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NOTES AND COMMENTS

PERCEIVED AMBIGUITY AND RELEVANT MEASURES

BY PETER KLIBANOFF, SUJOY MUKERJI, AND KYOUNGWON SEO1

We axiomatize preferences that can be represented by a monotonic aggregation of
subjective expected utilities generated by a utility function and some set of i.i.d. prob-
ability measures over a product state space, S∞. For such preferences, we define rel-
evant measures, show that they are treated as if they were the only marginals possibly
governing the state space, and connect them with the measures appearing in the afore-
mentioned representation. These results allow us to interpret relevant measures as re-
flecting part of perceived ambiguity, meaning subjective uncertainty about probabilities
over states. Under mild conditions, we show that increases or decreases in ambiguity
aversion cannot affect the relevant measures. This property, necessary for the conclu-
sion that these measures reflect only perceived ambiguity, distinguishes the set of rele-
vant measures from the leading alternative in the literature. We apply our findings to
a number of well-known models of ambiguity-sensitive preferences. For each model,
we identify the set of relevant measures and the implications of comparative ambiguity
aversion.

KEYWORDS: Symmetry, beliefs, ambiguity, ambiguity aversion, sets of probabilities.

1. INTRODUCTION

IN SAVAGE’S SUBJECTIVE EXPECTED UTILITY (SEU) THEORY (Savage (1954)),
an individual’s preference over acts (maps from states of the world to out-
comes) can be described using two arguments: a subjective probability over
states that enables her to identify each act with a distribution over outcomes,
and a von Neumann–Morgenstern (vNM) utility function that describes her
risk attitude (i.e., preference over distributions over outcomes). Subsequent
work has developed models that permit a richer description of uncertainty
about states and attitudes toward this uncertainty. In particular, this richness
is useful for describing behavior under ambiguity.2 Perceived ambiguity, mean-
ing subjective uncertainty about probabilities over states, induces uncertainty
concerning the distribution over outcomes an act generates. Attitude toward
ambiguity describes how averse or attracted the individual is to this induced
subjective uncertainty. For many models allowing ambiguity to affect behavior
there is, just as in SEU, a component of the model that describes preferences
over distributions over outcomes (i.e., risk attitude). The remaining compo-

1We thank Luciano de Castro, Paolo Ghirardato, Ben Polak, Marciano Siniscalchi, and sem-
inar audiences at the Trans-Atlantic Theory Workshop, BYU, Yale, Northwestern, the Midwest
Economic Theory Meetings, RUD, D-TEA, the Canadian Economic Theory Conference, Leices-
ter, Bielefeld, Wisconsin, Virginia Tech, and Paris, and the editor and three anonymous referees
for comments and discussion. Seo’s work was partially supported by NSF Grant SES-0918248.

2This word is used in the sense of the decision theory literature following Ellsberg (1961). See,
for example, Ghirardato (2004), who states “. . . ‘ambiguity’ corresponds to situations in which
some events do not have an obvious, unanimously agreeable, probability assignment.”
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nents of these models do two things: (1) map each act into a set of distributions
over outcomes, and (2) aggregate the evaluations of each of these distributions.

One might be tempted to assert that a map as in (1) must reflect perceived
ambiguity, as opposed to ambiguity aversion. However, a given preference typ-
ically has many representations, each using a different (map, aggregator) pair.
The main goal of this paper is to define through preferences and identify in
representations a particular map (called the relevant measures) such that be-
havior is as if relevant measures were the possible resolutions of ambiguity. In
this sense, the relevant measures will be shown to be a part of perceived am-
biguity. Furthermore, if a map is supposed to reflect only perceived ambiguity,
then it is necessary that it is not affected by increases or decreases in ambi-
guity aversion. Hence, a complementary goal is to identify conditions under
which increases or decreases in ambiguity aversion cannot change the relevant
measures.

We accomplish these goals in a setting that encompasses a large set of pref-
erence models provided that the state space has an infinite product structure
and preferences over Anscombe–Aumann acts (functions from the state space
to lotteries over outcomes) satisfy a type of symmetry with respect to that struc-
ture. This symmetry requires preferences to treat bets on an event identically
to bets on any other event that differs only in permuting the role of some or-
dinates, S, of the state space, S∞. We provide preference axioms (collectively
referred to as Continuous Symmetry) and show (Theorem 3.1) that they im-
ply representation by a monotonic aggregation of subjective expected utilities
generated using a single utility function and a set of independent and identi-
cally distributed (i.i.d.) probability measures. Aside from symmetry, the main
substantive requirement of our axioms is state-independent, expected utility
preferences over lotteries. Though restrictive, symmetry requirements are es-
sentially cross-ordinate requirements only, and allow great freedom in spec-
ifying preferences over acts depending on any single ordinate (e.g., enough
freedom to embed popular models from the ambiguity literature applied to
acts measurable with respect to S).

This symmetric environment allows us to define a relevant measure as a
marginal distribution, �, on S that matters for preferences in the following
sense: For each open set of marginal distributions, L, containing �, we can
find two acts, f and g, that yield the same distribution over outcomes as each
other under all i.i.d. distributions generated by marginals not in L and yet the
individual strictly prefers f over g. We show (Theorem 3.3) that the set of rel-
evant measures is the unique closed subset of marginals that are necessary and
sufficient for the set of measures appearing in the representation of Contin-
uous Symmetric preferences given in Theorem 3.1. We then provide results
highlighting two properties showing that relevant measures satisfy our goals.

First, we show (Theorem 3.2) that a marginal is a relevant measure if and
only if, for each open neighborhood containing it, the corresponding limit-
ing frequency event is non-null. In this sense, relevant measures are the only
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marginals treated as possibly governing the state space. They describe part of
perceived ambiguity—specifically, which common marginals are viewed as pos-
sible resolutions of the ambiguity. Note the role of Continuous Symmetry in
the result: it is what allows probabilities over S to be identified with (limiting
frequency) events in S∞.

Second, Theorem 3.4 provides sufficient conditions under which one prefer-
ence (weakly) more ambiguity averse than another implies that the two pref-
erences have the same set of relevant measures.3 For example, this will be true
for all Continuous Symmetric preferences that are strictly monotonic on non-
null events. The result uses the standard definition of comparative ambiguity
aversion (see, e.g., Gilboa and Marinacci (2013, Definition 16)) which says one
preference is more ambiguity averse than another if, for any act and any lot-
tery, whenever the former ranks (resp. strictly ranks) the act above the lottery,
then so does the latter. Under the conditions of Theorem 3.4, a preference
change coming from a change in relevant measures is never the same as an
increase or decrease in ambiguity aversion. Specifically, the set of preferences
that are (weakly) more or less ambiguity averse than a given � is disjoint from
the set of preferences that have a different set of relevant measures than �.

In Section 4, we specialize to Continuous Symmetric versions of two well-
known models of ambiguity-sensitive preferences: the α-MEU model (see,
e.g., Ghirardato, Maccheroni, and Marinacci (2004)) and the smooth ambigu-
ity model (see, e.g., Klibanoff, Marinacci, and Mukerji (2005), Nau (2006), Seo
(2009)). For each representation, we both identify the set of relevant measures
and describe the implications of comparative ambiguity aversion in terms of
the representation.4 We also identify the relevant measures in a Bewley-style
representation of incomplete preferences and use this identification to draw
comparisons with other notions of revealed sets of measures in the literature.

What if not all ordinates are considered symmetric, but only symmetric con-
ditional on some set of observables? In Appendix B, we show that our findings
extend when replacing our overall symmetry assumption with symmetry condi-
tional on descriptions (vectors of observable characteristics). In the extended
results, i.i.d. measures are replaced by functions mapping descriptions to i.i.d.
measures. A standard linear regression model is an example of such a function:
given a description, ξ, the i.i.d. measure is Normal with mean βξ and variance

3This is reminiscent of Yaari’s (1969) result that, under sufficient differentiability, SEU prefer-
ences can be ranked in terms of risk aversion only if they share a common subjective probability
measure.

4The same is done for additional models in the Supplemental Material (Klibanoff, Mukerji,
and Seo (2014)): the extended MEU with contraction model (see, e.g., Gajdos, Hayashi, Tallon,
and Vergnaud (2008), Gajdos, Tallon, and Vergnaud (2004), Kopylov (2008), Tapking (2004)),
the vector expected utility model (see Siniscalchi (2009)), and the second-order Choquet rep-
resentation (see Amarante (2009)) of invariant biseparable preferences (defined by Ghirardato,
Maccheroni, and Marinacci (2004)).
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σ2. The analogue of a set of relevant measures is a set of pairs (β�σ) denoting
a corresponding set of regression models.

What types of questions do the relevant measures allow us to address? Two
examples are the following: First, in economic modeling one may want to im-
pose constraints on preferences so that they reflect either some type of cali-
bration of perceived ambiguity to external data or some equilibrium/internal
consistency conditions on perceived ambiguity. Our theory shows why, if such
constraints were to be imposed, it might be reasonable to do so through con-
straints on the relevant measures. A simple example of such a constraint might
be the requirement that the empirical frequency distribution be considered one
of the possible resolutions of ambiguity, and thus one of the relevant measures.
Second, relevant measures provide a test for differences in perceived ambigu-
ity. If two preferences differ in their relevant measures, then they must differ
in perceived ambiguity.

1.1. Related Literature

There is an alternative preference-based approach to identifying a unique
map from acts into sets of distributions over outcomes (see Ghirardato, Mac-
cheroni, and Marinacci (2004), Nehring (2001, 2007), Ghirardato and Sinis-
calchi (2012a), Siniscalchi (2006)). Loosely, this approach uses marginal rates
of substitution in utility space to identify the distributions over states that gen-
erate this mapping. A brief comparison with our approach is in order. An ad-
vantage of the alternative approach is that it does not require a product state
space or symmetry conditions on preferences. For Continuous Symmetric pref-
erences, Theorem 4.5 shows that the set identified by the alternative approach
consists of some convex combinations of the i.i.d. measures generated by the
relevant measures. Which particular convex combinations appear can be af-
fected by increases or decreases in ambiguity aversion (Section 4.3 contains
examples demonstrating this). For our goal of finding a map reflecting only
perceived ambiguity, this is a disadvantage of the alternative approach. Ghi-
rardato and Siniscalchi (2012a, p. 3) emphasize that the distributions identified
in their approach are those that “identify candidate solutions to optimization
problems.” This conceptually explains the dependence of their set on ambi-
guity aversion, as one would expect the solution to an optimization problem
under ambiguity to depend on both perceived ambiguity and ambiguity aver-
sion.

Another approach simply takes sets of probability distributions over the state
space as an objective primitive. Such models include those in Gajdos et al.
(2008), Gajdos, Tallon, and Vergnaud (2004), Kopylov (2008), Wang (2003),
and Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2013). Our
theory provides a way of examining the connection between this objective
primitive and perceived ambiguity. One illustration of this is our Theorem D.1,
which shows that when the objectively given set in the extended MEU with
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contraction model of Gajdos et al. (2008) consists of i.i.d. measures, these are
exactly the i.i.d. measures generated by the relevant measures.5

Our paper imposes a symmetry property on preferences. In doing so, we are
following the work of de Finetti (1937) and Hewitt and Savage (1955) in the
context of expected utility and recent extensions of this work to larger classes
of preferences and various notions of symmetry by Epstein and Seo (2010,
2011a, 2011b, 2012), Al-Najjar and De Castro (2014), and Cerreia-Vioglio et
al. (2013). In fact, our Theorem 4.5 may be viewed as a generalization of de
Finetti’s theorem. Ours is the only paper to use any of these “symmetries” to
explore the concept of which i.i.d. measures (or generalizations thereof) are
relevant and the implications of this relevance for modeling perceived ambigu-
ity. The relationship between our symmetry axiom (Event Symmetry) and simi-
lar preference-based notions in the literature is detailed in Klibanoff, Mukerji,
and Seo (2012).

2. SETTING AND NOTATION

Let S be a compact metric space and Ω = S∞ the state space with generic
elementω= (ω1�ω2� 
 
 
). The state spaceΩ is also compact metric (Aliprantis
and Border (2006, Theorems 2.61 and 3.36)). Denote byΣi the Borel σ-algebra
on the ith copy of S, and by Σ the product σ-algebra on S∞. An act is a simple
Anscombe–Aumann act, a measurable f :S∞ → X having finite range (i.e.,
f (S∞) is finite) where X is the set of lotteries (i.e., finite support probability
measures on an outcome space Z). The set of acts is denoted by F , and � is a
binary relation on F ×F . As usual, we identify a constant act (an act yielding
the same element of X on all of S∞) with the element of X it yields.

Denote by Π the set of all finite permutations on {1�2� 
 
 
}, that is, all one-
to-one and onto functions π : {1�2� 
 
 
} → {1�2� 
 
 
} such that π(i) = i for all
but finitely many i ∈ {1�2� 
 
 
}. For π ∈ Π, let πω = (ωπ(1)�ωπ(2)� 
 
 
) and
(πf )(ω)= f (πω).

For any topological space Y , Δ(Y) denotes the set of (countably additive)
Borel probability measures on Y . Unless stated otherwise, a measure is under-
stood as a countably additive Borel measure. For later use, ba(Y) is the set of
finitely additive bounded real-valued set functions on Y , and ba1

+(Y) the set of
nonnegative probability charges in ba(Y). A measure p ∈ Δ(S∞) is called sym-
metric if the order does not matter, that is,p(A)= p(πA) for allπ ∈Π, where
πA = {πω :ω ∈ A}. Denote by �∞ the i.i.d. measure with the marginal � ∈
Δ(S). Define

∫
S∞ f dp ∈X by (

∫
S∞ f dp)(B)= (

∫
S∞ f (ω)(B)dp(ω)). (Since f

is simple, this is well-defined.)

5Less related are models of preferences over sets of lotteries as in Olszewski (2007) and Ahn
(2008). As these models lack acts and a state space, the question of which probabilities are rele-
vant in evaluating acts does not arise.
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Fix x∗�x∗ ∈ X such that x∗ � x∗. For any event A ∈ Σ, 1A denotes the act
giving x∗ onA and x∗ otherwise. Informally, this is a bet onA. More generally,
for x� y ∈ X , xAy denotes the act giving x on A and y otherwise. A finite
cylinder event A ∈ Σ is any event of the form {ω :ωi ∈Ai for i = 1� 
 
 
 � n} for
Ai ∈ Σi and some finite n.

Endow Δ(S), Δ(Δ(S)), and Δ(S∞) with the relative weak* topology. To see
what this is, consider, for example, Δ(S). The relative weak* topology on Δ(S)
is the collection of sets V ∩Δ(S) for weak* open V ⊆ ba(S), where the weak*
topology on ba(S) is the weakest topology for which all functions � 	→ ∫

ψd�
are continuous for all bounded measurable ψ on S. Also note that a net �α ∈
ba(S) converges to � ∈ ba(S) under the weak* topology if and only if

∫
ψd�α →∫

ψd� for all bounded measurable ψ on S. For a set D ⊆ Δ(S), denote the
closure of D in the relative weak* topology by D.

The support of a probability measure m ∈ Δ(Δ(S)), denoted suppm, is a
relative weak* closed set such thatm((suppm)c)= 0 and if L∩ suppm 
= ∅ for
relative weak* open L, m(L ∩ suppm) > 0. (See, e.g., Aliprantis and Border
(2006, p. 441).)

Let Ψn(ω) ∈ Δ(S) denote the empirical frequency operator Ψn(ω)(A) =
1
n

∑n

t=1 I(ωt ∈ A) for each event A in S. Define the limiting frequency op-
erator Ψ by Ψ(ω)(A) = limn Ψn(ω)(A) if the limit exists and 0 otherwise.
Also, to map given limiting frequencies or sets of limiting frequencies to
events in S∞, we consider the natural inverses Ψ−1(�) = {ω :Ψ(ω) = �} and
Ψ−1(L)= {ω :Ψ(ω) ∈L} for � ∈ Δ(S) and L⊆ Δ(S).

For f ∈ F , u :X → R, and D⊆ Δ(S), let f̃ :D→ R be the function defined
by f̃ (�)= ∫

u(f )d�∞ for each � ∈D. Let F̃ = {f̃ : f ∈F}. G : F̃ → R is increas-
ing if f̃ ≥ g̃ implies G(f̃ ) ≥G(g̃). G : F̃ → R is isotonic if α�β ∈ u(X), α > β
implies G(α) > G(β). G : F̃ → R is mixture continuous if, for all f̃ � g̃� h̃ ∈ F̃ ,
the sets {λ ∈ [0�1] :G(λf̃ + (1 −λ)g̃)≥G(h̃)} and {λ ∈ [0�1] :G(h̃)≥G(λf̃ +
(1 − λ)g̃)} are closed.

3. CONTINUOUS SYMMETRIC PREFERENCES AND RELEVANT MEASURES

3.1. Continuous Symmetric Preferences

We start by delineating the scope of our theory of relevant measures. The
theory will apply to preferences � satisfying the following axioms.

AXIOM 1—Weak Order: � is complete and transitive.

AXIOM 2—Monotonicity: If f (ω)� g(ω) for all ω ∈ S∞, f � g.

Monotonicity rules out state-dependence of preferences overX . This allows
us to focus on states purely as specifying the resolution of acts.
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AXIOM 3—Risk Independence: For all x�x′�x′′ ∈X and α ∈ (0�1), x� x′ if
and only if αx+ (1 − α)x′′ � αx′ + (1 − α)x′′.

This is the standard vNM independence axiom on lotteries. This rules out
non-expected utility preferences over lotteries. It allows us to separate atti-
tudes toward risk from other aspects of preferences in a simple way, using a
familiar vNM utility function.

AXIOM 4—Non-Triviality: There exist x� y ∈X such that x� y .

The key axiom is Event Symmetry, which implies that the ordinates of S∞

are viewed as interchangeable.

AXIOM 5—Event Symmetry: For all finite cylinder events A ∈ Σ and finite
permutations π ∈Π,

α1A + (1 − α)h∼ α1πA + (1 − α)h(3.1)

for all α ∈ [0�1] and all acts h ∈F 


This symmetry says that the decision maker is always indifferent between
betting on an event and betting on its permutation. The use of the term “al-
ways” here means at least that this preference should hold no matter what
other act the individual faces in combination with the bet. In an Anscombe–
Aumann framework such as ours, this is expressed by (3.1). In the language
of Ghirardato and Siniscalchi (2012a), note that, thinking of acts as state-
contingent utility consequences of actions and h as a status quo, (3.1) says a
move away from the status quo in the direction of 1A is indifferent to the same
size move away from the status quo in the direction of 1πA no matter what
the status quo h and no matter how far one moves away from it. The idea
behind Event Symmetry is that such utility transfers are considered indifferent
because the ordinates are viewed as (ex ante) identical. Observe that for prefer-
ences satisfying the usual Anscombe–Aumann independence axiom, 1A ∼ 1πA
implies α1A + (1 − α)h∼ α1πA + (1 − α)h for all α ∈ [0�1] and all acts h
 For
preferences that may violate independence (e.g., because of ambiguity con-
cerns), this is not true, and thus we cannot substitute the former condition for
the latter. Appendix B weakens Event Symmetry so as to accommodate pref-
erences symmetric only conditional on some set of observables.

REMARK 3.1: As written, Event Symmetry seems to depend on the choice of
x∗�x∗ in defining 1A. In fact, in the presence of our other axioms, Event Sym-
metry implies that the analogous property holds for any choice of x∗�x∗ ∈X .

Combining all of these axioms defines symmetric preferences:
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DEFINITION 3.1: � satisfies Symmetry if it satisfies Weak Order, Monotonic-
ity, Risk Independence, Non-Triviality, and Event Symmetry.

When we say that � is Symmetric, we mean that it satisfies Symmetry.
In addition to Symmetry, we will often need some form of continuity of pref-

erence. We now state two forms of continuity that are used in the paper. The
first, Mixture Continuity, is a standard axiom in the literature and serves partly
to ensure a real-valued representation.

AXIOM 6—Mixture Continuity: For all f�g�h ∈ F , the sets {λ ∈ [0�1] :λf +
(1 − λ)g� h} and {λ ∈ [0�1] :h� λf + (1 − λ)g} are closed in [0�1].

Our second continuity axiom will allow us to restrict attention to countably
additive (as opposed to finitely additive) measures in the representations we
obtain. To describe this axiom, it is notationally convenient to introduce the
binary relation �∗ (see, e.g., Ghirardato, Maccheroni, and Marinacci (2004))
derived from �:

f �∗ g if αf + (1 − α)h� αg+ (1 − α)h(3.2)

for all α ∈ [0�1] and h ∈F 


The axiom applies Arrow’s (1970) monotone continuity to �∗, as was done in
Ghirardato, Maccheroni, and Marinacci (2004).

AXIOM 7—Monotone Continuity of �∗: For all x�x′�x′′ ∈X , if An ↘ ∅ and
x′ � x′′, then x′ �∗ xAnx

′′ for some n.

DEFINITION 3.2: � satisfies Continuous Symmetry if it is Symmetric, Mixture
Continuous, and satisfies Monotone Continuity of �∗.

When we say that � is Continuous Symmetric, we mean that it satisfies Con-
tinuous Symmetry. This is the class of preferences that is the focus of the paper.
Our next result provides a representation for any Continuous Symmetric pref-
erence.

THEOREM 3.1: If � is Continuous Symmetric, then there is a nonconstant vNM
utility function u on X , a setD⊆ Δ(S), and an isotonic, mixture continuous, and
increasing functional G on F̃ such that

U(f)≡G
((∫

u(f )d�∞
)
�∈D

)
(3.3)

represents �.
Additionally, if Ĝ((

∫
û(f )d�∞)�∈D̂) is any other such representation of �, û is

a positive affine transformation of u.
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All proofs are contained in Appendix C.

REMARK 3.2: Given any functional of the form (3.3), the � derived from it
must be Symmetric and satisfy Mixture Continuity, but need not satisfy Mono-
tone Continuity of �∗. If, additionally, D is finite, then the � must be Contin-
uous Symmetric. In Appendix A, we provide additional conditions on G such
that, if the Locally Bounded Improvements axiom of Ghirardato and Sinis-
calchi (2012a) is added to the Continuous Symmetry axioms, the representa-
tion with general D is both necessary and sufficient.

The theorem shows that any Continuous Symmetric preference may be de-
scribed by specifying (1) a set of marginals, D, (2) a vNM utility function, u,
and (3) a function, G, aggregating the expected utilities with respect to the
i.i.d. products of elements of D. Under slightly different assumptions, the fact
that the set of expected utilities with respect to all i.i.d. measures can be mono-
tonically aggregated to represent preferences was shown in Al-Najjar and De
Castro (2014). Note that G and D are not generally unique. The remainder of
this section identifies the unique essential elements of D and shows how they
relate to perceived ambiguity and comparative ambiguity aversion.

3.2. Relevant Measures

We define what it means for a marginal � ∈ Δ(S) to be relevant according to
Continuous Symmetric preferences �. We then show that the set of relevant
measures is closed, and that a measure is not relevant if and only if the limit-
ing frequency event generated by some open neighborhood of that measure is
null according to the preferences. Finally, we relate relevant measures to the
representation of � in (3.3).

For notational convenience, let O� be the collection of open subsets of Δ(S)
that contains �. That is, for � ∈ Δ(S), O� = {L⊆ Δ(S) :L is open, � ∈L}.

DEFINITION 3.3: A measure � ∈ Δ(S) is relevant (according to prefer-
ences �) if, for any L ∈ O�, there are f�g ∈ F such that f � g and

∫
f d�̂∞ =∫

gd�̂∞ for all �̂ ∈ Δ(S) \L.

In words, � is relevant if it satisfies the following property: For each open set
containing �, there are acts that are not indifferent despite generating identical
induced distributions over outcomes when any measure outside this set gov-
erns the independent realization of each ordinate S. The use of open neigh-
borhoods is required only because Δ(S) is infinite. Why is it enough to con-
sider equality of the lotteries generated by f and g for i.i.d. measures, �̂∞? Un-
der Continuous Symmetry, Theorem 3.1 shows that non-i.i.d. measures are not
needed to represent preferences. Furthermore, as Continuous Symmetry im-
plies expected utility on constant acts, one could replace

∫
f d�̂∞ = ∫

gd�̂∞ by
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the analogous condition on expected utilities,
∫
u(f )d�̂∞ = ∫

u(g)d�̂∞, with-
out changing the meaning of the definition within our theory. Given any Con-
tinuous Symmetric �, the relevant measures are uniquely determined.

This definition is in the spirit of “non-null” as the term is applied to events
(e.g., Savage (1954)).6 An event is non-null if there are acts f � g such that
f = g on all states outside of that event. An event is null otherwise. We consider
open sets of measures, L ∈O�, instead of events, and

∫
f d�̂∞ = ∫

gd�̂∞ for all
other measures �̂ instead of f = g on all other states. Our next result makes
this connection explicit. In reading it, recall that, for A⊆ Δ(S), Ψ−1(A) is the
event that limiting frequencies over S lie in A. We use R to denote the set of
relevant measures.

THEOREM 3.2: Assume � is Continuous Symmetric. For � ∈ Δ(S), � /∈ R if
and only if, for some L ∈O�, Ψ−1(L) is a null event. Moreover, R is closed.

When R is finite, the same result holds without the use of neighborhoods,
that is, Ψ−1(�) is null if and only if � /∈ R. The above result justifies thinking
of R as the unique set of marginals subjectively viewed as possible, since the
individual behaves as if only those outside of R are impossible. In this sense,
relevant measures represent part of perceived ambiguity, as they are the mea-
sures an individual reveals that he treats as possible resolutions of his ambigu-
ity. Specifically, given that perceived ambiguity is subjective uncertainty about
probability assignments, under Continuous Symmetry the relevant measures
are the probability assignments in the support of that uncertainty.

Our next result connects the relevant measures to the representation of Con-
tinuous Symmetric preferences.

THEOREM 3.3: Any Continuous Symmetric � may be represented as in (3.3)
settingD=R, and in any representation of � as in (3.3),D⊇R. If every measure
in D is relevant, then D = R. Furthermore, in any representation (3.3) of �, for
� ∈D, � /∈ R if and only if there exists an L ∈ O� such that f̃ � g̃ ∈ F̃ and f̃ (�̂)=
g̃(�̂) for all �̂ /∈L implies G(f̃ )=G(g̃).

The theorem says that in representing Continuous Symmetric preferences by
(3.3), only relevant measures need appear, and, up to closure, all of them must
do so. That is,R is the unique closed subset of marginals that are necessary and
sufficient for D in such representations. Furthermore, any measures in D that
are not relevant may be identified through the property that the aggregator
G appearing in (3.3) is not responsive to the expected utilities generated by
(some open neighborhood of) such measures.

6The definition is also reminiscent of the definition of relevant subjective state in Dekel, Lip-
man, and Rustichini (2001, Definition 1). In the case of a finite subjective state space, a state is
relevant if there are two menus x � y , the valuations of which coincide on all other subjective
states. The infinite case uses open neighborhoods just as we do.
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3.3. Comparative Ambiguity Aversion and Relevant Measures

We now investigate the relationship between comparative ambiguity aver-
sion and relevant measures. We adopt the following established notion for
what it means for one preference to be more ambiguity averse than another.
Definition 3.4 is essentially a restatement of the Epstein (1999, (2.3)) and Ghi-
rardato and Marinacci (2002, Definition 4) definitions of comparative uncer-
tainty/ambiguity aversion as applied to our Anscombe–Aumann setting. All
these definitions, in turn, are natural adaptations to ambiguity aversion of
Yaari (1969)’s classic formulation of comparative (subjective) risk aversion.

DEFINITION 3.4: �A is more ambiguity averse than �B if, for all x ∈X and
f ∈ F , f �A x⇒ f �B x and f �B x⇒ f �A x.

The difference from Yaari’s definition is that he requires the implications
only when x is an outcome (i.e., a degenerate lottery). Because Definition 3.4
applies to all lotteries x, it holds risk aversion fixed—if two preferences can be
ordered in terms of ambiguity aversion, then they must rank lotteries in the
same way.

Yaari’s definition, under sufficient conditions on the utility function (e.g.,
differentiability), implies that SEU preferences can be ranked in terms of risk
aversion only if they share a common subjective probability measure. Thus,
changes in the subjective probability measure can neither increase nor de-
crease risk aversion. Analogously, our next result provides a sufficient con-
dition so that, when Definition 3.4 is applied to Continuous Symmetric prefer-
ences, preferences may be ranked in terms of ambiguity aversion only if they
share the same set of relevant measures. In this way, changes in relevant mea-
sures are shown to neither increase nor decrease ambiguity aversion.

Our sufficient condition is a form of strict monotonicity that is weak enough
to fit many cases of interest, including the applications in the next section.

DEFINITION 3.5: � is strictly monotonic for bets on non-null limiting frequency
events if, for all L⊆ Δ(S) such that Ψ−1(L) is a non-null event, and all x� y� z ∈
X such that x� y , xΨ−1(L)z � yΨ−1(L)z.

THEOREM 3.4: Let �A and �B be Continuous Symmetric preferences with sets
of relevant measures RA and RB and suppose �A and �B are strictly monotonic
for bets on non-null limiting frequency events. Then �A more ambiguity averse
than �B implies RA =RB.

4. RELEVANT MEASURES IN SPECIFIC DECISION MODELS

We examine Continuous Symmetric versions of models from the ambiguity
literature. We identify the relevant measures and describe the implications of
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comparative ambiguity aversion within these models. This section considers α-
MEU, smooth ambiguity, and Bewley-style representations. The Supplemental
Material (Klibanoff, Mukerji, and Seo (2014)) considers additional models.

4.1. The α-MEU Model

Consider preferences having an α-MEU representation where the set of
measures in the representation is a finite set of i.i.d. measures:

α min
p∈{�∞:�∈D}

∫
u(f )dp+ (1 − α) max

p∈{�∞:�∈D}

∫
u(f )dp�(4.1)

where D ⊆ Δ(S) is finite, u is a nonconstant vNM utility function, and α ∈
[0�1].7 Call such preferences i.i.d. α-MEU.

We show that the relevant measures are the set D.

THEOREM 4.1: For any i.i.d. α-MEU preference, R=D.

We next characterize comparative ambiguity aversion for these preferences.

THEOREM 4.2: Let �A and �B be two i.i.d. α-MEU preferences such that
αA�αB ∈ (0�1) and DB is non-singleton. Then, �A is more ambiguity averse than
�B if and only if αA ≥ αB, DA =DB, and (up to normalization) uA = uB.

The theorem tells us that, as long as D is non-singleton (so that α affects
preferences), increases in ambiguity aversion correspond exactly to increases
in α. Note that the “if” direction of the result holds for any αA�αB ∈ [0�1],
as α ∈ (0�1) is used only to ensure that preferences are strictly monotonic for
bets on non-null limiting frequency events, which is needed for the “only if” di-
rection. Applying the most closely related result in the literature (Ghirardato,
Maccheroni, and Marinacci (2004, Proposition 12)) to i.i.d. α-MEU prefer-
ences delivers only the following: If DA =DB, uA = uB (up to normalization),
and either αA = 1 and αB = 0 or αA = αB, then �A is more ambiguity averse
than �B. This limitation to α equals 0 or 1 is related to the critique in Eich-
berger, Grant, Kelsey, and Koshevoy (2011). Part of Section 4.3 explains why
applying Ghirardato, Maccheroni, and Marinacci (2004, Proposition 12) is in-
formative only for α equals 0 or 1 and how Continuous Symmetry and the focus
on relevant measures allows us to say more.

7Finiteness of D is necessary for these preferences to satisfy Monotone Continuity of �∗.
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4.2. The Smooth Ambiguity Model

Consider preferences having a smooth ambiguity representation where the
support of the second-order measure consists of i.i.d. measures on the state
space: ∫

Δ(S)

φ

(∫
u(f )d�∞

)
dμ(�)�(4.2)

where u is a nonconstant vNM utility function, φ :u(X)→ R is a strictly in-
creasing continuous function, μ ∈ Δ(Δ(S)), and either (i) there are m�M > 0
such thatm|a−b| ≤ |φ(a)−φ(b)| ≤M|a−b| for all a�b ∈ u(X), or (ii) suppμ
is finite.8 Call such preferences i.i.d. smooth ambiguity.

THEOREM 4.3: For any i.i.d. smooth ambiguity preference, R= suppμ.

The result says that for i.i.d. smooth ambiguity preferences, the relevant
measures are exactly the support of the second-order measure μ. Given this
and the fact that these preferences satisfy strict monotonicity for bets on non-
null events (since φ is strictly increasing), Theorem 3.4 implies that one pref-
erence is more ambiguity averse than another only if the support of the μ’s for
the two preferences coincide and (up to normalization) the associated u’s are
equal.

We next characterize comparative ambiguity aversion for these preferences.
Since equality of the u’s (up to normalization) is necessary for one preference
to be more ambiguity averse than another, to ease the statement of the char-
acterization, we simply assume this.

THEOREM 4.4: Let �A and �B be any two i.i.d. smooth ambiguity preferences
such that uA = uB, φA and φB are continuously differentiable, and suppμA and
suppμB are non-singleton. Then, �A is more ambiguity averse than �B if and only
if φA is more concave than φB and μA = μB.

Continuous Symmetry allows our characterization to improve on that in
Klibanoff, Marinacci, and Mukerji (2005, Theorem 2) in that equality of μ
is part of the characterization rather than an assumption.

4.3. A Bewley-Style Representation

Recall, from (3.2), the induced relation �∗. This is the maximal sub-relation
of � that satisfies the Anscombe–Aumann independence axiom. For Contin-
uous Symmetric preferences violating independence, �∗ will be incomplete.

8The requirement that either (i) or (ii) is satisfied is necessary for these preferences to satisfy
Monotone Continuity of �∗.
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We provide a generalization of de Finetti’s theorem based on a Bewley-style
(Bewley (2002)) representation result for �∗ and show where the set of rele-
vant measures appear in this representation. Compared to other Bewley-style
representation results (e.g., Ghirardato, Maccheroni, and Marinacci (2004),
Gilboa, Maccheroni, Marinacci, and Schmeidler (2010), Ghirardato and Sinis-
calchi (2012a), Nehring (2001)), our key contribution is in showing that Con-
tinuous Symmetry allows a de Finetti-style decomposition of the represent-
ing set of measures, C, and in explaining the relationship between C and R.
This relationship is of particular interest because C is the main alternative of-
fered in the literature as possibly representing perceived ambiguity (see Ghi-
rardato, Maccheroni, and Marinacci (2004), Nehring (2001, 2007), Ghirardato
and Siniscalchi (2012a), Siniscalchi (2006)).

In light of the possible incompleteness of �∗, to state the representation re-
sult as an if and only if characterization, we need to weaken two of the Contin-
uous Symmetry axioms. We replace Weak Order and Mixture Continuity with
the following:

AXIOM 8—C-Complete Preorder: � is reflexive, transitive, and the restriction
of � to X is complete.

AXIOM 9—Mixture Continuity of �∗: For all f�g�h ∈ F , the sets {λ ∈
[0�1] :λf + (1 − λ)g �∗ h} and {λ ∈ [0�1] :h �∗ λf + (1 − λ)g} are closed in
[0�1].

Refer to a binary relation satisfying this weakened version of the Continuous
Symmetry axioms as Weak Continuous Symmetric.

THEOREM 4.5: � is Weak Continuous Symmetric if and only if � is transitive
and there exist a nonempty compact convex set M ⊆ Δ(Δ(S)) and a nonconstant
vNM utility function u such that

f �∗ g if and only if
∫
u(f )dp≥

∫
u(g)dp for all p ∈C�(4.3)

where C = {∫ �∞ dm(�) :m ∈ M}. Furthermore R = ⋃
m∈M suppm and M is

unique.

De Finetti’s theorem (see Hewitt and Savage (1955)) says that for an ex-
pected utility preference displaying indifference under finite permutations
(i.e., f ∼ πf ), the subjective probability measure is an exchangeable measure
and thus can be described by a unique probability measure over marginals of
i.i.d. measures. Theorem 4.5 expands on this in several respects. First, it applies
to a much larger class of preferences. Second, instead of a single probability
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measure over marginals, there is a unique compact convex set of such mea-
sures, M , used to represent �∗. Finally, Theorem 4.5 identifies the relevant
measures according to � from the supports of measures in M .

Theorem 4.5 features the set C and shows its exact relationship to R. For
any Continuous Symmetric �, just as � may be represented as in (3.3) with
D = R, Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi
(2011, Proposition 5) implies that � may be represented by a monotonic ag-
gregation of expected utilities with respect to the measures in C. For prefer-
ences satisfying Definition 3.5, our results on comparative ambiguity aversion
allow us to show that C, but not R, may be affected by increases or decreases
in ambiguity aversion. Therefore, despite the fact that preferences can be rep-
resented using the exchangeable measures that make up C, C cannot be said
to reflect only perceived ambiguity.

To understand this, consider two examples. First, consider i.i.d. α-MEU pref-
erences. By Theorem 4.1, R=D. The allowed weights over D for m to be an
element of M are determined completely by α.9 For α ∈ (0�1) and D non-
singleton, Theorem 4.2 shows that α reflects comparative ambiguity aversion.
Thus, for these preferences (which do not include SEU as a special case), the
weights determined by the m (and thus C) are affected by ambiguity aver-
sion, while the supports of the m (and thus R) are not. In particular, when
α ∈ (0�1), holding C fixed holds α fixed as well. This explains why, as men-
tioned in Section 4.1, the approach of Ghirardato, Maccheroni, and Marinacci
(2004, Proposition 12) characterizing more ambiguity averse while holding C
fixed is not informative when α ∈ (0�1).

The second example comes from i.i.d. smooth ambiguity preferences with φ
twice continuously differentiable. By Theorem 4.3, R = suppμ. The allowed
weights over suppμ for m to be an element of M are determined by a combi-
nation ofφ′ and μ.10 To illustrate, supposeφ(x)= −exp(−θx) for some θ > 0,
μ(�1)= 1

2 = μ(�2), and u(X)= [−1�1]. ThenM = {m ∈ Δ(Δ(S)) :m(�1)= λ=
1 −m(�2) and λ ∈ [ exp(−θ)

exp(−θ)+exp(θ) �
exp(θ)

exp(−θ)+exp(θ) ]}. Thus, as φ becomes more con-
cave (i.e., θ increases), the setM (and thus C) gets strictly larger. Theorem 4.4
shows that φ more concave reflects more ambiguity aversion. Therefore, C
is again affected by changes in ambiguity aversion, while R is not.11 Contrast
this with the i.i.d. smooth ambiguity preference with the same μ and u but

9Specifically, M in this case is the closed convex hull of the set {m ∈ Δ(Δ(S)) :m(�) = α =
1 −m(�′) with �� �′ ∈D and � 
= �′}.

10Specifically, M in this case is the closed convex hull of the set {m ∈ Δ(Δ(S)) :dm(�) =
φ′(

∫
ed�∞)dμ(�)∫

φ′(
∫
ed�∞)dμ(�) and e ∈ intB(Σ�u(X))}, where intB(Σ�u(X)) is the interior of the set of all Σ-

measurable functions a :S∞ → R for which there exist α�β ∈ u(X) satisfying α ≤ a(ω) ≤ β for
all ω ∈ S∞ (informally, the interior of the set of bounded utility acts).

11Beyond this example, when suppμ is non-singleton, it may be shown that φ restricts the
measures over suppμ that belong to M if and only if sup

⋃
r�t∈u(X)

φ′(t)
φ′(r) <+∞.
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with φ(x) = x. This is an SEU preference, and C is a singleton. Specifically,
M = {μ}.

As Theorem 4.5 has shown, when Anscombe–Aumann independence is vi-
olated, C is determined, in part, by the multiple weightings defined by m ∈M
being applied over R. These weightings, as in the examples, may depend on
ambiguity aversion. This explains our focus on the relevant measures rather
than C.

APPENDIX A: AN EQUIVALENCE THEOREM

Consider the following axiom adopted from Ghirardato and Siniscalchi
(2012a).

AXIOM 10—Locally Bounded Improvements: For every h ∈ F int, there are
y ∈X and g ∈F with g(ω)� h(ω) for all ω such that, for all hn ∈F , hn ∼ xn ∈
X and λn ⊆ [0�1] with hn → h and λn ↘ 0,

λng+ (
1 − λn)hn ≺ λny + (

1 − λn)xn eventually.

In this appendix, we provide an if and only if representation theorem for
Continuous Symmetric preferences that also satisfy Locally Bounded Improve-
ments. Note that all of the complete preferences used in Section 4 and the
Supplemental Material satisfy Locally Bounded Improvements.

ADDITIONAL DEFINITIONS: For locally Lipschitz G : F̃ → R, the Clarke
derivative of G at h̃ in the direction f̃ is G◦(h̃; f̃ )= lim supg̃→h̃�t↘0

G(g̃+tf̃ )−G(g̃)
t

.
The Clarke differential of G at h̃ is ∂G(h̃) = {Q ∈ ba(D) :Q(f̃ ) ≤ G◦(h̃; f̃ )
for all f̃ ∈ F̃}. The normalized differential is C(h̃) = {Q/Q(D) :Q ∈ ∂G(h̃)�
Q(D) > 0}.

THEOREM A.1: The following are equivalent:
(1) � is Continuous Symmetric and satisfies Locally Bounded Improvements.
(2) There is a nonconstant vNM utility function u onX , a setD⊆ Δ(S), and an

isotonic, mixture continuous, and increasing functional G on F̃ such that (i) G is
locally Lipschitz in its interior, (ii) co(

⋃
h̃∈int F̃ C(h̃)) is compact, (iii)G((c)�∈D)=

c for all c ∈ u(X), and (iv)

U(f)≡G
((∫

u(f )d�∞
)
�∈D

)
(A.1)

represents �.
Additionally, if Ĝ((

∫
û(f )d�∞)�∈D̂) is any other such representation of �, û is

a positive affine transformation of u.
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APPENDIX B: RELEVANCE UNDER HETEROGENEOUS ENVIRONMENTS

A decision maker may face a situation where non-identical experiments are
repeated. For example, a doctor faces patients who may differ in ways impor-
tant for the treatment problem at hand. Another example is an agent who
wants to make a decision based on a regression model analysis where different
data points may have different values of the regressors. We describe a variation
of our model that allows these heterogeneous environments.

Let Ξ be a set of descriptions. We assume Ξ = {ξ1� 
 
 
 � ξK} is a finite set for
simplicity. Descriptions categorize the ordinates (of S∞) so that it is only ordi-
nates with the same description that are viewed as symmetric by the decision
maker. Formally, we augment the state space S∞ by attaching a description to
each ordinate S. Thus, for a doctor facing many patients, each patient has a
description ξ ∈Ξ. A doctor faces a sequence of patients whose descriptions
may be different from each other. Let ξ̃ = (ξ̃1� ξ̃2� 
 
 
) ∈ Ξ∞ be a sequence
such that each element of Ξ appears infinitely often. Let �ξ̃ be a preference
on F when faced with ordinates whose descriptions form the sequence ξ̃.

We assume the same axioms as in Section 3.1 on �ξ̃ with the exception of
Event Symmetry. Instead we assume Partial Event Symmetry.

AXIOM 11—Partial Event Symmetry: For all finite cylinder events A ∈ Σ and
finite permutations π ∈Π such that ξ̃i = ξ̃π(i) for all i,

α1A + (1 − α)h∼ξ̃ α1πA + (1 − α)h
for all α ∈ [0�1] and all acts h ∈F 


Partial Event Symmetry says that an agent views ordinates with the same de-
scriptions in the same way—as long as the descriptions are the same, the order
does not matter. In contrast, no restrictions are placed on preferences toward
ordinates that have different descriptions. For two ordinates with different de-
scriptions, there is no reason to believe that the two are symmetric. Viewing
our earlier framework as one in which there was only one possible description,
Partial Event Symmetry is the natural generalization of Event Symmetry.

Formally, therefore, we replace the assumption of Continuous Symmetry with
Continuous Partial Symmetry:

DEFINITION B.1: �ξ̃ satisfies Continuous Partial Symmetry if it satisfies Weak
Order, Monotonicity, Risk Independence, Non-Triviality, Partial Event Sym-
metry, Mixture Continuity and �∗

ξ̃
satisfies Monotone Continuity.

Now, we can define relevant measures under heterogeneous environments.
Since beliefs may vary depending on descriptions, a relevant measure is a map-
ping l from Ξ into Δ(S). Let Ol denote an open subset of (Δ(S))Ξ contain-
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ing l under the product topology. For l ∈ (Δ(S))Ξ , denote by l(ξ̃) the prod-
uct measure on S∞ whose ith coordinate marginal is l(ξ̃i) ∈ Δ(S). That is,
l(ξ̃)= l(ξ̃1)⊗ l(ξ̃2)⊗ · · · .

DEFINITION B.2: A mapping l ∈ (Δ(S))Ξ is relevant (according to prefer-
ences �ξ̃) if, for any L ∈Ol, there are f�g ∈F such that f �ξ̃ g and

∫
f dl̂(ξ̃)=∫

gdl̂(ξ̃) for all l̂ ∈ (Δ(S))Ξ \L.

WhenΞ = {ξ} is a singleton, ξ̃= (ξ�ξ� 
 
 
) and, therefore, it is as ifL⊆ Δ(S)
and each l̂(ξ̃) is i.i.d., and the above definition reduces to our earlier definition
of relevant measures (Definition 3.3). As before, we use R to denote the set of
relevant mappings.

A standard linear regression is the case where the relevant measure is l and
l(ξi) is normal with mean βξi and variance σ2. Note that the description in this
case is simply a vector giving the values of the regressors for a particular obser-
vation. An example of a set of relevant measures might be {l ∈ (Δ(S))Ξ : l(ξi) is
normal with mean βξi and variance 1 for β ∈ [b�b]2}. This reflects knowledge
of normality and the variance, and bounds on the coefficients within which any
coefficients are seen as possible.

Relative to the homogeneous case, this framework: (1) allows for ordinates
to differ according to Ξ, and (2) allows relevant measures to reflect beliefs
about how the marginals for one ξ ∈ Ξ relate to the marginals for another
ξ′ ∈Ξ. This last point is useful, for example, in capturing the case, mentioned
above, where Ξ is related to S according to a linear regression model.

We provide results analogous to those in the homogeneous case:

THEOREM B.1: If �ξ̃ is Continuous Partial Symmetric, then there is a noncon-
stant vNM utility function u on X , a set D ⊆ (Δ(S))Ξ , and an isotonic, mixture
continuous, and increasing functional G on F̃ such that

U(f)≡G
((∫

u(f )dl(ξ̃)
)

l∈D

)
(B.1)

represents �ξ̃.
Additionally, if Ĝ((

∫
û(f )dl(ξ̃))l∈D̂) is any other such representation of �ξ̃, û

is a positive affine transformation of u.

Define Ψ(ω) ∈ (Δ(S))Ξ by

Ψ(ω)
(
ξk

)
(A)= lim

n

(
n∑
t=1

I
(
ξ̃t = ξk

))−1 n∑
t=1

I
(
ξ̃t = ξk�ωt ∈A

)
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for each event A in S. For a given k, Ψ(ω)(ξk) gives an empirical frequency
limit when considering the experiments of description ξk, that is, all coordi-
nates t such that ξ̃t = ξk. If the limit does not exist, let Ψ(ω)(ξk)(A) = 0.
The inverses are Ψ−1(l) = {ω :Ψ(ω) = l} and Ψ−1(L) = {ω :Ψ(ω) ∈ L} for
l ∈ (Δ(S))Ξ and L⊆ (Δ(S))Ξ .

THEOREM B.2: Assume �ξ̃ is Continuous Partial Symmetric. For l ∈ (Δ(S))Ξ ,
l /∈R if and only if, for someL ∈Ol,Ψ−1(L) is a null event. Moreover,R is closed.

THEOREM B.3: Any Continuous Partial Symmetric �ξ̃ may be represented as
in (B.1) setting D = R, and in any representation of �ξ̃ as in (B.1), D ⊇ R. If
every mapping in D is relevant, then D = R. Furthermore, in any representation
(B.1) of �ξ̃, for l ∈D, l /∈R if and only if there exists an L ∈Ol such that, f̃ � g̃ ∈ F̃
and f̃ (l̂)= g̃(l̂) for all l̂ /∈L implies G(f̃ )=G(g̃).

DEFINITION B.3: �ξ̃ is strictly monotonic for bets on non-null limiting fre-
quency events if, for all L⊆ (Δ(S))Ξ such that Ψ−1(L) is a non-null event, and
all x� y� z ∈X such that x�ξ̃ y , xΨ−1(L)z �ξ̃ yΨ

−1(L)z.

THEOREM B.4: Let �ξ̃A and �ξ̃B be Continuous Partial Symmetric preferences
with sets of relevant mappings RA and RB and suppose �ξ̃A and �ξ̃B are strictly
monotonic for bets on non-null limiting frequency events. Then �ξ̃A is more am-
biguity averse than �ξ̃B implies RA =RB.

THEOREM B.5: �ξ̃ satisfies Continuous Partial Symmetry with Mixture Conti-
nuity relaxed to Mixture Continuity of �∗ and Weak Order relaxed to C-Complete
Preorder if and only if �ξ̃ is transitive and there exist a nonempty compact convex
set M ⊆ Δ((ΔS)Ξ) and a nonconstant vNM utility function u such that

f �∗
ξ̃
g if and only if

∫
u(f )dp≥

∫
u(g)dp for all p ∈ C�(B.2)

where C = {∫ l(ξ̃)dm(l) :m ∈ M}. Furthermore, R = ⋃
m∈M suppm ⊆ (ΔS)Ξ

and M is unique.

APPENDIX C: PROOFS

Denote by B(S) the set of bounded measurable functions on S. Similarly for
B(Δ(S)) and B(S∞).

C.1. Proofs of Theorems 3.1 and B.1

The two proofs are essentially the same and we prove the first only.
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First, note that Mixture Continuity is stronger than the Archimedean axiom.
Given this, it is routine to show that there are a nonconstant vNM utility func-
tion u on X and a function I :B0(Ω)→ R such that I is sup-norm continuous
andU(f)= I(u(f )) represents � (Cerreia-Vioglio et al. (2011, Proposition 1),
e.g.).12 Theorem 4.5 guarantees the existence of sets C and M derived there
from �. Let D = ⋃

m∈M suppm ⊆ ΔS, and define F̃ accordingly. Define G on
F̃ byG(f̃ )=U(f), which is well-defined because

∫
u(f )d�∞ = ∫

u(g)d�∞ for
all � ∈D implies

∫
u(f )dp= ∫

u(g)dp for all p ∈ C, which, by Theorem 4.5,
implies f ∼ g. Thus f 	→G(f̃ ) represents �.

It is straightforward that Mixture Continuity of � implies Mixture Continuity
of G.

We next show that G is increasing. For f̂ � ĝ ∈ F̃ , assume f̂ (�) ≥ ĝ(�) for
each � ∈D. Fix g ∈ F so that g̃ = ĝ. We can take f ∈ F such that u(f (ω)) =
u(g(ω))+ f̂ (�)− ĝ(�) for ω ∈Ψ−1(�) and u(f (ω))= u(g(ω))+ ε otherwise,
where ε > 0. Then, f̃ = f̂ on D. Monotonicity implies that f � g and thus
G(f̂ )=U(f)≥U(g)=G(ĝ). That G is isotonic can be shown similarly.

Uniqueness of u up to positive affine transformations is standard, as � re-
stricted to constant acts is expected utility.

C.2. Proof of Remark 3.2

We show that when D is finite in (3.3), Monotone Continuity of �∗ is
satisfied. Suppose that D is finite. Assume An ↘ ∅ and x′ � x′′, and let
u(x′) = 1 > u(x′) = t > u(x′′) = 0, without loss of generality. Then, because
of countable additivity, there is N such that t ≥ �∞(AN) for all � ∈D. Hence,
αt + (1 − α) ∫ u(h)d�∞ ≥ α�∞(AN)+ (1 − α) ∫ hd�∞ for all α ∈ [0�1], h ∈ F
and � ∈D. Monotonicity of G implies

U
(
αx′ + (1 − α)h) =G

((
αt + (1 − α)

∫
u(h)d�∞

)
�∈D

)
≥G

((
α�∞(AN)+ (1 − α)

∫
u(h)d�∞

)
�∈D

)
=G

(
αxAnx

′′ + (1 − α)h)



Thus, x′ �∗ xAnx
′′ and Monotone Continuity of �∗ is satisfied.

C.3. Proofs of Theorems 3.2 and B.2

We prove the first only since the proof of the second is essentially the same.

12B0(Ω) is the set of simple measurable functions on Ω.
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Assume � /∈ R. By definition, there is L ∈ O� such that
∫
f ′ d�̂∞ = ∫

g′ d�̂∞

for all �̂ ∈ Δ(S) \ L implies f ′ ∼ g′. For any f and g, if f ′−1(L)g and g′ = g,
we have

∫
f ′ d�̂∞ = ∫

g′ d�̂∞ for all �̂ ∈ Δ(S) \ L. Thus f ′ ∼ g′, which implies
Ψ−1(L) is null.

Assume that, for some L ∈ O�, Ψ−1(L) is null. Take any f�g ∈ F such that∫
f d�̂∞ = ∫

gd�̂∞ for all �̂ ∈ Δ(S) \L. Define f ′� g′ ∈F by

f ′(ω)=
{∫

f d�̂∞� if ω ∈Ψ−1(�̂) for some �̂ ∈ Δ(S),
x∗� otherwise

and

g′(ω)=
{∫

gd�̂∞� if ω ∈Ψ−1(�̂) for some �̂ ∈ Δ(S),
x∗� otherwise.

Then, f ′ and g′ differ only onΨ−1(L), which is null, and thus f ′ ∼ g′. Moreover,
f ∼ f ′ and g∼ g′ by Theorem 3.1 and Ψ−1(L) being null. By transitivity, f ∼ g,
which implies � /∈R.

To show that R is closed, take any � /∈ R. Then, there is L ∈ O� such that
Ψ−1(L) is null. It suffices to show that L⊆Rc . Take any �̂ ∈L and observe that
L ∈O�̂. Since Ψ−1(L) is null, �̂ /∈R. Thus, L⊆Rc and R is closed.

C.4. Proofs of Theorems 3.3 and B.3

Again, we prove the first only.
We invoke Theorem 4.5 to define C ⊆ Δ(Ω) and M ⊆ Δ(Δ(S)) as in that

theorem.
Step 1. Let R′ = ⋃

m∈M suppm and note that R′ ⊆R, since Theorem 4.5 says
R=R′.

Step 2. D may be R: The proof of Theorem 3.1 sets D = R′ when showing
that a representation of the form in (3.3) exists. By Step 1, this D ⊆ R. Since
D may always be enlarged while representing the same preferences (e.g., by
making G unresponsive to the extra expectations), D may be set to R.

Step 3. D ⊇ R: Assume � /∈D. Noting that D is closed, we can take L ∈ O�

such that L⊆ (D)c . Since no measure in L appears in the utility function (3.3),
Ψ−1(L) is null. Thus, by Theorem 3.2, � /∈R.

Step 4. If every measure in D is relevant, D=R: By the assumption, D⊆R.
Since R is closed, D⊆R. Combining with Step 3, we obtain D=R.

Step 5—Last sentence of the theorem. Since � /∈ R, by Theorem 3.2 there
is some L ∈ O� such that Ψ−1(L) is null. Suppose that f̃ (�̂) = g̃(�̂) for all
�̂ /∈L. For each �̂ /∈L, take x�̂ ∈X such that u(x�̂)= f̃ (�̂). For each �̂ ∈L, take
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y�̂� z�̂ ∈X such that u(y�̂)= f̃ (�̂) and u(z�̂)= g̃(�̂). Now define f ′� g′ ∈F by

f ′(ω)=
⎧⎨⎩x�̂� if ω ∈Ψ−1(�̂) and �̂ /∈L,
y�̂� if ω ∈Ψ−1(�̂) and �̂ ∈L,
x∗� otherwise

and

g′(ω)=
⎧⎨⎩x�̂� if ω ∈Ψ−1(�̂) and �̂ /∈L,
z�̂� if ω ∈Ψ−1(�̂) and �̂ ∈L,
x∗� otherwise.

Then, f ′ and g′ differ only on Ψ−1(L), and thus f ′ ∼ g′. Moreover, since f̃ ′ = f̃
and g̃′ = g̃, we have G(f̃ )=G(f̃ ′)=G(g̃′)=G(g̃).

For the other direction, fix � and suppose there exists an L ∈ O� such that,
f̃ � g̃ ∈ F̃ and f̃ (�̂)= g̃(�̂) for all �̂ /∈ L implies G(f̃ )=G(g̃). By the represen-
tation (3.3) and the definition of relevant measure (Definition 3.3), � /∈R.

C.5. Proof of Theorems 3.4 and B.4

Suppose �A is more ambiguity averse than �B and each preference is strictly
monotonic for bets on non-null limiting frequency events. Since �A is more
ambiguity averse than �B implies the two preferences agree on lotteries, fix
lotteries x� y ∈X such that x�A y and x�B y .

Suppose RA �RB and fix �′ ∈RB \RA. Since �′ /∈RA, by Theorem 3.2 there
exists an L′ ∈O�′ such thatΨ−1(L′) is null for �A, and so x∼A yΨ

−1(L′)x. Ob-
serve that �B strictly monotonic for bets on non-null limiting frequency events
and �′ ∈RB implies x�B yΨ

−1(L′)x. Thus, yΨ−1(L′)x�A x but yΨ−1(L′)x≺B

x, contradicting �A more ambiguity averse than �B.
Suppose RA �RB, and fix �′′ ∈RA \RB. Since �′′ /∈RB, by Theorem 3.2 there

exists an L′′ ∈ O�′′ such that Ψ−1(L′′) is null for �B, and so y ∼B xΨ
−1(L′′)y .

Observe that �A strictly monotonic for bets on non-null limiting frequency
events and �′′ ∈ RA implies y ≺A xΨ

−1(L′′)y . Thus, xΨ−1(L′′)y �B y but
xΨ−1(L′′)y �A y , contradicting �A more ambiguity averse than �B.

Thus RA =RB.

C.6. Proof of Theorem 4.1

Suppose � is an i.i.d. α-MEU preference. We first show thatD⊆R. Suppose
�̂ ∈ D and fix any K ∈ O�̂. Consider f = 1Ψ−1(K) and g = 1∅ and observe that∫
f d�∞ = ∫

gd�∞ for all � ∈ Δ(S) \K. Note that
∫
u(f )d�∞ >

∫
u(g)d�∞ for

all � ∈K, while
∫
u(f )d�∞ ≥ ∫

u(g)d�∞ for all � ∈D. Thus, if α ∈ [0�1), f � g
and �̂ is relevant. If α = 1, consider instead f = 1

2 1Ψ−1(K) + 1
2 1Ψ−1(Δ(S)\K) and

g= 1
2 1∅ + 1

2 1Ψ−1(Δ(S)\K) and observe that
∫
f d�∞ = ∫

gd�∞ for all � ∈ Δ(S) \K,



PERCEIVED AMBIGUITY AND RELEVANT MEASURES 1967

while min�∈D
∫
u(f )d�∞ = 1

2u(x
∗) + 1

2u(x∗) > u(x∗) = min�∈D
∫
u(g)d�∞, so

that f � g and again �̂ is relevant.
We show that � is Continuous Symmetric. All axioms except Monotone

Continuity of �∗ are straightforward. To check the latter, consider V1(f ) ≡
minp∈{�∞:�∈D}

∫
u(f )dp first. The set C (as in Theorem 4.5) in the represen-

tation of �∗ associated with V1 is co({�∞ :� ∈ D}) ⊆ Δ(Ω) and it is weak*-
compact because D is finite (Dunford and Schwartz (1958, Theorems IV.9.1
and V.6.1)). Thus, the preference represented by V1 satisfies Monotone Con-
tinuity of �∗ by Ghirardato, Maccheroni, and Marinacci (2004, Remark 1).
Similarly, the preference represented by V0(f ) ≡ maxp∈{�∞:�∈D}

∫
u(f )dp also

satisfies Monotone Continuity of �∗. Take An ↘ ∅ and x�x′�x′′ ∈X such that
u(x′) > u(x′′). Then, there is n̄1 and n̄0 such that

V1

(
λx′ + (1 − λ)h) ≥ V1

(
λxAnx

′′ + (1 − λ)h)
for all λ ∈ [0�1], h ∈F , and n≥ n̄1, and

V0

(
λx′ + (1 − λ)h) ≥ V0

(
λxAnx

′′ + (1 − λ)h)
for all λ ∈ [0�1], h ∈F , and n≥ n̄2. Defining V ≡ αV1 + (1 − α)V0,

V
(
λx′ + (1 − λ)h) ≥ V (

λxAnx
′′ + (1 − λ)h)

for n= max(n̄1� n̄2)


Thus, for any i.i.d. α-MEU preference, Monotone Continuity of �∗ is satisfied.
Since � is Continuous Symmetric and every measure in D is relevant, Theo-

rem 3.3 implies R=D. Since D is finite, D=D.

C.7. Proof of Theorem 4.2

We prove the “only if” direction first. Suppose �A is more ambiguity averse
than �B. This implies the two preferences agree on constant acts, which is
equivalent to uA = uB up to normalization. Theorem 4.1 shows that D = R
for such preferences. Theorem 3.4 implies DA = DB, since αA�αB ∈ (0�1)
implies �A and �B are strictly monotonic for bets on non-null limiting fre-
quency events. (To see this last implication, observe that Ψ−1(L) non-null im-
plies L ∩D 
= ∅. Assume u(x) > u(y). If L ∩D=D, the desired strict mono-
tonicity is direct. Assume non-null Ψ−1(L) with L ∩D ⊂D. If x � y � z, the
α-MEU functional evaluates the bets xΨ−1(L)z and yΨ−1(L)z by αu(z) +
(1 −α)u(x) and αu(y)+ (1 −α)u(z), and thus xΨ−1(L)z � yΨ−1(L)z. When
z � x� y , xΨ−1(L)z � yΨ−1(L)z can be shown similarly. Finally, if x� z � y ,
xΨ−1(L)z � zΨ−1(L)z � yΨ−1(L)z.) SinceDB is non-singleton andDA =DB,
for � ∈DA, 1Ψ−1(�) ∼A αAx∗ +(1−αA)x∗ and 1Ψ−1(�) ∼B αBx∗ +(1−αB)x∗. Thus,
�A is more ambiguity averse than �B requires 1Ψ−1(�) �A αAx∗ +(1−αA)x∗ im-
plies 1Ψ−1(�) �B αAx∗ + (1 − αA)x∗, which, in turn, implies αA ≥ αB.
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Turn to the “if” direction. Suppose αA ≥ αB, DA =DB, and (up to normal-
ization) uA = uB. Let u be a common normalization of uA and uB and D ≡
DA =DB. Then, f �A x if and only if αA minp∈{�∞:�∈D}

∫
u(f )dp+ (1 − αA)×

maxp∈{�∞:�∈D}
∫
u(f )dp ≥ u(x), which implies αB minp∈{�∞:�∈D}

∫
u(f )dp +

(1 − αB)maxp∈{�∞:�∈D}
∫
u(f )dp ≥ u(x) and thus f �B x. This proves �A is

more ambiguity averse than �B. Note that this direction did not use the re-
striction of αA�αB to (0�1).

C.8. Proof of Theorem 4.3

Suppose � is an i.i.d. smooth ambiguity preference. We first show that
suppμ ⊆ R. Suppose �̂ ∈ suppμ and fix any L ∈ O�̂. Consider f = 1Ψ−1(L)

and g = 1∅ and observe that
∫
f d�∞ = ∫

gd�∞ for all � ∈ Δ(S) \ L. Since
φ is strictly increasing, φ(

∫
u(f )d�∞) > φ(

∫
u(g)d�∞) for all � ∈ L and

φ(
∫
u(f )d�∞)≥φ(∫ u(g)d�∞) for all � ∈ suppμ. By the definition of suppμ,

μ(L) > 0. Thus, f � g and �̂ is relevant.
We next show that � satisfies Continuous Symmetry. We directly verify only

the following axioms: Monotone Continuity of �∗ and Mixture Continuity.
That the remaining axioms are satisfied is straightforward.

Monotone Continuity of �∗: Suppose that condition (i) holds in the defini-
tion of i.i.d. smooth ambiguity preferences, so there are m�M > 0 such that
m|a− b| ≤ |φ(a)−φ(b)| ≤M|a− b| for all a�b ∈ u(X). Fix any x�x′�x′′ ∈X
with x′ � x′′. If x′ � x, then Monotone Continuity of �∗ follows from Mono-
tonicity. Therefore, consider x� x′. Without loss of generality, normalize u so
that u(x) = 1 > u(x′) = t ′ > u(x′′) = 0 and [0�1] ⊆ u(X). Suppose An ↘ ∅.
Take ε′� ε > 0 so that

ε′ < t ′ and m
(
t ′ − ε′)(1 − ε)≥M(

1 − t ′)ε

Define ζn :Δ(S)→ R by ζn(�)= �∞(An), and temporarily equip Δ(S) with the
weak convergence (w.c.) topology (i.e., the weakest topology that makes the in-
tegrals of continuous bounded functions continuous). Since w.c. open sets are
weak* open, μ is well-defined on the Borel σ-algebra generated by w.c. open
sets. Then, by Lusin’s theorem (Aliprantis and Border (2006, Theorem 12.8)),
there is a w.c. compact set L ⊆ Δ(S) such that μ(L) > 1 − ε and all ζn are
w.c. continuous. Note that ζn converges monotonically to 0 pointwise. Then by
Dini’s Theorem (Aliprantis and Border (2006, Theorem 2.66)), ζn on L con-
verges uniformly to 0. Hence there is N > 0 such that ζN = �∞(AN) < ε

′ for all
� ∈L. To see x′ �∗ xANx

′′, and thus Monotone Continuity of �∗, compute, for
any α ∈ [0�1] and h ∈F ,∫

Δ(S)

φ

(∫
u
(
αx′ + (1 − α)h)

d�∞
)
dμ(�)

−
∫
Δ(S)

φ

(∫
u
(
αxANx

′′ + (1 − α)h)
d�∞

)
dμ(�)
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=
∫
L

(
φ

(
αt ′ + (1 − α)

∫
u(h)d�∞

)
−φ

(
α�∞(AN)+ (1 − α)

∫
u(h)d�∞

))
dμ(�)

+
∫
Δ(S)\L

(
φ

(
αt ′ + (1 − α)

∫
u(h)d�∞

)
−φ

(
α�∞(AN)+ (1 − α)

∫
u(h)d�∞

))
dμ(�)

>

∫
L

(
φ

(
αt ′ + (1 − α)

∫
u(h)d�∞

)
−φ

(
αε′ + (1 − α)

∫
u(h)d�∞

))
dμ(�)

+
∫
Δ(S)\L

(
φ

(
αt ′ + (1 − α)

∫
u(h)d�∞

)
−φ

(
α+ (1 − α)

∫
u(h)d�∞

))
dμ(�)

≥
∫
L

αm
(
t ′ − ε′)dμ(�)+

∫
Δ(S)\L

αM
(
t ′ − 1

)
dμ(�)

= α[
m

(
t ′ − ε′)μ(L)−M(

1 − t ′)(1 −μ(L))]
≥ α[

m
(
t ′ − ε′)(1 − ε)−M(

1 − t ′)ε]
≥ 0


Turn to the case where (ii) holds in the definition of i.i.d. smooth ambiguity
preferences, so that suppμ is finite. Again suppose An ↘ ∅ and x � x′ � x′′.
Since suppμ is finite, sup�∈suppμ �

∞(An)→ 0. Thus, for ε > 0 satisfying u(x′) >
εu(x)+ (1 − ε)u(x′′), there is n > 0 such that �∞(An) < ε for all � ∈ suppμ.
This implies

∫
Δ(S)

φ

(∫
u
(
αx′ + (1 − α)h)

d�∞
)
dμ(�)

−
∫
Δ(S)

φ

(∫
u
(
αxANx

′′ + (1 − α)h)
d�∞

)
dμ(�)

=
∫ (

φ

(
αu

(
x′) + (1 − α)

∫
u(h)d�∞

)
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−φ
(
α
(
�∞(An)u(x)+ (

1 − �∞(An)
)
u
(
x′′))

+ (1 − α)
∫
u(h)d�∞

))
dμ(�)

≥ 0

for all α ∈ [0�1] and h ∈F . Therefore, x′ �∗ xAnx
′′ and Monotone Continuity

of �∗ holds.
Mixture Continuity: Fix acts f�g�h ∈ F and consider a sequence λn ∈ [0�1]

such that λn → λ and λnf + (1 − λn)g� h for all n. Therefore, for all n,∫
Δ(S)

φ

(
λn

∫
u(f )d�∞ + (1 − λn)

∫
u(g)d�∞

)
dμ(�)

≥
∫
Δ(S)

φ

(∫
u(h)d�∞

)
dμ(�)


Sinceφ is continuous, by the Dominated Convergence Theorem (e.g., Alipran-
tis and Border (2006, Theorem 11.21))∫

Δ(S)

φ

(
λn

∫
u(f )d�∞ + (1 − λn)

∫
u(g)d�∞

)
dμ(�)

→
∫
Δ(S)

φ

(
λ

∫
u(f )d�∞ + (1 − λ)

∫
u(g)d�∞

)
dμ(�)�

so that λf + (1 −λ)g� h and thus the upper set is closed. The same argument
using a sequence such that λnf + (1 −λn)g� h may be used to show the lower
set is closed.

Since
∫
Δ(S)

φ(
∫
u(f )d�∞)dμ(�)= ∫

suppμ φ(
∫
u(f )d�∞)dμ(�) is a represen-

tation of the form in Theorem 3.1 with D = suppμ, � is Continuous Sym-
metric, and suppμ⊆R, Theorem 3.3 implies R= suppμ. Since, by definition,
suppμ is relative weak* closed, R= suppμ.

C.9. Proof of Theorem 4.4

We begin with two lemmas that will be used in proving the theorem. The
first lemma may be viewed as generalizing a remark in Yaari (1969) so that it
applies to not-necessarily-convex preferences.

We need the following definitions and notation to state the first lemma. We
say a function is differentiable if it is Fréchet differentiable. Denote the Fréchet
differential of a functional I byDI. The interior of a setA is denoted by intA.

LEMMA C.1: Let �A and �B be two preferences represented by UA(f ) =
IA(u(f )) and UB(f ) = IB(u(f )), respectively. Suppose IA and IB are differen-
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tiable at c ∈ intu(X) and UA(x)=UB(x) for all x ∈X . If �A is more ambiguity
averse than �B, DIA(c)=DIB(c).

PROOF: Since �A is more ambiguity averse than �B, for any x ∈X , f ∈ F
such that f ∼A x,

UA(f )=UA(x)=UB(x)≤UB(f )


Thus,

IA(c+ λϕ)− IA(c)
λ

≤ IB(c+ λϕ)− IB(c)
λ

for any bounded measurable ϕ :Ω→ R and λ > 0 small enough so that c +
λϕ ∈ u(X)Ω. This implies DIA(c)(ϕ)≤DIB(c)(ϕ). Since the same is true for
−ϕ and DIA(c)(ϕ) is linear in ϕ, we have

DIA(c)(ϕ)= −DIA(c)(−ϕ)≥ −DIB(c)(−ϕ)=DIB(c)(ϕ)

Thus, DIA(c)=DIB(c). Q.E.D.

To state the second lemma, let Si(f ) ≡ ∫
Δ(S)

φi(
∫
ui(f )d�

∞)dμi(�) for i =
A�B.

LEMMA C.2: �A is more ambiguity averse than �B if and only if φ−1
B (SB(f ))≥

φ−1
A (SA(f )) for all acts f ∈F .

PROOF: To see the “only if” direction, observe that φ−1
B (SB(f )) <

φ−1
A (SA(f )) means that, for any y ∈ X such that φ−1

B (SB(f )) < u(y) ≤
φ−1
A (SA(f )), f �A y and f ≺B y , contradicting �A more ambiguity averse

than �B. To see the “if” direction, note that f �A x⇒ φ−1
A (SA(f )) ≥ u(x)⇒

φ−1
B (SB(f )) ≥ u(x) ⇒ f �B x, thus �A is more ambiguity averse than �B.

Q.E.D.

Consider the “only if” direction of the theorem. Suppose �A is more ambi-
guity averse than �B.

We first show μA = μB. We claim that φ′
A(c) > 0 and φ′

B(c) > 0 for some
c ∈ intu(X). Since φA is strictly increasing, φ′

A(c̄) > 0 for some c̄ ∈ intu(X).
Continuity of φ′

A implies that there is a > 0 such that φ′
A(d) > 0 for all d ∈

(c̄−a� c̄+a). The Mean Value Theorem implies that there is c ∈ (c̄−a� c̄+a)
such that φ′

B(c)= φB(c̄+a)−φB(c̄−a)
2a > 0.

Now, compute

Dφ−1
A

(∫
Δ(S)

φA

(∫
·d�∞

)
dμA(�)

)
(c)=

φ′
A(c)

∫
Δ(S)

�∞ dμA(�)

φ′
A(c)

=
∫
Δ(S)

�∞ dμA(�)
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The analogous equality holds for B. By Lemma C.1, �A more ambiguity
averse than �B implies

∫
Δ(S)

�∞ dμA(�) = ∫
Δ(S)

�∞ dμB(�). Thus, for any L ⊆
Δ(S), μA(L) = ∫

Δ(S)
�∞(Ψ−1(L))dμA(�) = ∫

Δ(S)
�∞(Ψ−1(L))dμB(�) = μB(L).

Therefore μA = μB.
We now show φA is more concave than φB. Define h :φB(u(X)) → R by

h = φA ◦ φ−1
B . Note that φA = h ◦ φB. Since φA and φB are continuous and

strictly increasing, so is h. It remains to show that h is concave. By Lemma C.2,
φ−1
B (SB(f )) ≥ φ−1

A (SA(f )) for all acts f ∈ F . Observe that φ−1
B (SB(f )) ≥

φ−1
A (SA(f )) if and only if h(SB(f ))≥ SA(f ). Letting μ≡ μA = μB, since suppμ

is non-singleton, there exists a set L ⊆ Δ(S) such that 0 < μ(L) ≡ t < 1. For
any x′�x′′ ∈X , let fx′�x′′ denote the act defined as follows:

fx′�x′′ =
{
x′� if ω ∈Ψ−1(L),
x′′� otherwise.

Thus, h(SB(fx′�x′′))≥ SA(fx′�x′′) if and only if

h
(
tφB

(
u
(
x′)) + (1 − t)φB

(
u
(
x′′)))

≥ tφA
(
u
(
x′)) + (1 − t)φA

(
u
(
x′′))

= th(
φB

(
u
(
x′))) + (1 − t)h(

φB
(
u
(
x′′)))


Since this holds for all x′�x′′ ∈X , h is concave (by, e.g., Klibanoff, Marinacci,
and Mukerji (2005, Lemma 6)).

Now turn to the “if” direction of the theorem. Let μ≡ μA = μB. Since φA =
h ◦φB for a strictly increasing and concave h, the Jensen inequality implies

h
(
SB(f )

) ≥
∫
Δ(S)

h

(
φB

(∫
u(f )d�∞

))
dμ(�)

for all acts f ∈ F . But this is the same as h(SB(f )) ≥ SA(f ) and thus
φ−1
B (SB(f ))≥φ−1

A (SA(f )) for all f ∈F , which is equivalent to �A more ambi-
guity averse than �B by Lemma C.2. Note that this direction did not use the
differentiability or non-singleton assumptions.

REMARK C.1: From the proof, it is apparent that the assumption of continu-
ous differentiability of φA and φB can be weakened to differentiability of both
functions at a common point, c, in the interior of u(X) with φ′

A(c) > 0 and
φ′
B(c) > 0.

C.10. Proofs of Theorems 4.5 and B.5

The first is a special case of the latter and we prove the latter here.
We first prove sufficiency of the stated axioms. We start by showing that �∗

ξ̃

satisfies the properties assumed in Gilboa et al. (2010, Theorem 1). Preorder,
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Monotonicity, Mixture Continuity, Non-Triviality, C-Completeness, and Inde-
pendence of �∗

ξ̃
follow directly from the axioms we assume and the definition

of �∗
ξ̃
. Therefore, by Gilboa et al. (2010, Theorem 1), there exists a unique

nonempty weak* closed and convex set C ⊆ ba+
1 (S

∞) and a nonconstant vNM
utility function, u :X → R, such that

f �∗
ξ̃
g if and only if

∫
u(f )dp≥

∫
u(g)dp for all p ∈C


By Alaoglu’s Theorem, C is weak* compact. Monotone Continuity of �∗
ξ̃

im-
plies C ⊆ Δ(S∞) by Ghirardato, Maccheroni, and Marinacci (2004, Remark 1).
Moreover, Partial Event Symmetry implies every p ∈ C is partially symmetric
on finite cylinder events.

Next, we prove the claim that every p ∈ C is of the form
∫

l(ξ̃)dm(l) for
somem ∈ Δ((ΔS)Ξ). (We prove this claim here because we did not find a proof
in the literature.) The proof is based on the idea of Hewitt and Savage (1955).
Let Pξ̃ be the set of partially symmetric measures. Pξ̃ is convex and also weak-
convergence compact as Δ(S∞) is. Then, the Choquet Theorem (Phelps (2001,
p. 14)) implies that any element in Pξ̃ is a mixture of its extreme points. We
need to show that each extreme point is of the form l(ξ̃). We prove this for
the case where ξ̃= (ξ1� ξ2� ξ1� ξ2� 
 
 
). The general case follows from the same
arguments. Take any extreme point p, n≥ 1, and event A⊆ Sn. For each finite
cylinder B,

p(B)= p(πB)= p(A)p(πB|A)+p(
Ac

)
p

(
πB|Ac

)
�

where π ∈Π is defined as follows: If n is even,

π(i)= i+ n

If n is odd,

π(i)= n+ i− (−1)i


(Since B is a finite cylinder, π can be made a finite permutation.) For example,
if B⊂ S2 and n= 1, then π(1)= 3�π(2)= 2, π(3)= 1, and π(k)= k for k≥ 4,
and hence πB = {ω : (ω3�ω2) ∈ B}. Note that A and πB depend on different
coordinates. Define q1� q2 ∈ Δ(S∞) by

q1(B)= p(πB|A) and

q2(B)= p(
πB|Ac

)
for each finite cylinder B. Noting that ξ̃i = ξ̃π(i) for all i= 1�2� 
 
 
 , one can ver-
ify that q1� q2 ∈Pξ̃. We have just shown that p is a mixture of q1 and q2 that lie
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in Pξ̃. Since p is an extreme point, p = q1 = q2. Therefore, we have p(B) =
p(A × πB)/p(A), where π is defined as above. By the fact that p(B) =
p(πB), p(A)p(πB)= p(A×πB), which proves that p is a product measure.
By partial symmetry w.r.t. ξ̃ = (ξ1� ξ2� ξ1� ξ2� 
 
 
), p = �1 ⊗ �2 ⊗ �1 ⊗ �2 ⊗ · · ·
and is of the form l(ξ̃). Therefore, any element in Pξ̃ is a mixture of product
measures of the form l(ξ̃).

Thus, C = {∫ l(ξ̃)dm(l) :m ∈M} for some nonempty M ⊆ Δ((ΔS)Ξ). M is
convex since C is.

To see that M is weak* compact, take any net mα ∈ M . Since C is weak*
compact, there is m′ ∈M and a subnet m′

λ of mα such that∫ (∫
ϕdl(ξ̃)

)
dm′

λ(l)→
∫ (∫

ϕdl(ξ̃)
)
dm′(l)

for each ϕ ∈ B(
S∞)




It suffices to show that each φ ∈ B((ΔS)Ξ) can be written as l 	→ ∫
ϕdl(ξ̃) for

some ϕ ∈ B(S∞). In fact,

φ(l)=
∫
S∞
φ

(
Ψ(ω)

(
ξ1

)
� 
 
 
 �Ψ(ω)

(
ξK

))
dl(ξ̃)(ω)


Conclude that m′
λ converges to m′.

To show necessity, assume such a set M . �∗
ξ̃

satisfies C-Complete Preorder,
Monotonicity, and Risk Independence, and thus �ξ̃ inherits these properties,
with the exception of the directly assumed transitivity, as well. Partial Event
Symmetry follows since each element of C is of the form

∫
l(ξ̃)dm(l) for some

m ∈M . Non-Triviality of �ξ̃ follows from non-constancy of u. Monotone Con-
tinuity of �∗

ξ̃
follows from weak* compactness of C , which is implied by that

of M . Mixture Continuity of �∗
ξ̃

follows from Mixture Continuity of expected
utility and the fact that intersections of closed sets are closed.

Uniqueness of M follows from uniqueness of C .
Finally, we show

R=
⋃
m∈M

suppm


The first step is to show R ⊆ ⋃
m∈M suppm: Take any l /∈ ⋃

m∈M suppm. Then,
there is L ∈ Ol such that L ⊆ (

⋃
m∈M suppm)c . Take any f�g ∈ F . Note

that
∫
fΨ−1

ξ̃
(L)gdp = ∫

gdp for any p ∈ C . Thus fΨ−1
ξ̃
(L)g ∼∗

ξ̃
g and so

fΨ−1
ξ̃
(L)g∼ξ̃ g. Therefore, Ψ−1

ξ̃
(L) is null, and l /∈R.

The second step is to show
⋃

m∈M suppm ⊆ R: Take any l ∈ ⋃
m∈M suppm

and L ∈ Ol. By the representation, 1Ψ−1
ξ̃
(L) �∗

ξ̃
1∅ since

∫
1Ψ−1

ξ̃
(L) dp ≥ ∫

1∅ dp
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for all p ∈ Δ(S∞). Now show that 1Ψ−1
ξ̃
(L) 
�∗

ξ̃
1∅. Note that, by definition of⋃

m∈M suppm, there is m̂ ∈M such that L ∩ supp m̂ 
= ∅. Let p= ∫
l̂(ξ̃)dm̂(l̂)

and compute∫
1Ψ−1

ξ̃
(L) dp= m̂(L) > 0 =

∫
1∅ dp


By the representation, 1Ψ−1
ξ̃
(L) 
�∗

ξ̃
1∅. Therefore, we have 1Ψ−1

ξ̃
(L) �

∗
ξ̃

1∅, which
implies that

α1Ψ−1
ξ̃
(L) + (1 − α)h�ξ̃ α1∅ + (1 − α)h

for some α ∈ [0�1] and h ∈F . Note that both sides coincide outside of Ψ−1
ξ̃
(L)

and hence l ∈R.
Finally, since by Theorem B.2 R is closed,

⋃
m∈M suppm ⊆ R = R, and we

conclude that R= ⋃
m∈M suppm.

C.11. Proof of Theorem A.1

It is convenient to define �̃ on F̃ by

f̃ �̃ g̃ if f � g�

and similarly define �̃
∗
.

Prove necessity of the axioms. Symmetry and Mixture Continuity are im-
mediate from the properties of the representation. Ghirardato and Siniscalchi
(2012b, Proposition S.1) shows that a representing functional on utility acts be-
ing locally Lipschitz in its interior implies the represented preferences satisfy
Locally Bounded Improvements. From this, G locally Lipschitz in its interior,
the fact that U represents �, and the definition of �̃, it follows that �̃ satisfies
Locally Bounded Improvements. By considering acts and lotteries that gen-
erate the corresponding elements of F̃ and u(X), and using the fact that the
generated elements of F̃ and u(X) are all that matter for �, Locally Bounded
Improvements for �̃ implies Locally Bounded Improvements for �.

Show that Monotone Continuity of �∗ is satisfied. Ghirardato and Sinis-
calchi (2012a, Theorem 2) shows that

f̃ �̃
∗
g̃ if and only if

∫
f̃ dm≥

∫
g̃ dm

for all m ∈ co
( ⋃
h̃∈int F̃

C(h̃)

)
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Fix any x�x′�x′′ ∈ X with x′ � x′′. The only non-immediate case has x � x′.
Without loss of generality, normalize u so that u(x)= 1> u(x′)= t ′ > u(x′′)=
0 and [0�1] ⊆ u(X). Suppose An ↘ ∅. Let Ln = {� ∈ D :An ∩ Ψ−1(�) 
= ∅}.
Then, An ∩ Ψ−1(D) ⊆ Ψ−1(Ln) and Ln ↘ ∅. Ghirardato, Maccheroni, and
Marinacci (2004, Remark 1) implies that

t ′ �̃
∗

1Ln0

for some n. This implies x′ �∗ xΨ−1(Ln)x
′′ for that n. Fix n. Since An ∩

Ψ−1(D) ⊆ Ψ−1(Ln) and only � ∈ D appear in U , xΨ−1(Ln)x
′′ �∗ xAn ∩

Ψ−1(D)x′′∗xAnx
′′. Thus x′ �∗ xAnx

′′.
Turn to sufficiency. Theorem 3.1 implies the existence of the required rep-

resentation except (i), (ii), and (iii) in the statement of Theorem A.1. For
(iii), given any U(f) ≡ G((

∫
u(f )d�∞)�∈D) where G violates (iii), replace G

by χ−1 ◦ G where χ :u(X) → R is defined by χ(c) = G((c)�∈D) for all c ∈
u(X). For (i), Locally Bounded Improvements of � implies Locally Bounded
Improvements of �̃. This and Ghirardato and Siniscalchi (2012b, Proposi-
tion S.1) applied to �̃ imply G is locally Lipschitz in its interior. For (ii),
co(

⋃
h̃∈int F̃ C(h̃)) is compact by applying Ghirardato and Siniscalchi (2012a,

Theorem 2) and Ghirardato, Maccheroni, and Marinacci (2004, Remark 1)
to �̃

∗
.
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