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Abstract

We axiomatize preferences that can be represented by a monotonic aggrega-
tion of subjective expected utilities generated by a utility function and some set
of i.i.d. probability measures over a product state space, S°°. For such prefer-
ences, we define relevant measures, show that they are treated as if they were
the only marginals possibly governing the state space and connect them with the
measures appearing in the aforementioned representation. These results allow us
to interpret relevant measures as reflecting part of perceived ambiguity, meaning
subjective uncertainty about probabilities over states. Under mild conditions,
we show that increases or decreases in ambiguity aversion cannot affect the rele-
vant measures. This property, necessary for the conclusion that these measures
reflect only perceived ambiguity, distinguishes the set of relevant measures from
the leading alternative in the literature. We apply our findings to a number of
well-known models of ambiguity-sensitive preferences. For each model, we iden-
tify the set of relevant measures and the implications of comparative ambiguity
aversion.
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1 Introduction

In Savage’s subjective expected utility (SEU) theory [39], an individual’s preference
over acts (maps from states of the world to outcomes) can be described using two ar-
guments: a subjective probability over states that enables her to identify each act with
a distribution over outcomes, and a von Neumann-Morgenstern (vNM) utility func-
tion that describes her risk attitude (i.e., preference over distributions over outcomes).
Subsequent work has developed models that permit a richer description of uncertainty
about states and attitudes toward this uncertainty. In particular, this richness is use-
ful for describing behavior under ambiguity.! Perceived ambiguity, meaning subjective
uncertainty about probabilities over states, induces uncertainty concerning the distribu-
tion over outcomes an act generates. Attitude towards ambiguity describes how averse
or attracted the individual is to this induced subjective uncertainty. For many mod-
els allowing ambiguity to affect behavior there is, just as in SEU, a component of the
model that describes preferences over distributions over outcomes (i.e., risk attitude).
The remaining components of these models do two things: (1) map each act into a
set of distributions over outcomes, and (2) aggregate the evaluations of each of these
distributions.

One might be tempted to assert that a map as in (1) must reflect perceived ambigu-
ity, as opposed to ambiguity aversion. However, a given preference typically has many
representations, each using a different (map, aggregator) pair. The main goal of this
paper is to define through preferences and identify in representations a particular map
(called the relevant measures) such that behavior is as if relevant measures were the
possible resolutions of ambiguity. In this sense, the relevant measures will be shown to
be a part of perceived ambiguity. Furthermore, if a map is supposed to reflect only per-
ceived ambiguity, then it is necessary that it is not affected by increases or decreases in
ambiguity aversion. Hence, a complementary goal is to identify conditions under which
increases or decreases in ambiguity aversion cannot change the relevant measures.

We accomplish these goals in a setting that encompasses a large set of preference
models provided that the state space has an infinite product structure and preferences
over Anscombe-Aumann acts (functions from the state space to lotteries over outcomes)
satisfy a type of symmetry with respect to that structure. This symmetry requires pref-
erences to treat bets on an event identically to bets on any other event that differs only in
permuting the role of some ordinates, .S, of the state space, S*°. We provide preference
axioms (collectively referred to as Continuous Symmetry) and show (Theorem 3.1) that
they imply representation by a monotonic aggregation of subjective expected utilities
generated using a single utility function and a set of i.i.d. probability measures. Aside
from symmetry, the main substantive requirement of our axioms is state-independent,
expected utility preferences over lotteries. Though restrictive, symmetry requirements
are essentially cross-ordinate requirements only, and allow great freedom in specifying

!This word is used in the sense of the decision theory literature following Ellsberg [13]. See e.g.,
Ghirardato [21] who states “. . . ‘ambiguity’ corresponds to situations in which some events do not
have an obvious, unanimously agreeable, probability assignment.”



preferences over acts depending on any single ordinate (for example, enough freedom to
embed popular models from the ambiguity literature applied to acts measurable with
respect to .S).

This symmetric environment allows us to define a relevant measure as a marginal
distribution, ¢, on S that matters for preferences in the following sense: For each open
set of marginal distributions, L, containing ¢, we can find two acts, f and g, that
yield the same distribution over outcomes as each other under all i.i.d. distributions
generated by marginals not in L and yet the individual strictly prefers f over g. We
show (Theorem 3.3) that the set of relevant measures is the unique closed subset of
marginals that are necessary and sufficient for the set of measures appearing in the
representation of Continuous Symmetric preferences given in Theorem 3.1. We then
provide results highlighting two properties showing that relevant measures satisfy our
goals:

First, we show (Theorem 3.2) that a marginal is a relevant measure if and only if,
for each open neighborhood containing it, the corresponding limiting frequency event
is non-null. In this sense, relevant measures are the only marginals treated as possibly
governing the state space. They describe part of perceived ambiguity — specifically,
which common marginals are viewed as possible resolutions of the ambiguity. Note the
role of Continuous Symmetry in the result: it is what allows probabilities over S to be
identified with (limiting frequency) events in S*.

Second, Theorem 3.4 provides sufficient conditions under which one preference
(weakly) more ambiguity averse than another implies that the two preferences have
the same set of relevant measures.? For example, this will be true for all Continu-
ous Symmetric preferences that are strictly monotonic on non-null events. The result
uses the standard definition of comparative ambiguity aversion (see e.g., Gilboa and
Marinacci [27, Definition 16]) which says one preference is more ambiguity averse than
another if, for any act and any lottery, the former ranks (resp. strictly ranks) the act
above the lottery, then so does the the latter. Under the conditions of Theorem 3.4,
a preference change coming from a change in relevant measures is never the same as
an increase or decrease in ambiguity aversion. Specifically, the set of preferences that
are (weakly) more or less ambiguity averse than a given 7~ is disjoint from the set of
preferences that have a different set of relevant measures than 7.

In Section 4, we specialize to Continuous Symmetric versions of two well-known
models of ambiguity-sensitive preferences: the a-MEU model (see e.g., Ghirardato,
Maccheroni and Marinacci [22]) and the smooth ambiguity model (see e.g., Klibanoff,
Marinacci and Mukerji [30], Nau [34], Seo [40]). For each representation, we both
identify the set of relevant measures and describe the implications of comparative am-
biguity aversion in terms of the representation.® We also identify the relevant measures

2This is reminiscent of Yaari’s [45] result that, under sufficient differentiability, SEU preferences
can be ranked in terms of risk aversion only if they share a common subjective probability measure.

3The same is done for additional models in the online supplement (Klibanoff, Mukerji and Seo
[32]): the extended MEU with contraction model (see e.g., Gajdos et. al. [20], Gajdos, Tallon and
Vergnaud [19], Kopylov [33], Tapking [43]), the vector expected utility model (see Siniscalchi [42])



in a Bewley-style representation of incomplete preferences and use this identification to
draw comparisons with other notions of revealed sets of measures in the literature.

What if not all ordinates are considered symmetric, but only symmetric conditional
on some set of observables? In Appendix B, we show that our findings extend when
replacing our overall symmetry assumption with symmetry conditional on descriptions
(vectors of observable characteristics). In the extended results, i.i.d. measures are re-
placed by functions mapping descriptions to i.i.d. measures. A standard linear regres-
sion model is an example of such a function: given a description, £, the i.i.d. measure
is Normal with mean ¢ and variance 0. The analogue of a set of relevant measures
is a set of pairs (3, 0) denoting a corresponding set of regression models.

What types of questions do the relevant measures allow us to address? Two exam-
ples are the following: First, in economic modeling one may want to impose constraints
on preferences so that they reflect either some type of calibration of perceived ambigu-
ity to external data or some equilibrium/internal consistency conditions on perceived
ambiguity. Our theory shows why, if such constraints were to be imposed, it might be
reasonable to do so through constraints on the relevant measures. A simple example of
such a constraint might be the requirement that the empirical frequency distribution
be considered one of the possible resolutions of ambiguity, and thus one of the rele-
vant measures. Second, relevant measures provide a test for differences in perceived
ambiguity. If two preferences differ in their relevant measures, then they must differ in
perceived ambiguity.

1.1 Related literature

There is an alternative preference-based approach to identifying a unique map from acts
into sets of distributions over outcomes (see Ghirardato, Maccheroni and Marinacci [22],
Nehring ([35],[36]), Ghirardato and Siniscalchi [24], Siniscalchi [41]). Loosely, this ap-
proach uses marginal rates of substitution in utility space to identify the distributions
over states that generate this mapping. A brief comparison with our approach is in
order. An advantage of the alternative approach is that it does not require a product
state space or symmetry conditions on preferences. For Continuous Symmetric prefer-
ences, Theorem 4.5 shows that the set identified by the alternative approach consists of
some convex combinations of the i.i.d. measures generated by the relevant measures.
Which particular convex combinations appear can be affected by increases or decreases
in ambiguity aversion (Section 4.3 contains examples demonstrating this). For our goal
of finding a map reflecting only perceived ambiguity, this is a disadvantage of the alter-
native approach. Ghirardato and Siniscalchi [24, p.3] emphasize that the distributions
identified in their approach are those that “identify candidate solutions to optimization
problems.” This conceptually explains the dependence of their set on ambiguity aver-
sion, as one would expect the solution to an optimization problem under ambiguity to
depend on both perceived ambiguity and ambiguity aversion.

and the second-order Choquet representation (see Amarante [4]) of invariant biseparable preferences
(defined by Ghirardato, Maccheroni and Marinacci [22]).
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Another approach simply takes sets of probability distributions over the state space
as an objective primitive. Such models include those in Gajdos et al. [20], Gajdos,
Tallon and Vergnaud [19], Kopylov [33], Wang [44], and Cerreia-Vioglio et al. [§]. Our
theory provides a way of examining the connection between this objective primitive
and perceived ambiguity. One illustration of this is our Theorem D.1 which shows that
when the objectively given set in the extended MEU with contraction model of Gajdos
et. al. [20] consists of i.i.d. measures, these are exactly the i.i.d. measures generated
by the relevant measures.*

Our paper imposes a symmetry property on preferences. In doing so, we are follow-
ing the work of de Finetti [9] and Hewitt and Savage [29] in the context of expected
utility and recent extensions of this work to larger classes of preferences and various no-
tions of symmetry by Epstein and Seo ([15],[16],[17],[18]), Al-Najjar and De Castro [3]
and Cerreia-Vioglio et. al. [8]. In fact, our Theorem 4.5 may be viewed as a generaliza-
tion of de Finetti’s theorem. Ours is the only paper to use any of these “symmetries” to
explore the concept of which i.i.d. measures (or generalizations thereof) are relevant and
the implications of this relevance for modeling perceived ambiguity. The relationship
between our symmetry axiom (Event Symmetry) and similar preference-based notions
in the literature is detailed in Klibanoff, Mukerji and Seo [31].

2 Setting and Notation

Let S be a compact metric space and 2 = S the state space with generic element
w = (w1, ws,...). The state space Q is also compact metric (Aliprantis and Border |2,
Theorems 2.61 and 3.36]). Denote by ¥; the Borel o-algebra on the i-th copy of S,
and by X the product g-algebra on S*°. An act is a simple Anscombe-Aumann act, a
measurable f : S — X having finite range (i.e., f(S%) is finite) where X is the set
of lotteries (i.e., finite support probability measures on an outcome space 7). The set
of acts is denoted by F, and 77 is a binary relation on F x F. As usual, we identify a
constant act (an act yielding the same element of X on all of S*°) with the element of
X it yields.

Denote by II the set of all finite permutations on {1,2,...} i.e., all one-to-one and
onto functions 7 : {1,2,...} — {1,2,...} such that w(¢) = i for all but finitely many
i €{1,2,..}. For m € II, let 7w = (wr(1), Wr(2), -..) and (7f) (w) = f (7w).

For any topological space Y, A (Y') denotes the set of (countably additive) Borel
probability measures on Y. Unless stated otherwise, a measure is understood as a
countably additive Borel measure. For later use, ba (V) is the set of finitely additive
bounded real-valued set functions on Y, and ba}r (Y') the set of non-negative probability
charges in ba (Y). A measure p € A(S%) is called symmetric if the order doesn’t
matter, i.e., p(A) = p(mA) for all 7 € II, where 7A = {7w : w € A}. Denote by £* the

4Less related are models of preferences over sets of lotteries as in Olszewski [37] and Ahn [1]. As
these models lack acts and a state space, the question of which probabilities are relevant in evaluating
acts doesn’t arise.



i.i.d. measure with the marginal £ € A(S). Define [, fdp € X by (fSOO fdp) (B) =
(fgoe f () (B)dp (w)). (Since f is simple, this is well-defined.)

Fix z,,2* € X such that z* > z,. For any event A € 3, 14 denotes the act giving
x* on A and z, otherwise. Informally, this is a bet on A. More generally, for x,y € X,
x Ay denotes the act giving x on A and y otherwise. A finite cylinder event A € X is
any event of the form {w : w; € A; fori = 1,...,n} for A; € ¥; and some finite n.

Endow A (S), A(A(S)) and A (S%°) with the relative weak™ topology. To see what
this is, consider, for example, A (S). The relative weak™® topology on A (S) is the
collection of sets V N A (S) for weak™ open V' C ba (S), where the weak* topology on
ba(S) is the weakest topology for which all functions ¢ — [ ¢dl are continuous for all
bounded measurable ¢ on S. Also note that a net ¢, € ba (S) converges to ¢ € ba (S)
under the weak* topology if and only if [ ¢dl, — [1dl for all bounded measurable v
on S. For a set D C A(S), denote the closure of D in the relative weak™® topology by
D.

The support of a probability measure m € A (A (S)), denoted supp m, is a relative
weak* closed set such that m ((suppm)®) = 0 and if L Nsuppm #  for relative weak™
open L, m (L Nsuppm) > 0. (See e.g., Aliprantis and Border [2, p.441].)

Let ¥, (w) € A (S) denote the empirical frequency operator ¥,, (w) (A) = £ 3" T (w, € A)
for each event A in S. Define the limiting frequency operator ¥ by ¥ (w)(A4) =
lim, ¥,, (w) (A) if the limit exists and 0 otherwise. Also, to map given limiting frequen-
cies or sets of limiting frequencies to events in S*°, we consider the natural inverses

U t()={w: ¥ (w)=(}and U1 (L) ={w: ¥ (w) € L} for £ € A(S) and L C A(S).

For feF,u: X - Rand D C A(S), let f: D — R be the function defined by
f(f) = [wu(f)dl> for each ¢ € D. Let F = {f:fe]—"}. G : F — R is increasing
if f > g implies G(f) > G(§). G: F — Ris isotonic if o, € u(X), a >

implies G (a) > G (B8). G : F-R is mixture continuous if for all flf], h € F the sets
{Ael0,1]:GAf+(1=X)g)>G(h)} and {\€[0,1] : G(h) > GAf+(1—=X)g)} are
closed.

3 Continuous Symmetric Preferences and Relevant
Measures

3.1 Continuous Symmetric Preferences

We start by delineating the scope of our theory of relevant measures. The theory will
apply to preferences 77 satisfying the following axioms.

Axiom 1 (Weak Order). Z is complete and transitive.
Axiom 2 (Monotonicity). If f (w) = g (w) for allw € S*, f 7 g.

Monotonicity rules out state-dependence of preferences over X. This allows us to
focus on states purely as specifying the resolution of acts.
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Axiom 3 (Risk Independence). For all x,2’',2" € X and a € (0,1), z 75 2’ if and only
ifar+(1—a)2” Z ax’ + (1 —a)z”.

This is the standard vNM independence axiom on lotteries. This rules out non-
expected utility preferences over lotteries. It allows us to separate attitudes toward risk
from other aspects of preferences in a simple way, using a familiar vNM utility function.

Axiom 4 (Non-triviality). There exist x,y € X such that x > y.

The key axiom is Event Symmetry which implies that the ordinates of S* are viewed
as interchangeable.

Axiom 5 (Event Symmetry). For all finite cylinder events A € ¥ and finite permuta-
tions m € 11,

aly+ (1 —a)h ~ala+ (1 —a)h for all o € [0,1] and all acts h € F. (3.1)

This symmetry says that the decision maker is always indifferent between betting
on an event and betting on its permutation. The use of the term “always” here means
at least that this preference should hold no matter what other act the individual faces
in combination with the bet. In an Anscombe-Aumann framework such as ours, this
is expressed by (3.1). In the language of Ghirardato and Siniscalchi [24], note that,
thinking of acts as state-contingent utility consequences of actions and h as a status
quo, (3.1) says a move away from the status quo in the direction of 14 is indifferent to
the same size move away from the status quo in the direction of 1,4 no matter what the
status quo h and no matter how far one moves away from it. The idea behind Event
Symmetry is that such utility transfers are considered indifferent because the ordinates
are viewed as (ex-ante) identical. Observe that for preferences satisfying the usual
Anscombe-Aumann independence axiom, 14 ~ 1,4 implies aly + (1 — a)h ~ al,a +
(1 —a)h for all & € [0,1] and all acts h. For preferences that may violate independence
(e.g., because of ambiguity concerns), this is not true, and thus we cannot substitute
the former condition for the latter. Appendix B weakens Event Symmetry so as to
accommodate preferences symmetric only conditional on some set of observables.

Remark 3.1. As written, Event Symmetry seems to depend on the choice of z*, z, in
defining 14. In fact, in the presence of our other axioms, Event Symmetry implies that
the analogous property holds for any choice of x,,z* € X.

Combining all of these axioms defines symmetric preferences:

Definition 3.1. 7 satisfies Symmetry if it satisfies Weak Order, Monotonicity, Risk
Independence, Non-triviality, and Event Symmetry.

When we say that 7~ is Symmetric, we mean that it satisfies Symmetry.

In addition to Symmetry, we will often need some form of continuity of preference.
We now state two forms of continuity that are used in the paper. The first, Mixture
Continuity, is a standard axiom in the literature and serves partly to ensure a real-
valued representation.



Axiom 6 (Mixture Continuity). For all f,g,h € F, the sets {A € [0,1] : A\f +
(I1—=XNgzh}and{A€[0,1]:hZZ Af+ (1 —X)g} are closed in [0, 1].

Our second continuity axiom will allow us to restrict attention to countably additive
(as opposed to finitely additive) measures in the representations we obtain. To describe
this axiom, it is notationally convenient to introduce the binary relation 7* (see e.g.,
Ghirardato, Maccheroni and Marinacci [22]) derived from 7:

frrgifaf+(1—a)hZzag+ (1 —a)hforall a € [0,1] and h € F. (3.2)

The axiom applies Arrow [5]’s monotone continuity to 2-*, as was done in Ghirardato,
Maccheroni and Marinacci [22].

Axiom 7 (Monotone Continuity of =*). For all z,2',2" € X, if A, \, 0 and 2’ = 2",
then o' ==* xA,x" for some n.

Definition 3.2. = satisfies Continuous Symmetry if it is Symmetric, Mixture Contin-
uous and satisfies Monotone Continuity of 2Z*.

When we say that ~~ is Continuous Symmetric, we mean that it satisfies Continuous
Symmetry. This is the class of preferences that is the focus of the paper. Our next
result provides a representation for any Continuous Symmetric preference.

Theorem 3.1. If - is Continuous Symmetric, then there is a non-constant vNM utility
Junction u on X, a set D C A (S) and an isotonic, mizture continuous, and increasing
functional G on F such that

U(f)=G (( [un) cw“)z D) (3.3)
represents = )

Additionally, zf@ ((fﬂ(f) dfoo)eef)> is any other such representation of 7=, u is a
positive affine transformation of .

Proof. All proofs are contained in Appendix C. O]

Remark 3.2. Given any functional of the form (3.3), the = derived from it must be
Symmetric and satisfy Mixture Continuity, but need not satisfy Monotone Continuity
of Z*. If, additionally, D is finite then the 77 must be Continuous Symmetric. In
Appendix A, we provide additional conditions on G such that, if the Locally Bounded
Improvements axiom of Ghirardato and Siniscalchi [24] is added to the Continuous
Symmetry axioms, the representation with general D is both necessary and sufficient.

The theorem shows that any Continuous Symmetric preference may be described by
specifying (1) a set of marginals, D, (2) a vNM utility function, u, and (3) a function,
G, aggregating the expected utilities with respect to the i.i.d. products of elements of
D. Under slightly different assumptions, the fact that the set of expected utilities with
respect to all i.i.d. measures can be monotonically aggregated to represent preferences
was shown in Al-Najjar and De Castro [3]. Note that G and D are not generally unique.
The remainder of this section identifies the unique essential elements of D and shows
how they relate to perceived ambiguity and comparative ambiguity aversion.



3.2 Relevant measures

We define what it means for a marginal £ € A (.S) to be relevant according to Continuous
Symmetric preferences 77. We then show that the set of relevant measures is closed and
that, a measure is not relevant if and only if the limiting frequency event generated by
some open neighborhood of that measure is null according to the preferences. Finally,
we relate relevant measures to the representation of 7 in (3.3).

For notational convenience, let O, be the collection of open subsets of A (S) that
contains ¢. That is, for £ € A(S), Oy ={L C A(S): Lis open, { € L}.

Definition 3.3. A measure ¢ € A (S) is relevant (according to preferences 27) if, for any
L € Oy, there are f,g € F such that f = g and [ fdl> = [ gd¢> for all £ € A (S)\L.

In words, £ is relevant if it satisfies the following property: For each open set contain-
ing ¢, there are acts that are not indifferent despite generating identical induced distribu-
tions over outcomes when any measure outside this set governs the independent realiza-
tion of each ordinate S. The use of open neighborhoods is required only because A (.S)
is infinite. Why is it enough to consider equality of the lotteries generated by f and g for
i.i.d. measures, ¢>? Under Continuous Symmetry, Theorem 3.1 shows that non-i.i.d.
measures are not needed to represent preferences. Furthermore, as Continuous Symme-
try implies expected utility on constant acts, one could replace [ f di> = i gdéoo by the
analogous condition on expected utilities, [ u( fde= = i u(g)dl>, without changing
the meaning of the definition within our theory. Given any Continuous Symmetric -,
the relevant measures are uniquely determined.

This definition is in the spirit of “non-null” as the term is applied to events (e.g.,
Savage [39]).° An event is non-null if there are acts f = g such that f = g on all states
outside of that event. An event is null otherwise. We consider open sets of measures,
L € Oy, instead of events, and [ fdl> = [ gd> for all other measures 7 instead of
f = g on all other states. Our next result makes this connection explicit. In reading
it, recall that, for A C A(S), U~!(A) is the event that limiting frequencies over S lie
in A. We use R to denote the set of relevant measures.

Theorem 3.2. Assume 77, is Continuous Symmetric. For ¢ € A(S), { ¢ R if and only
if, for some L € Oy, W~ (L) is a null event. Moreover, R is closed.

When R is finite, the same result holds without the use of neighborhoods, i.e.,
U~ (¢) is null if and only if £ ¢ R. The above result justifies thinking of R as the
unique set of marginals subjectively viewed as possible, since the individual behaves as
if only those outside of R are impossible. In this sense, relevant measures represent part
of perceived ambiguity, as they are the measures an individual reveals that he treats
as possible resolutions of his ambiguity. Specifically, given that perceived ambiguity is

5The definition is also reminiscent of the definition of relevant subjective state in Dekel, Lipman
and Rustichini [10, Definition 1]. In the case of a finite subjective state space, a state is relevant if
there are two menus z ~ y, the valuations of which coincide on all other subjective states. The infinite
case uses open neighborhoods just as we do.



subjective uncertainty about probability assignments, under Continuous Symmetry the
relevant measures are the probability assignments in the support of that uncertainty.

Our next result connects the relevant measures to the representation of Continuous
Symmetric preferences.

Theorem 3.3. Any Continuous Symmetric 7 may be represented as in (3.3) setting
D = R, and in any representation of = as in (3.8), D D R. If every measure in D is
relevant, then D = R. Furthermore, in any representation (3.3) of 2=, for{ € D, { ¢ R
if and only if there exists an L € Oy such that, f,§ € F and f(é) = g(é) for all ¢ ¢ L

implies G(f) = G(g).

The theorem says that in representing Continuous Symmetric preferences by (3.3),
only relevant measures need appear, and, up to closure, all of them must do so. That
is, R is the unique closed subset of marginals that are necessary and sufficient for D
in such representations. Furthermore, any measures in D that are not relevant may
be identified through the property that the aggregator G appearing in (3.3) is not
responsive to the expected utilities generated by (some open neighborhood of) such
measures.

3.3 Comparative ambiguity aversion and relevant measures

We now investigate the relationship between comparative ambiguity aversion and rel-
evant measures. We adopt the following established notion for what it means for one
preference to be more ambiguity averse than another. Definition 3.4 is essentially a
restatement of the Epstein [14, (2.3)] and Ghirardato and Marinacci [23, Definition 4]
definitions of comparative uncertainty /ambiguity aversion as applied to our Anscombe-
Aumann setting. All these definitions, in turn, are natural adaptations to ambiguity
aversion of Yaari [45]’s classic formulation of comparative (subjective) risk aversion.

Definition 3.4. -4 is more ambiguity averse than =g if, for all x € X and f € F,
frar=frprand f Jpr=f3am.

The difference from Yaari’s definition is that he requires the implications only when
x is an outcome (i.e., a degenerate lottery). Because Definition 3.4 applies to all lotteries
x, it holds risk aversion fixed — if two preferences can be ordered in terms of ambiguity
aversion then they must rank lotteries in the same way.

Yaari’s definition, under sufficient conditions on the utility function (e.g., differen-
tiability), implies that SEU preferences can be ranked in terms of risk aversion only if
they share a common subjective probability measure. Thus changes in the subjective
probability measure can neither increase nor decrease risk aversion. Analogously, our
next result provides a sufficient condition so that, when Definition 3.4 is applied to
Continuous Symmetric preferences, preferences may be ranked in terms of ambiguity
aversion only if they share the same set of relevant measures. In this way, changes in
relevant measures are shown to neither increase nor decrease ambiguity aversion.

10



Our sufficient condition is a form of strict monotonicity that is weak enough to fit
many cases of interest, including the applications in the next section.

Definition 3.5. = is strictly monotonic for bets on non-null limiting frequency events
if, for all L C A (S) such that ¥~! (L) is a non-null event, and all z,y, 2 € X such that
=y, 20N (L) z = yP (L) 2.

Theorem 3.4. Let 774 and =g be Continuous Symmetric preferences with sets of rel-
evant measures Ry and Rp and suppose 7~ and 7 g are strictly monotonic for bets on
non-null limiting frequency events. Then 74 more ambiguity averse than g implies

RA = RB-

4 Relevant measures in specific decision models

We examine Continuous Symmetric versions of models from the ambiguity literature.
We identify the relevant measures and describe the implications of comparative ambi-
guity aversion within these models. This section considers a-MEU, smooth ambiguity
and Bewley-style representations. The online supplement (Klibanoff, Mukerji and Seo
[32]) considers additional models.

4.1 The o-MEU model

Consider preferences having an a-MEU representation where the set of measures in the
representation is a finite set of i.i.d. measures:

i d 1— d 4.1
ape{glo{?eD}/U(f) P+ ( O‘)pe{%f}gﬁ[,}/“(f) p (4.1)
where D C A(S) is finite, u is a non-constant vINM utility function and « € [0, 1].°
Call such preferences i.i.d. a-MEU.

We show that the relevant measures are the set D.

Theorem 4.1. For any i.i.d. a-MFEU preference, R = D.
We next characterize comparative ambiguity aversion for these preferences.

Theorem 4.2. Let =4 and Zp be two i.i.d. a-MFEU preferences such that as,ap €
(0,1) and Dp is non-singleton. Then, 74 is more ambiguity averse than Zp if and
only if «x > ag, Do = Dp and (up to normalization) ua = up.

The theorem tells us that, as long as D is non-singleton (so that a affects prefer-
ences), increases in ambiguity aversion correspond exactly to increases in a. Note that
the “if” direction of the result holds for any a4, ap € [0,1], as a € (0,1) is used only to
ensure that preferences are strictly monotonic for bets on non-null limiting frequency

SFiniteness of D is necessary for these preferences to satisfy Monotone Continuity of > *.
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events which is needed for the “only if” direction. Applying the most closely related
result in the literature (Ghirardato, Maccheroni and Marinacci [22, Proposition 12]) to
i.i.d. a-MEU preferences delivers only the following: If Dy = Dp, us = ug (up to
normalization), and either a4 = 1 and ag = 0 or @y = ap then 774 is more ambiguity
averse than —p. This limitation to « equals 0 or 1 is related to the critique in Eich-
berger et al. [12]. Part of Section 4.3 explains why applying Ghirardato, Maccheroni
and Marinacci [22, Proposition 12] is informative only for a equals 0 or 1 and how
Continuous Symmetry and the focus on relevant measures allows us to say more.

4.2 The Smooth Ambiguity model

Consider preferences having a smooth ambiguity representation where the support of
the second-order measure consists of i.i.d. measures on the state space:

/ K ([ utnae)auce (12)

where u is a non-constant vNM utility function, ¢ : u(X) — R is a strictly increas-
ing continuous function, p € A(A(S)) and either (i) there are m, M > 0 such that
mla—bl < |d(a) — ¢ (b)] < Ml|a—10| for all a,b € u(X) or, (ii) supp p is finite.” Call
such preferences i.1.d. smooth ambiguity.

Theorem 4.3. For any i.i.d. smooth ambiguity preference, R = supp p.

The result says that for i.i.d. smooth ambiguity preferences, the relevant measures
are exactly the support of the second-order measure p. Given this and the fact that
these preferences satisfy strict monotonicity for bets on non-null events (since ¢ is
strictly increasing), Theorem 3.4 implies that one preference is more ambiguity averse
than another only if the support of the u’s for the two preferences coincide and (up to
normalization) the associated u’s are equal.

We next characterize comparative ambiguity aversion for these preferences. Since
equality of the u’s (up to normalization) is necessary for one preference to be more
ambiguity averse than another, to ease the statement of the characterization, we simply
assume this.

Theorem 4.4. Let =~ 4 and g be any two i.i.d. smooth ambiguity preferences such
that ua = upg, ¢4 and ¢p are continuously differentiable and supp pa and supp ug are
non-singleton. Then, 7~ 4 is more ambiguity averse than =g if and only if ¢4 is more
concave than ¢p and s = pp.

Continuous Symmetry allows our characterization to improve on that in Klibanoff,
Marinacci and Mukerji [30, Theorem 2] in that equality of p is part of the characteri-
zation rather than an assumption.

"The requirement that either (i) or (ii) is satisfied is necessary for these preferences to satisfy
Monotone Continuity of 2Z*.
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4.3 A Bewley-style representation

Recall, from (3.2), the induced relation 77*. This is the maximal sub-relation of 77 that
satisfies the Anscombe-Aumann independence axiom. For Continuous Symmetric pref-
erences violating independence, 7~* will be incomplete. We provide a generalization of
de Finetti’s theorem based on a Bewley-style (Bewley [6]) representation result for 2=*
and show where the set of relevant measures appear in this representation. Compared to
other Bewley-style representation results (e.g., Ghirardato, Maccheroni and Marinacci
[22], Gilboa et. al. [26], Ghirardato and Siniscalchi [24], Nehring [35]) our key contribu-
tion is in showing that Continuous Symmetry allows a de Finetti-style decomposition
of the representing set of measures, C', and in explaining the relationship between C'
and R. This relationship is of particular interest because C' is the main alternative
offered in the literature as possibly representing perceived ambiguity (see Ghirardato,
Maccheroni and Marinacci [22], Nehring ([35],[36]), Ghirardato and Siniscalchi [24],
Siniscalchi [41]).

In light of the possible incompleteness of 7=*, to state the representation result as
an if and only if characterization, we need to weaken two of the Continuous Symmetry
axioms. We replace Weak Order and Mixture Continuity with the following:

Axiom 8 (C-complete Preorder). = is reflexive, transitive and the restriction of 7~ to
X 1s complete.

Axiom 9 (Mixture Continuity of 72*). For all f,g,h € F, the sets {\ € [0,1] : \f +
(I1-=XNgz*h} and {\€[0,1] : A Z* A\f + (1 — X) g} are closed in [0,1].

Refer to a binary relation satisfying this weakened version of the Continuous Sym-
metry axioms as Weak Continuous Symmetric.

Theorem 4.5. =~ is Weak Continuous Symmetric if and only if 7 is transitive and
there ezist a non-empty compact conver set M C A (A (S)) and a non-constant vNM
utility function u such that

f =" g if and only if /u(f) dp > /u(g) dp for allp € C, (4.3)

where C' = { [ (>dm ({) : m € M }. Furthermore R =J,,.,;suppm and M is unique.

De Finetti’s theorem (see Hewitt and Savage [29]) says that for an expected utility
preference displaying indifference under finite permutations (i.e., f ~ 7 f), the subjec-
tive probability measure is an exchangeable measure and thus can be described by a
unique probability measure over marginals of i.i.d. measures. Theorem 4.5 expands on
this in several respects. First, it applies to a much larger class of preferences. Second,
instead of a single probability measure over marginals there is a unique compact con-
vex set of such measures, M, used to represent ~*. Finally, Theorem 4.5 identifies the
relevant measures according to 2~ from the supports of measures in M.
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Theorem 4.5 features the set C' and shows its exact relationship to R. For any
Continuous Symmetric 27, just as 2~ may be represented as in (3.3) with D = R, Cerreia-
Vioglio et. al [7, Proposition 5] implies that 7~ may be represented by a monotonic
aggregation of expected utilities with respect to the measures in C'. For preferences
satisfying Definition 3.5, our results on comparative ambiguity aversion allow us to show
that C', but not R, may be affected by increases or decreases in ambiguity aversion.
Therefore, despite the fact that preferences can be represented using the exchangeable
measures that make up C, C' cannot be said to reflect only perceived ambiguity.

To understand this, consider two examples. First, consideri.i.d. a-MEU preferences.
By Theorem 4.1, R = D. The allowed weights over D for m to be an element of M are
determined completely by «.® For o € (0,1) and D non-singleton, Theorem 4.2 shows
that « reflects comparative ambiguity aversion. Thus, for these preferences (which do
not include SEU as a special case), the weights determined by the m (and thus C) are
affected by ambiguity aversion, while the supports of the m (and thus R) are not. In
particular, when a € (0,1), holding C' fixed holds « fixed as well. This explains why,
as mentioned in Section 4.1, the approach of Ghirardato, Maccheroni and Marinacci
[22, Proposition 12] characterizing more ambiguity averse while holding C' fixed is not
informative when a € (0, 1).

The second example comes from i.i.d. smooth ambiguity preferences with ¢ twice
continuously differentiable. By Theorem 4.3, R = supp p. The allowed weights over
supp i for m to be an element of M are determined by a combination of ¢' and p.° To
illustrate, suppose ¢(z) = — exp(—0z) for some 6 > 0, u(¢1) = 3 = p(fs) and u(X) =

[—1,1]. Then M = {m EA(A(S)) :m(l)) =A=1—m(ly) and X € [ xp(=0) exp(0) }}

exp(—0)+exp(6) * exp(—0)+exp(0)
Thus, as ¢ becomes more concave (i.e., 0 increases), the set M (and thus C) gets
strictly larger. Theorem 4.4 shows that ¢ more concave reflects more ambiguity aver-
sion. Therefore, C' is again affected by changes in ambiguity aversion, while R is not.!°
Contrast this with the i.i.d. smooth ambiguity preference with the same p and u but
with ¢(z) = x. This is an SEU preference, and C'is a singleton. Specifically, M = {u} .
As Theorem 4.5 has shown, when Anscombe-Aumann independence is violated, C'
is determined, in part, by the multiple weightings defined by m € M being applied
over R. These weightings, as in the examples, may depend on ambiguity aversion. This

explains our focus on the relevant measures rather than C.

8Specifically = M  in  this case is the closed convex hull of the set
{meAA(S))  m{l)=a=1—-—m(l') with ¢, € D and ¢ # {'}.
9Specifically M in  this case is the closed convex hull of the set

{m e A(A(S)) :dm(l) = % and e € intB(Z,u(X))} where intB(X,u(X)) is the

interior of the set of all ¥-measurable functions a : S — R for which there exist o, € u(X)
satisfying o < a(w) < B for all w € S (informally, the interior of the set of bounded utility acts).
10Beyond this example, when supp p is non-singleton, it may be shown that ¢ restricts the measures

over supp p that belong to M if and only if sup |, teu(X) ¢,Eg < 4o00.
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A Appendix A: An Equivalence Theorem

Consider the following axiom adopted from Ghirardato and Siniscalchi [24].

Axiom 10 (Locally Bounded Improvements). For every h € F™  there are y € X
and g € F with g(w) > h(w) for all w such that for all h, € F, hy, ~ z, € X and
An € [0, 1] with h, — h and A, \ 0

N'g+ (1 —=A")R" < Ny + (1 = \") z,, eventually.

In this Appendix, we provide an if and only if representation theorem for Continuous
Symmetric preferences that also satisfy Locally Bounded Improvements. Note that all
of the complete preferences used in Section 4 and the Online Supplement satisfy Locally
Bounded Improvements.

Additional definitions: For locally Lipschitz G : F — R, the Clarke derivative

G(g+tf)—G(q)
CTHI)=C@ Ty Clarke

differential of G at h is OG (ﬁ) = {Q €ba(D):Q <f) <G° (71, f) for all f e ﬁ’}.
The normalized differential is C (ﬁ) = {Q/Q (D):Q € 0G (fz) ,Q (D) > 0}.

of G at h in the direction f is G° (ﬁ, f) = limsup; ,j, ~ o

Theorem A.1. The following are equivalent:

(1) 7 is Continuous Symmetric and satisfies Locally Bounded Improvements, and

(2) There is a non-constant vNM wutility function u on X, a set D C A(S) and an
isotonic, mizture continuous and increasing functional G on F such that i) G is locally

Lipschitz in its interior, i) ¢o (Uﬁemtﬁc <l~1>> is compact, ii)G ((¢),ep) = ¢ for all

¢ € u(X) and iv)
U<f>zc((/u<f>d6°°)£ D) (A1)
represents . )

Additionally, zf@ ((fﬁ(f) dEOO)ZEﬁ> is any other such representation of 7, u is a

positive affine transformation of u.

B Appendix B: Relevance under Heterogeneous En-
vironments

A decision maker may face a situation where non-identical experiments are repeated.
For example, a doctor faces patients who may differ in ways important for the treatment
problem at hand. Another example is an agent who wants to make a decision based
on a regression model analysis where different data points may have different values of
the regressors. We describe a variation of our model that allows these heterogeneous
environments.
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Let = be a set of descriptions. We assume = = {51, ...,SK} is a finite set for
simplicity. Descriptions categorize the ordinates (of S*°) so that it is only ordinates with
the same description that are viewed as symmetric by the decision maker. Formally,
we augment the state space S°° by attaching a description to each ordinate S. Thus,
for a doctor facing many patients, each patient has a description £ € =. A doctor
faces a sequence of patients whose descriptions may be different from each other. Let
f = (51, 52, ...) € 2% be a sequence such that each element of = appears infinitely often.
Let ijg be a preference on F when faced with ordinates whose descriptions form the
sequence £.

We assume the same axioms as in Section 3.1 on g with the exception of Event
Symmetry. Instead we assume Partial Event Symmetry.

Axiom 11 (Partial Event Symmetry). For all finite cylinder events A € ¥ and finite
permutations m € Il such that § = &) for all ¢,

ala+ (1 —a)h ~galza+ (1 —a)h for all a € 0,1] and all acts h € F.

Partial Event Symmetry says that an agent views ordinates with the same descrip-
tions in the same way — as long as the descriptions are the same, the order does not
matter. In contrast, no restrictions are placed on preferences towards ordinates that
have different descriptions. For two ordinates with different descriptions, there is no
reason to believe that the two are symmetric. Viewing our earlier framework as one in
which there was only one possible description, Partial Event Symmetry is the natural
generalization of Event Symmetry.

Formally, therefore, we replace the assumption of Continuous Symmetry with Con-
tinuous Partial Symmetry:

Definition B.1. Z; satisfies Continuous Partial Symmetry if it satisfies Weak Or-
der, Monotonicity, Risk Independence, Non-triviality, Partial Event Symmetry, Mixture
Continuity and i;ﬁ satisfies Monotone Continuity.

Now, we can define relevant measures under heterogeneous environments. Since
beliefs may vary depending on descriptions, a relevant measure is a mapping I from =
into A (S). Let O, denote an open subset of (A (S))™ containing ! under the product

topology. For I € (A (S))E, denote by 1 (f) the product measure on S°° whose i-th
coordinate marginal is [ (é) € A(S). That is, I <§> =1 (&) ®1 (&) ® ...
Definition B.2. A mapping I € (A (S))7 is relevant (according to preferences Ze) if,
for any L € O, there are f, g € F such that f =; g and [ fdl (f) = [gdi (é) for all
le(A(S)7\L.

When Z = {¢} is a singleton, & = (£, £, ...) and, therefore, it is as if L C A(S) and

each [ (5) is i.i.d., and the above definition reduces to our earlier definition of relevant

measures (Definition 3.3). As before we use R to denote the set of relevant mappings.
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A standard linear regression is the case where the relevant measure is I and [ (;) is
normal with mean ¢; and variance o2. Note that the description in this case is simply
a vector giving the values of the regressors for a particular observation. An example of
a set of relevant measures might be {I € (A (S))7 :I (&) is normal with mean 8¢ and
variance 1 for 8 € [b,b]?}. This reflects knowledge of normality and the variance, and
bounds on the coefficients within which any coefficients are seen as possible.

Relative to the homogeneous case, this framework: (1) allows for ordinates to dif-
fer according to Z, and (2) allows relevant measures to reflect beliefs about how the
marginals for one £ € = relate to the marginals for another £ € =. This last point is
useful, for example, in capturing the case, mentioned above, where = is related to S
according to a linear regression model.

We provide results analogous to those in the homogeneous case:

Theorem B.1. If ig 1s Continuous Partial Symmetric, then there is a non-constant

oNM utility function u on X, a set D C (A (S)) and an isotonic, mizture continuous,
and increasing functional G on F' such that

vin=c(([una (é))@) (B.1)
represents ;.

Additionally, if@ ((fﬂ(f) dl (5))l ﬁ) is any other such representation of Zg¢, U
S

18 a positive affine transformation of u.

Define W (w) € (A (5)% by ¥ () (¢4) (4) = lim,, (S, T (& = 5’“))_1 St (&

for each event A in S. For a given k, ¥ (w) ({’k) gives an empirical frequency limit
when considering the experiments of description €* that is, all coordinates ¢t such that
& = &~ If the limit does not exist let ¥ (w) (£¥) (A) = 0. The inverses are ¥ (1) =

{w: T (w)=1}and U1 (L) ={w: ¥ (w) € L} for L € (A(S))" and L C (A (9))~.

Theorem B.2. Assume Z; is Continuous Partial Symmetric. Forl € (A (S)%, 1 ¢ R
if and only if, for some L € Oy, W1 (L) is a null event. Moreover, R is closed.

Theorem B.3. Any Continuous Partial Symmetric Zg may be represented as in (B.1)
setting D = R, and in any representation of 7 > as in (B.1), D O R. If every mapping
in D is relevant, then D = R. Furthermore, in any representation (B.1) of >'£, for

l€ D, 1¢ R if and only if there exists an L € Oy such that, f.g € Fand f(l) = g()
for all I ¢ L implies G(f) = G(g).

Definition B.3. ?\jé is strictly monotonic for bets on non-null limiting frequency events

if, for all L C (A (S))~ such that ¥~! (L) is a non-null event, and all z,y, 2 € X such
that = ¢y, 20" (L) 2 =y~ (L) 2.
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Theorem B.4. Let igA and 7 Zep be Continuous Partial Symmetric preferences with
sets of relevant mappings R4 and Rp and suppose >£A and 7 Zép are strictly monotonic
for bets on non-null limiting frequency events. Then =z ¢4 Is more ambiguity averse than
iéB implies R4 = Rp.

Theorem B.5. ,ﬁg satisfies Continuous Partial Symmetry with Mixture Continuity
relaxed to Mizture Continuity of ==* and Weak Order relaxed to C-complete Preorder
of and only if >‘£ 15 transitive and there exist a non-empty compact convex set M C

A ((AS) > and a non-constant vNM utility function w such that ,

f zg g if and only if /u(f) dp > /u(g) dp for allp € C, (B.2)

where C' = {fl (5) dm (l) :m € M} Furthermore R = |J,,,cp,suppm C (AS)~ and

M is unique.

C Appendix C: Proofs

Denote by B (S) the set of bounded measurable functions on S. Similarly for B (A (5))
and B (5%).

C.1 Proofs of Theorems 3.1 and B.1

The two proofs are essentially the same and we prove the first only.

First, note that Mixture Continuity is stronger than the Archimedean axiom. Given
this, it is routine to show that there are a non-constant vNM utility function w on
X and a utility function I : By (2) — R such that I is sup-norm continuous and
U(f) =1 (u(f)) represents = (Cerreia-Vioglio et. al [7, Proposition 1], for example).'*
Theorem 4.5 guarantees the existence of sets C' and M derived there from 7. Let
D = Uerrsuppm € AS, and define F accordingly. Deﬁne G on F by G(f) =
U(f), which is well-defined because [u(f)dl>* = [wu(g)dl> for all £ € D implies
Ju(f)dp = [u(g)dp for all p € C, which, by Theorem 4.5, implies f ~ g. Thus
f — G(f) represents .

It is straightforward that Mixture Continuity of 77 implies Mixture Continuity of G.

We next show that G is increasing. For f,§ € F, assume f (¢) > § (¢) for each £ € D.
Fix g € F so that § = . We can take f € F such that u (f (w)) = u( (WN+F (O)—g (£)
for w € U (¢) and u (f (w)) = u (g (w)) + € otherwise, where & > 0. Then, f = f on
D. Monotonicity implies that f = g and thus G(f) = U(f) > U(g) = G(j). That G is
isotonic can be shown similarly.

Uniqueness of u up to positive affine transformations is standard, as =~ restricted to
constant acts is expected utility.

1By () is the set of simple measurable functions on ).
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C.2 Proof of Remark 3.2

We show that when D is finite in (3.3), Monotone Continuity of 2Z* is satisfied. Suppose
that D is finite. Assume A, \, 0 and 2’ > 2", and let u (2') =1 > u(2') =t > u (2") =
0, without loss of generality. Then, because of countable additivity, there is N such that
t > (> (Ay) forall ¢ € D. Hence, at+(1 — a) [u(h) dl>® > al> (Ay)+(1 — «) [ hdl>
for all a € [0,1], h € F and ¢ € D. Monotonicity of G implies

Ut + -0t =6 ((ar+a-0) fumar) )

> G <(@e°° (Av)+ (1—a) /u (h) cwoo) ) = G (azAnt” + (1 —a)h).

LeD

Thus, 2’ Z* xA,2"” and Monotone Continuity of 7~* is satisfied.

C.3 Proofs of Theorems 3.2 and B.2

We prove the first only since the proof of the second is essentially the same.

Assume ¢ ¢ R. By definition, there is L € Oy such that [ f/dé> = [ g/dé> for all
(€ A(S)\L implies f' ~ ¢. For any f and g, if f/ = fU (L) g and ¢’ = g, we have
[ fdi> = [ gdi> for all £ € A(S)\L. Thus f’ ~ ¢, which implies U~ (L) is null,

Assume that, for some L € O, W' (L) is null. Take any f,g € F such that
[ fdi> = [ gdi> for all { € A(S)\L. Define f',g' € F by

f(w) = {f fdi> ifwe ! <f) for some f€ A (S)

T otherwise
and

> ifwe Ut (1) f le A(S
g'(w):{fg ifwe () or some (€ ()

T otherwise

Then, f’ and ¢’ differ only on =1 (L) which is null, and thus f’ ~ ¢’. Moreover, f ~ f’
and g ~ ¢’ by Theorem 3.1 and ¥~! (L) being null. By transitivity, f ~ g, which
implies ¢ ¢ R.

To show that R is closed, take any ¢ ¢ R. Then, there is L € O, such that ¥~! (L)
is null. It suffices to show that L C R°. Take any ? € L and observe that L € O;. Since

U1 (L) is null, ¢ ¢ R. Thus, L C R° and R is closed.

C.4 Proofs of Theorems 3.3 and B.3

Again, we prove the first only.
We invoke Theorem 4.5 to define C' C A (Q2) and M C A (A (5)) as in that theorem.
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Step 1. Let R' = J,,cpsuppm and note that R' C R, since Theorem 4.5 says
R=FR.

Step 2. D may be R: The proof of Theorem 3.1 sets D = R’ when showing that
a representation of the form in (3.3) exists. By Step 1, this D C R. Since D may
always be enlarged while representing the same preferences (for example by making G
unresponsive to the extra expectations), D may be set to R.

Step 3. D D R: Assume ¢ ¢ D. Noting that D is closed, we can take L € O, such
that L C (5)0. Since no measure in L appears in the utility function (3.3), ¥=! (L) is
null. Thus, by Theorem 3.2, ¢ ¢ R.

Step 4. If every measure in D is relevant, D = R: By the assumption, D C R.
Since R is closed, D C R. Combining with Step 3, we obtain D = R.

Step 5. (last sentence of the theorem): Since £ ¢ R, by Theorem 3.2 there is some
L € Oy such that U~ (L) is null. Suppose that f(0) = g(0) for all ¢ L. For each
(¢ L, take x; € X such that u(z;) = f(¢). For each { € L, take y;,2; € X such that

u(y;) = f(?) and u(z;) = §(0). Now define f’,¢' € F by

z; ifwe U () and (¢ L
fw=<Ry ifwet'(l)andlelL

z, otherwise

and

r; fwe U-'(l)and ( ¢ L
Jdw)=<2 ifwe U1(l)and (€ L .

T, otherwise

Then, f" and ¢’ differ only on ¥~ (NL), and thus f' ~ ¢’. Moreover, since f' = f and
g = §, we have G(f) = G(f') = G(¢) = G(7). o

For the other direction, fix £ and suppose there exists an L € O, such that, f,g € F
and f(£) = g(¢) for all ¢ ¢ L implies G(f) = G(g). By the representation (3.3) and the
definition of relevant measure (Definition 3.3), ¢ ¢ R.

C.5 Proof of Theorems 3.4 and B.4

Suppose 2~ 4 is more ambiguity averse than =~ and each preference is strictly monotonic
for bets on non-null limiting frequency events. Since 7~ 4 is more ambiguity averse than
>~ p implies the two preferences agree on lotteries, fix lotteries x,y € X such that z >4 y
and x >p ¥.

Suppose R4 2 Rp and fix ¢ € Rg\R4. Since ¢ ¢ Ry, by Theorem 3.2 there
exists an L' € Op such that U~ (L') is null for 74, and so z ~4 y¥~! (L') z. Observe
that 2~ p strictly monotonic for bets on non-null limiting frequency events and ¢’ € Rp
implies z =5 y¥~! (L) z. Thus, yU~! (L')x =4 z but y¥~! (L)) x <p z, contradicting
>~ 4 more ambiguity averse than =~ p

~Y
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Suppose Ry ¢ Rp, and fix " € Ry\Rp. Since (" ¢ Rp, by Theorem 3.2 there
exists an L” € O such that ¥ (L") is null for =5, and so y ~5 x¥ 1 (L") y. Observe
that - 4 strictly monotonic for bets on non-null limiting frequency events and ¢ € R4
implies y <4 29~ (L") y. Thus, 29 (L") y 3p y but 201 (L") y = 4 y, contradicting
>~ 4 more ambiguity averse than =~ p.

Thus R4 = Rp.

C.6 Proof of Theorem 4.1

Suppose =~ is an ii.d. «a-MEU preference. We first show that D C R. Suppose
{ € D and fix any K € O;. Consider f = lg-1(x) and g = 1y and observe that
[ fde> = [gdt> for all £ € A(S)\K. Note that [u(f)dl> > [wu(g)dl> for all
¢ € K while [u(f)dl> > [u(g)dl> for all £ € D. Thus, if a € [0,1), f > g
and / is relevant. If o = 1, consider instead f = %1\1,_1@{) + %1\1,_1@(5)\;() and g =
+1g + 31y-1(a(s)\k) and observe that [ fd(> = [ gdl> for all ¢ € A(S)\K while
mingep [ (f)dl> = su(z*)+ ju (z,) > u(z,) = mingep [u(g) dl> so that f > g and
again { is relevant.

We show that 7~ is Continuous Symmetric. All axioms except Monotone Continuity
of 7Z* are straightforward. To check the latter, consider V; (f) = min,eeepy [ (f)dp
first. The set C' (as in Theorem 4.5) in the representation of 77* associated with V; is
co({€>*:4 € D}) C A(R) and it is weak*-compact because D is finite (Dunford and
Schwartz [11, Theorems IV.9.1 and V.6.1]). Thus, the preference represented by V;
satisfies Monotone Continuity of ~* by Ghirardato, Maccheroni and Marinacci [22,
Remark 1]. Similarly, the preference represented by Vj (f) = maxyeqeveny [ (f)dp
also satisfies Monotone Continuity of =—*. Take A, \, ) and z,2',2” € X such that
u(z') > wu(z"). Then, there is n; and 7y such that

Vi(A+ (1 =X h)>Vy(AzA 2" + (1 —A\)h)
for all A € [0,1], h € F and n > 7y, and
Vo A2’ + (1= AVR) > Vo Az Anaz” + (1 — AV R)
for all A € [0,1], h € F and n > fig. Defining V = oV + (1 — a) Vp,
VAx'+ (1 =X h) >V (AzA,z” + (1 — ) h) for n = max (7, 72) .

Thus, for any i.i.d. a-MEU preference, Monotone Continuity of 2Z* is satisfied.
Since 7~ is Continuous Symmetric and every measure in D is relevant, Theorem 3.3
implies R = D. Since D is finite, D = D.

C.7 Proof of Theorem 4.2

We prove the “only if” direction first. Suppose 7~ 4 is more ambiguity averse than 2~ g.
This implies the two preferences agree on constant acts, which is equivalent to us = up
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up to normalization. Theorem 4.1 shows that D = R for such preferences. Theorem
3.4 implies Dy = Dgp, since aq, ap € (0,1) implies 754 and 77 are strictly monotonic
for bets on non-null limiting frequency events. (To see this last implication, observe
that U~'(L) non-null implies L N D # (. Assume u(z) > u(y). If LN D = D, the
desired strict monotonicity is direct. Assume non-null ¥~'(L) with LN D C D. If
r =y = z, the a-MEU functional evaluates the bets ¥~ (L) z and y¥~! (L) z by
au(z) + (1 —a)u(zr) and au(y) + (1 — a)u(z), and thus 20~ (L) z = y¥ ' (L) 2. When
zrmx =y, aV 1 (L)z = y¥~ (L) z can be shown similarly. Finally, if z = 2 = v,
2O (L)z = 201 (L)z = yVU ' (L)z.) Since Dp is non-singleton and Dy = Dg,
for ¢ € Dy, 1g-1(p) ~a aaz, + (1 — aq)z* and lg-1(p ~p ap, + (1 — ag)z*. Thus
Z 4 is more ambiguity averse than Zp requires ly-1(p Za aa®, + (1 — aq)z*implies
Ly-1(0) ZB @Ay + (1 — a4)x*, which, in turn, implies oy > ap.

Turn to the “if” direction. Suppose ooy > ap, D4 = Dp and (up to normalization)
uy = ug. Let u be a common normalization of uy and up and D = Dy = Dg. Then
[ Za x if and only if oy minpegorepy [u(f) dp+ (1 — a) maxpeqpovepy [ u(f)dp >
u(z), which implies ap min,egeoepy [u (f)dp + (1 — ap) maxyeqporepy [u(f)dp >
u(z) and thus f 7op x. This proves 754 is more ambiguity averse than 75. Note that
this direction did not use the restriction of a4, ap to (0,1).

C.8 Proof of Theorem 4.3

Suppose 7 is an i.i.d. smooth ambiguity preference. We first show that suppu C R.
Suppose /e suppp and fix any L € O;. Consider f = lg-1(z) and g = 1y and
observe that [ fd¢> = [gd¢> for all ¢ € A(S)\L. Since ¢ is strictly increasing,
¢ (Ju(f)de®) > ¢ ([u(g)dl=) for all £ € L and ¢ ([u(f)dl>) > ¢ ([u(g)d>)
for all ¢ € supp p. By the definition of supp , u(L) > 0. Thus, f > g and { is relevant.

We next show that 77 satisfies Continuous Symmetry. We directly verify only the
following axioms: Monotone Continuity of ~* and Mixture Continuity. That the re-
maining axioms are satisfied is straightforward.

Monotone Continuity of 2Z*: Suppose that condition (i) holds in the definition of
ii.d. smooth ambiguity preferences, so there are m, M > 0 such that m|a —b] <
|p(a) — ¢ (b)] < M|a—b| for all a,b € u(X). Fix any z,2',2" € X with o’ > 2”. If
2’ 77 x then Monotone Continuity of ~* follows from Monotonicity. Therefore, consider
xz > x'. Without loss of generality, normalize u so that u(z) =1 > u(2’) =t >
u(z”) =0 and [0,1] C u(X). Suppose A, \ (. Take &', > 0 so that

g<tandm(t' —eY(1—e)>M1—1t)e.

Define ¢, : A(S) — R by ¢, (¢) = £~ (A,), and temporarily equip A (S) with the
weak convergence (wc) topology (i.e., the weakest topology that makes the integrals of
continuous bounded functions continuous). Since wc open sets are weak™® open, p is well-
defined on the Borel o-algebra generated by wc open sets. Then, by Lusin’s theorem
(Aliprantis and Border [2, Theorem 12.8]), there is a wc compact set L C A (S) such
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that (L) > 1 — ¢ and all (,, are wc continuous. Note that ¢, converges monotonically
to 0 pointwise. Then by Dini’s Theorem (Aliprantis and Border [2, Theorem 2.66]), ¢,
on L converges uniformly to 0. Hence there is N > 0 such that (y = (> (Ay) < &’ for

all ¢ € L. To see 2’ =* xAyx”, and thus Monotone Continuity of 7=~*, compute, for any
a€l0,1] and h € F,

/A o ( / ulaz’ + (1 - a) h)d€°°> dpa () — /A X ( / wlawAna” + (1 - a) h)d£°°> d (0)
= [(oar+a-a) [umaes) - (ar= (an)+ 0 -a) [ ) duto

+ /A . (¢ (at' L (1-a) / u(h)dﬁo") _4 (azw (Ay) + (1 —a) / u(h)dﬁ“’)) dye (0)

> /L (¢ (at’+ (1 —a>/u(h)dzw) _¢ (a5’+ (1- a)/u(h)dﬂ“)) d (0)

+ /A . (¢ (at’ L (1-a) / u(h)deoo) 4 (a L (1-a) / u(h)dé“)) i (0)

> [am( =0+ [ b =1)du(o)

A(S\L
afm(t —&)p(L) =M@ —1)(1—p(L))
amt —e)(1—e)—M(1—-1t)e] >0.

v

Turn to the case where (ii) holds in the definition of i.i.d. smooth ambiguity prefer-
ences, so that supp u is finite. Again suppose A, \, ) and z = 2’ = 2”. Since supp u is
finite, SUPyesupp £ (An) — 0. Thus, for € > 0 satisfying u (z') > eu () +(1 — &) u (z"),
there is n > 0 such that ¢ (A,) < ¢ for all ¢ € supp u. This implies

/A(S) ¢ (/ u(ar’ 4 (1 - «) h)dﬁoo) dp (0) — /A(S) o (/ u(azAyz” + (1 — a) h)ﬂ@@) dpu (0)

_ /(qﬁ (au (@) + (1 - a)/u(h) dzzoo)

—0 (a (€ (An) u (z) + (1= £ (An)) u (2") + (1 - a) /u (h) CMOO) )dpu (€)
>0
for all & € [0,1] and h € F. Therefore, 2’ 2Z* vA,2"” and Monotone Continuity of 2=*

holds.
Mixture Continuity: Fix acts f,g,h € F and consider a sequence A, € [0,1] such
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that A\, = X and A\, f + (1 — \,)g == h for all n. Therefore, for all n,

/A(S)éb (/\n/U(f)dEOO +(1— /\n)/u(g)déoo) du (0)
- /A(S) i (/u(h)dgoo) dp(0).

Since ¢ is continuous, by the Dominated Convergence Theorem (e.g., Aliprantis and
Border [2, Theorem 11.21})

/A(S)¢ (AH/U(f)dém +1- An)/u(g)dﬁm) dyu ()

= [ (A / w(f)de< + (1— N / u(g)dﬁ‘x’) dpa (0)

so that Af + (1 — A)g 2= h and thus the upper set is closed. The same argument using
a sequence such that A, f 4+ (1 — \,)g = h may be used to show the lower set is closed.

Since [, g ¢ ([ u(f)de>>) dp (0= fauppn @ ([ u(f)de>) dp(¢) is a representation of
the form in Theorem 3.1 with D = supp p, =7 is Continuous Symmetric and supp i C R,

~Y

Theorem 3.3 implies R = Ssupp . Since, by definition, supp p is relative weak™* closed,
R = supp p.

C.9 Proof of Theorem 4.4

We begin with two lemmas that will be used in proving the theorem. The first lemma
may be viewed as generalizing a remark in Yaari [45] so that it applies to not-necessarily-
convex preferences.

We need the following definitions and notation to state the first lemma. We say a
function is differentiable if it is Fréchet differentiable. Denote the Fréchet differential
of a functional I by DI. The interior of a set A is denoted by int A.

Lemma C.1. Let -4 and 7 be two preferences represented by Ua (f) = I4 (u (f)) and
Up (f) = Ig (u(f)) respectively. Suppose 14 and Ip are differentiable at ¢ € intu (X)
and Ux () = Ug (x) for allx € X. If 74 is more ambiguity averse than 7, DI (c) =
D]B (C) .

Proof. Since 7 4 is more ambiguity averse than >~ g, for any x € X, f € F such that
f~a,
Ua(f) =Ua(z)=Up(z) <Up(f).

Thus,

Ly (c+Ap) — L4 (c) < Is (c+Ap) —Ip(c)
A - A
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for any bounded measurable ¢ :  — R and A > 0 small enough so that c+\p € u(X)%.
This implies D14 (¢) (¢) < DIg(c) (¢). Since the same is true for —p and DI, (¢) (p)
is linear in ¢, we have

DI (c)(p) = —DIa(c)(—¢) = —DIg(c) (—¢) = DIp (c) (¢).
Thus, D14 (c) = DIg(c). O
To state the second lemma, let S;(f) = fA(S) ¢i ([ wi(f)de>) dp; () for i = A, B.

Lemma C.2. 74 is more ambiguity averse than =g if and only if ¢5' (Sp(f)) >
01 (Sa(f)) for all acts f € F.

Proof. To see the “only if” direction, observe that ¢5'(Sp(f)) < ¢,'(Sa(f)) means

that, for any y € X such that ¢5' (Sp(f)) < u(y) < ¢4 (Sa(f)), f Zay and f <5y,
contradicting 7~ 4 more ambiguity averse than Zp. To see the “if” direction, note that

[ oa = 64540 > u(e) = 651(Se(f)) > ulz) = [ L x, thus 24 is more
ambiguity averse than =~ p. ]

Consider the “only if” direction of the theorem. Suppose =4 is more ambiguity
averse than =~ p.

We first show psq = pp. We claim that ¢y (¢) > 0 and ¢3 (¢) > 0 for some ¢ €
intu (X). Since ¢4 is strictly increasing, ¢/, (¢) > 0 for some ¢ € int u (X). Continuity
of ¢y implies that there is @ > 0 such that ¢y (d) > 0 for all d € (¢ —a,c+a).
The Mean Value Theorem implies that there is ¢ € (¢ — a, ¢+ a) such that ¢z (¢) =
¢B(E+a)2_a¢B(E_a) = 0.

Now, compute

| ) (O [y A l)
poy'([. K ( [ )duA 0)(e) = e -/, 0.

The analogous equality holds for B. By Lemma C.1, 74 more ambiguity averse than
>~ p implies fA(S) 2duy (0) = fA(S) (=dup (¢). Thus, for any L C A(S), pa(L) =
fA(S) (U (L))dpa (€) = fA(S) (01 (L))dugp (£) = pp(L). Therefore py = pup.
We now show ¢, is more concave than ¢p. Define h: ¢pp(u(X)) - Rby h = ¢4 0
¢]§1. Note that ¢4 = ho¢p. Since ¢4 and ¢ are continuous and strictly increasing, so is
h. Tt remains to show that h is concave. By Lemma C.2, ¢3'(Sp(f)) > ¢4 (Sa(f)) for
all acts f € F. Observe that ¢35 (Sp(f)) > ¢, (Sa(f)) if and only if h(Sg(f)) > Sa(f).
Letting 1t = pa = up, since supp p is non-singleton, there exists a set L C A(S) such
that 0 < u(L) =t < 1. For any 2/,2"” € X, let f, ,» denote the act defined as follows:

fon = {x’ ifwe v (L)

2" otherwise

Thus, h(Sp(fuar)) >

Sa(farar) it and only if h(tgp(u(z')) + (1 = t)¢p(u(z"))) >
toa(u(z’)) + (1 = t)palu(z")) = th(e '

) s(u(z")) + (1 — t)h(dp(u(z"))). Since this holds
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for all 2/, 2" € X, h is concave (by e.g., Klibanoff, Marinacci and Mukerji [30, Lemma

6]).
Now turn to the “if” direction of the theorem. Let y = s = pp. Since ¢4 = hoop
for a strictly increasing and concave h, the Jensen inequality implies

nsa(f) = [ o (0 ([ utrraes) ) anco

for all acts f € F. But this is the same as h(Sg(f)) > Sa(f) and thus ¢5'(Sp(f)) >
¢4 (Sa(f)) for all f € F which is equivalent to 7-4 more ambiguity averse than =g by
Lemma C.2. Note that this direction did not use the differentiability or non-singleton
assumptions.

Remark C.1. From the proof, it is apparent that the assumption of continuous differ-
entiability of ¢4 and ¢p can be weakened to differentiability of both functions at a
common point, ¢, in the interior of u(X) with ¢4 (¢) > 0 and ¢’; (¢) > 0.

C.10 Proofs of Theorems 4.5 and B.5

The first is a special case of the latter and we prove the latter here.
We first prove sufficiency of the stated axioms. We start by showing that iz satis-

fies the properties assumed in Gilboa et. al. [26, Theorem 1]. Preorder, Monotonicity,
Mixture Continuity, Non-triviality, C-Completeness and Independence of 7—% follow di-

rectly from the axioms we assume and the definition of iz Therefore, by Gilboa et.

al. [26, Theorem 1], there exists a unique non-empty weak® closed and convex set
C C baf (S*) and a non-constant vNM utility function, u : X — R, such that

fzzgifandonlyif /U(f)de/U(g)dpfOT allpe C.

By Alaoglu’s Theorem, C' is weak™ compact. Monotone Continuity of ?\jz implies C' C

A (S°°) by Ghirardato, Maccheroni and Marinacci [22, Remark 1]. Moreover, Partial
Event Symmetry implies every p € C' is partially symmetric on finite cylinder events.

Next, we prove the claim that every p € C is of the form [ (é) dm (1) for some

m e A ((AS)E> (We prove this claim here because we did not find a proof in the

literature.) The proof is based on the idea of Hewitt and Savage [29]. Let Pz be the set
of partially symmetric measures. P is convex and also weak-convergence compact as
A (S*) is. Then, the Choquet Theorem (Phelps [38, p.14]) implies that any element
in P is a mixture of its extreme points. We need to show that each extreme point is
of the form 1 (5) We prove this for the case where & = (€1,6%2,€1 €% ..)). The general

case follows from the same arguments. Take any extreme point p, n > 1 and event
A C S™. For each finite cylinder B,

p(B) =p(nB) =p(A)p(rB|A) +p(A°)p(7B|A®),
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where m € 11 is defined as follows: If n is even,
7 (i) =i+ n.
If n is odd,
(i) =n+i—(-1)".
(Since B is a finite cylinder, = can be made a finite permutation.) For example, if
Bc S?andn=1,then7(1) =3,7(2) =2,7(3) =1, and 7 (k) = k for k > 4, and

hence 7B = {w : (ws,w2) € B}. Note that A and 7B depend on different coordinates.
Define ¢1,q2 € A (S*) by

¢1 (B) =p(wB|A) and
¢z (B) = p(rB|A)

for each finite cylinder B. Noting that éz = éﬂ(i) for all ¢ = 1,2, ..., one can verify that
¢1, 92 € Pg. We have just shown that p is a mixture of ¢; and g, that lie in Pg. Since p
is an extreme point, p = ¢; = ¢o. Therefore we have p (B) = p (A x 7B) /p (A) where ©
is defined as above. By the fact that p (B) =p(7B), p(A)p(7B) = p (A x 7B) which
proves that p is a product measure. By partial symmetry w.r.t. £ = (1,62, 6,62, ..,

p="0 Rl ®F .. and is of the form I <§> Therefore, any element in 775 is a
mixture of product measures of the form (é)

Thus, C = {fl (f) dm(l) :m € M} for some non-empty M C A ((AS)E>. M is
convex since C' is.

To see that M is weak™ compact, take any net m, € M. Since C' is weak™ compact,
there is m’ € M and a subnet m/, of m,, such that

/(/sodl (5)) dm, (1) — / (/ pdl (5)) dm' (1) for cach ¢ € B (5%).

It suffices to show that each ¢ € B ((AS)E) can be written as l — [ pdl (é) for some
¢ € B(S%). In fact,

o) = [ o) () ) (€ (€) ().

Conclude that m/, converges to m'.
To show necessity, assume such a set M. iz satisfies C-complete Preorder, Mono-

tonicity and Risk Independence and thus ,ﬁg inherits these properties, with the excep-
tion of the directly assumed transitivity, as well. Partial Event Symmetry follows since

each element of C' is of the form [ <é> dm (1) for some m € M. Non-triviality of
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Z¢ follows from non-constancy of u. Monotone Continuity of ,ﬁz follows from weak*
compactness of C, which is implied by that of M. Mixture Continuity of EJE follows
from Mixture Continuity of expected utility and the fact that intersections of closed
sets are closed.

Uniqueness of M follows from uniqueness of C'.

Finally, we show R = |J,,,c,, suppm. The first step is to show R C |J,,c,, supp m:

Take any I ¢ W Then, there is L € O; such that L C (W)C
Take any f, g € F. Note that [ f\Ifgfl (L) gdp = [ gdp for any p € C. Thus f\Ifgfl (L)g ~;
g and so f\I/gl (L) g ~¢ g. Therefore, \Ilgfl (L) is null, and I ¢ R.

The second step is to show (J,,c,,suppm C R: Take any I € (J,,c,, suppm and
L € O,. By the representation, 1\1,51@) zz 1y since [ 1\1,51(L)dp > [1gdp for all p €

A (5%). Now show that Ly-1() zz 1g. Note that, by definition of (J,,.,, supp m, there
é
is m € M such that L Nsuppri # 0. Let p = f[(f) dm <i> and compute

/1\1,51(L)dp = m(L) >0= / Lgdp.

By the representation, 1y-1) zz 1yg. Therefore we have Ly=1() ooz 1y, which implies
£ £
that
alypy+ (L —a)h=galy+(1—a)h
€

for some a € [0,1] and h € F. Note that both sides coincide outside of \Ifgl (L) and
hence I € R. _
Finally, since by Theorem B.2 R is closed, J,,c,, suppm € R = R, conclude that

R = U, e SUpp m.

C.11 Proof of Theorem A.1

It is convenient to define i on F by
fzaitfz o,

and similarly define %*

Prove necessity of the axioms. Symmetry and Mixture Continuity are immediate
from the properties of the representation. Ghirardato and Siniscalchi [25, Proposition
S.1] show that a representing functional on utility acts being locally Lipschitz in its in-
terior implies the represented preferences satisfy Locally Bounded Improvements. From
this, G locally Lipschitz in its interior, the fact that U represents /7 and the definition of
> it follows that = satisfies Locally Bounded Improvements. By considering acts and
lotteries that generate the corresponding elements of F and u(X), and using the fact
that the generated elements of F' and u(X) are all that matter for 7~, Locally Bounded
Improvements for EJ implies Locally Bounded Improvements for .
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Show that Monotone Continuity of 2~* is satisfied. Ghirardato and Siniscalchi [24,
Theorem 2] show that

f,%*g if and only if /fdm > /f]dm for all m € co U C (71)
heintF
Fix any x,2’, 2" € X with 2/ > 2”. The only non-immediate case has = > x’. Without
loss of generality, normalize u so that u(z) = 1 > u(2’) =t/ > u(2”) = 0 and
[0,1] € u(X). Suppose A, \, 0. Let L, = {{€D:A,N¥ () #0}. Then, A,N
U1 (D) C v ! (L,) and L, \ 0. Ghirardato, Maccheroni and Marinacci [22, Remark
1] implies that
¢="1L,0

for some n. This implies 2’ =* 2! (L,) 2" for that n. Fix n. Since A, N ¥~ (D) C
U—1(L,) and only ¢ € D appear in U, ¥~ (L,) 2" =* zA, N ¥~ (D) 2" ~* zA,2".
Thus 2’ Z* v A,x2".

Turn to sufficiency. Theorem 3.1 implies the existence of the required representation
except 1), ii) and iii) in the statement of Theorem A.l. For iii), given any U (f) =

G ((fu (f) dEOO)ZGD> where G violates iii), replace G by x ™' o G where x : u(X) - R
is defined by x(¢) = G ((¢),p) for all ¢ € u(X). For i), Locally Bounded Improvements

of 2Z implies Locally Bounded Improvements of ,% This and Ghirardato and Siniscalchi
[25, Proposition S.1] applied to 77 imply G is locally Lipschitz in its interior. For ii),
co <Uﬁemt »C (ﬁ)) is compact by applying Ghirardato and Siniscalchi [24, Theorem 2]

and Ghirardato, Maccheroni and Marinacci [22, Remark 1] to E‘J*
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D Online Supplement to “Perceived Ambiguity and
Relevant Measures” by Klibanoff, Mukerji and
Seo

This supplement contains results identifying the relevant measures and implications
of comparative ambiguity aversion for Continuous Symmetric versions of several addi-
tional models from the ambiguity literature: the extended MEU with contraction model
(see e.g., Gajdos et. al. [6], Gajdos, Tallon and Vergnaud [7], Kopylov [12], Tapking
[43]), the vector expected utility model (see Siniscalchi [15]) and the second-order Cho-
quet representation (see Amarante [1]) of invariant biseparable preferences (defined by
Ghirardato, Maccheroni and Marinacci [8]). It concludes by describing a technique for
identifying relevant measures in additional models.

D.1 The Extended MEU with contraction model

Motivated by the contraction representation of Gajdos et al. [6, Theorem 6], this model
has a functional form'? that is a convex combination of MEU and expected utility.
Consider preferences having a representation of the form:

i d 1— d
i S -9) [t
where D C A(S) is finite, ¢ = [ ¢>°dm (¢) for some m € A(A(S)) such that suppm C
D, 0 < 8 <1 and u is a non-constant vNM utility function. Call such preferences i.i.d.
extended MEU with contraction.

Theorem D.1. For any i.i.d. extended MEU with contraction preference, R = D.

The role of the finiteness restriction on D is to ensure Monotone Continuity of 2Z*.
Notice that any such preference also has a representation of the form min,e g4 (1-g)q:0e D} Ju(f)dp,
and therefore these preferences are a subset of the Continuous Symmetric MEU pref-
erences.
In the representation of Gajdos et al. [6, Theorem 6|, ¢ is fully determined by the
set over which the minimum is taken. It is a particular convex combination, known as
the Steiner point, of the extreme points of that set. A property of the Steiner point of
the set {¢> : ¢ € D} is that suppm = D. We do not require ¢ to be the Steiner point,
but do impose this support restriction in our comparative ambiguity aversion result
below.

Theorem D.2. Let 754 and Zp be any two i.i.d. extended MEU with contraction
preferences such that Dpg is non-singleton, suppma = D4 and suppmp = Dg. Then,
A 18 more ambiguity averse than g if and only if B > P, Do = Dg, { € Dp

implies mp(¢) > igg ma(f) and (up to normalization) ua = up.

12This functional form is much older than the derivation of it in Gajdos et al [6]. It appears in
Ellsberg [5], and is acknowledged there as based upon a concept of Hodges and Lehmann [11].



Under the conditions in the theorem, ( reflects comparative ambiguity aversion and
D is the set of relevant measures and is therefore related to perceived ambiguity. This
offers an additional perspective on the model compared to Gajdos et. al. [6]. In their
setting, the sets D are objectively given and larger [ reflects more imprecision aversion
in the sense of stronger preference for having singleton sets.

Remark D.1. Observe that the inequality relating m4 and mpg is automatically satisfied
if g4 = gp. Equality of the ¢’s is, for example, implied if the ¢’s were Steiner points as
in Gajdos et al. [6]. A step in the proof of Theorem D.2 is to show that -4 and =g
are strictly monotonic for bets on non-null limiting frequency events. This provides a
set of Continuous Symmetric MEU preferences for which the conclusions of Theorem
3.4 hold.3

D.2 The Vector Expected Utility (VEU) model

Next we turn to a version of the VEU model of Siniscalchi [15]. Consider preferences
having a representation of the form:

[udp+a (( [t dp> )

where (i) w is a non-constant vNM utility function, (ii) p € A(Q), (iii) ¢ = (¢1y .., ()
is a bounded, measurable vector-valued function on €2 into R™ such that for each i,
[ Gdp = 0, (iv) A(0) = 0, and A(a) = A(—a) for all a € R", and (v) the whole
functional is weakly monotonic. Call such preferences VEU.

Consider also preferences that are VEU and have a VEU representation that ad-
ditionally satisfies (vi) n is finite, (vii) p = [£®dm (¢) for some m € A(A(S)), (viii)
for each 4, for all 7 € 11, ¢; (w) = ;(mw), p-almost-everywhere and (ix) A is Lipschitz
continuous. Call such preferences i.i.d. VEU.

Theorem D.3. For any i.i.d. VEU preference, R = supp m.

Thus, for such preferences, the relevant measures, R, are those ¢ € A (S) given
weight by p. It is interesting to observe that these are the same relevant measures as
for the expected utility preference represented by [ (f)dp. Note that the symmetry
conditions on p and the (; are imposed to ensure Event Symmetry, while n finite and
Lipschitz continuity of A are imposed to ensure Monotone Continuity of =*. The
remaining conditions are standard for the VEU model.

In characterizing comparative ambiguity aversion it turns out that Continuous Sym-
metry is not required and our result applies to VEU preferences with differentiable A:

3More generally, any MEU preference with a set of exchangeable measures such that each measure
has the same set of i.i.d. measures in its support will be strictly monotonic for bets on non-null limiting
frequency events.



Theorem D.4. Let =4 and =g be any two VEU preferences such that Ay and Apg
are Fréchet differentiable. Then, -4 is more ambiguity averse than g if and only if

pa= o, Aa ((J e dpa) ., ) < Ap (S Pulf)dpn),_.,,) Jor all f € F and

(up to normalization) us = up.

Compared to Siniscalchi’s result on comparative ambiguity aversion in VEU (Sinis-
calchi [15, Proposition 4]), this theorem derives equality of p as an implication rather
than assuming it. The differentiability assumption is what allows this.

D.3 The Second-order Choquet model of Invariant Bisepara-
ble preferences

As shown by Amarante [1], the Invariant Biseparable preferences defined in Ghirardato,
Maccheroni and Marinacci [8] may be represented by a Choquet integral of expected
utilities. These preferences generalize both the MEU model of Gilboa and Schmeidler
[10] and the Choquet Expected Utility model of Schmeidler [14]. Here we consider a
Continuous Symmetric version, where the expected utilities are calculated with respect
to i.i.d. measures.

Some notation and definitions are necessary in order to formally describe the rep-
resentation of such preferences. Let v be a capacity mapping subsets of A (S) to [0, 1].
An event E is v-non-null if there is an event E’ such that v(EUE') > v (E’). The
support of v, denoted supp v, is defined to be the set of elements ¢ € A (S) such that
any open set containing /¢ is v-non-null.

Consider preferences having a representation of the form:

/ / w( F)de=dv (0)

where u is a non-constant vNM utility function, v is a capacity on A (S) with finite
support and the outer integral is taken in the sense of Choquet. Call such preferences
i.%.d. second-order Choquet.

Theorem D.5. For any i.i.d. second-order Choquet preference, R = supp v.

Therefore the relevant measures are exactly the measures in the support of the
representing capacity v. Our next result shows that an everywhere lower v characterizes
more ambiguity aversion.

Theorem D.6. Let 724 and g be any two i.i.d. second-order Choquet preferences.
74 s more ambiguity averse than 7 if and only if vg > va and (up to normalization)
uaps = up.

Observe that if vs({¢}) > 0 for all £ € suppvs and vg(A (S)\{¢}) < 1 for all
{ € suppug, then vg > v, implies suppvs = suppvg. Thus, these conditions are
sufficient for R to be unaffected by increases and decreases in ambiguity aversion.



D.4 A Technique for Further Applications

Theorems 4.5 and B.5 provide a way to leverage the fact that there are extant char-
acterizations of the set C for a variety of models as a step towards identifying R in
Continuous Symmetric instances of such models. Given an explicit characterization
of the set C for a continuous symmetric preference, Theorem 4.5 shows how to deter-
mine the relevant measures. For example, Cerreia-Vioglio et al. [2] characterize the
set C for the variational preferences of Maccheroni, Marinacci and Rustichini [13] as
the closure of the set of probability measures assigned finite values by the cost function
¢ in the variational representation. Therefore, for Continuous Symmetric variational
preferences, by Theorem 4.5, all of the measures in this closure are exchangeable mea-
sures and R is determined by looking at the marginals of i.i.d. measures appearing
in the supports. See Cerreia-Vioglio et al. [2] and Ghirardato and Siniscalchi [9] for
characterizations of C for a variety of models.

D.5 Proofs of Results in the Online Supplement
D.5.1 Proof of Theorem D.1

Suppose 7~ is an i.i.d. extended MEU with contraction preference. We first show that
D C R. Suppose ¢ € D and and fix any L € O;. Consider f = lg-1(p) and g =1y
and observe that [ fd(> = [ gd¢> for all £ € A( )\L Observe that [ w(f)de> >
Ju(g)de> for all ¢ € L while [u(f)dl>™ > [u(g)dl> for all £ € D and thus also
Ju(f)dg > [u(g)dg. Therefore, if q(¥~ 1(L)) > 0, f > g and [ is relevant. If
q(¢~1(L)) =0, con81der instead f = 51\1, Iz )+%1@71(A(S)\L) and g = %1@-}-%1\1,71@(5)\”
and observe that [ fd(>® = [ gd¢> for all £ € A(S)\L while mingeDf fdee =
tu(z*) + tu(z,) > w(z,) = mingep [u(g) dl> so that f > g and again lis relevant
We now show that - satisfies Contlnuous Symmetry. Since W is a real-valued
representation, - satisfies Weak Order. Since W is sup norm continuous, 7 satisfies
Mixture Continuity. All the remaining axioms will be shown by way of Theorem 4.5,
as we now demonstrate that 7=* may be represented as in (4.3). Suppose [u(f)dp >
Ju(g)dp for all p € co{f¢>*+ (1 —P)g:¢ € D}. Fixany A € [0,1] and acts f,g,h €

F, and let (>~ € arg mingegpeoepy [ U (Af + (1 — A)h) dp. Then

W(/\f+(1—/\)h):/u(Aer(l—A)h)d(ﬁ@mnt(l—ﬁ)q)
> [+ - (504 (- 5)q)
> W (Ag+ (1— \)h)

so that f =* g. Going the other direction, suppose fr* g and that there exists a p €
co{pl>+ (1 —p)q: ¢ e D} such that [u(f)dp < f g) dp. This implies that there

exists an ¢ € D such that fu(f)d(ﬁfOO (1- ) < [u(g) (6600 (1 —5)q>.



Let h = Ly-1(p\)- Choose A € (0,1) small enough to satisfy

(1= M) (u(z") = u(z.))
>xmax[/u(f)d£°°— min /u(f)dp,/u@)déoo— min /u(g)dp].

pe{{>4eD} pe{l>:4eD}

Then,

min /u(jxf—l— (1 —S\)fz) dp >\ min /u(f) dp + (1 — Nu(z¥)

pe{te=:teD £} pe{te>:teD}

>X/u(f)d£°°+<1—X)u(x*) —/u(Xf+(1—X)/3) di>

which implies /> € arg MiNye (pooeny | U (5\f +(1- 5\)3) dp.
Similarly, ¢ € arg Miny,e (pooepy [ U <5\g +(1-— S\)ﬁ) dp. Thus,

i A+ (1= MNh)dp = A+ (1 — A di®
pe{glol:?em/u ()\f + ( )\)h) dp /u ()\f + ( )\)h) dl
< /u (Ao + (1= ) i
= pe{?}ol:?eD}/u ()\g + (1 - )\)h) dp.
Therefore, as 5 > 0,
W <;\f+ (1 —X)iz) - /u <;\f+ (1 —X)i}) d(ﬁéOO+ (1 —ﬁ)q)
< /u (5\g+ (1- &);}) d (5200 (1 5)q)
=W (Ag+ (1 —A)h)
contradicting f 7=* g. Summarizing, we have shown that
f =" g if and only if /u(f)dpz /u(g)dp for all p € co{pBl>*+ (1 —pB)q: ¢ € D}.
Therefore, applying Theorem 4.5 and noting that co {$¢>° + (1 — B)q : £ € D} is weak*
compact because D is finite, 77 represented by W (f) satisfies Continuous Symmetry.

Since 7~ is Continuous Symmetric and every measure in D is relevant, Theorem 3.3
implies R = D. Since D is finite, D = D.



D.5.2 Proof of Theorem D.2

Consider the “only if” direction. That us = up up to normalization is equivalent to
the two preferences agreeing on constant acts, a necessary condition for >4 is more
ambiguity averse than =~ p.

Let W; (f) = Bimingegeeen,y [ui (f) dp+(1—=3i) [ui (f) dg; with ¢; = [ £°dm; (£)
fori = A, B.

By Theorem D.1, D = R for such preferences. Applying Theorem 3.4, we obtain
Dp = Dy since 4,05 < 1 implies 4 and Z~p are strictly monotonic for bets on
non-null limiting frequency events. (To see the latter, let ¥~! (L) be a non-null event,
z,y,2 € X and x = y. Then, LN D # 0 and [w(xV 1 (L)z)dg > [u(yV~!(L)=z)dg.
Since 8 < 1, 20 (L) z =y~ (L) 2.)

Consider the act 1y-1¢y for some ¢ € Dy. Since D4 = Dp is non-singleton, this
act is evaluated as Ws(ly-1(0) = (1 — Ba)ma(f) and Wr(lg-1p)) = (1 — Bg)mp({)
respectively. Since W, = Wpg on constant acts, [f 7oa 2 = f =g x for all z € X and
f € F| implies [Wg(f) > Wa(f) for all f € F]. Therefore

(1 —=Bg)mp(l) > (1 — Ba)ma(¥) for all £ € D,. (D.1)

Summing (D.1) over £ € D4 yields 54 > fp. For all £€ Dg, (D.1) yields mp(¢) >
1=Bam (0)
1-pg A

Turn to the “if” direction. For all acts f and measures ¢ = [ (*dm (¢) for some
m € A(A(S)) such that suppm C D, mingegrepy [u(f)dp < [u(f)dg, so that
increasing 8 can only lower the valuation of an act. Observe that W evaluates f by
taking a convex combination of the [w(f)d¢> values. The weights in this convex
combination are (1 — 5)m(¥¢) for all but some ¢ yielding the lowest of the values, which
is assigned weight (1 — g)m(¢) 4+ . The conditions on m4 and mpg ensure that (1 —
Be)mp(l) > (1 — Sa)ma(f) so that each ¢ yielding a value other than the minimum is
assigned weakly more weight by Wg(f) than by Wa(f). Therefore, Wg(f) > Wa(f)
with equality for constant acts, so that f 7ma 2= frpaxforallz € X and f € F.

D.5.3 Proof of Theorem D.3

First we show suppm C R. Supposef € suppm and fixany L € O;. Take x1, 29,23 € X
such that xy ~ %xl + %933 and x1 = x3. Define two acts f and g by

f(w):{xl if U(w)eL andg(w):{x?’ if\I/(w)GL.

To  otherwise T9  otherwise



Since [ fdt> = [ gd¢> for all ¢ € A(S)\L, it suffices to show that f = g. For each
1=1,...,n,

iU dp = AES] d (W2 d
/C (f)dp /WI(L)C (1) p+/9\@1@)< (2) dp
T-1(L) Q

- ilu(z2) —u(ws)dp=— [ Gu(g)dp.
[, Gl == [ cuto ap

The third equality follows because [ ¢;dp = 0, and the fourth comes from o ~ %.131"’%133.
Because A (a) = A(—a),

A (( Gu () dp)> 4 (( [ Guto) dp>> |
Then, N N
[utap 4 (( [ Guts) dp) ) # [utgdp+ A (( [t dp) )

because [u(f)dp > [u(g)dp by the fact that m (L) > 0 and xy > x3. Thus, f = g
and each measure in supp m is relevant.

Next, we show that 2~ satisfies Continuous Symmetry. The form assumed for p and
the symmetry property assumed for each (; ensure that Event Symmetry is satisfied.
The other properties in Symmetry along with Mixture Continuity follow directly from
the properties of VEU (see Siniscalchi [15]). To see Monotone Continuity of 2-*, observe
that o’ 2Z* x Aga” if and only if, for all o € [0,1] and h € F,

au(r') + A (((1 —a) / u(h)@-dp) 1@9)

> a (p(Ap)u(z) + (1 — p(Ag)u(x"))

c
k

+(1-a) / u(h)@dp) ) |

Since p is countably additive and (; is bounded and measurable, A, \, @ implies
p(Ax) — 0 and fAk Gdp — 0 and fAi Gidp = [g Gidp = 0. Therefore, since n is
finite and A is Lipschitz continuous, there exists a k such that A, is small enough so
that o' —* xAxx”. This proves Monotone Continuity of 7Z*.

Because 77 is Continuous Symmetric and every measure in suppm is relevant, we
can apply Theorem 3.3 to conclude R = suppm.

7



D.5.4 Proof of Theorem D.4

Consider the “only if” direction. Suppose 2~4 is more ambiguity averse than >~ pg.
Since the two preferences agree on constant acts and thus us = ug up to normal-
ization. Let u = uy = ug.
Note that if A is differentiable and A(a) = A(—a) for all a € R", DA(0) = 0.
This can be seen from DA(a) = —DA( a) for all @ € R™ and setting a = 0. Let

Ik(u(f))zfu(f)dpk+Ak((f(f ) )fork:A,B. Then,

DI4(c)(p) = /SOdPA+DAA ((0)1<i<n) ((/ CiASOdpA>1§i§n> = /@dpA'

Similarly, DIg(c)(¢) = [ @dpg. Then, Lemma C.1 implies p4 = pg. The rest of the
result including the “if” direction follows directly from Proposition 4 of Siniscalchi [15].

D.5.5 Proof of Theorem D.5

Suppose 77 is an i.i.d. second-order Choquet preference. We first show that suppv C R.
Suppose ¢ € suppv and take L € O;. By definition, there is L' C A (S) such that
v(LUL) > v(L'). Consider f = ly-1ur) and g = lg-1(z). Then, [ fdl> =
fgd€°° for all £ € A(S)\L. Compute [ [u(f)d¢>*dv(¢) = v(LUL) > v (L) =
[ [u(g)det>dv (£). Thus, each £ € suppwv is relevant.

We now show that - satisfies Continuous Symmetry. Monotone Continuity of 77*
and Mixture Continuity follow by Cerreia-Vioglio et al. [3, Theorem 7] and the fact
that a capacity with finite support is continuous. That the other axioms are satisfied
is straightforward.

We have shown that every measure in supp v is relevant and 2~ satisfies Continuous
Symmetry. Thus we can apply Theorem 3.3 to conclude R = suppv.

D.5.6 Proof of Theorem D.6

Consider the “if” direction first. Let u = us = up without loss of generality. It
is a property of the Choquet integral that vg > w4 implies [ [u(f)dl>*dvg (€) >
[ [u(f)de=dvs (¢) for all f € F with equality for constant acts (see e.g., Denneberg
[4, Propositions 5.1 and 5.2]). This implies 774 is more ambiguity averse than 2~ p.

Now turn to the “only if” direction. That us = up up to normalization is equivalent
to the two preferences agreeing on constant acts, a necessary condition for -4 is more
ambiguity averse than 2~ g. Suppose, to the contrary, that >4 is more ambiguity averse
than g but vp(L') < va(L’) for some L' C A(S). Then lg-1(zy ~ava(L)az* + (1 —
va(L'))x, =p ly-1(1, contradicting 4 is more ambiguity averse than 7 p.
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