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This Appendix contains all proofs not included in the main text and some

further results on the direction of updating.

A Proofs not in the Main Text

Proof. [Proof of Theorem 1] Bayesian updating is only well-defined follow-

ing positive probability signals. Therefore, assume
∑

i η̌ (θi) πθi (x) > 0 and∑
i η̂ (θi) πθi (x) > 0. We use proof by contradiction. Suppose two individuals

use Bayesian updating and that η̌ stochastically dominates ν̌ and ν̂ stochas-

tically dominates η̂ with at least one dominance strict (i.e., that polarization

occurs). Observe that η̌ stochastically dominates ν̌ implies η̌ (θ1) ≤ ν̌ (θ1) =
η̌(θ1)πθ1 (x)∑
i η̌(θi)πθi (x)

and η̌
(
θ|Θ|
)
≥ ν̌

(
θ|Θ|
)

=
η̌(θ|Θ|)πθ|Θ| (x)∑

i η̌(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≥
∑
i

η̌ (θi) πθi (x) ≥ πθ|Θ| (x) . (6)

Similarly, observe that ν̂ stochastically dominates η̂ implies η̂ (θ1) ≥ ν̂ (θ1) =
η̂(θ1)πθ1 (x)∑
i η̂(θi)πθi (x)

and η̂
(
θ|Θ|
)
≤ ν̂

(
θ|Θ|
)

=
η̂(θ|Θ|)πθ|Θ| (x)∑

i η̂(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≤
∑
i

η̂ (θi) πθi (x) ≤ πθ|Θ| (x) . (7)

The only way for (6) and (7) to be satisfied simultaneously is when

πθ1 (x) =
∑
i

η̌ (θi) πθi (x) =
∑
i

η̂ (θi) πθi (x) = πθ|Θ| (x) . (8)

Notice that under (8) η̂ (θ1) = ν̂ (θ1), η̂
(
θ|Θ|
)

= ν̂
(
θ|Θ|
)
, η̌ (θ1) = ν̌ (θ1) and

η̌
(
θ|Θ|
)

= ν̌
(
θ|Θ|
)
. Given

∑
i η̌ (θi) πθi (x) =

∑
i η̂ (θi)πθi (x), consider the
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induction hypothesis that, for some 1 ≤ n < |Θ|,

η̂ (θi) = ν̂ (θi) and η̌ (θi) = ν̌ (θi) for i = 1, ..., n.

Under this hypothesis, η̌ stochastically dominates ν̌ implies η̌ (θn+1) ≤ ν̌ (θn+1) =
η̌(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

and ν̂ stochastically dominates η̂ implies η̂ (θn+1) ≥ ν̂ (θn+1) =
η̂(θn+1)πθn+1

(x)∑
i η̂(θi)πθi (x)

=
η̂(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

. Therefore,

η̂ (θn+1) = ν̂ (θn+1) and η̌ (θn+1) = ν̌ (θn+1) .

Since we showed above that the induction hypothesis holds for n = 1, we

conclude that η̌ stochastically dominates ν̌ and ν̂ stochastically dominates η̂

implies η̌ = ν̌ and η̂ = ν̂. This contradicts our supposition of polarization.

Proof. [Proof of Proposition 1] It is immediate from (1) that α∗ (x) ∈ (0, 1)

since µ ∈ (0, 1) and φ′ > 0. To prove (i), fix any x ∈X and, from (2), observe

that for any y ∈ X , α∗ (y) is a strictly increasing function of α∗ (x) in any

solution of the system of first-order conditions. This and the fact that φ is

concave implies that the left-hand side of (1) is strictly increasing in α∗ (x) and

decreasing in π1(x)
π0(x)

. The right-hand side of (1) is strictly increasing in µ and

constant in α∗ (x). Therefore, α∗ (x) is well-defined and strictly increasing in

µ and π1(x)
π0(x)

. The first-order condition describing the best constant prediction,

which we denote here by ᾱ, is

ᾱ

1− ᾱ
φ′[−(ᾱ)2]

φ′[−(1− ᾱ)2]
=

µ

1− µ
. (9)

Again, concavity of φ implies that the left-hand side is strictly increasing in ᾱ

and thus the best constant prediction is strictly increasing in µ.

To prove (ii), let β∗ (x) denote the optimal prediction after observing x.

By the first-order conditions for optimality, these predictions must satisfy

β∗ (x)

1− β∗ (x)

φ′[−(β∗ (x))2]

φ′[−(1− β∗ (x))2]
=

νx
1− νx

. (10)
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Therefore, by the same reasoning as in (i), β∗ (x) is strictly increasing in the

posterior νx. Comparing (9) and (10) and using concavity of φ yields

νx R µ

if and only if

β∗ (x) R ᾱ.

Finally, under dynamically consistent updating, from (3), the posteriors

must satisfy
α∗ (x)

1− α∗ (x)

φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]
=

νx
1− νx

.

Therefore, β∗ (x) = α∗ (x).

Proof. [Proof of Proposition 2] Dynamically consistent updating implies that

(3) is satisfied in addition to (1). Combining the two equalities yields,

νx R µ

if and only if

φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]
R

φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]

π0(x)

π1(x)
.

Proof. [Proof of Theorem 2] By Proposition 2,

νxH ≥ µ

if and only if

φ′[−(α∗
(
xH
)
)2]

φ′[−(1− α∗ (xH))2]
≥ φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]

π0(xH)

π1(xH)
. (11)
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For all y ∈ X , since π1(xH)
π0(xH)

≥ π1(y)
π0(y)

, it follows from part (i) of Proposition 1

that

α∗
(
xH
)
≥ α∗ (y) .

Therefore (α∗
(
xH
)
)2 ≥ Eπ0(α∗ (X))2 and (1− α∗

(
xH
)
)2 ≤ Eπ1(1− α∗ (X))2.

As φ is concave, this implies

φ′[−(α∗
(
xH
)
)2]

φ′[−(1− α∗ (xH))2]
≥ φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]
. (12)

Since π1(xH)
π0(xH)

≥ 1, (11) follows. Thus νxH ≥ µ.

Furthermore, (3), (12) and (1) imply

νxH

1− νxH
=

α∗
(
xH
)

1− α∗ (xH)

φ′[−(α∗
(
xH
)
)2]

φ′[−(1− α∗ (xH))2]

≥
α∗
(
xH
)

1− α∗ (xH)

φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]

=
µ

1− µ
π1(xH)

π0(xH)
,

where the last expression is the posterior ratio generated by Bayesian up-

dating of µ after observing xH .

An analogous argument shows µ ≥ νxL and

νxL

1− νxL
≤ µ

1− µ
π1(xL)

π0(xL)
.

Proof. [Proof of Theorem 3] Recall that the optimal prediction α∗(x) is contin-

uous and increasing in the prior probability of θ = 1. Denote this probability

by η. As the optimal prediction is 0 if η = 0 and 1 if η = 1, considering η close

enough to 0 or η close enough to 1 is equivalent to considering α∗(x) close

enough to 0 or 1 respectively. The proof strategy for determining updating for

sufficiently extreme beliefs will be to consider updating for sufficiently extreme

predictions.

4



Observe, by applying (1) and (3), that dynamically consistent updating

of η after seeing x ∈ X will be shaded upward/equal to/shaded downward

compared to Bayesian updating if and only if

φ′[−(α∗ (x))2]φ′[−
∑
y∈X

π1(y)(1− α∗ (y))2] (13)

R φ′[−(1− α∗ (x))2]φ′[−
∑
y∈X

π0(y)(α∗ (y))2].

From (2), α∗ (y) = βπ1,π0(α∗ (x) ; y) where βπ1,π0 : [0, 1]×X → [0, 1] is defined

by βπ1,π0(z; y) =
z
π1(y)
π0(y)

z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

for all z ∈ [0, 1] and y ∈ X . Define the

function f : [0, 1]→ R such that

f(z) =
φ′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]

φ′[−(1− z)2]
−
φ′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

φ′(−z2)
.

Under our assumptions, f is continuous and differentiable. By comparing

f with (13), observe that when z = α∗ (x) ∈ (0, 1), the direction in which

updating is shaded relative to Bayesian updating is determined by the sign

of f . Therefore we want to determine the sign of f(z) when z is close 0 and

when it is close to 1. By the assumptions in the statement of the theorem,

0 < φ′(0) < φ′(−1) <∞ where the last inequality comes from the fact that φ′

is continuous on [−1, 0] and thus bounded. Then f(0) = f(1) = 0. Therefore,

the sign of f(z) when z is close 0 and when it is close to 1 is determined by

the sign of f ′(z) at 0 and 1 respectively. Differentiating f (and denoting the
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derivative of βπ1,π0 with respect to z evaluated at (z; y) by β′π1,π0
(z; y)) yields,

f ′(z) =
2φ′′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]

∑
y∈X π1(y)(1− βπ1,π0(z; y))β′π1,π0

(z; y)

φ′[−(1− z)2]

−
2φ′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]φ′′[−(1− z)2](1− z)

(φ′[−(1− z)2])2

+
2φ′′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

∑
y∈X π0(y)(βπ1,π0(z; y))β′π1,π0

(z; y)

φ′(−z2)

−
2φ′′(−z2)(z)φ′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

(φ′(−z2))2 .

Thus,

f ′(0) = 2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(0; y)

]
+(0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(0; y)

]

and

f ′(1) = (0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(1; y)

]
+2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(1; y)

]
.

Since φ′′ is negative and finite (since φ′′ is continuous on a bounded inter-

val), the coefficient of ambiguity aversion, −φ′′

φ′
, is everywhere positive and

finite. This allows us to conclude that the sign of f ′(0) is the same as

the sign of 1 −
∑

y∈X π1(y)β′π1,π0
(0; y), while the sign of f ′(1) is the sign of

1−
∑

y∈X π0(y)β′π1,π0
(1; y). Differentiating βπ1,π0(z; y) shows that β′π1,π0

(0; y) =
π1(y)
π0(y)

/π1(x)
π0(x)

and β′π1,π0
(1; y) = π1(x)

π0(x)
/π1(y)
π0(y)

. Thus f ′(0) < 0 and f ′(1) < 0 if and

only if
1∑

y∈X π0(y)π0(y)
π1(y)

<
π1(x)

π0(x)
<
∑
y∈X

π1(y)
π1(y)

π0(y)
. (14)

Summarizing, we have shown that f is negative for values sufficiently close

to 0 and positive for values sufficiently close to 1 if and only if (14) is satisfied.

Therefore, it is exactly under these conditions that updating will be shaded

downward compared to Bayesian updating for beliefs sufficiently close to 0 and
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shaded upward compared to Bayesian updating for beliefs sufficiently close to

1.

We now show that a neutral signal necessarily satisfies (14). Note that∑
y∈X π1(y)π1(y)

π0(y)
≥ 1 and

∑
y∈X π0(y)π0(y)

π1(y)
≥ 1 because the strictly convex

constrained minimization problem minw1,...,w|X |

∑|X |
i=1

w2
i

vi
subject to

∑|X |
i=1 wi =

1, assuming
∑|X |

i=1 vi = 1 and vi > 0 for i = 1, ..., |X |, has first order conditions

equivalent to wi
vi

constant in i, thus the minimum is achieved at 1∑|X |
i=1 vi

= 1

with wi = vi∑|X |
i=1 vi

= vi. Moreover, since there exists at least one informative

signal, i.e., y ∈ X such that π1(y)
π0(y)

6= 1, the unique minimum is not attained

and so
∑

y∈X π1(y)π1(y)
π0(y)

> 1 and
∑

y∈X π0(y)π0(y)
π1(y)

> 1. Thus, (14) is always

satisfied if π1(x)
π0(x)

= 1 (i.e., if x is a neutral signal).

Finally, observe that if x is a neutral signal, then, since Bayesian updating

would be flat, updating shaded downward implies updating is downward and

updating shaded upward implies updating is upward, generating polarization.

Remark 3. The theorem remains true if φ′(0) = 0 and the requirements of

the theorem are otherwise satisfied. This case requires an argument based on

second-order comparisons. Intuitively, second-order differences that were pre-

viously masked may now become important in the limit because the zero cre-

ates unboundedly large ambiguity aversion (as measured by −φ′′

φ′
) near perfect

predictions. Specifically, one can show that, for beliefs close to θ, a second-

order comparison yields that the payoff following a neutral signal is larger than

the expected payoff before seeing the signal. This drives the comparison of ex-

ante versus interim hedging effects and generates the polarization. Moreover,

in this case, the polarization result may be extended beyond neutral signals

to all signals having a likelihood ratio lying in an interval containing 1.

Proof. [Proof of Proposition 3] From Lemma 1, νxM R µ if and only if

∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

[α∗(xM)π1(y)
π0(y)

+ (1− α∗(xM))π1(xM )
π0(xM )

]2
R 0. (15)
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We consider the following exhaustive list of possibilities:

(i)
(
π1(xM )
π0(xM )

) 1
γ

+2

≥ π1(xH)
π0(xH)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the left-

hand side of (15) is strictly positive, and therefore updating is always upward,

so set τ(γ, π0, π1) = 0. Note that a necessary condition for this case is that
π1(xM )
π0(xM )

> 1.

(ii)
(
π1(xM )
π0(xM )

) 1
γ

+2

≤ π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the

left-hand side of (15) is strictly negative, and therefore updating is always

downward, so set τ(γ, π0, π1) = 1. Note that a necessary condition for this

case is that π1(xM )
π0(xM )

< 1.

(iii) π1(xH)
π0(xH)

>
(
π1(xM )
π0(xM )

) 1
γ

+2

> π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

<

π1(xH)
π0(xH)

, in the left-hand side of (15), the term for y = xL is positive and has a

denominator strictly decreasing in α∗(xM), the term for y = xM is constant in

α∗(xM), and the term for y = xH is negative and has a denominator strictly

increasing in α∗(xM). Therefore the whole sum is strictly increasing in α∗(xM)

and thus can change signs at most once. Three sub-cases are relevant:

(iii)(a) the left-hand side of (15) is non-negative when 0 is plugged in for

α∗(xM). In this case, updating is always upward, so set τ(γ, π0, π1) = 0.

(iii)(b) the left-hand side of (15) is non-positive when 1 is plugged in for

α∗(xM). In this case, updating is always downward, so set τ(γ, π0, π1) = 1.

(iii)(c) otherwise. In this case, continuity and strict increasingness of the left-

hand side of (15) in α∗(xM) implies there exists a unique solution for a in (0, 1)

to ∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(aπ1(y)
π0(y)

+ (1− a)π1(xM )
π0(xM )

)2
= 0.

Since (16) holds with equality when z = a, using constant relative ambiguity

aversion (φ′(z) = (−z)γ) and given the monotonicity of α∗(xM) in µ, the

associated threshold for µ may be found by substituting z = a into (16) with

equality and solving for µ = τ(γ, π0, π1). Doing this yields

τ(γ, π0, π1)

1− τ(γ, π0, π1)
=

(
a

1− a

)2γ+1

.
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Therefore

τ(γ, π0, π1) =
a2γ+1

a2γ+1 + (1− a)2γ+1 .

Collecting these results into an overall expression, the threshold is defined by:

τ(γ, π0, π1) =
b2γ+1

b2γ+1 + (1− b)2γ+1 ,

where

b ≡


0 if S(0) ≥ 0

a if S(a) = 0 and a ∈ (0, 1)

1 if S(1) ≤ 0

and

S(λ) ≡
∑

y∈{xL,xM ,xH}

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(λπ1(y)
π0(y)

+ (1− λ)π1(xM )
π0(xM )

)2
.

Proof. [Proof of Theorem 4 ] Polarization is equivalent to ν̂ ≥ η̂ and ν̌ ≤ η̌ with

at least one inequality strict. If γ = 0, updating is Bayesian and polarization is

impossible by Theorem 1, so set τ̂ = 1 and τ̌ = 0. By Proposition 3, if γ > 0

then polarization occurs if and only if η̂ ≥ τ(γ̂, π0, π1) and η̌ ≤ τ(γ̌, π0, π1)

with at least one inequality strict, where the τ function is the one defined in

that result.

Proof. [Proof of Corollary 1] From Proposition 3, τ̂ = τ(γ̂, π0, π1) and τ̌ =

τ(γ̌, π0, π1). The rest is immediate from Theorem 4.

Proof. [Proof of Corollary 2] From Proposition 3, such a threshold exists. Since

π0(xM) = π1(xM) implies π0(xL)− π1(xL) = π1(xH)− π0(xH) > 0, calculation

shows that the relevant case in the proof of Proposition 3 is case (iii)(c).

Thus τ(γ, π0, π1) = a2γ+1

a2γ+1+(1−a)2γ+1 = 1

1+( 1−a
a )

2γ+1 where a ∈ (0, 1) is the unique
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solution of S(a) = 0. Simplifying yields

1− a
a

=

√
π1 (xH)

π0 (xH)

π1 (xL)

π0 (xL)
.

B Further Results on the Direction of Updating

The next result combines Proposition 2 and equations (2) and (3) to show a

general form relating fundamentals to the direction of updating.

Proposition 4. The posterior νx is above/equal to/below the prior µ if and

only if the fundamentals (µ, φ, π1, π0) are such that

z

1− z
φ′[−z2]

φ′[−(1− z)2]
R

µ

1− µ
, (16)

for the unique z ∈ (0, 1) solving

z

1− z

φ′

[
−z2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

]

φ′

[
−(1− z)2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

] (17)

=
µ

1− µ
π1(x)

π0(x)
.

Proof. Substituting (3) into (4) and rearranging yields

α∗(x)

1− α∗(x)

φ′[−α∗(x)2]

φ′[−(1− α∗(x))2]
R

µ

1− µ
.

From (2), we obtain for all y ∈X ,

α∗(y) =
α∗(x)π1(y)

π0(y)

α∗(x)π1(y)
π0(y)

+ (1− α∗(x)) π1(x)
π0(x)

.
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Using this together with (3), α∗ (x) is the unique solution to

α∗ (x)

1− α∗ (x)

φ′

[
−α∗ (x)2∑

y∈X
π0(y)

(
π1(y)
π0(y)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

]

φ′

[
−(1− α∗ (x))2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

]

=
µ

1− µ
π1(x)

π0(x)
.

In interpreting inequality (16), it is important to realize that z is an in-

creasing function of beliefs µ (as follows from the argument used in proving

part (i) of Proposition 1 with z playing the role of α∗ (x)). In fact, (17) com-

bines (2) and (3). This implies that z = α∗(x), the optimal prediction given

the observation x. From (17), in the case of ambiguity neutrality (φ affine)
z

1−z is simply a multiple of µ
1−µ so that updating is either always upward (if

π1(x)
π0(x)

≥ 1) or always downward (if π1(x)
π0(x)

≤ 1). Similarly, we see that under

ambiguity aversion, z
1−z is generally a non-linear function of µ

1−µ (reflecting

the balancing of the desire to hedge with the likelihood based motivation from

the ambiguity neutral case) which creates the possibility that inequality (16)

may change direction as beliefs µ change. In general, the regions where it goes

one way and where it goes the other may be very complex. We now offer a

characterization of when updating follows a threshold rule so that 16 changes

direction at most once.

Proposition 5. There is a threshold rule for updating µ after observing x if
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and only if

φ′[−z2]

φ′[−(1− z)2]

π1(x)

π0(x)
(18)

−
φ′

[
−z2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

]

φ′

[
−(1− z)2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

]

as a function of z has at most one zero in (0, 1) and, if a zero exists, (18) is

increasing at that zero.

Proof. The result follows by combining the definition of a threshold updating

rule with the characterization of the direction of updating given by Proposition

4.

Finally, we present a lemma showing how inequality (4), which identifies the

direction of updating after observing a signal, simplifies under the assumption

of constant relative ambiguity aversion. In proving Theorem 4, we use this

inequality to help establish and calculate the threshold rule.

Lemma 1. With constant relative ambiguity aversion γ > 0, the posterior νx

is above/equal to/below the prior µ if and only if

∑
y∈X

π1 (y)

(
π1(x)
π0(x)

) 1
γ

+2

− π1(y)
π0(y)(

α∗(x)π1(y)
π0(y)

+ (1− α∗(x))π1(x)
π0(x)

)2 R 0. (19)

Proof. From inequality (16) and equation (17), νx R µ if and only if

φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]

π1(x)

π0(x)
R

φ′

[
−α∗(x)2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

]

φ′

[
−(1− α∗(x))2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

] .

(20)
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Under constant relative ambiguity aversion, φ′(z) = (−z)γ and therefore (20)

is equivalent to

(
π1(x)

π0(x)

) 1
γ

R

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

.

Simplifying yields inequality (19).
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