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1. Introduction and motivation

The additivity of the expected utility functional is one of the key properties that
has made it attractive for use in economic applications. Recent attempts to
improve the decision-theoretic basis of economics have relaxed this additivity in
order to capture a broader range of economically relevant behavior. In particular,

Ž .in the wake of the seminal experiments of Ellsberg 1961 , decision theorists have
produced a number of axiomatic models of behavior aimed at explaining his

Ž .results and, more generally, capturing ambiguous beliefs. Schmeidler 1989
Ž .suggested extending the classical Subjective Expected Utility SEU model of

Ž . Ž .Anscombe and Aumann 1963 and Savage 1954 by allowing the preferences of
Ž .the decision maker DM to be represented by Choquet integrals with respect to

beliefs which are not necessarily additive, technically known as capacities. This is
Ž .what is known as the Choquet Expected Utility CEU model. A related model, the

so-called ‘multiple priors’ model extends SEU by representing the DM’s beliefs
by a set of probability measures, and models her as choosing the act which
maximizes the minimal expected utility with respect to beliefs in this set. This is

Ž . Ž . 3the case in the papers of Gilboa and Schmeidler 1988 and Chateauneuf 1991 .
Each of these models results in a relaxing, to some extent, of the additivity of

SEU. It is precisely this relaxation that yields behavior reflecting attitudes towards
Ž .ambiguity, as observed by Ellsberg 1961 and the large literature that followed.

To better understand and apply these newer theories, it is important to know
exactly when additivity and its resulting behavioral implications are maintained
and when they are not. Furthermore, as many standard mathematical results rely
on additivity, their use is delimited by the extent to which additivity holds in these

Žmodels. While the additivity of the Choquet integral has been carefully studied it
is additive when integrating the sum of comonotonic functions, defined in Section
. Ž2 , that of the functional defined as the ‘min’ of integrals over a closed and

. Ž .convex set of probabilities as obtained in multiple priors model has not. This
paper addresses exactly that issue. More specifically, we ask the following
questions: Suppose that we are modelling a DM who can be described by the
multiple priors model. Hence, her preferences will be described by a closed and
convex set C of probabilities over a state space V , and a utility function, u, over

Ž .outcomes. Assume that we know her preferences under risk i.e., u , however we
do not know anything more about her, in particular, we do not know anything
more about the set of probabilities, C. Given two acts f and g, 4 we want to know

3 Ž .As is well-known see Schmeidler, 1989 the two models we have described have a non-empty
intersection, which corresponds to the case in which the set of probabilities representing the DM’s

Ž .beliefs is the core of a supermodular or convex capacity. However, neither model is nested in the
other as there are DM’s whose preferences obey the multiple priors model but not the CEU model and
vice versa.

4 From here on, we fix the utility function u and write simply f and g for u( f and u( g.
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whether, for all C, the ‘min’ of the expected utilities on C is additive for fqg.
Ž .We will show Theorem 1 that this will be true exactly when f and g are positive

Žaffine transformations of each other or at least one is constant as we say, they are
.‘affinely-related’ . Technically, the ‘min’ functional is additive for every C when

and only when we are integrating the sum of two affinely-related functions. Since
affine-relatedness is a much stronger condition than comonotonicity, this implies
that the ‘min’ functional will be additive for a much smaller class of functions
than the Choquet integral. For this reason, we inquire whether it is possible to
obtain broader additivity by imposing symmetric structural restrictions on the C’s
we want to consider. The surprising answer is that, unless we want to consider

Žonly DM’s whose C is the convex hull of degenerate probabilities i.e., those that
.assign probability one to a specific state v , we again have that additivity holds

only for affinely-related functions. This tighter version of the additivity result
Ž .Theorem 2 shows that the narrow additivity of the ‘min’ functional cannot be
avoided in general. This phenomenon is not limited to the ‘min’ functional only:
in Section 5 we show that all results generalize, with a very peculiar exception, to
all functionals which can be expressed as a linear function of the ‘min’ and the

Ž‘max’ functionals the latter associates with a function the largest expected value
.with respect to probabilities in C .

Our exploration of the additivity of the ‘min’ functional is related to recent
Ž .work by Klibanoff 1996 that characterizes when a DM described by the CEU or

multiple priors models can be made better off by mixing. 5 A necessary property
Žfor this and, more technically, for the DM’s preferences to display strict concav-

. Ž .ity is that the two acts being mixed are not affinely related multiple priors or
Ž .comonotonic CEU . It is clear that for both the Choquet and the ‘min’ function-

als, strict concavity can arise only when they fail to be additive. For instance, as
the Choquet integral is additive when integrating the sum of comonotonic func-
tions, ‘mixing’ between comonotonic acts does not make a CEU DM better off.

The characterization of the additivity of the ‘min’ functional also serves to
delimit the extension of mathematical results which work for the additive integral.

Ž .For instance, as Ghirardato 1997 uses comonotonic additivity of the Choquet
integral to study the validity of Fubini’s theorem for Choquet integrals, the results
in this paper can be used to characterize the class of functions for which one can
safely exchange the order of integration in a multiple priors model. This is quite
helpful, for example, in any application where the notion of independent sources
of uncertainty is relevant.

5 A common feature of the two models is that they were originally developed in a set-up by
Ž . ŽAnscombe and Aumann 1963 , in which the existence of an independent randomizing device a

. Ž‘roulette wheel’ is assumed. This gives an interpretation to ‘objective’ mixtures technically: pointwise
. Ž .convex combinations of acts. See Eichberger and Kelsey 1995 for an argument that CEU with

convex capacities need not allow preference for randomization in a Savage framework.



( )P. Ghirardato et al.rJournal of Mathematical Economics 30 1998 405–420408

The structure of the rest of the paper is as follows: After introducing some
preliminary material in Section 2, we present the basic additivity result in Section
3. In Section 4, we discuss the tightness of Theorem 1 and present the more
general Theorem 2, while underlining the connections with comonotonicity.
Section 5 closes by discussing the extension of our results to more general
functionals and the peculiar exception to the extension.

2. Preliminaries

Let FF be an algebra of subsets of a space V which contains all singletons, PP

be the set of all finitely additive probabilities defined on FF and PP s be the subset
of PP containing all the simple probabilities, i.e., PgPP s iff there exists a finite set

Ž .A:V such that P A s1. Notice that each finite set A:V belongs to FF

because this algebra contains all singletons. d denotes the probability measurev

concentrated on vgV . Let CC be the collection of all non-empty, convex and
closed sets in PP. As is well-known, every element of CC is weak)-compact. Let
Ž . ŽBB V ,FF be the uniform closure of the set of all simple real-valued and

.finite-ranged functions defined on FF, which will henceforth be denoted just BB.
For a given CgCC we define the ‘min’ functional I : BB™R as follows: 6

C

I f sminH f v d P . 1Ž . Ž . Ž .C V
Pe C

So I associates with every function fgBB the smallest possible integral withC

respect to probabilities in C. Since C is weak)-compact and BB was chosen as
above, the functional is well-defined.

Finally, we need to recall a relation between pairs of functions which is
well-known in the literature on Choquet integration.

Definition 1: We say that f , ggBB are comonotonic if for every v, v
X gV ,

f v y f v
X g v yg v

X G0Ž . Ž . Ž . Ž .Ž . Ž .

Ž .In other words two functions are comonotonic short for ‘commonly monotonic’
if they have the same ‘type’ of monotonicity.

3. Affine-relatedness and additivity

In this section, we ask when the I functional is additive. A natural candidateC
Ž .condition is comonotonicity. The following example from Klibanoff, 1996

shows, however, that comonotonicity does not guarantee additivity.

6 To integrate with respect to a finitely additive probability we use the Stiltjes integral introduced by
Ž . Ž .Hildebrandt 1934 . For the full definition and related results see, e.g., Marinacci 1993 .
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� 4 VExample 1: Suppose that Vs v , v , v and FFs2 . Consider comonotonic1 2 3

f and g defined as follows:

f v s1.5 f v s2 f v s3.5 andŽ . Ž . Ž .1 2 3

g v s0 g v s2.1 g v s4Ž . Ž . Ž .1 2 3

� Ž .Ž . w xConsider the set Cs P:Psad q 1ya 1r2d q1r2d , ag 0,1 . Ob-v v v2 1 3

serve that:

I f q I g s2q2-4.1s I fqg .Ž . Ž . Ž .C C C

We now introduce formally the appropriate condition.

Definition 2: Two functions f and g in BB are affinely related if there exist
Ž . Ž . Ž .aG0 and bgR such that either f v sa g v qb for all vgV or g v s

Ž .a f v qb for all vgV or both.

In other words, f and g are affinely related if either f is constant or g is
Ž . Ž .constant or there exists a)0 and bgR such that f v sa g v qb. It is

immediate to see that affinely related functions are comonotonic. The converse is,
in general, not true. However, the converse does hold when both functions are
defined on a set with only two points. 7

Theorem 1: Let f , ggBB. The following two statements are equivalent:
Ž .i f and g are affinely related;
Ž . Ž . Ž . Ž .ii I fqg s I f q I g for all CgCC.C C C

The proof of this result makes use of the following lemma, which says that the
operator I is additive for two functions f and g if and only if the integral of fC

Ž .and g is minimized over C by the same probability.

Lemma 1: For a given set CgCC and f , ggBB, the following two statements are
equivalent:
Ž . Ž . Ž . Ž .i I fqg s I f q I g ;C C C
Ž . Ž . Ž .ii arg min Hfd P l arg min Hgd P /B.P g C P g C

7 Note that this observation implies that the ‘trade-off’ method for eliciting the von Neumann–
Ž .Morgenstern utility index, as developed in Wakker and Deneffe 1996 , can be used for decision

makers whose preferences are represented by the ‘min’ functional. They show that the method can be
applied to a class of preference functionals that include the CEU functional. Since they essentially use a
state space with only two elements, the observation shows that the method applies to preferences
represented by the ‘min’ functional as well.
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Ž . Ž . Ž .Proof: The implication ii ´ i is obvious. To see the converse, by i , for
Ž .P garg min H fqg d P:q P g C

minH fqg d P sHfd P qHgd PŽ . q q
Pe C

sminHfd PqminHgd P .
Pe C Pe C

Suppose Hfd P )min Hfd P. The above equalities imply Hgd P -minq P g C q P g C

Hgd P, a contradiction. Consequently, Hfd P Fmin Hfd P. Similarly, one canq P g C

show Hgd P Fmin Hgd P. We conclude that:q P g C

P g arg min Hfd P F arg min Hgd P ,q ž / ž /
Pe C Pe C

which is what we wanted to prove.
To prove Theorem 1, we start by observing that each function induces, through

expectation, an ordering on probabilities. We then use Lemma 1 to show that if
additivity holds for functions f and g for all CgCC, then the induced orderings
must be identical. As they satisfy the von Neumann–Morgenstern axioms, the
result then follows from the uniqueness part of their classical result.

Ž . Ž .Proof of Theorem 1: The implication i ´ ii is obvious. As to the converse, if
either f or g is constant we are done. Assume neither of them is constant. Define
the ordering K on PP as follows:f

PK PX
mHfd PGHfd PX .f

This ordering is transitive and complete. The ordering K is defined similarly.g

We show that they are equivalent, i.e.,

PK PX
mPK PX .f g

Suppose, to the contrary, that there existed P, PX gPP such that P% PX andf
X Ž . Ž .PA P the other case is handled similarly . There are two cases to consider: 1g

X � Ž . XSuppose P$ P . An application of Lemma 1 with Cs aPq 1ya P : agg
w x4 Ž . X0,1 yields a contradiction. 2 Assume P; P . As g is not a constant, thereg

exists PY such that Hgd P/Hgd PY. Without loss of generality, suppose Hgd P-

Hgd PY. Then P$ PY and, by case 1, PY
K P. Hence,g f

Hgd PX sHgd P-Hgd PY and
X YHfd P -Hfd PFHfd P .

Ž . Ž Y Ž . X.For each ag 0,1 , Hgd aP q 1ya P )Hgd P. By case 1:

Hfd aPY q 1ya PX GHfd P .Ž .Ž .
By continuity, Hfd PX GHfd P, which contradicts P% PX.f
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We have thus proved that PK PX
mPK PX. Consider now the orderings onf g

the simple probabilities: Let K s and K
s respectively be the restrictions to PP s off g

K and K . It is easy to check that K
s and K

s are identical orderingsf g f g

satisfying all the axioms of the classic representation theorem of von Neumann
Ž . sand Morgenstern see, e.g., Theorem 8.2 of Fishburn, 1970 on PP . As the

representation is unique up to a positive affine transformation, for some a)0 and
Ž . Ž .bgR we have f v sa g v qb for all vgV .

To summarize, either one of f and g is constant, or fsa gqb for some
Ž . Ž .a)0 and bgR, and the implication ii ´ i is proved.

Remark 1: As is immediate from the proof of Theorem 1, in order to obtain this
result, we do not need to use the fact that the sets CgCC may contain non-simple
probabilities. The theorem could be restated using the set CC s of closed and convex
sets of simple probabilities. In fact we shall see in Section 4 that we can restrict CC

much more without forfeiting the result.

4. From comonotonicity to affine-relatedness

An interesting question to ask is whether the result in Theorem 1 is tight. That
Ž Ž ..is, do we really need the assumption that additivity condition ii holds for every

CgCC? More generally: how does the relation between f and g depend on the
size of the class of Cs for which we ask additivity to hold? Lemma 1, for instance,
says that for the case of the class made of a single C, we can only prove that there
must be a PgC minimizing the integral of both f and g, which is much weaker

Žthan saying that f and g are affinely related except, once again, when the V

.consists of only two points . And one might then wonder whether there can be
subclasses of CC, which we can interpret decision-theoretically as describing
certain ‘types’ of preferences, such that restricting attention to sets of priors of that
type yields a less demanding additivity result. The following proposition presents
one well-known example of such a subclass.

Notation We denote by CC11 the set of all the Cs which have the following form:
There are v, v

X gV such that:

X w xCs ad q 1ya d : ag 0,1 .� 4Ž .v v

Ž .We can now state the simple proof is omitted .

Proposition 1: Let f , ggBB. The following two statements are equivalent:

Ž .i f and g are comonotonic;
Ž . Ž . Ž . Ž . 11ii I fqg s I f q I g for all CgCC .C C C
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This result is closely connected to others in the literature. Notice that the class
11 ŽCC is contained in the class of all the cores of supermodular capacities on V ,
. 11FF , i.e., every CgCC is the core of a supermodular capacity. Since the

Ž . Ž .functional I for such a C is a Choquet integral, going from i to ii inC

Proposition 1 follows immediately from the fact that the Choquet integral is
Ž .comonotonic additive see Dellacherie, 1970 and Schmeidler, 1986 . The opposite

Ž .direction is a slight generalization of a result of Bassanezi and Greco 1984 ,
which is the analogue for the Choquet integral of Theorem 1.

It is fairly apparent how CC11 describes a ‘type’ of DM: One who considers
Žonly two states possible, but is agnostic beyond that i.e., considers all the priors
.which have those two points as a support in her C . Clearly, the power of the

result lies in the fact that we can construct a DM of this type for eÕery possible
pair of points v, v

X gV . Limiting consideration to only some pairs would
amount to imposing, beyond the structural restriction of degeneracy, conditions on
the DM’s beliefs which are difficult to justify a priori, as they would favor some
states or weightings over others. So we can read Proposition 1 as follows: Suppose
that we want to prove additivity of the ‘min’ operator for all Cs in some family of

˜ ˜ Ž .sets of priors CC;CC. It seems quite natural that CC could contain some finite
polytopes which are convex hulls of degenerate probabilities on states. To avoid

˜imposing arbitrary restrictions, we then have to include in CC all finite polytopes,
˜ 11since none can be excluded a priori. In particular, CC should include the subset CC

of all the Cs which are convex hulls of two degenerate probabilities. But then
Proposition 1 says that f and g must be comonotonic for additivity to hold

11 ˜Ž .whatever our choice of C in CC hence in CC .
It is important to stress that, as we did above, in what follows we shall avoid

˜arbitrariness by focusing our attention on families CC that are only defined by
˜symmetric structural restrictions, in the sense that if, say, CgCC is the convex
˜hull of a two-point distribution and a degenerate distribution, then CC must contain

all such Cs.
Now, comonotonicity is significantly weaker than affine-relatedness. So, one

˜ 11might wonder whether by choosing some CC which is strictly larger than CC , but
still not too large, one can obtain a result which gives additivity for some relation
between f and g which is weaker than affine-relatedness and stronger than

Ž .comonotonicity an obvious example: f is an increasing transformation of g . The
surprising answer to this is ‘no’. That is, as soon as we enlarge CC11 in a fashion

˜which, as suggested above, only imposes structural restrictions on the CgCC, we
can have additivity for all Cs only if f and g are affinely related. This is the
upshot of the next theorem.

Before moving to that, however, let us discuss how to enlarge CC11 in a
Ž .symmetric way. There are two different ways to proceed: 1 to increase the

Ž .number of extreme points of the Cs; 2 to allow the extreme points of the Cs to
be non-degenerate. Interestingly, increasing the number of extreme points while
maintaining their elementary structure does not change the result of Proposition 1.
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Ž .In fact, any C which is the convex hull of finitely many degenerate probabilities
is the core of a supermodular capacity. 8 In such a case, I is a Choquet integral,C

which is additive for all comonotonic f and g. Thus I is comonotonic additiveC
Ž .for all Cs which are the convex hull of any finite number of degenerate

probabilities. The other possibility, making the structure of extreme points richer,
is the one we follow in the next definition. We enlarge CC11 by considering Cs
generated by two probabilities, one of which can have a support of two points,
rather than only one. As we want this enlargement to be symmetric, so we shall
consider all Cs with this structure.

Notation: We denote by CC12 the subset of CC consisting of all CgCC of the form:

w xCs aPq 1ya Q : ag 0,1� 4Ž .

w x X Ywhere there exist bg 0,1 and v, v , v gV such that:

Psd and Qsbd X q 1yb d Y .Ž .v v v

The family CC12 is clearly the smallest symmetric enlargement of CC11 in the
direction outlined above. 9

Theorem 2: Let f , ggBB. The following two statements are equivalent:
Ž .i f and g are affinely related;
Ž . Ž . Ž . Ž . 12ii I fqg s I f q I g for all CgCC .C C C

To prove this result, we first show that if additivity holds for all CgCC12 , then
f must be a strictly increasing transformation of g. Then we show that the
transformation must be concave as well as convex, thus linear.

Ž . Ž .Proof: The implication i ´ ii is obvious. As to the converse, by Proposition 1
Ž . Ž X.the two functions f and g are comonotonic. We first show that f v G f v if

Ž . Ž X. Xand only if g v Gg v . Suppose, to the contrary, that there existed v, v gV

Ž . Ž X. Ž . Ž X. Žsuch that f v ) f v and g v sg v . Suppose g is not constant otherwise,

8 � 4nIf C is the convex hull generated by, say, d , then it is the core of the supermodular capacityv is1i
Ž . � 4called unanimity game u , which assigns weight 1 to the set v , . . . , v and all its�v , . . . , v 4 1 n1 n

supersets.
9 A decision-theoretic interpretation of CC12 is that such a DM acts as if she knows exactly the

relative likelihood of two states, but is uncertain about the relative likelihood of the union of the two
states compared to a third.



( )P. Ghirardato et al.rJournal of Mathematical Economics 30 1998 405–420414

. Y Ž Y . Ž .we are done . Take v gV such that g v /g v . Without loss of generality,
Ž Y . Ž X.suppose g v -g v . By comonotonicity:

f v ) f v
X G f v

Y andŽ . Ž . Ž .
X Yg v sg v )g v .Ž . Ž . Ž .

) � Ž . w x4 w xConsider C s aPq 1ya Q: ag 0,1 where, for bg 0,1 , Qsbd qv

Ž . Y X1yb d and Psd . For b-1 large enough, we have:v v

b f v q 1yb f v
Y

) f v
X andŽ . Ž . Ž . Ž .

Y X
b g v q 1yb g v -g v .Ž . Ž . Ž . Ž .

Ž . Ž .
) )This implies arg min Hfd R l arg min Hgd R sB, which is impossi-R g C R g C
Ž . Ž X. Ž . Ž X.ble by Lemma 1. Since f v G f v if and only if g v Gg v , there exists a

Ž . Ž . Ž Ž ..strictly increasing transformation f: Range g ™R such that f v sf g v

for all vgV . We show that f is concave. Choose any v, v
X, v

Y gV such that
Ž . Ž X. Ž Y . w x Ž . Ž . Ž . Ž Y . Ž Y .g v Fg v Fg v . For ag 0,1 , g v Fa g v q 1ya g v Fg v .

By Lemma 1 on C ) ,

a f v q 1ya f v
Y y f v

X
a g v q 1ya g v

Y yg v
X G0.Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Since fsf(g, this implies that it can never be the case that:

af g v q 1ya f g v
Y

)f g v
X andŽ . Ž . Ž . Ž .Ž . Ž . Ž .

Y X
a g v q 1ya g v -g v .Ž . Ž . Ž . Ž .

We claim that this implies that f is concave on the range of g. For, suppose not.
Ž . Ž X. Ž Y . Ž Ž .Then, there exist g v , g v , g v without loss of generality assume g v -

Y X YŽ .. Ž . Ž . Ž . Ž . Ž .g v and ag 0,1 such that g v sa g v q 1ya g v and:

Y Y
f a g v q 1ya g v -af g v q 1ya f g v .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

Ž Ž .. Ž Ž X.. Ž Ž Y ..Since f is strictly increasing, f g v -f g v -f g v . Therefore, for
Y XŽ Ž .. Ž . Ž Ž .. Ž Ž ..a)a but close to a we have af g v q 1ya f g v )f g v and

Ž . Ž . Ž Y . Ž X.a g v q 1ya g v -g v , a contradiction. Similarly, as it cannot be that:

af g v q 1ya f g v
Y

-f g v
X andŽ . Ž . Ž . Ž .Ž . Ž . Ž .

Y X
a g v q 1ya g v )g v .Ž . Ž . Ž . Ž .

one can prove that f is convex on the range of g. We conclude that f is linear
on the range of g, as wanted.

Theorem 2 shows that the result of Theorem 1 does not depend on the fact that
we require additivity for all CgCC. In fact the result is true if we only require
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additivity to hold on CC12. The theorem also proves that as soon as we allow the
possibility that some of the extreme points of the Cs are nondegenerate then
additivity can hold in general only if f and g are affinely related. Quite
surprisingly then, there are no ‘intermediate’ relations between comonotonicity
and affine-relatedness.

5. Max and min

For obvious reasons of symmetry, all the results of this paper can be proved for
the ‘max’ operator:

J f smaxH f v d P .Ž . Ž .C V
PgC

For instance, we can rewrite Lemma 1 as follows: Given CgCC, the J functionalC

is additive if and only if:

arg maxHfd P F arg maxHgd P /B.ž / ž /
PgC PgC

An interesting question is whether these results could also be generalized to a
larger class of functionals. For instance, a fairly general class is the one containing

w xfunctionals of the form, for lg 0,1 ,

K f sl I f q 1yl J f . 2Ž . Ž . Ž . Ž . Ž .C C C

Remark 2: Some thought reveals that the class discussed above is equivalent to
the class of all functionals with the following structure: For a given fgBB and a

Ž . � 4given CgCC, consider the set Range f ' xgR: 'PgC s.t. xsHfd P . ItC
w xcan be seen to be a closed and bounded interval in R, say a,b . Consider now

w x0,1 with the usual Borel s-algebra and a measure m on it. Let:

K f s bya H xdm qa.Ž . Ž . Ž .w xC 0,1

This corresponds to the following idea: For every function f find its range of
w x Ž .possible values a,b which could of course be degenerate , and then obtain a

Ž w x .‘summary statistic’ of the interval by transforming it into 0,1 and integrating
with respect to some measure m. The key aspect is that the procedure does not

w xdepend on the identity of the interval a,b , that is, all intervals are treated in the
same way. It is clear that the ‘min’ and ‘max’ operator fall in this class. Another

Ž .obvious example is the mean of the values of the interval ls1r2 , which
w xcorresponds to the case in which has a uniform density over 0,1 . Clearly every

Ž . w xsuch functional can be written as in Eq. 2 for some lg 0,1 .
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In Sections 5.1 and 5.2 we show that, while the results in the previous sections
can all be generalized to this class of functionals when l/1r2, the ‘uniform’
case of ls1r2 is a bit delicate.

5.1. The case of l/1r2

The following proposition contains the required extensions.

Proposition 2: Suppose that l/1r2 and f , ggBB. Then the K functional isC

additive for every CgCC11 if and only if f and g are comonotonic. It is additive
for every CgCC12 if and only if f and g are affinely related.

The key result for proving the proposition is Lemma 2, which requires the
following.

Notation: We denote by CC P Q the set of all CgCC which have the following
form:

w xCs aPq 1ya Q : ag 0,1� 4Ž .
for some P, QgPP.

Lemma 2: For every f , ggBB and for every CgCC P Q,

I fqg y I f y I g sJ f qJ g yJ fqg . 3Ž . Ž . Ž . Ž . Ž . Ž . Ž .C C C C C C

Proof: Let P and Q be the extreme points of CgCC P Q. It is immediate to notice
that in calculating smallest and largest integrals, we can restrict our attention to P
and Q, rather than their convex combinations. Now observe the following:

J f qJ g yJ fqg syI yf y I yg y yI yfygŽ . Ž . Ž . Ž . Ž . Ž .Ž .C C C C C C

s I yfyg y I yf y I yg .Ž . Ž . Ž .C C C

In general, the integrals of the different functions will be minimized by different
Ž . Ž . Ž .probabilities. But it is clear that if, say, I f sHfd P then I yf sH yf dQ.C C

For instance, suppose that P minimizes g and fqg and Q minimizes f. Then:

I fqg y I f y I g sHfd PyHfdQŽ . Ž . Ž .C C C

s I yfyg y I yf y I yg .Ž . Ž . Ž .C C C

Ž .Checking all the different cases and remembering Lemma 1 , we can conclude
Ž . P Qthat Eq. 3 holds for all CgCC .

w xProof of Proposition 2: We notice that for every lg 0,1 :

K fqg sK f qK g 4Ž . Ž . Ž . Ž .C C C
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can be rewritten as follows:

l I fqg y I f y I g s 1yl J f qJ g yJ fqg .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .C C C C C C

5Ž .

In turn, by Lemma 2, for CgCC P Q this equality becomes:

l I fqg y I f y I g s 1yl I fqg y I f y I g .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .C C C C C C

6Ž .

This shows that the results presented so far hold for the K functional as long asC
Ž Ž ..l/1r2. In fact, in such case the equality Eq. 6 holds if and only if

Ž . Ž . Ž .I fqg y I f y I g s0, i.e.,C C C

I fqg s I f q I g .Ž . Ž . Ž .C C C

Consequently, as long as l/1r2, the analysis of the additivity of K reduces toC

that of the ‘min’ functional I . Therefore, as both CC11 and CC12 are contained inC

CC P Q, a straightforward application of the results of the previous sections com-
pletes the proof.

5.2. The case of ls1r2

What happens in this case? At first, this balance of ‘min’ and ‘max’ might
Ž .appear to lead back to additivity, decision theoretically: to SEU . The following

proposition shows that this is true for CgCC P Q.

Proposition 3: Suppose ls1r2. Then the K functional is linear on BB ifC

CgCC P Q. In particular:

K f sHfd rŽ .C

w xwhere r: FF™ 0,1 is given by:

rs 1r2 Pq 1r2 Q.Ž . Ž .

Proof: The functional K is positive homogeneous. By Lemma 2, it is alsoC
Ž . Ž .additive. For any AgFF, set r A sK 1 , where 1 is the indicator functionC A A

Ž .of A. Let f be a simple function in BB, and let c gR be such that f v qc G0f f
Ž . Ž .for all vgV . It is easy to check that K fqc sH fqc d r, so that:C f f

K f qc sK fqc sH fqc d rsHfd rqc .Ž . Ž . Ž .C f C f f f
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Ž .Therefore, K f sHfd r. Using uniform convergence, it is easy to check that thisC

holds for all fgBB. Since for all AgFF:

K 1 s 1r2 P A q 1r2 Q A ,Ž . Ž . Ž . Ž . Ž .C A

if P and Q are the extreme points of C, the result follows.

The following example demonstrates, however, that additivity does not hold for
every CgCC.

� 4 VExample 2: Suppose that Vs v , v , v and FFs2 . Consider f and g as in1 2 3
Ž .example 1. Set Csconv 1r2d q1r2d , d , d , where ‘conv’ denotes thev v v v1 3 2 3

convex hull. It is immediate to calculate that:

I fqg y I f y I g s0.1)0sJ f qJ g yJ fqg ,Ž . Ž . Ž . Ž . Ž . Ž .C C C C C C

Ž .thus violating additivity by Eq. 5 .

Remark 3: In fact, one can show the following: For ls1r2, if V is finite then
CfCC P Q implies that K is not additive. That is, the converse of Proposition 3C

holds for finite V . 10

Having thus concluded that K is not in general additive when ls1r2, weC

now ask whether we can prove an additivity result analogous to that in Section
5.1. The ‘if’ statements in Proposition 2 obviously extend. The following example
shows that the ‘only if’ statements, however, do not extend. Specifically, we
present a pair of non-comonotonic functions for which additivity when ls1r2
holds for all C.

� 4 VExample 3: Suppose that Vs v , v , v and FFs2 . Consider f and g1 2 3

defined as follows:

f v sa f v s0 f v sya andŽ . Ž . Ž .1 2 3

g v syb g v s0 g v sbŽ . Ž . Ž .1 2 3

where aGb)0. It is easy to convince oneself that for every set CgCC, only two
extreme points will play a role in the evaluation of f , g and fqg. But then, if
ls1r2, Lemma 2 applies and shows that additivity holds.

10 A proof is available from the authors upon request. We conjecture that, at least when C has finitely
many extreme points, the converse also holds for infinite V .
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One should notice that the example is quite general, and that it does not depend
on our choice of a set V with three points. That is, for every set V , it is possible

Ž .to construct a pair of functions like f and g in the example, such that: 1 they are
Ž . Ž .not comonotonic hence, not affinely related , 2 whatever the set C is, f and g

and fqg are integrated only with respect to two probabilities, so that additivity of
K follows from Lemma 2. So, quite surprisingly, we conclude by observing thatC

the powerful conclusions obtained for the other cases do not hold for the case of
ls1r2.
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