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Abstract. Uncertainty aversion is often modelled as (strict) quasi-concavity of
preferences over uncertain acts. A theory of uncertainty aversion may be
characterized by the pairs of acts for which strict preference for a mixture be-
tween them is permitted. This paper provides such a characterization for two
leading representations of uncertainty averse preferences; those of Schmeidler
[24] (Choquet expected utility or CEU) and of Gilboa and Schmeidler [16]
(maxmin expected utility with a non-unique prior or MMEU). This charac-
terization clarifies the relation between the two theories.

1 Introduction

A large body of work has recently emerged in economics and decision theory
with the goal of representing behavior in the face of subjective uncertainty
that may violate the independence axiom of subjective expected utility theory.
One branch of this literature, and the one that will be the focus below, con-
siders preferences that may violate independence by displaying a preference
for facing risk (or “objective” probabilities) as opposed to uncertainty. This
preference is known as uncertainty aversion. One motivation for examining
these preferences are the well-known problems posed by Ellsberg [10] and the
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huge experimental literature that has followed, in which many individuals
behave as if they were uncertainty averse.

There are several ways that one could imagine defining uncertainty aver-
sion. The definition that I will use here, and the one that has dominated the
literature so far, is due to Schmeidler [24]". It states that for any two acts that
an individual is indifferent between, a mixture over these two acts is at least as
preferred as either act.” One may interpret this requirement as saying that the
individual likes smoothing expected utility across states. This smoothing has
the effect of making the outcome less subjective, and therefore such a mixing
operation could be called “objectifying”®. Thus, in a natural sense, such an
individual is displaying an aversion to uncertainty. An equivalent way of
stating this characteristic is to say that preferences are quasi-concave (f = ¢
and o € (0, 1) implies of + (1 — a)g > g). In particular, observe that if f ~ g
then quasi-concavity allows af + (1 — a)g = ¢g while independence requires
af +(1—a)g~g.

From this viewpoint, a theory of uncertainty averse preferences may be
characterized by the set of violations of independence in the direction of strict
preference for mixture that it allows. The goal of this paper is to provide a
characterization of this kind for two leading axiomatic theories of uncertainty
aversion, the Choquet expected utility (CEU) theory of Schmeidler [24] and
the maxmin expected utility (MMEU) theory of Gilboa and Schmeidler [16].
Such a characterization is useful not only from the point of view of theoretical
understanding, but also as a guide to the design of experiments testing one
theory of uncertainty aversion against another. For example, the results in
Sect. 3 allow the easy identification of pairs of acts over which an MMEU
decision maker may have a strict preference for mixture, while a CEU deci-
sion maker cannot. Furthermore, in the emerging literature applying these
theories (e.g., Dow and Werlang [7], Klibanoff [17], Lo [19], Eichberger and
Kelsey [9], Marinacci [21] on game theory; Wakker [25] on optimism and
pessimism; Dow and Werlang [6], Chateauneuf et al. [3], Epstein and Wang
[12] on financial markets; Mukerji [22] and Ghirardato [13] on contracting;
and others) too often one theory or the other is adopted without much recog-
nition of the ways in which the theories differ.

The next section introduces the CEU and MMEU theories and points out
the known, yet frequently ignored, fact that under uncertainty aversion,
MMEU is a strict generalization of CEU. Section 3 presents the main theo-
rems characterizing the acts for which no convex combination is ever strictly
preferred to both acts themselves under MMEU and under CEU respectively.
Section 4 concludes.

! Until the recent work of Epstein [11] and Ghirardato and Marinacci [15],
Schmeidler’s was essentially the only definition used in the literature.

2 A mixture over two acts is formally defined in Sect. 2.1 below.

3 T thank Mark Machina for suggesting this term.
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2 Two models of uncertainty aversion

2.1 Notation and set-up

Throughout the paper, preferences are a binary relation, >, on functions (acts)
f S — Y where S'is a finite set of states of the world, X a set of prizes, and Y
the set of all probability measures with finite support (lotteries) on X. Thus, in
each state of the world an act yields a lottery over prizes (as in Anscombe and
Aumann [1]). Lotteries are evaluated according to an affine utility function
u:Y — R. Denote the probability of prize x € X in state s € S induced by
act f by f(s)(x). For any « € (0,1), define the a-mixture over f and g,

af + (1 —a)g, by
(of + (1 —a)g)(5)(x) = af (5)(x) + (1 —a)g(s)(x), forallxe X, seS.

One interpretation of the mixture af + (1 — o)g is a randomization over the
acts fand ¢ with probabilities « and 1 — « respectively. Under this interpreta-
tion a preference for mixtures implies a preference for randomization. Such a
preference for randomization is controversial in the literature. An issue is
whether randomization is a way of making mixtures feasible in particular
settings.* The correctness and (in large part) interpretation of the analysis
below is independent of one’s position in this debate. The objects of study
are acts, and mixtures are simply particular acts. If one does not accept the
randomization interpretation, preference for mixtures may be read as simply a
statement about preferences over pure acts whose utility payoffs happen to be
related through convex combinations.

2.2 Two models

A leading representation of uncertainty averse preferences is the CEU repre-
sentation axiomatized by Schmeidler [24]. Here preferences are represented by
the Choquet integral of a utility function with respect to a capacity or non-
additive measure. One of the properties which characterizes such preferences
is comonotonic independence. Two acts, f'and g, are said to be comonotonic if,
for no pair of states of the world s and s, f(s) = f(s") and g(s") = g(s).”
Preferences satisfy comonotonic independence if, for any acts fand ¢, f = g if
and only if af + (1 — &) = ag + (1 — o)/ for all o € (0,1) and all /z such that
f,g,h are pairwise comonotonic. This is simply a restriction of the standard
independence axiom (e.g., Anscombe and Aumann [1]) to pairwise comono-
tonic acts. From this axiom, the following is immediate:

4 For two contrasting views of the impact, in the context of uncertainty aversion
and randomization, of using a model with an Anscombe-Aumann-style mixture space
of acts (as here) rather than Savage-style acts, see Eichberger and Kelsey [8] and
Klibanoff [18].

5 f(s) should be understood as an act which gives the lottery that act f gives in state s
no matter which state occurs.
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Result 1. Suppose that preferences satisfy comonotonic independence. Then for
any comonotonic acts f and g, for each a € (0,1), either f = af + (1 — a)g or
g = of + (1 —a)g or both.

Thus, strict preference for mixtures cannot occur with comonotonic acts.
Notice that this observation derives from comonotonic independence alone
and is in no way implied by uncertainty aversion per se.

Now consider a second common representation of preferences incorpo-
rating uncertainty aversion, namely the MMEU representation axiomatized
in Gilboa and Schmeidler [16]. In this work, the axiom of comonotonic
independence is replaced by an alternative axiom, denoted C-independence.
C-independence requires the independence axiom to hold only when the act
h used to form the mixtures gives the same expected utility in every state of
the world.® Intuitively, acts which yield the same expected utility in every
state leave no room for uncertainty about which state will occur to matter.
C-independence is the assumption that mixing with such an act will not
change either the way in which the decision maker perceives her uncertainty
or the way in which she allows her attitude towards uncertainty to affect her
preferences.

Gilboa and Schmeidler [16] showed that C-independence and the standard
assumptions of weak order, continuity and monotonicity together with un-
certainty aversion imply that preferences can be represented by the mini-
mum expected utility of an act, where the minimum is taken over a closed,
convex set of probability measures. Notice that an act which yields constant
expected utility across states is comonotonic with any other act. In fact,
comonotonic independence, weak order, continuity, and monotonicity imply
C-independence. This means that, under the assumption of uncertainty aver-
sion, any preferences that can be represented by CEU can also be represented
in the MMEU framework (Schmeidler [23], [24]). The converse is not true,
however, as the following example makes clear.

S K 53
f 15 2 35
g 0 21 4
h 075 2.05 3.75

3
Set of measures: B = {(pupz,ps) lp=p3y ,  pi=1,0<p < 1}

Example 1

6 Technically the axiom is more restrictive, requiring /4 to give the same lottery over
outcomes in each state of the world, but together with the assumptions of weak order,
continuity and monotonicity the axiom as described is implied. Note that the assump-
tions of weak order, continuity and monotonicity were also assumed in the Choquet
expected utility theory of Schmeidler [24].
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In Example 1, an individual must choose over two possible pure acts, f'and
g, which give the expected utilities indicated above in the three possible states
of the world. Observe that f and g are comonotonic. Suppose that the indi-
vidual’s preferences can be represented by minimum expected utility over the
set of measures B (i.e., the set of all probability measures which assign equal
weight to s; and s3). Straightforward calculation shows that f'and g each give
a minimum expected utility of 2, while, for example, 4, a half-half mixture
between f and g, gives a minimum expected utility of 2.05. Therefore, this
uncertainty averse individual will strictly prefer the mixture /#, compared to
either f or g. Since this violates comonotonic independence it shows that these
preferences cannot be represented in the CEU framework, and also demon-
strates that comonotonicity is not enough, in general, to guarantee that an
uncertainty averse individual will not strictly prefer to objectify by mixing
over acts. What is the right condition to guarantee no strict preference for
mixtures in the MMEU representation? Is the comonotonicity condition a
necessary as well as sufficient condition for no preference for mixing under
CEU? The next section provides results to answer these questions.

3 Characterizing preference for mixtures

In examining when strict preference for mixtures is possible (or impossible)
under the two theories, it is helpful to consider a previous result characterizing
preference for mixtures under MMEU for a specified set of probability mea-
sures. While such results are of more interest in a setting where certain beliefs
are focal (e.g., equilibrium beliefs in game theory), they will be used in proving
the theorems to follow that apply to the whole domain of the respective
theories.

Theorem 1. (Klibanoff [17]) For any acts f and g such that f = g, no mixture
over these acts will be strictly preferred to either alone if and only if there exists
some measure q in the set of measures such that ¢ minimizes the expected utility
of f over the set and such that the expected utility of f with respect to q is at least
the expected utility of g with respect to q.

For acts which the decision maker is indifferent between this simplifies to:

Corollary 1. (Klibanoff [17]) For any acts f and g such that f ~ g, no mixture
over these acts will be strictly preferred to either alone if and only if there exists
some measure q in the set of measures such that ¢ minimizes the expected utility
of both f and g over the set of measures.

Now we characterize the set of acts for which no MMEU decision maker
would have a strict preference for a mixture. This result and the corresponding
result for the CEU case are provided in the next two theorems.

Theorem 2. Fix acts f and g. No convex combination of [ and g will ever be
strictly preferred to either alone (given MMEU preferences) if and only if (i) f
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weakly dominates g or vice-versa (i.e., u(f(s)) = (<)u(g(s)), for all s€ S.) or
(ii) there exists an a > 0,b € R such Zhal either u(g(s)) = au(f(s)) + b for all
seSoru(f(s) =au(g(s ))—I—bforallseS.

Proof. The difficult direction is to show that no strict preference implies (i)
or (ii). (The opposite direction is left for the reader to verify.) The key step in
the proof is to show that the conditions for a convex combination to reduce
uncertainty are equivalent to the existence of a pair of probability vectors
satisfying a set of linear inequalities. This is done in the lemma below. The
only task remaining is then to characterize existence. To do this I apply a well
known result from the theory of linear inequalities, Motzkin’s Theorem of the
alternative (see e.g., Mangasarian [20]). The existence of a solution to the
resulting alternative system is then (after a bit of rearrangement) shown to be
equivalent to the conditions of the theorem.

Let the vector of utility payoffs to the act f be denoted 7 (= {u(f(s))})
and similarly for %. The following lemma reduces the conditions for a convex
combination of f and g to possibly reduce uncertainty to a question of exis-
tence of probabilities satisfying certain linear inequalities.

Lemma 1. Fix % and 4. There exists a non-empty, closed, convex set of mea-
sures B for which some mixture of & and % is strictly preferred to either alone if
and only if there exist probability vectors pl and p2 satisfying:

i) F-p2—-7F-pl>0

(i) #-pl—-9-pl <0

(i) 9-pl—%-p2>0
and

(iv) 9-p2—F -p2<0

Proof.

(<) Suppose such pl and p2 exist. Let B be the set of all convex combi-
nations of pl and p2. Either f = g or g = f or both. If f > g then by (i) and
(i), p1 is the only minimizer in B of the expected utility of f'and the expected
utility of f under pl, & - pl, is less than the expected utility of g under pl,
% - pl. Therefore, by Theorem 1, there exists a mixture which is strictly pre-
ferred. If g = f then by (iii) and (iv) and Theorem 1 the same conclusion
holds.

(:>) Suppose such a B exists. Consider the set Ay ={p|pe
argmin, .z # - p} and A, = {p|p € argmin, ;% - p}. Consider pl € 4, and
pe A By definition of these sets we must have

(a) # -p2—7 -pl >0
and
(b) 9-pl—%-p2>0.
Suppose that (a) holds with equality for some such pl and p2. Then if
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g=f, 9-p2>%-p2 which implies that the condition in Theorem 1 is
satisfied and no mixture is strictly preferred. If f > g, then # -pl =
F -p2 > % - p2 and again appealing to Theorem 1 no mixture is strictly pre-
ferred. Similar arguments show that if (b) holds with equality for some such
pl and p2 then no mixture is strictly preferred. Thus for there to be a mixture
that is strictly preferred it must be that for all pl € Ay and p2 € 4,

i) F-p2—F-pl >0
and
(i) %-pl—9-p2>0.

Can it be that & -pl —%-pl > 0? This and (iii) would imply & -pl —
% - p2 > 0 which implies /' > ¢ and thus by Theorem 1 and the hypothesis no
mixture would be strictly preferred. Therefore,

(i) #-pl—-9-p1 <0

must hold. By an analogous argument,
(iv) 9-p2—-F -p2<0

must hold as well and we are done. QFED

Now that the lemma has been proved, the next step in proving the theorem
is to combine conditions (i)—(iv) with the restrictions implied by the fact that
pl and p2 must be probability vectors. To this end, let n be the number of
states in S. Then #, %, pl and p2 are n-vectors. Let # and % be row vectors
and pl and p2 be column vectors. Let e be a row n-vector of 1’s. Let

and

9 -9
0 F -9

Observe that (i)—(iv) is equivalent to Ap > 0. Furthermore the requirement
that p1 and p2 be probabilities is equivalent to p > 0 and

o oL ®

Equivalently, we can replace the normalization (1) with the condition
e —elp=0
and the condition p > 0 with the equivalent

Ip>0
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where [ is a 2n x 2n identity matrix. To summarize, we would like to charac-
terize when there exists a p such that

(a) 4p>0
(b) Ip=0
and

© le —ep=0.

By Motzkin’s Theorem of the alternative (Mangasarian [20]), either (a), (b)
and (c) has a solution p or

(%) <A,J/1+1'y3+[€ _e]'y4:O>
»>0,y3=20

has a solution y1, y3, ya, but never both. (Note that y; > 0 means that each
element of y; is greater than or equal to zero with at least one element strictly
positive. y3 > 0 means almost the same thing except that it allows all elements
to be zero.)

All that remains is to rewrite system (%) to get an interpretable condition
(namely the one in the theorem.) First notice that since the elements of y3 are
all non-negative, (*) has a solution if and only if

(s¢) <A/J’1 +le —e'va< 0>
»>0

has a solution y;, y4. Adding up the inequalities determined by the first line of
(#) yields

(% —7) (3 —y4y) <0,

where
J’111
1
y
yi= 211
31
J’il

This implies that either y211 = yil or one of fand g is weakly dominated by
the other. So, a solution to (x) exists if and only if either weak dominance
between f and g holds or (xx) is satisfied with y}, = y},. Imposing the latter
restriction and disaggregating the inequality in () we obtain the system

Gy +y3) —F (Gl +y3) +eya <0
%' (yy +y3) +F (¥, +yy) —eya <0
yn>0
which is equivalent to

(%) <g/(J’%1 +131) = F' (1 +y21) + ey =0>.
»>0
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Observe that without loss of generality yi, can be set to zero since it can be
incorporated into y}, and yi;. Now, suppose that one of y{, or y}, is zero.
Then a solution will exist if and only if either g or f'or both are constant utility
acts. Finally, consider the remaining case where both y}, and y}, are positive.
Here a solution exists if and only if there exists an « > 0, f > 0, and y4 such that

0% — BF' +eys = 0.
This last condition is equivalent to
4" =aF' +be’, forsomea >0, beR.

Now note that the case where @ = 0 corresponds to the cases where ¢ is a
constant act. If only f'is a constant act, simply reverse the roles of fand g and
again set a« = 0.

Pulling the different possibilities together, we have that a solution to ()
exists if and only if either f'and g are ordered by weak dominance or

4G =aF' +be’, forsomea>0, beR
or,
F' =a%' +be', forsomea>0, beR.

Our application of Motzkin’s Theorem now yields the desired conclusion.
QED

The analogue for CEU is given in the next theorem. Note that this result
is related to the prior work of Bassanezi and Greco [2] who show that the
Choquet integral is additive for all capacities if and only if the functions being
integrated are comonotonic.

Theorem 3. Fix acts f and g. No convex combination of [ and g will ever be
strictly preferred to either alone (given CEU preferences) if and only if (i) f
weakly dominates g or vice-versa (i.e., u(f(s)) > (<)u(g(s)), for all s€ S.) or
(ii) f and g are comonotonic.

Proof.

(<) It is straightforward that (i) implies the weakly dominant act will be at
least as good as any mixture. Result 1 stated earlier says that (ii) implies no
mixture strictly preferred.

(=) We will show that Not ((i) or (ii)) implies there exists a mixture that
may be strictly preferred to both f and ¢. Not ((i) or (ii)) implies f, g not
comonotonic and no weak dominance between them. Since the two acts are
not comonotonic, there exist states sr,s, € S such that f(sy) > f(s,) and
g(sy) > g(sr). Consider the restriction of f'and g to {ss,s,}. There are two
possible cases:

Case I. Neither restricted act weakly dominates the other. In this case, without
loss of generality assume that f(sy) > g(s,) > g(sy) = f(sy). Consider the
capacity v such that v({ss,s,}) =1 and v(4) =0 for any set 4 such that
{87,584} & A. Relative to this capacity, we can calculate the Choquet expected
utility (CEU) of f and g: CEU(f) = u(f(sy)) and CEU(g) = u(g(sr)). By
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continuity of preferences, there exists an a* € (0, 1) such that
a’g(s,) + (1= o) (s,) = glsy)-
Taking the CEU of this convex combination with respect to v yields,
CEU(a"g + (1 —a")f)
= minfo“u(g(sy)) + (1 — " )u(/(s7)), & u(g(sq)) + (1 — o )u(f (5))]
> u(g(sr)) = u(f(sy))-

Therefore a*g + (1 — a*)f > f and a*g + (1 — a*)f > ¢ for this v.
This proves the claim for the case where neither restricted act weakly
dominates the other. Now we examine the remaining possibility:

Case II. One restricted act weakly dominates the other. Without loss of gen-
erality assume f(sy) > f(sy) = g(sy) > g(s7). Since, over the whole space, S,
we assumed neither act weakly dominates the other, there must exist an s’ € S
such that g(s") > f(s').

There are several possibilities. First, suppose that g(s’) > g(s,). Then
g(s’) > f(s") implies f(sy) > f(s") so that f and g are not comonotonic on
{s4,5'} and Case I applies to the restriction of fand g to {s,,s'}.

Another possible ordering of the states by g is g(s,) > g(s’) = g(sr). Here
g(s") = f(s") implies f'(sr) > f(s") and Case I applies to the restriction of f'and
g to {s,s'}.

Finally, assume (the only remaining possibility) that g(s;) > g(s") > f(s").
Consider the capacity v such that v({sy,s,,s'}) = 1, v({ss,s,}) = k, and for all
other sets v assigns the lowest nonnegative value consistent with monotonicity
of the capacity. Choose k € (0, 1) to satisfy

ku(f(sg)) + (1 = k)u(f(s")) = ku(g(sy)) + (1 — k)u(g(s")).
Such a k exists under our ordering assumptions. Using the capacity v,

CEU(f) = ku(f(sy)) + (1 = k)u(f(s)),

and
CEU(g) = ku(g(sy)) + (1 = k)u(g(s")).

Thus for this capacity v and utility u, f ~¢g. Now, using the fact that
we can represent the CEU preferences under v as the maxmin expected
utility over the set of probability measures that are in the core of v (i.e.,
{p] plsy) + plsy) = k,p(sy) + pls,) +p(s’) = 1}) (Schmeidler [23], [24]), we
can apply Corollary 1 to show that some convex combination will be strictly
preferred to both f'and g.

To summarize, in each of the possible cases where Not ((i) or (ii)) holds the
above has shown that there exists a convex combination that may be strictly
preferred to both fand g. QED

To facilitate a comparison with Theorem 2 the following corollary is
provided:
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Corollary 2. Fix acts f and g. No convex combination of f and g will ever be
strictly preferred to either alone (given CEU preferences) if and only if (i) f
weakly dominates g or vice-versa (i.e., u(f(s)) > (<)u(g(s)), for all s€ S.) or
(ii) there exists an act h and weakly increasing functions w and x on R such

that, for all s € S, u(f(s)) = w(u(h(s))) and u(g(s)) = x(u(h(s))).

Proof. By Denneberg [5, Proposition 4.5], two functions d,e: S — R are
comonotonic if and only if there exists a function z:S — R and weakly
increasing functions w, x on R such that d = w(z) and e = x(z). Letd = u o f,
e=uog, and z=uoh and the result follows from theorem 3 and the fact
that fand g are comonotonic if and only if uo f and uo g are. QED

To see how this result compares to Theorem 2, observe that if we require w
and x to be affine then condition (ii) of the corollary is equivalent to condition
(ii) of Theorem 2. While CEU prevents strict preference for mixture for acts
that are weakly increasing tranformations of the same utility payoffs, MMEU
does so only if the transformations are affine. Intuitively, this says that
MMEU decision makers may care about the cardinal properties of the dis-
tribution of utilities across states when evaluating whether one act is more
uncertain than another, while CEU individuals must consider distributions of
utilities that (roughly) order states the same way as representing equivalent
levels of uncertainty.

Remark. As the results above concern strict preference for mixture, the reader
may wonder whether this addresses all the relevant possibilities for strict
quasi-concavity of the preferences. Specifically, can there exist acts f and g
satisfying (i) or (ii) of the appropriate theorem above such that indifference
curves over mixtures are strictly quasi-concave, yet no mixture is strictly pre-
ferred? It is easily seen that the answer may be yes only if (ii) is violated. To
see this note that if (ii) is satisfied then for any MMEU preferences the same
probability measure will be used to evaluate all mixtures, generating linear
indifference curves. Conversly, if (ii) is violated then u(f) and u(g) are not
related by a positive affine transformation and therefore order probability
measures distinctly. Given one minimizing measure for f'and another for g, it
follows that the measure used to evaluate af + (1 — o)g must generate more
than the minimum expected utility level for one of the two acts, producing
strict quasi-concavity of preferences. Arguments similar to the ones above
could be used to show this more formally and demonstrate it for the Choquet
case as well.” There is then no essential loss in limiting our analysis, as we
have, to preference for mixtures. Furthermore, by examining the preference
for mixtures case, we see that only weak dominance limits the extent of the
quasi-concavity permitted by a violation of (ii).®

7 See Ghirardato et al. [14] for elaboration.

8 An alternative reason for interest in preference for mixtures per se is that such pref-
erences correspond precisely to violations of the analogue for uncertain acts of the
betweeness property for preferences under risk (e.g., Dekel [4]).
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Thus we have a characterization of the uncertainty aversion (as expressed
through strict preference for mixtures) that the two theories allow. It is
hoped that this will further understanding of what distinguishes these two
representations.

4 Conclusion

Theories of uncertainty aversion may differ in the circumstances under which
they allow violations of independence, and in particular strict preference for
mixtures. This paper has provided a characterization of those acts which may
never admit such a strict preference for the two leading representations of
uncertainty aversion: maxmin expected utility and Choquet expected utility.
The fact that these characterizations are substantially different has implica-
tions for empirical testing of the theories as well as for those trying to apply
one or the other model and wondering what the consequences of the model-
ling choice are. Fundamentally, CEU decision makers view uncertainty in
terms of (roughly) how states are ordered by an act’s utility payoffs. Given a
set of acts which all induce the same ordering, a CEU decision maker acts
exactly like an expected utility (and thus uncertainty neutral) decision maker.
MMEU decision makers, in contrast, may view uncertainty not only in terms
of ordering of states, but also in terms of how much better the payoff is in one
state as opposed to another. MMEU allows the decision maker to be averse to
such cardinal variations across states even among acts that order states in the
same way.
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