;t (zt; f) � UI;t (zt; g) ()X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h) (7)

�
X

(zt+1;h)2supp g(!)

g (!; zt+1; h)UI;t+1 (zt+1; h) :

The above shows equation (7) holds when both f and g are in F �I;t+1;B . Next, we show this
continues to hold when f 2 F �I;t+1;B and g0 2 F �I;t+1;B0 for any B;B0 2 PI;t: Fix such f and
g0and let ` � g0 (!0). De�ne g 2 F �I;t+1;B by g (!) = `: Since g and g0 are associated with the
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same vector of lotteries it follows (by Proposition 5) that UI;t (zt; g) = UI;t (zt; g0). For the same
reason; X

(zt+1;h)2supp g(!)

g (!; zt+1; h)UI;t+1 (zt+1; h)

=
X

(zt+1;l)2supp `

` (zt+1; l)UI;t+1 (zt+1; l)

=
X

(zt+1;h)2supp g0(!0)

g0 (!0; zt+1; h)UI;t+1 (zt+1; h) :

Therefore equation (7) continues to hold when f 2 F �I;t+1;B and g0 2 F �I;t+1;B0 for any B;B0 2
PI;t:
This shows that the uI;t�s are uniquely de�ned on Zt�R�

t (given the UI;t�s) through equation
(4) and are strictly increasing in the second argument. Continuity of uI;t in its �rst argument
follows directly from the continuity of UI;t in its �rst argument. The proof that uI;t is continuous
in its second argument will be delayed until the proof of Proposition 1. Given that continuity,
uI;t may be continuously extended to Zt � R yielding the functions in the statement of the
proposition. The uniqueness result in the Proposition follows from uniqueness of the UI;t and
�I shown in Propositions 3, 4, and 5.
Finally, we show that the representations that apply in the constant continuation case may

be extended to cover all temporal acts for a �xed �ltration. In broad strokes, the argument uses
continuity together with temporal substitution to show that �constant act equivalents�exist and
that replacing continuations by their constant equivalents preserves the representations derived
in the earlier steps. We make use of four intermediate lemmas, stated and proved below, before
proving the main result of this section, Proposition 1.

Lemma 2 Under the assumptions of Proposition 6, for any I 2 I, there exists ẑt; �zt 2 Zt for
t 2 f0; :::; Tg such that UI;t (ẑt; ẑt+1; : : : ; ẑT ) � UI;t (zt; f) � UI;t (�zt; �zt+1; : : : ; �zT ) for any t,
zt 2 Zt and f 2 F �I;t+1:

Proof We will prove the existence of the ẑt�s. Existence of the �zt�s follows from similar arguments.
Fix I and UI;t�s from Proposition 5 and de�ne the corresponding uI;t�s using equation 4. Since
UI;T is continuous and ZT is compact we can �nd ẑT 2 ZT such that UI;T (ẑT ) � UI;T (zT ) for
all zT 2 ZT :
Now, suppose that for some t � T we have ẑs for s � t such that UI;t (ẑt; ẑt+1; : : : ; ẑT ) �

UI;t (zt; f) for any zt 2 Zt and f 2 F �I;t+1: We will show that there exists ẑt�1 such that
UI;t�1 (ẑt�1;; ẑt; ẑt+1; : : : ; ẑT ) � UI;t�1 (zt�1; f) for any zt�1 2 Zt�1 and f 2 F �I;t: To this end,
let ût � UI;t (ẑt; ẑt+1; : : : ; ẑT ) : Since uI;t�1 is continuous in its �rst argument and Zt�1 is
compact there exists ẑt�1 2 Zt�1 such that

uI;t�1 (ẑt�1; ût) � uI;t�1 (zt�1; ût) :

By Proposition 6,

UI;t�1 (zt�1; ẑt; ẑt+1; : : : ; ẑT ) = uI;t�1 (zt�1; ût)
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for all zt�1 2 Zt�1: For f 2 F �I;t (with associated with vector of lotteries l = (lt;m) where
m 2 �Zt+1 � � � � ��ZT );

UI;t�1 (ẑt�1; ẑt; ẑt+1; : : : ; ẑT ) = uI;t�1 (ẑt�1; ût)

� uI;t�1 (zt�1; ût)

� uI;t�1

0@zt�1; X
zt2supp lt

lt (zt)UI;t (zt;m)

1A
= UI;t�1 (zt�1; f) :

The �rst equality is direct from the recursive representation, the �rst inequality follows from
the de�nition of ẑt�1; the second inequality follows from the de�nition of ût and the fact that
uI;t�1 is strictly increasing in its second argument and the �nal equality from the recursive
representation and the de�nition of f .

Lemma 3 Fix I; t: Let A 2 PI;t�1 and A = [Kj=1Bj where Bj 2 PI;t: Let f ij ; gij 2 FI;t+1;Bj for
i 2 f1; :::; Njg ; j 2 f1; :::;Kg satisfy f ij � gij : If f; g 2 FI;t;A are such that for ! 2 Bj ;

f (!) =
��
z1j ; f

1
j

�
; �1j ; :::;

�
z
Nj

j ; f
Nj

j

�
; �

Nj

j

�
g (!) =

��
z1j ; g

1
j

�
; �1j ; :::;

�
z
Nj

j ; g
Nj

j

�
; �

Nj

j

�
then f � g:

Proof First we prove the result when Nj = 1 for j 2 f1; :::;Kg : Fix f1j ; g1j 2 FI;t+1;Bj
for

j 2 f1; :::;Kg satisfying f1j � g1j : De�ne f; g 2 FI;t;A as in the lemma. Let ~g 2 F t+1I be such that
~gt! = g for ! 2 A: Since f11 � g11 ; by the de�nition of � on FI;t+1;B1

; ~g1 � ~g where ~g1 2 F t+1I

shares the same prize history with ~g and is equal to f11 on B1 and to ~g on B
c
1: This argument

may be continued using ~g1 in place of ~g and creating ~g2 by substituting f12 on B2: Since f
1
2 � g12 ;

by the de�nition of � on FI;t+1;B2 , ~g2 � ~g1: Continuing in this way until all of A is covered, we
�nd that ~gK � ~gK�1 � � � � � ~g1 � ~g: Since ~gK is equal to f on A, ~g is equal to g on A; and both
are equal on Ac, by the de�nition of � on FI;t;A; f � g:
Next, we prove the result for the case where N1 � 1 and Nj = 1 for j 2 f2; :::;Kg : Fix

f ij ; g
i
j 2 FI;t+1;Bj

for i 2 f1; :::; Njg ; j 2 f1; :::;Kg with Nj = 1 for j 2 f2; :::;Kg satisfying
f ij � gij : De�ne f; g 2 FI;t;A as in the lemma. Let hi 2 FI;t;A, i 2 f1; :::; N1g ; be such that for
! 2 B1;

hi (!) =
��
zi1; f

i
1

�
; 1
�

and hi (!) = f (!) otherwise. Similarly, Let ki 2 FI;t;A, i 2 f1; :::; N1g ; be such that for ! 2 B1;

ki (!) =
��
zi1; g

i
1

�
; 1
�

and ki (!) = g (!) otherwise. Note that f = �11h1 + � � �+�N1
1 hN1

and g = �11k1 + � � �+�N1
1 kN1

:
Moreover, since f i1 � gi1 and f1j � g1j for j 2 f2; :::;Kg ; by the earlier case, hi � ki: This holds
for all i 2 f1; :::; N1g : Applying temporal independence then implies that f � g:
The rest of the proof will be by induction. Fix r � 2: Suppose the lemma holds for the case

where Nj � 1 for j 2 f1; :::; r � 1g and Nj = 1 for j 2 fr; :::;Kg. We will show that then the
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lemma must hold for the case where Nj � 1 for j 2 f1; :::; rg and Nj = 1 for j 2 fr + 1; :::;Kg :
(Note that r = K corresponds to the statement in the lemma.) Fix f ij ; g

i
j 2 FI;t+1;Bj

for
i 2 f1; :::; Njg ; j 2 f1; :::;Kg with Nj = 1 for j 2 fr + 1; :::;Kg satisfying f ij � gij : De�ne
f; g 2 FI;t;A as in the lemma. Let hi 2 FI;t;A, i 2 f1; :::; Nrg ; be such that for ! 2 Br;

hi (!) =
��
zir; f

i
r

�
; 1
�

and hi (!) = f (!) otherwise. Similarly, Let ki 2 FI;t;A, i 2 f1; :::; Nrg ; be such that for ! 2 Br;

ki (!) =
��
zir; g

i
r

�
; 1
�

and ki (!) = g (!) otherwise. Note that f = �1rh1 + � � �+�Nr
r hNr and g = �

1
rk1 + � � �+�Nr

r kNr :
Moreover, since f i

0

j � gi
0

j for i0 2 f1; :::; Njg ; j 2 f1; :::; r � 1g, f ir � gir and f
1
j � g1j for

j 2 fr + 1; :::;Kg ; by the induction hypothesis, hi � ki: This holds for all i 2 f1; :::; Nrg :
Applying temporal independence then implies that f � g: This completes the proof of the
lemma.

Lemma 4 For any I; t; A 2 PI;t�1; F �I;t;A is connected.

Proof Fix f; g 2 F �I;t;A: De�ne r (�) = �f + (1� �) g; � 2 [0; 1]. Note that r is continuous in
the topology generated by the metric �I;t;A and connects f and g within F �I;t;A: Thus F

�
I;t;A is

path-connected. Any path connected set is connected (e.g., Munkres [14], p. 155).

Lemma 5 For any I; t and f 2 FI;t;A; where A 2 PI;t�1 there exists an f� 2 F �I;t;A such that
f� � f:

Proof Let ~M (f) be the set of all g� 2 F �I;t;A such that g� � f: Similarly let ~W (f) be the set of

all g� 2 F �I;t;A such that f � g�: We �rst show that ~M (f) is non-empty.
Fix f 2 FI;T;A; where A 2 PI;T�1. Note that by Lemma 2,

UI;T (ẑT ) �
Z
A

X
zT2supp f(!)

f (!; zT )UI;T (zT ) d�I jA ;

which in turn implies by Proposition 3 that ẑT � f:
Inductively, assume that (ẑt; ẑt+1; : : : ; ẑT ) � f for all f 2 FI;t;B where B 2 PI;t�1. We

now show that (ẑt�1; ẑt; ẑt+1; : : : ; ẑT ) � f for all f 2 FI;t�1;A where A 2 PI;t�2. Fix some
f 2 FI;t�1;A: Let ~f 2 FI;t�1;A be such that

~f (!; �; ẑt; ẑt+1; : : : ; ẑT ) = f (!; �) for all ! 2 A:

By the induction hypothesis, g 2 FI;t;B ; (ẑt; ẑt+1; : : : ; ẑT ) � g: Therefore any time t continuation
of ~f is better than any time t continuation of f; and so, by Lemma 3, ~f � f: By Lemma 2,

UI;t�1 (ẑt�1; ẑt; ẑt+1; : : : ; ẑT ) �
Z
A

UI;t�1(zt�1; ẑt; ẑt+1; : : : ; ẑT )d�I jA ;

which in turn implies by Proposition 3 that (ẑt�1; ẑt; ẑt+1; : : : ; ẑT ) � ~f and thus, by the previous
sentence, (ẑt�1; ẑt; ẑt+1; : : : ; ẑT ) � f: This proves the induction argument and shows that ~M (f)
is non-empty.
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A similar argument using (�zt�1; �zt; �zt+1; : : : ; �zT ) shows that ~W (f) is non-empty. Axiom 2
(Continuity) and Lemma 1 implies that these sets are closed. F �I;t;A is connected by Lemma

4. Since, by Lemma 1, ~M (f) [ ~W (f) = F �I;t;A, there must exist f
� 2 ~M (f) \ ~W (f) ;which

completes the proof.

Proposition 1 (Characterization of Within-Filtration SREU) Suppose preference � sat-
is�es axioms weak order and continuity. Then � satis�es axioms temporal sure-thing principle,
temporal substitution, monotonicity and event independence if and only if, for each �ltration I,
the restriction of � to FI has an SREU representation within I.

Furthermore, the following uniqueness properties hold. If
�
�I ; UI ; fuI;tg

T�1
t=0

�
and

�
�0I ; U

0
I ;
�
u0I;t

	T�1
t=0

�
both yield SREU representations of � restricted to FI ; then, for each t, the derived U 0I;t must
be a positive a¢ ne transformation of the derived UI;t: If non-degeneracy holds, �I is strictly
positive on its domain and �0I must equal �I .

Proof (Proof of Proposition 1) We need to prove that, for each �ltration I, there exists a proba-
bility measure �I on the state space, a continuous utility function UI : ZT ! R and continuous
aggregator functions uI;t : Zt � R! R for t = 0; :::; T � 1 that combine current outcomes with
continuation values such that (i) each uI;t is strictly increasing in the continuation value, (ii) if
we de�ne UI;T : ZT ! R by UI;T (zT ) = UI (zT ) and recursively UI;t : Zt � FI;t+1 ! R by,

UI;t (zt; f) = uI;t
�
zt; E�I jA

�
Ef(!)UI;t+1 (zt+1; h)

��
(8)

where A is the domain of f , then the following holds:
For any temporal acts f; g 2 FI ;

f � g ()

E�I
�
Ef(!)UI;0 (z0; h)

�
� E�I

�
Eg(!)UI;0 (z0; k)

�
: (9)

To begin, for any t 2 f0; :::; Tg and I obtain UI;t�s and �I from Proposition 6. For any
zt 2 Zt, A 2 PI;t and h 2 FI;t+1;A let,

UI;t (zt; h) = UI;t (zt; h
�)

where h � h� and h� 2 F �I;t+1;A: We know that such an h� exists by Lemma 5. From Lemma 3
and Proposition 6, if k� 2 F �I;t+1;A and k� � h�, then UI;t (zt; k�) = UI;t (zt; h�) so UI;t (zt; h) is
well-de�ned.
For any f; g 2 FI;t;A; de�ne f̂ ; ĝ 2 FI;t;A as follows. For each (zt; h) 2 supp f (!) ; choose

some h� � h; h� 2 F �I;t+1;PI;t(!) and let,

f̂ (!; zt; h
�) = f (!; zt; h) :

Similarly, for all (zt; k) 2 supp g (!) ; choose some k� � k; k� 2 F �I;t+1;PI;t(!) and let,

ĝ (!; zt; k
�) = g (!; zt; k) :

Now note that,
f � g , f̂ � ĝ
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,
Z
A

X
(zt;h�)2supp f̂(!)

f̂ (!; zt; h
�)UI;t (zt; h

�) d�I jA

�
Z
A

X
(zt;k�)2supp ĝ(!)

ĝ (!; zt; k
�)UI;t (zt; k

�) d�I jA

,
Z
A

X
(zt;h)2supp f(!)

f (!; zt; h)UI;t (zt; h) d�I jA

�
Z
A

X
(zt;k)2supp g(!)

g (!; zt; k)UI;t (zt; k) d�I jA ;

where the �rst equivalence follows from Lemma 3, the second equivalence follows from the
representation in Proposition 6, and the third equivalence follows from the construction of f̂ ; ĝ
and UI;t as above.

Using these UI;t�s and �I , de�ne the uI;t through equation (8). We now show that such uI;t�s
are indeed functions and, given the UI;t�s and �I , are unique. We need to show that for any
f 2 FI;t+1;B and g 2 FI;t+1;B0 where B;B0 2 PI;t; UI;t (zt; f) � UI;t (zt; g) if and only if

Z
B

X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB (11)

�
Z
B0

X
(zt+1;h)2supp g(!)

g (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB0 :

Find g� 2 F �I;t+1;B0 such that g� � g. De�ne ` � g� (!) : By (10),

Z
B0

X
(zt+1;h)2supp g(!)

g (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB0 (12)

=
X

(zt+1;l)2supp `

` (zt+1; l)UI;t+1 (zt+1; l) :

For A0 � B0; A0 2 PI;t�1; let ĝ; ~g 2 FI;t;A0 be identical outside of B0 and on B0; ĝ gives
(zt; g) and ~g gives (zt; g�). Since g� � g; by Lemma 3, ĝ � ~g: From (10), ĝ � ~g if and only if
UI;t (zt; g) = UI;t (zt; g

�). Let g�� 2 F �I;t+1;B be associated with the same vector of lotteries as
g�: By Proposition 5, UI;t (zt; g��) = UI;t (zt; g�). So, UI;t (zt; g) = UI;t (zt; g��) :

For A � B; A 2 PI;t�1; let f̂ ; �g 2 FI;t;A be identical outside of B and on B; f̂ gives (zt; f)
and �g gives (zt; g��). By (10), f̂ � �g if and only if UI;t (zt; f) � UI;t (zt; g��). By Lemma 3, f̂ � �g
if and only if f � g��:
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So, UI;t (zt; f) � UI;t (zt; g��) = UI;t (zt; g) if and only if f � g�� if and only ifZ
B

X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB

�
X

(zt+1;l)2supp `

` (zt+1; l)UI;t+1 (zt+1; l)

=

Z
B0

X
(zt+1;h)2supp g(!)

g (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB0 :

This shows that the uI;t�s are uniquely de�ned (given the UI;t�s) through equation (8) and
are strictly increasing in the second argument. Continuity of uI;t in its �rst argument follows
directly from the continuity of UI;t in its �rst argument. By Lemma 5, the set of attainable
continuation utilities is exactly R�

t (de�ned in the proof of Proposition 6). To show continuity
in the second argument, �x x 2 R�

t : By de�nition there exists f
� 2 F �I;t+1 such thatX

(zt+1;h)2supp f�(!)

f� (!; zt+1; h)UI;t+1 (zt+1; h) = x:

From our earlier arguments, there exist B 2 PI;t and �f; f 2 FI;t+1;B such that �f � f� � f
(with at least one preference strict).
Suppose that we can �nd �f and f with �f � f� � f: Then we can �nd �x 2 (0; 1) such that

x = �x

Z
B

X
(zt+1;h)2supp �f(!)

�f (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB

+(1� �x)
Z
B

X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB :

Now, consider a sequence xn 2 R�
t , such that x

n ! x: For each n large enough, there exists a
corresponding �xn 2 (0; 1) such that

xn = �xn

Z
B

X
(zt+1;h)2supp �f(!)

�f (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB

+(1� �xn)
Z
B

X
(zt+1;h)2supp f(!)

f (!; zt+1; h)UI;t+1 (zt+1; h) d�I jB :

By equation (8) and the above,

UI;t
�
zt; �xn �f + (1� �xn) f

�
= uI;t (zt; x

n) ;

and similarly,
UI;t

�
zt; �x �f + (1� �x) f

�
= uI;t (zt; x) :

Since �xn �f + (1� �xn) f converges to �x �f + (1� �x) f (in the Prohorov metric),

uI;t (zt; x
n)! uI;t (zt; x) :
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Now suppose that there do not exist �f and f such that �f � f� � f: The remaining two cases
(i.e., either �f � f� � f or �f � f� � f) can be proved analogously, taking into account that
in these cases x can be approached only from one direction. This completes the argument for
continuity of the uI;t in their second arguments on R�

t . Finally, continuously extend the uI;t to
Zt �R preserving monotonicity in the second argument. Uniqueness follows from uniqueness in
Proposition 6.
Necessity is all that remains to be shown.
Necessity of Temporal Sure-thing principle: Fix a �ltration I and time t: Let A 2 PI;t�1:

Suppose f̂ ; ĝ; ~f; ~g 2 F tI are such that, f̂ and ĝ share the same prize history (z0; z1; :::; zt�1), and
~f and ~g share the same prize history

�
z00; z

0
1; :::; z

0
t�1
�
. Moreover suppose that,

f̂! = ~f!, ĝ! = ~g! for all ! 2 A;
f̂! = ĝ!; ~f! = ~g! otherwise.

Using the representation,

f̂ � ĝ

,X
!2


UI;0

�
z0; f̂

0
!

�
�I (!) �

X
!2


UI;0
�
z0; ĝ

0
!

�
�I (!) :

By construction f̂0! = ĝ
0
! for all ! 2 Ac; so

f̂ � ĝ

,
UI;0

�
z0; f̂

1
!0

�
� UI;0

�
z0; ĝ

1
!0
�

for some !0 2 A: Iterating this argument we �nd that,

f̂ � ĝ

,
UI;t�1

�
zt�1; f̂!0

�
� UI;t�1 (zt�1; ĝ!0)

for some !0 2 A: By the representation,

UI;t�1

�
zt�1; f̂!0

�
= uI;t�1

�
zt�1; E�I jA

h
Ef̂!0 (!)

UI;t (zt; h)
i�

and

UI;t�1 (zt�1; ĝ!0) = uI;t�1
�
zt�1; E�I jA

�
Eĝ!0 (!)UI;t (zt; h)

��
:

Thus,

f̂ � ĝ

,
uI;t�1

�
zt�1; E�I jA

h
Ef̂!0 (!)

UI;t (zt; h)
i�
� uI;t�1

�
zt�1; E�I jA

�
Eĝ!0 (!)UI;t (zt; h)

��
,

E�I jA

h
Ef̂!0 (!)

UI;t (zt; h)
i
� E�I jA

�
Eĝ!0 (!)UI;t (zt; h)

�
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where the second equivalence follows since uI;t�1 is increasing in its second argument. By the
same argument we can show that,

~f � ~g

,
E�I jA

h
E ~f!0 (!)

UI;t (zt; h)
i
� E�I jA

�
E~g!0 (!)UI;t (zt; h)

�
But note that f̂!0 = ~f!0 and ĝ!0 = ~g!0 since !0 2 A: Thus,

f̂ � ĝ , ~f � ~g:

This proves that the representation implies the temporal sure thing principle.
Necessity of Temporal Substitution: Fix any �ltration I and time t: Suppose � 2 [0; 1] and

A 2 PI;t�1: For any f; g; h 2 FI;t;A;

f � g

, E�I jA
�
Ef(!)UI;t (zt; k)

�
� E�I jA

�
Eg(!)UI;t (zt; k)

�
, �E�I jA

�
Ef(!)UI;t (zt; k)

�
+ (1� �)E�I jA

�
Eh(!)UI;t (zt; k)

�
� �E�I jA

�
Eg(!)UI;t (zt; k)

�
+ (1� �)E�I jA

�
Eh(!)UI;t (zt; k)

�
, E�I jA

�
�Ef(!)UI;t (zt; k) + (1� �)Eh(!)UI;t (zt; k)

�
� E�I jA

�
�Eg(!)UI;t (zt; k) + (1� �)Eh(!)UI;t (zt; k)

�
, E�I jA

�
E�f(!)+(1��)h(!)UI;t (zt; k)

�
� E�I jA

�
E�g(!)+(1��)h(!)UI;t (zt; k)

�
, �f + (1� �)h � �g + (1� �)h:

Necessity of Monotonicity: Fix any �ltration I and time t: Given A 2 PI;t�1; suppose that
f; g 2 FI;t;A and f!; g! 2 FI;t;A for each ! 2 A: Further suppose that all time t+1 continuations
of f and of g are constant. De�ne f!; g! as follows: For all !0 2 A;

f! (!0) = f (!) ;

and,
g! (!0) = g (!) :

Suppose f! � g! for all ! 2 A: This implies that,Z
A

X
(zt;l)2supp f!(!0)

UI;t (zt; l) d�I jA (!0) �
Z
A

X
(zt;l)2supp g!(!0)

UI;t (zt; l) d�I jA (!0)

where (zt; l) denotes an immediate consumption/constant continuation pair. (Note that the
representation implies that evaluation of the pair (zt; l) does not depend on the state that it
occurs, and it is for this reason that UI;t (zt; l) is well-de�ned.) The previous inequality implies
by the construction of f! and g! thatX

(zt;l)2supp f(!)

UI;t (zt; l) �
X

(zt;l)2supp g(!)

UI;t (zt; l) :
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Finally the previous inequality holds for all ! 2 A so,Z
A

X
(zt;l)2supp f(!)

UI;t (zt; l) d�I jA (!) �
Z
A

X
(zt;l)2supp g(!)

UI;t (zt; l) d�I jA (!)

, f � g:

The strict part of monotonicity follows from similar arguments and by noticing that �I jA is
strictly positive for all ! 2 A:
Necessity of Event Independence: Shown in Proposition 5. This completes the proof.

6.4. Proof of Proposition 2 (Characterization of SREU with Filtration-Dependent
Beliefs)

We need to prove that there exists a probability measure �I on the state space for each �ltration
I, a continuous utility function U : ZT ! R and continuous aggregator functions ut : Zt�R! R
for t = 0; :::; T �1 that combine current outcomes with continuation values such that (i) each ut
is strictly increasing in the continuation value, (ii) if we de�ne UT : ZT ! R by UT (zT ) = U (zT )
and recursively Ut : Zt � [I2IFI;t+1 ! R by,

Ut (zt; f) = ut
�
zt; E�I jA

�
Ef(!)Ut+1 (zt+1; h)

��
(13)

where A is the domain of f , then the following holds:
For any temporal acts f 2 FI and g 2 FI0 ;

f � g ()

E�I
�
Ef(!)U0 (z0; h)

�
� E�I0

�
Eg(!)U0 (z0; k)

�
: (14)

To begin, from the characterization of within-�ltration SREU (Proposition 1) for each I 2 I
obtain UI and for t = 0; :::; T � 1 functions uI;t and a probability measure �I on F :
Next �x some I; I 0,t and `; `0 2 � (Zt ��Zt+1 � � � � ��ZT ) : Suppose f; g 2 F tI and f 0; g0 2

F tI0 give the same deterministic stream of prizes, z0; z1; � � � ; zt�1; up to time t and f! (!) =
f 0! (!) = ` and g! (!) = g

0
! (!) = `

0 for all !: By the Invariance to Irrelevant Information axiom
f � f 0 and g � g0: Thus f � g if and only if f 0 � g0: Applying Proposition 1 and recalling that
the uI;t�s are increasing in their second arguments,

f � g

,

uI;0

0@z0; uI;1
0@z1 � � �uI;t�1

0@zt�1; X
(zt;l)2supp `

UI;t (zt; l)

1A � � �
1A1A

� uI;0

0@z0; uI;1
0@z1 � � �uI;t�1

0@zt�1; X
(zt;l)2supp `0

UI;t (zt; l)

1A � � �
1A1A
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,X
(zt;l)2supp `

UI;t (zt; l) �
X

(zt;l)2supp `0
UI;t (zt; l) :

Similarly,

f 0 � g0

,

uI0;0

0@z0; uI0;1
0@z1 � � �uI0;t�1

0@zt�1; X
(zt;l)2supp `

UI0;t (zt; l)

1A � � �
1A1A

� uI0;0

0@z0; uI0;1
0@z1 � � �uI0;t�1

0@zt�1; X
(zt;l)2supp `0

UI0;t (zt; l)

1A � � �
1A1A

,X
(zt;l)2supp `

UI0;t (zt; l) �
X

(zt;l)2supp `0
UI0;t (zt; l) :

Thus, elements of � (Zt ��Zt+1 � � � � ��ZT ) are ranked identically by taking expectations
over UI;t and UI0;t: By the standard uniqueness properties for expected utility, UI;t and UI0;t
must be related by a positive a¢ ne transformation. The above reasoning holds for any I 0 so
without loss of generality we may normalize all the UI0;t�s to a common Ut: This may be done
for each t 2 f0; . . . , Tg.12 Given these Ut�s, the ut�s are uniquely de�ned through equation (13)
as before. Proposition 1 and the fact that the Ut�s are simply renormalizations guarantee that
(14) holds whenever f and g share the same �ltration. Next, we show that the same is true when
f and g are temporal acts with di¤erent �ltrations.
Fix f 2 FI and g 2 FI0 . Let f� 2 F �I and g� 2 F �I0 be such that f� � f and g� � g (these

exist by Lemma 5). Let ĝ� 2 F �I be such that lĝ� = lg� : By Invariance to Irrelevant Information,
ĝ� � g�: Denoting lf� by (l0;m) where l0 2 �Z0 and m 2 �Z1 � � � � ��ZT and lĝ� by

�
l̂0; m̂

�
where l̂0 2 �Z0 and m̂ 2 �Z1 � � � � ��ZT ;

f � g ,
f� � ĝ� ,X

z02supp l0

l0 (z0)U0 (z0;m) d�I �
X

z02supp l̂0

l̂0 (z0)U0 (z0; m̂) d�I

,Z



X
(z0;h)2supp f(!)

f (!; z0; h)U0 (z0; h) d�I �
Z



X
(z0;k)2supp g(!)

g (!; z0; k)U0 (z0; k) d�I0 :

12 For t = 0, the middle step in the above displayed inequalities is not necessary, as no uI;t�s are
involved.
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where the second equivalence follows from the representation applied within �ltration I and
the third equivalence follows from the construction of f�, g� and ĝ� and the within �ltration
representations. This proves that (14) holds.

The uniqueness and strict positivity and continuity statements follow directly from the cor-
responding results in our earlier representations. Necessity follows from the characterization
of within-�ltration SREU (Proposition 1) and the obvious necessity of invariance to irrelevant
information, weak order and continuity.

6.5. Proof of Theorem 1 (Characterization of SREU)

We begin with a trivial case. Suppose that for all h and k as constructed in the consistent
beliefs axiom, h � k: By (14), this implies U0 is constant on Z0 ��Z1 � � � � ��ZT ; and, since
any continuation is indi¤erent to some constant continuation, is thus constant overall. By (13),
this implies all the Ut�s are constant as well. In this case beliefs are irrelevant and the theorem
follows straight from the characterization of SREU with �ltration-dependent beliefs (Proposition
2). From here on we assume there does exist some h � k: De�ne � � �Ie from Proposition 2. The
strict part of the Monotonicity axiom together with h � k imply that � is everywhere strictly
positive.

Fix some such h � k: We will show that for any �ltration I, �I may be set equal to �: Fix
any I and time t. If h0 � k0 for all h0 and k0 as constructed in the consistent beliefs axiom then,
by similar reasoning as in the previous paragraph, the only beliefs that may matter for �ltration
I are those over events in FI;t�1 and conditional probabilities over �ner events in F may be
freely set to those in �: Otherwise �x an h0 � k0: Take any A 2 PI;t and B 2 PI;t�1 with B � A
and construct temporal acts f; g; f 0 and g0 as in Axiom Consistent Beliefs. By (14) and some
manipulation,

f � g

() �(A)U0 (w; l) + (1� �(A))U0 (x;m)
= �(B) (�U0 (w; l) + (1� �)U0 (x;m)) + (1� �(B))U0 (x;m)
() �(A jB )U0 (w; l) + (1� �(A jB ))U0 (x;m)
= �U0 (w; l) + (1� �)U0 (x;m)
() �(A jB ) = �:
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Next, let B � Bt�2 � Bt�3 � � � � � B0 � 
 with Bs 2 PI;s denote the unique path to the event
B in �ltration I: By (13) and (14),

f 0 � g0

() u0(z0; �I(B0 j
 )u1(z1; � � ��I(B jBt�2 )ut�1(zt�1; �I(A jB )Ut (y; l0)
+ (1� �I(A jB ))Ut (z;m0)) + (1� �I(B jBt�2 ))ut�1 (zt�1; Ut (z;m0)) � � � )
+(1� �I(B0 j
 ))u1 (z1; � � �ut�1 (zt�1; Ut (z;m0)) � � � ))

= u0(z0; �I(B0 j
 )u1(z1; � � ��I(B jBt�2 )ut�1(zt�1; �Ut (y; l0)
+ (1� �)Ut (z;m0)) + (1� �I(B jBt�2 ))ut�1 (zt�1; Ut (z;m0)) � � � )
+(1� �I(B0 j
 ))u1 (z1; � � �ut�1 (zt�1; Ut (z;m0)) � � � ))

() �I(A jB )Ut (y; l0) + (1� �I(A jB ))Ut (z;m0)

= �Ut (y; l
0) + (1� �)Ut (z;m0)

() �I(A jB ) = �:

As the above argument may be made for any �, f � g () f 0 � g0 from Axiom Consistent
Beliefs delivers

�I(A jB ) = �(A jB )

for all A 2 PI;t and B 2 PI;t�1 with B � A: The argument may be repeated to show this
equality for any t, and so �I may be replaced with � in Proposition 2. The same holds for
all I, and so the theorem is proved. Necessity follows as in the characterization of SREU with
�ltration-dependent beliefs (Proposition 2) with the equality of conditional beliefs implying the
consistent beliefs axiom.
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Fig. 1 A temporal act in a two period world with some time 1 continuations indicated
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Fig. 2 f 2 F 2I
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Fig. 3 f̂ � ĝ
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Fig. 4 ~f � ~g
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Fig. 5 f , g and h.
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Fig. 6 f � g
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Fig. 7 �f + (1� �)h � �g + (1� �)h
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Fig. 8 h � h0

Fig. 9 k � k0
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