
The B.E. Journal of Theoretical
Economics

Advances
Volume 9, Issue 1 2009 Article 37

Updating Ambiguity Averse Preferences

Eran Hanany∗ Peter Klibanoff†

∗Tel Aviv University, hananye@post.tau.ac.il
†Northwestern University, peterk@kellogg.northwestern.edu

Recommended Citation
Eran Hanany and Peter Klibanoff (2009) “Updating Ambiguity Averse Preferences,” The B.E.
Journal of Theoretical Economics: Vol. 9: Iss. 1 (Advances), Article 37.
Available at: http://www.bepress.com/bejte/vol9/iss1/art37

Copyright c©2009 The Berkeley Electronic Press. All rights reserved.



Updating Ambiguity Averse Preferences∗

Eran Hanany and Peter Klibanoff

Abstract

Dynamic consistency leads to Bayesian updating under expected utility. We ask what it im-
plies for the updating of more general preferences. In this paper, we characterize dynamically
consistent update rules for preference models satisfying ambiguity aversion. This characterization
extends to regret-based models as well. As applications of our general result, we characterize
dynamically consistent updating for two important models of ambiguity averse preferences: the
ambiguity averse smooth ambiguity preferences (Klibanoff, Marinacci and Mukerji [Econometrica
73 2005, pp. 1849-1892]) and the variational preferences (Maccheroni, Marinacci and Rustichini
[Econometrica 74 2006, pp. 1447-1498]). The latter includes max-min expected utility (Gilboa
and Schmeidler [Journal of Mathematical Economics 18 1989, pp. 141-153]) and the multiplier
preferences of Hansen and Sargent [American Economic Review 91(2) 2001, pp. 60-66] as spe-
cial cases. For smooth ambiguity preferences, we also identify a simple rule that is shown to
be the unique dynamically consistent rule among a large class of rules that may be expressed as
reweightings of the Bayes’ rule.
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1 Introduction

A central question facing any theory of decision making under uncertainty is
how preferences are updated to incorporate new information. Since updated
preferences govern future choices, it is important to know how they relate
to information contingent choices made ex-ante. Dynamic consistency is the
requirement that ex-ante contingent choices are respected by updated prefer-
ences. This consistency is implicit in the standard way of thinking about a
dynamic choice problem as equivalent to a single ex-ante choice to which one is
committed, and is thus ubiquitous in economic modeling. We formally de�ne
dynamic consistency in Section 2.2.
Under subjective expected utility, updating preferences by applying Bayes�

rule to the subjective probability is the standard way to update. Why is this
so? Dynamic consistency is the primary justi�cation for Bayesian updating.
Not only does Bayesian updating imply dynamic consistency, but, if updating
consists of specifying a conditional probability measure for each (non-null)
event, dynamic consistency implies these conditional measures must be the
Bayesian updates.1 The requirement that updating consists of specifying a
conditional probability measure ensures closure for expected utility preferences
�i.e., that each such preference remains an expected utility preference after
updating.
Since dynamic consistency and closure lead to a well-established theory of

updating for expected utility, it is important to ask what they imply for the
updating of more general preferences. Closure for a set of preferences means
that each member of that set remains in the set after updating. In earlier work
(Hanany and Klibano¤ [2007]), we began to address this issue by identifying
and characterizing the �rst dynamically consistent update rules satisfying clo-
sure for the maxmin expected utility (MEU) model of decision-making under
ambiguity (Gilboa and Schmeidler [1989]).2 In this paper, we are able to sub-
stantially generalize the approach taken there and characterize dynamically
consistent update rules for essentially all continuous, monotonic preferences
that are ambiguity averse in that they satisfy the uncertainty aversion axiom
introduced in Schmeidler [1989] (i.e., have convex upper contour sets in utility
space). Schmeidler�s axiom (stated in Section 2.2) is very commonly used to
describe ambiguity aversion in the literature and MEU is but one of many mod-

1See e.g., Proposition 6 in Hanany and Klibano¤ [2007] or Proposition 3.1 in Section 2.2.
2Epstein and Schneider [2003] had previously investigated updating of MEU preferences

using a stronger notion of dynamic consistency (see our discussion of recursive dynamic
consistency in Section 6) and, as a result, to avoid a collapse to expected utility had to
restrict attention to updating given a limited set of events (the so-called rectangular events).
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els satisfying this property.3 We consider several applications of our general
result in some detail, characterizing dynamically consistent update rules sat-
isfying closure for important speci�c models of ambiguity averse preferences:
the smooth ambiguity preferences (Klibano¤, Marinacci and Mukerji [2005],
henceforth KMM),4 the variational preferences (Maccheroni, Marinacci and
Rustichini [2006a], henceforth MMR) and regret-based models of ambiguity
aversion, such as minimax regret with multiple priors (Hayashi [2008], Stoye
[2008b]). We propose the �rst dynamically consistent update rules satisfying
closure for these models.
What is a main di¤erence in the implications of dynamic consistency when

updating ambiguity averse preferences rather than standard preferences? Con-
sider Ellsberg�s three-color example, in which bets are made over the color of
a ball drawn randomly from an urn with 90 balls, of which 30 are black (B)
and the remaining 60 are somehow divided between red (R) and yellow (Y ).
Taking triples (uB; uR; uY ) 2 R3 to represent utility acts, i.e. state (color)
contingent utility payo¤s, the typical preference (1; 0; 0) � (0; 1; 0) (betting
on black rather than red) and (0; 1; 1) � (1; 0; 1) (betting against black rather
than against red) is inconsistent with expected utility but is consistent (and
is one of the primary motivations for) many models of preferences under am-
biguity. Let us introduce dynamics by supposing that after the ball is drawn
from the urn, the decision maker (DM) is informed whether or not the ball is
yellow.5 The DM is allowed to condition her choice of bets on this information.
Notice that this conditioning opportunity does not expand the feasible set of
utility acts compared to the original problem of choosing between betting on
B or on R �only the utility payo¤s (1; 0; 0) or (0; 1; 0) (and their convex com-
binations, if randomization is considered) are achievable. The same applies to
the choice between betting on the event fB; Y g or on fR; Y g �even with con-
ditioning allowed, only convex combinations of (1; 0; 1) or (0; 1; 1) are feasible.
Ex-ante, then, the static and dynamic choice problems are the same. A DM
with the typical Ellsberg preferences is dynamically consistent in this problem
if (1; 0; 0) is chosen over (0; 1; 0) when the dynamic problem is played out (i.e.,
conditional on the event fB;Rg, betting on B is chosen over betting on R)

3For alternative notions of ambiguity aversion, see Epstein [1999] and Ghirardato and
Marinacci [2002].

4See also Ergin and Gul [2009], Nau [2006], Neilson [2009], and Seo [2009] for related
preference analyses and Hansen [2007] for an application to macroeconomic risk. While
smooth ambiguity preferences may display a full range of ambiguity attitudes, we focus
exclusively on the ambiguity averse subset of these preferences.

5Such dynamic extensions of Ellsberg have been considered before, e.g., Epstein and
Schneider [2003], Hanany and Klibano¤ [2007].
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and (0; 1; 1) is chosen over (1; 0; 1) when the dynamic problem is played out
(i.e., conditional on the event fB;Rg, betting on fR; Y g is chosen over betting
on fB; Y g). Dynamic consistency creates a problem for the usual methods of
updating preferences. To see this, observe that a choice of (1; 0; 0) over (0; 1; 0)
conditional on fB;Rg from a feasible set consisting of this pair would directly
con�ict with a choice of (0; 1; 1) over (1; 0; 1) conditional on fB;Rg from a
feasible set consisting of this latter pair. The con�ict results because, when
restricted to the event fB;Rg, each pair involves exactly the choice of (1; 0)
versus (0; 1). Therefore, to achieve dynamic consistency of the prototypical
ambiguity averse preferences while ruling out updated preferences that give
weight to unrealized events, updating must depend on the ex-ante contingent
plan and/or feasible set of acts.
Why is dynamic consistency important enough to justify the additional

complications it necessitates under ambiguity aversion? The fundamental rea-
son is that dynamically consistent updating results in higher (ex-ante) welfare
than any other form of updating. If a DM could choose an update rule, it would
always be optimal to choose a dynamically consistent one. This is a strong
justi�cation for investigating dynamically consistent updating �such update
rules are precisely what a DM should use. In sum, characterizing dynamically
consistent update rules is a way to characterize optimal update rules.
There are two other approaches to modeling ambiguity averse preferences in

dynamic settings. One approach deals with recursive extensions (e.g., Epstein
and Schneider [2003], MMR [2006b], KMM [2009], Hayashi [2009]), while the
other posits dynamic inconsistency and adopts (either explicitly or implicitly)
assumptions, such as backward induction (e.g., Siniscalchi [2009]) or naive
ignorance of the inconsistency, to pin down behavior. We compare them with
our approach in some detail in Section 6, but want to mention here that in
both of these approaches updating is independent of the ex-ante contingent
plan and feasible set of acts, thus these approaches cannot deliver dynamic
consistency for many events.
The fact that dynamically consistent updating of preferences that are not

expected utility requires dependence on more than just the conditioning event
was recognized by Machina [1989] and McClennen [1990]. Such updating is
referred to as non-consequentialist. Machina [1989] proposed a dynamically
consistent update rule in the context of preferences over objective lotteries,
and this was later adapted by Machina and Schmeidler [1992] to satisfy dy-
namic consistency and closure for probabilistically sophisticated preferences
over acts.6

6They show, in this latter context, that the rule is equivalent to updating beliefs by Bayes�
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Capturing ambiguity averse behavior, however, requires models that go be-
yond probabilistic sophistication. We would like to �nd, for a variety of such
models, dynamically consistent update rules that satisfy closure. In an early
contribution in this direction, Eichberger and Grant [1997] succeed in char-
acterizing a class of preferences quadratic in probabilities that allows for am-
biguity aversion and is closed under Machina-Schmeidler updating. Why clo-
sure? Economists often choose to work with speci�c models because they are
tractable and parsimoniously capture desired behavioral features (frequently
expressed through axioms on preferences). A theory of updating will be most
helpful when it allows the use of the same type of model throughout the prob-
lem under consideration. At a normative level, if properties of a model have
strong appeal before updating, it would seem odd for this appeal to disappear
after updating. Thus, desired properties imposed on the ex-ante preferences
should also be imposed on the updated preferences, as this has the advantage
of delivering the most relevant and interesting theory.
Unfortunately, the Machina-Schmeidler update rule fails closure for any

set of preferences that includes non-probabilistically sophisticated members,
as long as the preferences satisfy essentially the Savage [1954] axioms with-
out the Sure-Thing Principle (Savage�s P2) (see Epstein and Le Breton [1993]).
Similarly, one can show that this rule is not closed for smooth ambiguity prefer-
ences or for variational preferences (both of which violate Savage�s P4 as well as
P2). In this paper, we successfully develop and characterize dynamically con-
sistent update rules satisfying closure, for models ranging from imposing only
ambiguity aversion, continuity and monotonicity to those requiring particular
families of ambiguity averse preferences such as smooth ambiguity preferences,
variational preferences, MEU preferences or multiplier preferences.
Why are these models of particular interest? The smooth ambiguity model

simultaneously allows: separation of ambiguity attitude from perception of
ambiguity; �exibility and non-constancy in ambiguity attitude; subjective and
�exible perception of which events are ambiguous; the tractability of smooth
preferences; and expected utility as a special case for any given ambiguity
attitude. Furthermore, its modeling of ambiguity attitude allows tools and
insights from the usual treatment of risk attitude under expected utility to be
imported. The variational preferences model is an elegant and highly �exible
model most notable for including and relating widely used models such as
the MEU model and the robust-control/multiplier preferences of Hansen and

rule while simultaneously updating risk preferences in a speci�c, non-consequentialist way.
See also Segal [1997] and Wakker [1997] who investigate alternative non-consequentialist
update rules.
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Sargent [2001] as special cases. The multiplier preferences of Hansen and
Sargent [2001] model ambiguity or model uncertainty using relative entropy
with respect to a reference subjective probability measure and have proven
tractable in applications.
In addition to specializing our characterization of dynamically consistent

updating for these models, we provide some more results of interest for each.
Among rules satisfying closure for smooth ambiguity preferences, a rule we
construct is shown to be the unique dynamically consistent rule that is a
reweighting of Bayes�rule. We also show that it has other good properties,
for example, it is commutative, in the sense that only the total information
available and not the order in which it arrives is important for updating.
Among rules satisfying closure for variational preferences, we show that a large
set of dynamically consistent update rules imply that multiplier preferences
should be updated by applying Bayes�rule to the reference measure.
What allows us to characterize dynamic consistency for such a broad class

of preferences? The key is characterizing global (conditional) optimality of the
ex-ante optimum. For convex feasible sets and preferences that have convex
upper contour sets, this comes down to the existence of a measure in the
intersection of two sets: the set of measures corresponding to hyperplanes
supporting the conditional indi¤erence curve at the ex-ante optimum and the
set of measures supporting the relevant feasible set at the ex-ante optimum.7

1.1 An illustration of our approach: the smooth rule

To give some understanding of our results and the type of argument that
underlies them, we brie�y describe a dynamically consistent update rule pro-
posed in this paper satisfying closure for ambiguity averse smooth ambiguity
preferences and apply it to the dynamic Ellsberg example. Consider pref-
erences having the following representation: beliefs are represented by a �-
nite support probability measure � over the set � of all probability measures
� over a state space S, risk attitudes are represented by a von Neumann-
Morgenstern expected utility function u : X ! R over a set of lotteries X,
and ambiguity attitudes are represented by a strictly increasing, concave and
di¤erentiable function � : u (X) ! R, such that for all acts f and h, f % h
() E�� (E�u � f) � E�� (E�u � h), where E is the expectation operator.
Think of an update rule de�ned by updating � to a new belief, denoted �E;g,

7In Hanany and Klibano¤ [2007] on updating MEU, the former set was available �di-
rectly� in the form of the updated set of measures in the representation of conditional
preferences. The generalization from this speci�c form is one of the key theoretical insights
of the present paper and what enables the vastly expanded scope of application.
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given any non-null event E � S and act g that is unconditionally optimal
within the feasible set of acts available to the DM. Imagine such a rule leading
to conditional preferences represented by E�E;g� (E�Eu � f) where �E denotes
the Bayesian update of � given E. To understand when such a rule is dynam-
ically consistent, consider the ex-ante optimization problem that g solves over
some convex feasible set of acts B:

max
f2B

E�� (E�u � f) .

Since � is concave and di¤erentiable and the feasible set is convex and given an
interiority condition, a necessary and su¢ cient condition for the optimality of
g is that the utility gradient of the objective function when f = g be normal to
the feasible set at u � g. To satisfy dynamic consistency (essentially to remain
optimal on E within the feasible set given that one can no longer change
outcomes on Ec), g must also solve the conditional optimization problem:

max
f2B s.t. f=g on Ec

E�E;g� (E�E (u � f)) .

Again, a necessary and su¢ cient condition for g to solve this problem is that,
on E, the utility gradient of the objective function when f = g be normal to
the set u � ff 2 B s.t. f = g on Ecg at u � g.
From the above, one can show that it is necessary and su¢ cient for dynamic

consistency that the utility gradients of the unconditional and conditional
objective functions are proportional on E when evaluated at f = g. The
gradient of the unconditional objective function with respect to u � f is

E��0 (E� (u � f))�.

The gradient of the conditional objective function with respect to u � f for
s 2 E is

E�E;g�
0 (E�E (u � f))�E.

Thus such a rule is dynamically consistent if and only if

E�E;g�
0 (E�E (u � g))�E / E��0 (E� (u � g))� restricted to s 2 E.

This argument is informative because it may be modi�ed to work for more
general models of preferences and more general notions of gradient. The im-
portant aspect of the gradient at the optimum is that it is normal to a hyper-
plane separating a feasible set from an upper contour set. Our most general
characterization, applying to quasiconcave (ambiguity averse) preference mod-
els, exploits this by working directly at the level of separating hyperplanes and
their normals.
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An example of a dynamically consistent rule we propose in the smooth
ambiguity setting is the smooth rule de�ned by setting

�E;g (�) =
� (�)� (E) �0(E�(u�g))

�0(E�E (u�g))P̂
�2�

� (�̂) �̂ (E) �0(E�̂(u�g))
�0(E�̂E (u�g))

if � (E) > 0,

(and equals 0 otherwise). Notice that when the smooth rule is used to de�ne
�E;g,

E�E;g�
0 (E�E (u � g))�E

/ E��0 (E�E (u � g))
�0 (E�(u � g))
�0 (E�E(u � g))

�(E)�E

= E��0 (E�(u � g))� for s 2 E

verifying dynamic consistency. We will see that this rule has many nice prop-
erties.
A numerical example of the smooth rule serves to show how it generates

dynamically consistent preferences in the dynamic Ellsberg example described
above. Recall that the relevant state space is S = fB;R; Y g corresponding
to the three colors that might be drawn from the urn. We assume that the
DM has smooth ambiguity preferences with � a half-half distribution over
the distributions �� � (1

3
; 2
3
�; 2

3
(1 � �)) for � 2

�
1
3
; 2
3

	
. This is consistent

with the fact that the chance of drawing a black ball is known to be one-
third and the ex-ante symmetry of the situation. Lotteries are monetary and
evaluated by their expected value (i.e., u is the identity) and �(x) = �e��x
where � > 0 so that the DM displays constant absolute ambiguity aversion
with coe¢ cient � (see KMM [2005]). We can verify, using Jensen�s inequality,
that these preferences display the modal Ellsberg choices: (1; 0; 0) � (0; 1; 0)
and (0; 1; 1) � (1; 0; 1). Now consider updating on the event that the ball is
not yellow so that E = fB;Rg. According to the smooth rule, conditional
preferences are represented by

VE;g(u � f) = �[E�1=3E
(u � f)]�E;g(�1=3) + �[E�2=3E

(u � f)]�E;g(�2=3)

where �E;g(�
�) =

�0(E�� (u�g))
�0
 
E
��
E
(u�g)

!�(�)��(E)

P
�̂2f 13 ; 23g

�0
�
E
��̂

(u�g)
�

�0
0@E

��̂
E

(u�g)

1A�(�)�
�̂(E)

and ��E = (
1

1+2�
; 2�
1+2�

; 0) for � 2

�
1
3
; 2
3

	
.
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For the feasible set B1 = co f(1; 0; 0); (0; 1; 0)g corresponding to the �rst
Ellsberg choice pair, u�g = (1; 0; 0).8 Applying the smooth rule, �E;(1;0;0)(��) =
(3+6�)e

�( 1
1+2�

)

5e
3�
5 +7e

3�
7
. Similarly, for the feasible set B2 = co f(1; 0; 1); (0; 1; 1)g corre-

sponding to the second Ellsberg choice pair, u�g = (0; 1; 1) and �E;(0;1;1)(��) =
(3+6�)e

�( 2�
1+2�

)

5e
2�
5 +7e

4�
7
. Notice that when u � g = (1; 0; 0) the updated belief puts more

weight on the measure giving higher conditional probability of black than it
does when u�g = (0; 1; 1). If, for example, � = 1, then �E;(1;0;0)(�

1
3 ) � 0:4588,

while �E;(0;1;1)(�
1
3 ) � 0:3757. What is an intuition for why these weights are

di¤erent? When facing problem B1, preferring (1; 0; 0) reveals that the DM
must in some sense be assigning more prior weight to the scenario � = 1

3
where

red has a low probability relative to black. Upon updating, this will mean
that such scenarios continue to get more weight than they would under sym-
metric prior weighting. When facing problem B2, however, preferring (0; 1; 1)
reveals that the DM must in the same sense be assigning less prior weight to
the scenario � = 1

3
. After updating then, this scenario will continue to get

less weight than under symmetric prior weighting. Further calculation shows
that with smooth rule updating, as dynamic consistency requires, (1; 0; 0) is
conditionally optimal within B1 and (0; 1; 1) is conditionally optimal within
B2.
By way of contrast, consider standard Bayesian updating in this exam-

ple, given by �E(�
�) = 1+2�

4
for � 2

�
1
3
; 2
3

	
, so that �E(�

1
3 ) = 5

12
� 0:4167. In

comparing (1; 0; 0) and (0; 1; 0), observe that the distribution of conditional ex-
pected utilities for (1; 0; 0), (3

5
w.prob. 5

12
; 3
7
w.prob. 7

12
), is a mean-preserving

spread of the distribution (2
5
w.prob. 5

12
; 4
7
w.prob. 7

12
) for (0; 1; 0). Since � is

strictly concave, this implies (0; 1; 0) �E (1; 0; 0), and thus Bayesian updating
violates dynamic consistency for such a DM.
What happens if we use the Machina-Schmeidler update rule in this ex-

ample? In our context, their rule is equivalent to saying that if ex-ante pref-
erences are represented by the functional V (u � f) for all acts f , then up-
dated preferences after learning E, given that g was unconditionally optimal
within the feasible set of acts B, are represented by V (u � fEg) for all acts
f where fEg denotes the act equal to f on E and g on Ec. In the example,
V (u�f) � E�� (E�u � f) and thus the updated preferences are represented by
V (u � fEg) � E�� (E�u � fEg). Substituting yields

�1
2
e��(

1
3
f(B)+ 2

9
f(R)) � 1

2
e��(

1
3
f(B)+ 4

9
f(R))

8We use co to denote the convex hull operator. We take the convex hull of the available
acts to re�ect the fact that the DM may randomize among them.
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when g = (1; 0; 0) and

�1
2
e��(

1
3
f(B)+ 2

9
f(R)+ 4

9
) � 1

2
e��(

1
3
f(B)+ 4

9
f(R)+ 2

9
)

when g = (0; 1; 1). One can show these updated preferences are not smooth
ambiguity preferences over acts.9 Therefore the Machina-Schmeidler rule, al-
though dynamically consistent, does not allow one to talk about updating
beliefs �, nor does it produce updated preferences that satisfy the properties
of the smooth ambiguity model (something that the ex-ante preferences do
satisfy), so it cannot even be described as updating a combination of tastes,
�, and beliefs, �.
The rest of the paper is organized as follows. Section 2 contains an ex-

position of the framework and notation, formally de�nes dynamic consistency
and presents our main result characterizing dynamic consistency in ambiguity
averse preference models. This result is applied in Section 3 to characterize dy-
namically consistent update rules satisfying closure for the smooth ambiguity
model. We then derive a novel update rule, the smooth rule mentioned above,
which is shown to be the unique dynamically consistent rule among a large
class of rules that may be expressed as reweightings of Bayes�rule. We de-
scribe additional desirable properties of this update rule, including invariance
to the order in which information arrives (commutativity) and a strict ver-
sion of dynamic consistency. We then show several impossibility results when
strengthening dynamic consistency. Section 4 applies the general characteri-
zation result to the representation developed in Cerreia-Vioglio, Maccheroni,
Marinacci and Montrucchio [2008] (henceforth CMMM) and to rules satisfying
closure for variational preferences. We also construct some consistent update
rules for variational preferences. The result on dynamically consistent updat-
ing of multiplier preferences is here as well. Section 5 explains how our results
extend to updating regret-based models, including minimax regret with mul-
tiple priors. Related literature, including recursive approaches and dynamic
inconsistency, is discussed in Section 6. The �nal section contains a brief con-
clusion. All proofs not appearing in the main text are collected in Appendix
A.

9Not even if restricted to acts of the form fEg.
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2 Dynamic consistency and updating ambigu-
ity averse preferences

2.1 Setting and notation

Consider an Anscombe-Aumann framework [1963], where X is the set of all
simple (i.e., �nite-support) lotteries over a set of consequences Z, S is a �nite
set of states of nature and A is the set of all acts, i.e., functions f : S ! X.10

Abusing notation, x 2 X is also used to denote the constant act for which
8s 2 S, f(s) = x.
Let B denote the set of all non-empty subsets of acts B � A such that B

is convex (with respect to the usual Anscombe-Aumann mixtures) and com-
pact (according to the norm taking the maximum over states and Euclidean
distance on lotteries in X). Elements of B are considered feasible sets and
their convexity could be justi�ed, for example, by randomization over acts.11

Compactness is needed to ensure the existence of optimal acts.
Let P denote the set of preference relations (i.e., complete and transitive

binary relations) % on the acts A satisfying the following quite standard as-
sumptions: preferences (i) are non-degenerate (i.e., f � h for some acts f; h),
(ii) are mixture continuous (i.e., the sets f� 2 [0; 1] j �f + (1� �)i % hg and
f� 2 [0; 1] j h % �f + (1� �)ig are closed), (iii) are weakly monotonic (i.e.,
f (s) % h (s) for all s 2 S implies f % h) and (iv) when restricted to constant
acts, obey the von Neumann-Morgenstern expected utility axioms.
Given V : RS ! R such that (i) V is non-constant and continuous and (ii)

a � b implies V (a) � V (b) for all a; b 2 RS, and given a non-constant von
Neumann-Morgenstern utility function u : X ! R, the functional V (u � �) :
A ! R represents a unique preference in P. Without loss of generality, �x a
particular normalization of u throughout the analysis. Consider a pair (V; u)
where V and u satisfy these conditions. Let 	 denote the set of all such
pairs. Each element of 	 is thus associated with a unique preference %2 P.
Conversely, given any preference in P there exists a unique u and at least one
V such that (V; u) 2 	 represents it.12 For any %2 P, it will be useful to
identify the set of interior acts, int (A) � ff 2 A j u � f is in the interior of
10The lottery structure, per se, is not essential. Extension of all of our analysis to the

case where X is a general convex subset of a vector space is straightforward.
11The important implication of convexity with respect to mixtures will be that, if u :

X ! R is a von Neumann-Morgenstern utility function, feasible sets have a convex image
in utility space, i.e., fu � f j f 2 Bg is convex. Alternatively, one could assume the latter
directly.
12Existence may be shown along the lines of Lemma 67 in the Appendix of CMMM [2008].
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u � Ag. These are the acts that do not give a best or a worst lottery in any
state. If utility is unbounded, then all acts are interior. Sometimes we refer
to utility acts, by which we mean elements of u � A.
For an event E � S, let �(E) denote the set of all probability measures

on 2S giving weight 0 to Ec (the complement of E in S). Let � � �(S). For
any q 2 � with q(E) > 0, we denote by qE 2 �(E) the measure obtained
through Bayesian conditioning of q on E (i.e., for F � S, qE (F ) =

q(E\F )
q(E)

).
For E � S and f; h 2 A, we use fEh to denote the act equal to f on E and h
on Ec. Say that an event E is Savage-null [1954] according to % if, for all acts
f; h; i 2 A, hEf � iEf . Say that an event E is non-null according to % if, for
all acts f; h; i 2 A, h(s) � i(s) for all s 2 E implies hEf � iEf .13
Denote by Q the set of all quadruples (%; E; g; B) where %2 P, E is a non-

null event, and g 2 int (A)14 is an act optimal according to % within a feasible
set B 2 B (i.e., g % f for all f 2 B). Q is the largest domain that we consider
in de�ning an update rule. It will also be useful to be able to restrict an update
rule to domains that are strict subsets of Q, for example if we want to consider
update rules that apply only to a speci�c model of preferences, only to speci�c
events or only to feasible sets with unique utility optima. To this end, say that
a non-empty D � Q is a domain if (%; E; g; B) 2 D implies (%; E; g0; B0) 2 D
for each g0; B0 such that (%; E; g0; B0) 2 Q and u�g0 is the unique maximizer of
V over u�B0. An update rule takes a quadruple and produces a representation
of preferences. These preferences are conditional in the sense that they make
Ec a Savage-null event. In this paper, we restrict attention to update rules
that preserve risk preferences (by leaving u unchanged). Formally:

De�nition 2.1 An update rule is a function U mapping elements of a domain
D to a codomain consisting of pairs (VE;g;B; u) 2 	 such that, after updating,
Ec is Savage-null and E remains non-null.

We use %E;g;B to denote the preferences represented by VE;g;B(u � �). Such
a conditional preference is viewed as governing choice upon the realization of

13This notion of non-null excludes some events that are not Savage-null �under expected
utility the two concepts agree, but they need not more generally. Throughout the paper we
will restrict attention to updating on non-null events. This stronger, yet still quite mild,
sense of �events that matter�is useful in avoiding extraneous complications related to what
should be required of update rules if considering events sometimes given positive weight and
sometimes not.
14The interiority assumption is mild and allows the simpli�cation of a number of charac-

terizations provided below by avoiding the multiplicity of supporting hyperplanes that can
occur on the boundaries (if any) of the utility act space.
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the conditioning event E.15 Recall from the Introduction that, generally, al-
lowing dependence on g and/or B is necessary for dynamic consistency under
ambiguity aversion. In some speci�c applications, we may be able to maintain
consistency while imposing independence from either g or B (but not both).
For example, when considering update rules for smooth ambiguity preferences
(in Section 3) we limit attention to rules depending on B only through g.
Another example, as we explicitly remark after Theorem 2.1 in the next sub-
section, is that all of our results hold when one limits attention to feasible sets
where u � g is unique, an environment where g is unimportant given B.

2.2 Dynamically consistent update rules

Dynamic consistency of one form or another has often been put forward as a
rationality criterion and thus, from a normative point of view, it is important
to identify rules that satisfy some version of this property. Moreover, from
the normative point of view, optimal acts are the most important for dynamic
consistency to be satis�ed on because those are the acts that are chosen. Un-
der dynamic consistency, optimal contingent plans remain optimal according
to updated preferences. Therefore dynamically consistent updating necessar-
ily maximizes ex-ante welfare among all update rules. Another normative
argument in favor of dynamic consistency is the dominated choice argument
described in the context of an example in Section 6.2. Dynamic consistency
also makes it easier to describe an individual planning ahead and to make
welfare statements in dynamic models because it is only under dynamic con-
sistency that ex-ante and ex-post preferences agree on optimal feasible choices.
Our axiom requires that, for each feasible set of acts, B, the update rule guar-
antees, for any preference and any non-null conditioning event E, if g is chosen
within B, it remains optimal conditionally. Formally,

Axiom 2.1 DC (Dynamic Consistency). For any (%; E; g; B) 2 D, if f 2 B
with f = g on Ec, then g %E;g;B f .

This formalization of dynamic consistency appeared in Hanany and Klibano¤
[2007] and is related to ideas and concepts in earlier literature such as Machina
[1989], McClennen [1990], Segal [1997] and Grant, Kajii and Polak [2000].16

Recall from the Introduction that dependence of conditional preference on g

15For a discussion of the observability of conditional preferences see Appendix A.2 of
Hanany and Klibano¤ [2007].
16For a more detailed discussion of the relation to other de�nitions, see Hanany and

Klibano¤ [2007] and the discussion of recursive approaches in Section 6.1 of this paper.

12

The B.E. Journal of Theoretical Economics, Vol. 9 [2009], Iss. 1 (Advances), Art. 37

http://www.bepress.com/bejte/vol9/iss1/art37



and B is needed, in general, to attain dynamic consistency under ambiguity
aversion. With ambiguity aversion, the weighting of states supporting the
choice of g from B is typically di¤erent than that supporting the choice of
some g0 optimal in B0. It is quite natural, then, that g and/or B also af-
fect the manner in which new information changes the DM�s view of these
uncertainties through updating.
Observe that conditional optimality of g is checked against all f 2 B such

that f and g agree on Ec. Why check conditional optimality only against these
acts? Dynamic consistency is relevant only ceteris paribus, i.e., when exactly
the same consequences occur on Ec. To make clear why this is reasonable,
consider an environment where the DM has a �xed budget to allocate across
bets on various events. It would be nonsensical to require that the ex-ante
optimal allocation of bets remained better than placing all of one�s bets on
the realized event. This justi�es the restriction of the conditional comparisons
to acts that agree on Ec.
Is there a way to describe the set of dynamically consistent update rules for

ambiguity averse preferences? We give a characterization of dynamic consis-
tency that applies to update rules that produce representations of preferences
satisfying Schmeidler�s [1989] uncertainty aversion axiom. Schmeidler�s axiom
says that f % h implies �f + (1� �)h % h for � 2 [0; 1], and is equivalent in
our setting to the quasiconcavity of V (i.e., preferences are convex in utility
space). All smooth ambiguity preferences that are ambiguity averse in the
sense of KMM [2005] satisfy this condition, as do all variational preferences,
and the general uncertainty averse preferences studied by CMMM [2008], so
this includes a very large and interesting class of models.17 Formally, then,
we restrict attention to update rules satisfying the following property that we
have verbally described above:

(i) (uncertainty/ambiguity aversion) all VE;g;B in the codomain of the update
rule are quasiconcave.

Letting Y denote the family of all update rules satisfying the above prop-
erty, Y will be the largest family for which we describe the rules that are
dynamically consistent.

17What about preferences that are not quasiconcave (i.e., that violate Schmeidler�s [1989]
axiom)? The methods we describe will still apply if one is willing to update these so that
the conditional preferences satisfy Schmeidler�s axiom. However, if one wants to allow non-
quasiconcavity after updating, while the existence of dynamically consistent rules is easy
to show, the general characterization of such rules would su¤er from all of the substantial
di¢ culties in characterizing global maxima of non-quasiconcave problems, and is therefore
beyond the scope of this paper.
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The following de�nitions are key in characterizing conditional optimality
and thus dynamic consistency. We de�ne two sets of probability measures. The
�rst set will correspond to hyperplanes supporting the conditional indi¤erence
curve at a given point. The second will correspond to hyperplanes supporting
the feasible set of acts at a given point.

De�nition 2.2 For a quasiconcave V : RS ! R, act h 2 A and event E � S,
de�ne the measures supporting the conditional indi¤erence curve at h on E
to be

TE;h (V ) =

�
q 2 �(E) j

R
(u � f)dq >

R
(u � h)dq

for all f 2 A such that V (u � f) > V (u � h)

�
.

If we think of V as representing conditional preferences over utility acts given
the event E, then the measures in TE;h are normals to hyperplanes supporting
the conditional indi¤erence curve containing u�h. The modi�er �conditional�
is important � if V is such that Ec matters, then TE;h (V ) will typically be
empty. Thus the name �measures supporting the conditional indi¤erence curve
at h on E.�

De�nition 2.3 For an act h 2 A, event E � S and feasible set B 2 B,
de�ne the measures supporting the conditional optimality of h in B to be
QE;h;BE where

QE;h;B =

�
q 2 � j q (E) > 0 and

R
(u � h)dq �

R
(u � f)dq

for all f 2 B with f = h on Ec

�
,

and QE;h;BE is given by the Bayesian updates on E of measures in QE;h;B.

There are two reasons why calling these sets �measures supporting the con-
ditional optimality of h�makes sense. The �rst is obvious: if we consider
a conditional expected utility preference with measure qE 2 QE;h;BE , then
according to such a preference, h will be conditionally optimal in the set
ff 2 B j f = h on Ecg. Similarly, if h can�t be conditionally optimal because
it is dominated on E by an element of ff 2 B j f = h on Ecg then QE;h;BE is
empty. The second reason is deeper: as we will show, the existence of a mea-
sure in QE;h;BE that is a measure supporting the conditional indi¤erence curve
at h on E is equivalent to the conditional optimality of h.
We can now state our characterization of dynamically consistent updating.

Theorem 2.1 U 2 Y is dynamically consistent if and only if TE;g (VE;g;B) \
QE;g;BE 6= ; for all (%; E; g; B) 2 D.
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This theorem provides a test for dynamic consistency of an update rule for
ambiguity averse preferences. First, given an event E, a feasible set B, and an
act g unconditionally optimal within B, one can calculate QE;g;BE . If the image
in utility space of the set of feasible acts agreeing with g on Ec is smooth at
u � g, QE;g;BE will be a singleton and can be found by di¤erentiation. Second,
apply the candidate update rule to produce a representation of the updated
preferences, VE;g;B. Third, calculate TE;g (VE;g;B). If, for example, VE;g;B is
smooth at u�g this is no more complicated than usual di¤erentiation. Finally,
see if the two sets intersect.
The intuition is quite familiar from convex optimization: g will be con-

ditionally optimal within ff 2 B j f = g on Ecg if and only if there exists a
hyperplane containing u� g that separates u�ff 2 B j f = g on Ecg from the
utility acts conditionally better than u � g. Each hyperplane in utility space
may be uniquely associated with a probability measure on the state space.
The proof in Appendix A shows that the measures in TE;g (VE;g;B) \ QE;g;BE

exactly correspond to such separating hyperplanes.

Remark 2.1 Can we say anything special about update rules that do not
depend on g (given E and B)? Using the characterization in Theorem 2.1,
we can show that such dynamically consistent update rules generally exist.
However, they may be very restrictive in the ambiguity they permit after
updating. For an illustration of this in the context of MEU, see Example 1 in
Hanany and Klibano¤ [2007]. As an alternative, less restrictive, approach to
independence from g, one could limit attention to feasible sets having a unique
optimum. The characterization in Theorem 2.1 remains true when restricted
to these sets. However, for later, more specialized results in the paper to go
through, a slightly larger collection of feasible sets is needed. In this regard,
note that one domain D to which Theorem 2.1 applies limits attention to
feasible sets for which u � g is uniquely optimal in u � B (i.e., there may be
multiple optima in B, but each generates the same utility act). If we take this
domain and replace �f = g on Ec�with �f(s) s g(s) on Ec�in the de�nitions
of dynamic consistency and of QE;h;BE , we arrive at an application of Theorem
2.1 where the choice of g is unimportant. Speci�cally, given B allowed by
this domain, further dependence of the update rule on g would never a¤ect
dynamic consistency. With this domain restriction and the above-mentioned
replacement, all of the subsequent results in the paper and their proofs (with
appropriate replacements of = with s if necessary) remain true.
What about update rules that depend on B only through g? In this case, kinks
in preferences can cause di¢ culties in achieving dynamic consistency (see e.g.,
Proposition 7 in Hanany and Klibano¤ [2007]). In Section 3, we explore such

15

Hanany and Klibanoff: Updating Ambiguity Averse Preferences

Published by The Berkeley Electronic Press, 2009



rules in detail for the (non-kinked) smooth ambiguity model.

Above, we suggested that calculation of TE;g (VE;g;B) amounted to di¤er-
entiation if VE;g;B is smooth at u � g. In fact, the set TE;g (VE;g;B) is closely
related to a general di¤erential notion developed in Greenberg and Pierskalla
[1973] for use in quasiconvex analysis. The de�nition below is adapted from
their paper and, up to normalization, simpli�es, for monotone and quasicon-
cave functions, to the usual gradient at points of continuous di¤erentiability
whenever the gradient is non-zero.18

De�nition 2.4 Given a function I : RS ! R, its Greenberg-Pierskalla su-
perdi¤erential at a is

@?I (a) =

�
r : 2S ! R j r is bounded and additive and�

b 2 RS : I (b) > I (a)
	
�
�
b 2 RS :

R
bdr >

R
adr
	 � .

The next result says that we can replace TE;g (VE;g;B) in our characteriza-
tion by the Greenberg-Pierskalla superdi¤erential of VE;g;B at u � g (or, since
it is the only relevant part, only the conditional probability measures in this
superdi¤erential):

Proposition 2.1 U 2 Y is dynamically consistent if and only if
@?VE;g;B (u � g) \QE;g;BE 6= ; for all (%; E; g; B) 2 D.

This result is helpful in that it facilitates the use of gradients when avail-
able. In the next section, we apply Proposition 2.1 to characterize dynamically
consistent update rules satisfying closure for ambiguity averse smooth ambigu-
ity preferences. In the subsequent section, we apply our results to do the same
for the CMMM [2008] representation and variational preferences. Recall from
the Introduction, when we say that an update rule satis�es closure for a set of
preferences, we mean that both unconditional and conditional preferences are
restricted to that set. For example, if one wishes to restrict ex-ante preferences
to be variational preferences (i.e., to obey the axioms in MMR [2006a]) then it
will be most desirable to have an update rule that generates only variational
preferences. Similarly, if one thinks it appropriate or useful to further restrict
to multiplier preferences (i.e., to obey the axioms in Strzalecki [2008]), then an
update rule de�ned on and generating only multiplier preferences will be of in-
terest. No dynamically consistent update rules have been previously proposed
satisfying closure for either smooth ambiguity or variational preferences.
18Since we consider updating only on non-null events, points with zero gradients do not

play a role in our analysis. We are grateful to Fabio Maccheroni for bringing the Greenberg-
Pierskalla superdi¤erential to our attention and his substantial help and suggestions regard-
ing the proposition on this and its proof.
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3 Dynamically consistent updating of smooth
ambiguity preferences

In this section we investigate dynamically consistent update rules satisfying
closure for ambiguity averse smooth ambiguity preferences. Let PSM denote
the set of smooth ambiguity preference relations over A (KMM [2005]).19 For
any preference%2 PSM , there exists a countably additive probability measure,
�, over the set �, a von Neumann-Morgenstern expected utility function,
u : X ! R and a strictly increasing function � : u (X)! R, such that 8f; h 2
A, f % h () E�� (E�u � f) � E�� (E�u � h), where E is the expectation
operator. We will assume that � is di¤erentiable and concave. According to
KMM, concavity of � re�ects ambiguity aversion. If � is degenerate, we adopt
the convention that � is the identity (with a degenerate �, � is irrelevant for
%). For simplicity, we will also assume that the support of � is �nite. Let
supp(�) denote this support.
Say that (V; u) 2 	 is an ambiguity averse smooth ambiguity represen-

tation whenever V (a) = E�� (E�a) for all a 2 RS. Such a V is completely
determined by specifying � and �. Let 	SM denote the set of all such (V; u).
Each element of 	SM is thus associated with a preference %2 PSM . To update
ambiguity averse smooth ambiguity preferences we consider rules de�ned on
an appropriate subset of quadruples (%; E; g; B) �speci�cally, DSM is the set
of all elements of Q such that %2 PSM . Note that the only events in DSM are
those for which

P
�2supp(�) � (�)� (E) > 0 as they are the non-null events in

the sense de�ned in Section 2.1.
We consider update rules U � Y satisfying:

(i) (closure for ambiguity averse smooth ambiguity preferences) the domain
is DSM and the codomain is 	SM ,

(ii) (preservation of ambiguity attitude) �E;g;B = �, and

(iii) (independence from feasible sets) VE;g;B1 = VE;g;B2 for all (%; E; g; B1); (%
; E; g; B2) 2 DSM .

Property (i) re�ects the scope of this particular application of our results
�we want to update within the class of ambiguity averse smooth ambiguity

19The framework in Klibano¤, Marinacci and Mukerji [2005] is not precisely an Anscombe-
Aumann framework as the acts there need not have lottery consequences. However their
state space S is assumed to be a product space with an ordinate that is [0; 1] and is treated
as a randomizing device. Thus, their theoretical development could be easily adapted to the
setting here. See Seo [2009] for an alternative axiomatization and model.
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preferences. Since this class of preferences separates tastes (risk and ambi-
guity attitudes) from beliefs, property (ii) extends the common notion that
new information should a¤ect beliefs but not a¤ect tastes to encompass am-
biguity attitudes in addition to the previously assumed preservation of risk
attitudes. Property (iii) is assumed mainly because update rules satisfying it
are in a natural sense simpler than those requiring dependence on B through
a channel other than g, and because we can �we shall see that even with
this restriction interesting dynamically consistent update rules exist for this
class of preferences. The fact that we are able to summarize dependence on
the feasible set through g stems from the smoothness of the preferences under
consideration.20

For these preferences, a given %, and even a given V , may be represented
by multiple (�; �) pairs. In KMM, (�; �) are pinned down by considering
more preference information than simply %. When we characterize dynam-
ically consistent update rules in this section, we �x a function selecting a
particular (�; �) representation for each % that is to be updated. Note that
one can imagine the selection function being based on information outside the
present framework, for example the preferences over second-order acts used
and discussed in KMM to pin down the characteristics of � and �. Given such
a selection function, a formula for updating (�; �) determines a well-de�ned
update rule. Since update rules in U are required to satisfy properties (ii) and
(iii) above, for the remainder of this section, an update rule in U will be iden-
ti�ed with a mapping taking � to an updated measure �E;g, with the selection
rule implicitly �xed in the background.
Given V (a) = E�� (E�a), an updated representation VE;g (a) could be writ-

ten as E��E;g� (E�a), where ��E;g satis�es ��E;g (� (E)) = 1. Notice that such a
VE;g may also be written as E�E;g� (E�Ea) where

P
f�̂2supp(�E;g)j�̂E=�g �E;g (�̂) =

��E;g (�) for all � 2 �(E). We �nd it convenient to work with such represen-
tations. Any �E;g determines a unique ��E;g in this way. Thus, to specify an
update rule in U we can and will specify conditional measures �E;g rather than
��E;g. Of course this relationship is not one-to-one �all �E;g corresponding to
the same ��E;g identify the same update rule in U (i.e., result in the same VE;g).
An example of an update rule in U is Bayes�rule (i.e., Bayesian updating of

beliefs). Given (%; E; g; B) 2 DSM , applying Bayes�rule produces �E;g where

�E;g (�) =
� (�)�(E)P

�̂2supp(�)
� (�̂) �̂(E)

.

20In contrast, for models with kinks, (iii) would lead to the non-existence of dynamically
consistent updates. See Hanany and Klibano¤ [2007] for proof in the MEU case.
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Dynamic consistency is intimately connected with Bayesian updating under
expected utility. In fact, the following result shows that dynamic consistency
justi�es adopting Bayes�rule when preferences are expected utility.

Proposition 3.1 Any update rule in U with domain restricted so that % are
expected utility (i.e., � is a¢ ne) and that satis�es DC must produce the same
conditional preferences as Bayes�rule.

What does dynamic consistency say about updating smooth ambiguity
preferences beyond expected utility? We can use Proposition 2.1 to char-
acterize the dynamically consistent rules in U . We will also show that this
characterization is not vacuous � such rules exist. Unfortunately, it is no
longer true that Bayesian updating is dynamically consistent for this larger
class of preferences. In fact, as the dynamic Ellsberg example in the Introduc-
tion demonstrated, no rule that depends on only % and E can be dynamically
consistent.21

The following result completely characterizes the update rules in U satis-
fying DC.22

Theorem 3.1 U 2 U satis�es DC if and only if

E�E;g [�
0(E�E(u � g))�E(s)]

E�E;g [�
0(E�E(u � g))]

=
E�[�0(E�(u � g))�(s)]
E�[�0(E�(u � g))�(E)]

(3.1)

for all s 2 E.

The sketch of the proof is to use di¤erentiation and the unconditional opti-

mality and interiority of g to show that for any U 2 U , E�E;g [�
0(E�E (u�g))�E(s)]

E�E;g [�
0(E�E (u�g))]

for

s 2 S is the unique element of @?VE;g;B (u � g)\�(E) and that E�[�0(E�(u�g))�(s)]
E�[�0(E�(u�g))�(E)]

for s 2 E and 0 for s 2 Ec is an element of QE;g;BE . Interiority and uncondi-
tional optimality of g implies that for some feasible set B, QE;g;BE is a singleton.
Proposition 2.1 and the fact that rules in U are independent of B then delivers
the result.
Another perspective on Equation 3.1 can be gained by thinking of normal-

ized gradients (in utility space) as local probability measures. Since preferences

21Even if we expand the set of update rules U to allow arbitrary updating of the ambiguity
attitude function � by dropping properties (ii) and (iii) above, one can show that there is
still no dynamically consistent rule that involves updating � by Bayes�rule.
22This result may be easily extended to the larger set of rules obtained by dropping

properties (ii) and (iii) used to de�ne U � simply add a subscript for B to �E;g and an
E; g;B subscript for � on the left-hand side of (3.1).
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are smooth, they are locally expected utility and normalizing the gradient of
the unconditional representation, E�[�(E�(u � g))], gives the local probability
measure at u � g. Similarly, normalizing the gradient of the conditional repre-
sentation, E�E;g [�(E�E(u � g))], gives a local conditional probability measure.
Equation 3.1 reveals that dynamically consistent updating is equivalent to the
statement that, at u � g, the local conditional probability measure is exactly
the Bayesian update of the local probability measure �in this sense there is
still a connection between Bayes�rule and dynamic consistency. When pref-
erences are expected utility, updating the local measure at u � g according
to Bayes�rule is accomplished by updating the overall measure according to
Bayes�rule, since the overall measure is also the local measure for all acts. For
smooth ambiguity preferences more generally, updating the local measure at
u � g according to Bayes�rule no longer corresponds to updating the overall
measure using Bayes�rule. In the next section, we show how this can be done
through a speci�c reweighting of the prior belief �.

3.1 An attractive update rule: the smooth rule

For a very large class of rules in U that are particularly appealing, in that they
can be expressed as reweightings of the prior �, we show using Theorem 3.1
that dynamic consistency selects a unique reweighting. We call this class of
rules reweighted Bayesian because Bayes�rule corresponds to the special case
where the prior is reweighted by (any positive multiple of) the likelihood. We
will also show that dynamically consistent reweighting has further desirable
properties, such as invariance to the order in which information is presented
(�commutativity�) and obeying a strict version of dynamic consistency.
Formally a reweighted Bayesian rule is the following:

De�nition 3.1 An update rule in U is reweighted Bayesian (RB) if �E;g (�) =
�(�;�;u;g;E)�(�)�(E)P

�̂2�
�(�̂;�;u;g;E)�(�̂)�̂(E)

for some real-valued function � satisfying � (�; �; u; g; E) >

0 if � (E) > 0.

The formula generating �E;g from � will be referred to as a reweighting.
In analogy with the above de�nition, reweightings of the form given there will
be said to be RB reweightings. There are several things worth noticing in
this de�nition. First, the weights, �, are independent of �. This expresses the
fact that the rule should be the �same�for all beliefs. Second, the value of �
when � (E) = 0 is clearly irrelevant, so attention may be restricted to values
on f� 2 � j �(E) > 0g. Third, Bayesian updating corresponds to the special
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case where � is constant in �, so that these rules include Bayes�rule. Fourth,
the positivity restriction on � is needed to ensure that �E;g (�) is a well-de�ned
probability measure for all �. To see this, note that if � (�̂; �; u; g; E) = 0,
taking � (�̂) = 1 does not yield a well-de�ned �E;g. Note also that if, for given
(�; u; g; E), some values of � were positive and some negative, �E;g would be
either ill-de�ned or not a probability measure for some ��s. It would be �ne
for all values of � to be negative, but this produces no new rules, so we rule
it out. Finally, all reweighted Bayesian rules preserve ambiguity in the sense
that any � with � (E) > 0 that is given positive weight by � is also given
positive weight by the updated measure �E;g.
The next result shows that dynamic consistency identi�es a unique RB

reweighting. We will refer to this novel updating procedure as the smooth
rule, and it is the reweighting generated by setting

� (�; �; u; g; E) =

(
�0(E�(u�g))
�0(E�E (u�g))

if � (E) > 0

0 otherwise
.

If � is a¢ ne (ambiguity neutrality according to KMM), �0 is constant and
the smooth rule collapses to Bayes�rule and preferences collapse to expected
utility. The intersection with Bayes� rule is even larger than this, however.
For example, whenever the act g is a constant act, our rule collapses to Bayes�
rule. In general, the departure from Bayes�rule depends both on the ambigu-
ity attitude, as re�ected in � (and in particular, in ratios of derivatives of �, a
quantity preserved under positive a¢ ne transformations) and on conditional
and unconditional valuations of the unconditionally optimal act g. Observe
that since � is concave, relative to Bayes�rule the smooth rule overweights
measures � that result in higher conditional valuations of g relative to uncon-
ditional valuations of g. Therefore, updating using this reweighting favors the
unconditionally chosen act, making it easier to satisfy dynamic consistency.
That an update rule generated by �xing any selection function and applying
the reweighting given by the smooth rule is dynamically consistent follows
directly from substituting into the equation for dynamic consistency estab-
lished in Theorem 3.1. The contribution of Theorem 3.2 is in showing that the
smooth rule is the unique RB reweighting for which this is always true �for
any other RB reweighting, at least one update rule generated by combining
the reweighting with a selection function will violate DC.
Formally:

De�nition 3.2 An RB reweighting satis�es DC if each RB update rule gen-
erated by combining a selection function with theRB reweighting satis�esDC.
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Theorem 3.2 The smooth rule is the unique RB reweighting to satisfy DC.

To understand why the smooth rule is the only dynamically consistent RB
reweighting, note that given Theorem 3.1, the question of uniqueness becomes
whether a distinct RB reweighting can always satisfy Equation 3.1. Since the
weights � do not depend on � and the selection rule is arbitrary, it is enough
to show uniqueness for a single �. Using an event E containing at least two
states and a � with two-point support (and where the two points have distinct
conditionals on E), one can show that Equation 3.1 generates a system of
linear equations having a unique solution.
Given this result, from a normative point of view, dynamic consistency is

a justi�cation for adopting the smooth rule instead of Bayes�rule. A more
psychological interpretation of this update rule is that it re�ects an ex-post
�rationalization�e¤ect or a way to make current beliefs consonant with ex-ante
optimal choices or plans.
The smooth rule has a number of nice properties beyond the dynamic con-

sistency that selects it. First, because the smooth rule is an RB reweighting,
it preserves ambiguity �the only measures in the support of � that are elimi-
nated by updating are the measures that assigned zero weight to the realized
event, E. This distinguishes the smooth rule from, for example, the dynami-
cally consistent rule described by setting �E;g equal to the degenerate measure

on ��g �
E�[�0(E�(u�g))�]
E�[�0(E�(u�g))] . This degenerate rule removes all ambiguity as soon

as any information is learned. Given that ambiguity and reaction to it is the
main feature of interest, such a degenerate rule is undesirable.
Second, the smooth rule satis�es commutativity. Commutativity means

that the order of information received does not a¤ect updating. If two se-
quences of events have the same intersection, ceteris paribus, beliefs following
those sequences must be identical. Gilboa and Schmeidler [1993] advocate
commutativity as an important property for an update rule to satisfy.

De�nition 3.3 A formula for updating � satis�es commutativity if, for any
(%; E; g; B) 2 DSM and any non-null event F such that E \ F is non-null,
applying the formula on E then F yields the same as updating on E \F (i.e.,�
�E;g;B

�
F;g;ff2Bjf=g on Ecg = �E\F;g;B).

Proposition 3.2 The smooth rule satis�es commutativity.

Third, when � is strictly concave, the smooth rule satis�es a desirable
strengthening of dynamic consistency. One way in which DC is weak is that
it requires only weak conditional preference of g over f . Therefore, it is com-
patible with the axiom, for example, to unconditionally have g � f for some
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f = g on Ec while conditionally g �E;g;B f . In such a circumstance, it is
true that the DM is willing to continue with g, but this is only weakly so. It
turns out that the smooth rule satis�es a strengthening of DC that rules out
such shifts from strict preference to indi¤erence, as well as similar shifts from
indi¤erence to strict preference. Ruling out the latter shifts is a robustness
requirement for dynamic consistency �just because an indi¤erence was broken
in favor of g unconditionally, why should it necessarily continue to be broken
in favor of g conditional on E?
Formally, the stronger DC is:

Axiom 3.1 Strict DC. For any (%; E; g; B) 2 D, if f 2 B with f = g on
Ec, then g � (resp. �)f implies g �E;g;B (resp. sE;g;B)f .

De�nition 3.4 A real-valued function � is strictly concave if, for all x; y 2
Domain (�), x 6= y implies � (�x+ (1� �)y) > �� (x) + (1 � �)� (y) for all
� 2 (0; 1).

Proposition 3.3 Assume � is strictly concave. Updating using the smooth
rule satis�es Strict DC.

One may wonder if it might be appropriate to strengthenDC even further.
The next section shows that, at least for two directions suggested by some
other consistency concepts in the literature, further strengthening results in
the impossibility of dynamically consistent updating.

3.2 The impossibility of stronger consistency when up-
dating smooth ambiguity preferences

Recall that DC requires only conditional optimality of g among those feasible
acts agreeing with g on Ec. Adding Strict DC extends the checking of condi-
tional optimality to any f s g and equal to g on Ec. Why not go well beyond
preserving the optimality of g and, �xing g, check that the ordering of all
feasible acts agreeing with g on Ec is preserved under conditional preference
%E;g;B? The following axiom does exactly this.

Axiom 3.2 DC1 For any (%; E; g; B) 2 D, if f; h 2 B with f = h = g on
Ec and f % h then f %E;g;B h.

Requirements implying this appear in a number of places in the literature
(e.g., Machina [1989], Machina and Schmeidler [1992], Epstein and Le Breton
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[1993] and Ghirardato [2002]). Is such a stronger axiom desirable? This is de-
batable. At least two arguments that might be used to supportDC don�t seem
to extend support to the additional requirements of DC1. First, the verbal
essence of dynamic consistency involves preventing reversals, which will only
ever have the opportunity to occur when they involve ex-ante optimal acts. As
Machina [1989] writes (pp. 1636-7) �. . . behavior. . . will be dynamically incon-
sistent, in the sense that . . . actual choice upon arriving at the decision node
would di¤er from . . . planned choice for that node.�Second, many normative
arguments in support of dynamic consistency, such as arguments showing how
lack of consistency may lead to payo¤-dominated outcomes (see e.g., Machina
[1989], McClennen [1990], Seidenfeld [2004], and Segal [1997]), require only
the conditional optimality of g. Most importantly for our purposes, we will
show below that no update rules in U can satisfy DC1.
Epstein and Schneider [2003], when discussing di¤erences between recur-

sive multiple priors and the robust control model of Hansen and Sargent [2001]
point out that the robust control model satis�es a version of dynamic consis-
tency that checks only optimality of g. Aside from minor di¤erences in the
framework, the following is that condition:

Axiom 3.3 DC2 For any (%; E; g; B) 2 D, if f 2 A with f = g on Ec, then
g % f implies g %E;g;B f .

The only di¤erence from DC is that comparisons with g are not restricted
to acts in the feasible set. Why restrict comparisons of g to feasible acts?
Again we point out that the essence of dynamic consistency involves reversals,
which are only relevant if they involve ex-ante feasible acts. Moreover, if we
impose DC2, we will show that impossibility of consistent updating results.

Proposition 3.4 No update rule in U satis�es, for all selection functions,
DC1 or DC2.

Remark 3.1 We note that the same proof used for Proposition 3.4 su¢ ces
for further results. In particular, the restriction to rules in U is overly strong
�the same impossibility holds even if the update rule is allowed to depend on
the feasible set B. Moreover, one could replace unconditional and conditional
weak preference with indi¤erence in the statement of DC2 and also yield
impossibility. Furthermore, by exploiting the property of smooth ambiguity
preferences that marginal rates of utility substitution between two states are
constant around the constant acts, we can show an even stronger impossibility
holds for DC1: �xing any selection function, no update rule in U satis�es
DC1. We do not know whether such a strengthening holds for DC2.
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4 Dynamically consistent updating of uncer-
tainty averse and variational preferences

Recent work by CMMM [2008] explores the representation of a class of pref-
erences they call uncertainty averse. This class corresponds to what we wrote
down as the largest set of preferences we consider when discussing the output
of dynamically consistent update rules. They show that these preferences may
be represented by the functional infp2�G?

�R
(u � f) dp; p

�
, where G? de�ned

as follows:

De�nition 4.1 G? : u(X)��! (�1;1] is given by

G? (t; p) = sup
f2A

�
u
�
xf
�
:

Z
(u � f) dp � t

�
,

where xf 2 X satis�es xf � f .

A natural question is how our results can be read in terms of this represen-
tation. We �nd that the measures in TE;g (VE;g;B) are exactly those measures
that minimize G?E;g;B

�R
(u � g) dp; p

�
(where G?E;g;B denotes the G

? derived
from %E;g;B). This leads to the following alternative characterization of dy-
namically consistent updating:23

Proposition 4.1 U 2 Y is dynamically consistent if and only if

argmin
p2�

G?E;g;B

�Z
(u � g) dp; p

�
\QE;g;BE 6= ;

for all (%; E; g; B) 2 D.

This result is helpful in analyzing dynamically consistent updating for the
variational preference model characterized by MMR [2006a]. A variational
preference over Anscombe-Aumann acts has the following concave representa-
tion:

min
p2�

�Z
(u � f) dp+ c (p)

�
where u : X ! R is a nonconstant a¢ ne function and c : � ! [0;1] is
grounded (i.e., has in�mum zero), convex and lower semicontinuous (in the

23Again we thank Fabio Maccheroni for his help and suggestions concerning this result
and its proof.
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weak* topology). Thus, variational preferences correspond to G? (t; p) = t +
c(p). We will assume that u is unbounded (either above or below), as then c is
unique given u (MMR [2006a], Proposition 6). They refer to c as the ambiguity
index. Notice that (V; u) 2 	 is a variational representation whenever V (a) =
minp2�

�R
adp+ c (p)

�
for all a 2 RS. Such a V is completely determined by

specifying c. Let 	V R denote the set of all such (V; u) and let PV R denote the
set of variational preference relations overA. To update variational preferences
we consider rules de�ned on an appropriate subset of quadruples (%; E; g; B)
�speci�cally, DV R is the set of all elements of Q such that %2 PV R. The
events E for which p (E) = 0 implies c (p) = +1 for all p 2 � are the only
events we consider conditioning on for variational preferences, as they are the
non-null events in the sense de�ned in Section 2.1. Formally, restrict attention
to the set of update rules W � Y satisfying:

(i) (closure for variational preferences) the domain is contained in DV R and
the codomain is contained in 	V R.

Property (i) re�ects the scope of this application � we want to update
within the class of variational preferences.
The following result completely characterizes the update rules in W that

are dynamically consistent:

Corollary 4.1 U 2 W is dynamically consistent if and only if

argmin
p2�

�Z
(u � g) dp+ cE;g;B (p)

�
\QE;g;BE 6= ;

for all (%; E; g; B) 2 D � DV R.

This result does for variational preferences what Theorem 3.1 does for
ambiguity averse smooth ambiguity preferences. Note that MEU preferences
are a special case of variational preferences. MEU preferences with set of
measures C correspond to variational preferences with ambiguity index

c (p) =

�
0 if p 2 C
+1 if p =2 C .

Proposition 4.1 and Corollary 4.1 are thus strict generalizations of Proposition
1 in Hanany and Klibano¤ [2007], which characterized dynamically consistent
update rules for MEU preferences. For examples and characterizations of such
rules, we refer the reader to that paper.
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Although Corollary 4.1 is a complete characterization and is quite useful
for checking if any given update rule for variational preferences is dynamically
consistent, it is not as useful for explicitly constructing dynamically consis-
tent update rules. To aid in this task, we present next an explicit family of
dynamically consistent update rules for variational preferences.

Notation 4.1 Given p 2 �(E) and q 2 �, let p 
E q be the measure in �
for which p 
E q (F ) = q(E)p(F ) + q(F \ Ec) for all events F . Note that if
q (Ec) > 0, we can write this as p
E q(F ) = q (E) pE (F ) + q (Ec) qEc (F ) for
all events F .

In p 
E q the choice of p determines the probabilities conditional on E
while q determines all other probabilities. The idea behind our family of up-
date rules is to: (1) �x a probability measure r that is used to evaluate g
unconditionally and supports the conditional optimality of g in B; (2) observe
that if the updated ambiguity index, cE;g;B, is to relate to the unconditional
ambiguity index, c, we need a way to map measures conditional on E back
to unconditional measures; (3) given that r was used to evaluate g uncon-
ditionally, a natural choice for this map is to treat any conditional measure
p 2 �(E) as if it were the unconditional measure p
E r; (4) since cE;g;B must
be grounded to be part of a variational representation, ensure this without
altering preferences by subtracting o¤ the constant minq2�(E) c

�
q 
E r

�
; (5)

observe that since
R
(u � f) dp 
E r = r(E)

R
(u � f) dp +

R
Ec
(u � f) dr, the

expected utility component of the contribution of p when evaluating an act f ,R
(u � f) dp, is 1

r(E)
times the expected utility component of the contribution

of p as a part of p
E r when evaluating f , so it is as if the utility function has
been rescaled by the factor 1

r(E)
when calculating the contribution of p; and

(6) by the uniqueness properties of the variational representation, when the
utility function is multiplicatively rescaled, the ambiguity index must also be
rescaled by the same factor. This leads to the following set of update rules:

De�nition 4.2

WDC
0 =

8>><>>:
U 2 W j cE;g;B(p) =� 1

r(E)

�
c
�
p
E r

�
�minq2�(E) c

�
q 
E r

��
if p 2 �(E)

+1 if p =2 �(E)
for some r 2 QE;g;B \ argminp2�

�R
(u � g) dp+ c (p)

�
.

9>>=>>; .
The next result says that these rules exist and that all of these rules are

dynamically consistent.
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Proposition 4.2 ; 6=WDC
0 � WDC.

An important subset of variational preferences are smooth variational pref-
erences (i.e., variational preferences that are everywhere di¤erentiable). In
addition to the tractability of smoothness, such preferences are rich in the
sense that any variational preference may be approximated arbitrarily well by
a smooth variational preference. Theorem 18 of MMR [2006a] shows that this
smoothness is equivalent to the ambiguity index being essentially strictly con-
vex (i.e., strictly convex on the domain of convex combinations of measures
in � that are minimizers of the representing functional for at least one act).
Assume this for the unconditional preference. In this case, since u�g is interior
in u �A, argminp2�

�R
(u � g) dp+ c (p)

�
is a singleton, meaning there is only

one choice of r possible in WDC
0 .

Corollary 4.2 Restricted to smooth variational preferences, there is only one
update rule in WDC

0 and this update rule does not depend on the feasible set
B given g; c and u.

Let�s consider a prominent example of smooth variational preferences and
see how it is updated according to our (now unique) rule.

Example 4.1 MMR point out that multiplier preferences (Hansen and Sar-
gent [2001]) are a special case of variational preferences, where, for � > 0 and
a reference probability q 2 �,

c (p) = �
X

s2supp(q)

p(s) ln
p(s)

q (s)
if p << q (and 1 otherwise).

How does the rule in WDC
0 update these preferences? For p 2 �(E),

c
�
p
E r

�
= �(

X
s2supp(q)\E

r(E)p(s) ln
r(E)p(s)

q (s)
+

X
s2supp(q)\Ec

r(s) ln
r(s)

q (s)
).

Observe that argminp2�(E) c
�
p
E r

�
= fqEg. Thus,

cE;g;B(p) =
1

r(E)

�
c
�
p
E r

�
� c

�
(qE)
E r

��
= �(

X
s2supp(q)\E

p(s) ln
r(E)

q (E)

p(s)

qE (s)
)� � ln r(E)

q (E)

= �
X

s2supp(q)\E

p(s) ln
p(s)

qE (s)
.
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So, our update rule says to update multiplier preferences simply by updating
the reference measure q using Bayes�rule and otherwise leaving the ambigu-
ity index unchanged. One may show that the same is true for any rule in
WDC that does not depend on the feasible set B and that preserves � when
updating multiplier preferences. This procedure seems quite natural, and its
dynamic consistency makes sense in light of our Proposition 3.1 justifying
Bayes�rule for expected utility and the result of Strzalecki [2008] that multi-
plier preferences satisfy the Savage [1954] axioms of subjective expected utility
applied to acts mapping from S to X.

5 Updating minimax regret and other regret-
based models

Thus far, we have considered models that generate a single complete and tran-
sitive binary relation over acts. In contrast, there is a literature in statistical
decision theory and in economics (e.g., Chamberlain [2000], Bergemann and
Schlag [2008]) that considers models of decision making under uncertainty that
incorporate regret, and, as a result, cannot be represented by a single pref-
erence ordering. In particular, concepts like regret lead to di¤erent orderings
when considering di¤erent feasible sets. In this section, we show that all of
our results apply equally well to models incorporating regret, including for
example, minimax regret with multiple priors (Hayashi [2008], Stoye [2008b]),
a generalization of the classic minimax regret criterion (Savage [1951]).24

The key to extending our results to regret-based settings is recognizing
that our characterizations of updating apply feasible set-by-feasible set, and
thus are straightforward to adapt to models where preferences di¤er with the
feasible set, but are standard ambiguity averse preferences given any �xed
feasible set. Typically the only aspect of regret-based models that varies with
the feasible set is the benchmark with respect to which regret is measured. This
generates a di¤erent state-dependent utility function for each feasible set. To
adapt our results, wherever we use the utility pro�le of an act, u � f , replace
it with the �regret-adjusted�utility pro�le ûB(f) de�ned by ûB(f)(s) = u �
f(s)�maxh2B u�h (s) for each s 2 S. With this replacement, our results apply
to any regret-based models, where, �xing the feasible set B, preferences over
acts f 2 B are represented by V (ûB(f)) with V non-constant, continuous,

24There are also models of regret that generate intransitivity even when restricting to
a �xed feasible set (for references see Stoye [2008a]). Our theory does not apply to these
models.
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weakly increasing and quasiconcave.
As an example, consider the model of minimax regret with multiple priors:

V (ûB(f)) = �max
p2C

Z �
max
h2B

u � h (s)� u � f(s)
�
dp = min

p2C

Z
ûB(f)dp

with C a compact, convex subset of �. This is an MEU representation with
regret-adjusted utility. Direct adaptation of Propositions 2.1 or 4.1 yields the
following characterization of dynamically consistent rules for updating the set
of priors C. A rule is dynamically consistent if and only if the updated sets of
measures, CE;g;B, satisfy

Q̂E;g;BE \ arg min
q2CE;g;B

Z
ûB(g)dq 6= ;,

where Q̂E;g;BE di¤ers fromQE;g;BE only in replacing u�f and u�g with ûB(f) and
ûB(g) respectively. One can further apply the more explicit characterizations
and examples of update rules for MEU provided in Hanany and Klibano¤
[2007] and the algorithms for calculating these rules developed in Hanany,
Klibano¤and Marom [2008]. See Hayashi [2009] for an alternative approach to
dynamic extensions of the minimax regret model relaxing dynamic consistency.

6 Related literature

In some of the earliest relevant work, as mentioned in the Introduction, Machina
[1989] and McClennen [1990] provide excellent and deep analyses of the prob-
lem of rational dynamic choice and advocate dropping consequentialism in
order to maintain some type of consistency. McClennen proposed a theory of
resolute choice, where it is assumed that conditional choices are in agreement
with an unconditionally optimal plan, even when those conditional choices
may con�ict with some underlying conditional preference. He does not specify
how this agreement is to be obtained. One way to view a dynamically con-
sistent update rule is as a way of implementing McClennen�s resolute choice
while also preserving the property that conditional choices are based solely on
conditional preferences. McClennen does not pursue this idea, and his de�ni-
tion of dynamic consistency is much too strong for this purpose (see Hanany
and Klibano¤ [2007]).
As explained in the Introduction, there are two approaches to modeling

ambiguity averse preferences in dynamic settings that, unlike our approach,

30

The B.E. Journal of Theoretical Economics, Vol. 9 [2009], Iss. 1 (Advances), Art. 37

http://www.bepress.com/bejte/vol9/iss1/art37



maintain consequentialism �using recursion on a limited set of events or adopt-
ing assumptions, such as consistent planning or naivete, that pin down behav-
ior under dynamic inconsistency.25 We compare these approaches with ours in
the remainder of this section.

6.1 Recursive approaches

The recursive models most related to the preferences for which we examine
updating are the recursive smooth ambiguity model of Klibano¤, Marinacci
and Mukerji [2009], the recursive subset of the dynamic variational preferences
model of Maccheroni, Marinacci and Rustichini [2006b] (which contains the
recursive multiple priors model of Epstein and Schneider [2003] as a special
case) and the model of regret with consistency to information arrival of Hayashi
[2009]. These models satisfy what we refer to as recursive dynamic consistency
for events in a given information �ltration and bene�t from the tractability
delivered by recursion. However, the limitation to events in particular �ltra-
tions is no accident �these models are inherently incapable of satisfying DC
for many events in the presence of ambiguity.
In our notation, recursive dynamic consistency is equivalent to the following

condition:

Axiom 6.1 DC-R (Recursive Dynamic Consistency). For any (%; E; g; B) 2
D, if f; h 2 A with f = h on Ec, f % h if and only if f %E;g;B h.

How does this relate to our DC condition? DC-R implies DC plus conse-
quentialism. As mentioned earlier, consequentialism should be thought of as
the requirement that updated preferences depend only on the ex-ante prefer-
ence and the realized event, E, and make Ec a Savage-null event. Formally,
we can write the following axiom:

Axiom 6.2 C (Consequentialism). For any (%; E; g1; B1), (%; E; g2; B2) 2
D,
%E;g1;B1=%E;g2;B2 and f; h; i 2 A implies fEh �E;g1;B1 fEi.

In fact, as stated in the next result, the straightforward proof of which is
omitted, DC-R also implies the various strengthenings of DC mentioned in
this paper.

25See also Ozdenoren and Peck [2008], who use extensive form games of con�ict with
nature to illustrate how varying the game the DM thinks she is playing is an alternative
modeling strategy for generating variation in conditional choices in Ellsberg-like problems.
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Proposition 6.1 The update rules satisfying DC-R satisfy DC, C, Strict
DC, DC1 and DC2.26

This result helps us understand why recursive models are simply not an
option for updating on many events under ambiguity. For instance, from
the dynamic Ellsberg example in the Introduction, we know that any update
rule satisfying C must violate DC when applied to Ellsberg preferences upon
observing the event fB;Rg. By the proposition above, this implies every
update rule violates DC-R when updating these preferences on fB;Rg and is
therefore incompatible with recursion with respect to any �ltration including
the event fB;Rg.
Another way to understand this failure of recursive models to handle up-

dating on many events under ambiguity is to recognize that recursion leads to
a lack of reduction in terms of information. For example, Figure 6.1 displays
the choice between betting on black or betting on red in the traditional 3-color
Ellsberg problem under two possible information structures. Squares indicate
choice nodes and circles indicate nodes where uncertainty is (partially) re-
solved. In the pair on the right, the DM simply chooses and then learns which
color was drawn, as is typical in the literature on Ellsberg behavior. In the
pair on the left, the DM chooses and then the same information is revealed,
but in two stages. First, the DM is told whether or not the ball drawn was
yellow, and then, if it was not yellow, whether it was black or red. Assume that
under the information structure on the right, choices follow the usual Ellsberg
pattern (in the �gure, b0 � r0.) This, by itself, is consistent with recursion
because all information is revealed at one time. However, these choices could
be reversed (r � b) under a recursive model and the information structure on
the left.27

Notice that this change in information structure does not a¤ect the feasible
actions or payo¤s at all. In both cases the DM is choosing between betting on
black or red once and for all at the beginning. The reversal across the two pairs
under recursion is due purely to non-indi¤erence toward timing of information

26We can also say something about the implications of DC plus C. It can be shown
that they imply that the ex-ante and conditional optima are the same for any feasible sets
containing only acts that agree on Ec. We conjecture that under natural conditions this
can be used to show that DC plus C is, in fact, equivalent to DC-R. We have proved this
conjecture for the case where preferences are MEU. Therefore, at least in this case, we can
be con�dent that consequentialism is the only di¤erence between DC-R and DC.
27Moreover, if preference does not reverse in this example, then, in an example that di¤ers

only in replacing the 0 payo¤s on Ec with payo¤s of 1, recursion will necessarily force a
reversal between the two information structures.
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Figure 6.1: Betting on black vs. red with and without interim information
revelation

even though that information has no instrumental value (and even when the
actual time involved could be merely the time it takes to say �not yellow�).

6.2 Dynamic inconsistency

Dynamic consistency is a central feature of our analysis. In contrast, there
are approaches to dynamic decision making that take dynamic inconsistency
of preferences over acts as given. In fact, several authors have explicitly sug-
gested that a DM may wish to maintain consequentialism in the face of am-
biguity, thus generating dynamic inconsistency (e.g., Eichberger and Grant
[1997], Eichberger, Grant and Kelsey [2007]). Although not usually thought
of in this way, this includes the vast literature (excepting Hanany and Klibano¤
[2007]) exploring update rules for MEU such as full Bayesian updating (ap-
plying Bayes�rule to each measure in the set of measures)28 and Maximum
likelihood updating (applying Bayes�rule to only those measures assigning the
largest probability to the observed event)29, and for Choquet expected utility
(Schmeidler [1989]), such as the Dempster-Shafer rule (Dempster [1968] and

28See Ja¤ray ([1992],[1994]), Fagin and Halpern [1990], Wasserman and Kadane [1990],
and Walley [1991]. Sarin and Wakker [1998], Pires [2002], Siniscalchi [2009], Wang [2003]
and Epstein and Schneider [2003] formally characterize this update rule using preference
axioms in various settings.
29Explored in terms of preferences in Gilboa and Schmeidler [1993].
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Figure 6.2: Dynamic consistency vs. inconsistency in a dynamic Ellsberg
problem

Shafer [1976]).30 All of these classic rules are dynamically inconsistent, as
they satisfy consequentialism. Unlike preferences that are dynamically con-
sistent, dynamically inconsistent preferences need to be coupled with assump-
tions about how this inconsistency is resolved before these preferences may be
translated into behavior. The two most popular assumptions in the literature
are naivete and sophistication. This distinction was made by Strotz [1955-6]
and many that followed. A sophisticated DM correctly anticipates future con-
ditional preferences and chooses by optimizing current preferences taking these
future preferences as a constraint. Under the assumption of consequentialism,
Siniscalchi [2009] shows how sophistication relates to consistent planning (a
re�nement of backward induction) in an environment rich enough to allow for
ambiguity. A naive DM incorrectly anticipates that future conditional desires
will be the same as currently desired plans for the future and therefore chooses
assuming that ex-ante desired plans will be carried out. Figure 6.2 presents an
example illustrating the distinction between these approaches and ours in the
context of ambiguity. The setting of the example is as in the dynamic Ellsberg
example presented in the Introduction. As there, the three states correspond
to the three colors that might be drawn from the urn �black (B), red (R) and
yellow (Y) �with the odds of drawing black known. The event E is the event
that the drawn ball is not yellow. At the initial choice node, the DM must
choose between d, b � " and r + ". The choice d leads to exactly the situa-
30For preference characterizations of this rule see e.g., Gilboa and Schmeidler [1993], Wang

[2003], and Nishimura and Ozaki [2003].
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tion described in the dynamic Ellsberg problem where the DM must choose
between betting on black or on red contingent on whether E or Ec is realized.
The choice b�" leads to commitment to bet on black (still contingent, though
trivially so, on whether E or Ec is realized) by removing the contingent option
of betting on red, and requires payment of a fee of " to do so. Similarly, the
choice r+ " leads to commitment to bet on red (again trivially contingent) by
removing the contingent option of betting on black, and o¤ers a payment of "
to do so. Assume that the DM unconditionally strictly prefers betting on black
to betting on red (as is usual in the Ellsberg problem), that higher payo¤s are
desirable and that " > 0 is small enough, the DM will have preferences with

(1; 0; 0) � (1� ";�";�") � ("; 1 + "; ") � (0; 1; 0) .

If the DM updates in a dynamically consistent way, then d will be chosen ini-
tially and will be followed by the choice of B if the event E is realized. These
choices result in the payo¤ vector (1; 0; 0), the ex-ante optimum. Suppose in-
stead that the DM updates in a dynamically inconsistent way. For example,
the DM might have the smooth ambiguity preferences used in the numerical
example in the Introduction and use Bayes�rule to update �. As was shown
in that example, this would lead R to be chosen over B if the event E were
realized. A naive DM would not anticipate this choice of R over B, and thus
would choose d initially, planning to then choose B, generating (1; 0; 0). How-
ever, what would actually be realized is d followed by R, generating (0; 1; 0).
Observe that naive dynamic inconsistency leads to a strictly dominated out-
come �choosing r + " rather than d would generate the dominating payo¤s
("; 1 + "; ").31 A sophisticated DM, realizing correctly that the choice of d
would lead to (0; 1; 0) would instead choose b � ", generating payo¤ vector
(1� ";�";�"). In e¤ect, the sophisticated but dynamically inconsistent DM
is willing to pay a fee to remove the option R contingent on the event E oc-
curring. Thus, under dynamically inconsistent updating, the choice between
adopting sophistication and naivete becomes relevant. In the example above,
sophistication was superior to naivete from an ex-ante point of view. However,
in other examples the DM may be ex-ante better o¤ if future selves were naive
than if they were sophisticated.32 Thus there is not a clear ex-ante welfare
justi�cation for taking a sophisticated approach over a naive one or vice-versa.
In contrast, there is a clear welfare comparison between dynamic consistency
31For previous papers arguing that naive dynamic inconsistency may lead to strictly dom-

inated choices, see e.g., Green [1987], Machina [1989], and Segal [1997] to name just a few.
32O�Donoghue and Rabin�s [1999] Example 2 demonstrates this point under certainty

when dynamic inconsistency is generated by non-exponential discounting. Similar examples
may be constructed using updating as the source of dynamic inconsistency.

35

Hanany and Klibanoff: Updating Ambiguity Averse Preferences

Published by The Berkeley Electronic Press, 2009



and dynamic inconsistency. If a DM could choose an update rule at the ex-
ante stage, it would always be optimal to choose a dynamically consistent one,
such as the rules explored in this paper.
Note that while recursion (as noted in Figure 6.1) violates invariance (re-

duction) with respect to information timing (when holding the action timing
and feasible payo¤s �xed), Figure 6.2 shows sophistication plus dynamic incon-
sistency violates invariance (reduction) with respect to action timing (holding
the information timing and feasible payo¤s �xed). Our dynamically consis-
tent updating satis�es both these invariances while violating invariance with
respect to the ex-ante optimum induced by the decision problem (consequen-
tialism).

7 Summary

In this paper, we have characterized dynamically consistent updating for gen-
eral ambiguity averse (quasiconcave) preference models and proposed novel
update rules for broad classes of preferences for which there was little prior
understanding of how to update in a consistent way. For ambiguity averse
smooth ambiguity preferences, we characterized consistent updating and pro-
posed a rule, called the smooth rule, that has a number of attractive properties
including dynamic consistency and invariance to the order in which informa-
tion arrives (commutativity). The form of the rule is a �reweighting�of Bayes�
rule, where the weights depend on the DM�s ambiguity aversion and her uncon-
ditionally chosen act in a decision problem. The rule is the unique reweighting
to be dynamically consistent. We also characterized dynamically consistent
update rules for variational preferences, constructed such rules and applied
them to multiplier preferences. Finally, we showed that our results on up-
dating apply equally well to regret-based modi�cations of ambiguity averse
models.

A Appendix: Proofs not in the main text

The following lemma is the key to proving Theorem 2.1.

Notation A.1 For a 2 RS, E � S, the restriction of a to E is denoted ajE.

Lemma A.1 Fix a preference relation, %E;g;B, on A, a von Neumann - Mor-
genstern utility u : X ! R representing %E;g;B on constant acts, and an
event E � S. Assume there exists a quasiconcave VE;g;B : RS ! R such
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that (i) f %E;g;B h if and only if VE;g;B (u � f) � VE;g;B (u � h), (ii) ajE = bjE
implies VE;g;B (a) = VE;g;B (b), and (iii) a (s) > b (s) for all s 2 E implies
VE;g;B (a) > VE;g;B (b). Then for any h 2 B, [h %E;g;B f for all f 2 B with
f = h on Ec] is equivalent to TE;h (VE;g;B) \QE;h;BE 6= ;.

Proof. (h 2 B, [h %E;g;B f for all f 2 B with f = h on Ec] =)
TE;h (VE;g;B) \ QE;h;BE 6= ;) Let I be RE. Let v be a complete, transitive
binary relation on I de�ned by

ajE v bjE if and only if VE;g;B (a) � VE;g;B (b) .

Note that v is well-de�ned because of (ii). Let m and t be the asymmetric
and symmetric parts ofv. Consider the setsD1 �

�
a j a 2 I with am u � hjE

	
and D2 � fu�fjE j f 2 B with f = h on Ecg. Quasiconcavity of VE;g;B implies
D1 is convex, while B convex implies D2 is convex. Conditional optimality of
h implies D1 \ D2 = ;. D1 is non-empty by (iii) and also has a non-empty
interior. D2 is non-empty since it contains u�hjE. By a separating hyperplane
theorem (e.g., Aliprantis and Border [1999], Thm. 5.50, p. 190), there must
exist a hyperplane separating D1 and D2. Without loss of generality, such a
hyperplane may be de�ned by

�
a 2 I j

R
adr = �

	
for r 2 �(E) restricted

to 2E and real � such that
R
adr � � �

R
bdr for all a 2 D1 and b 2 D2.

Since u � hjE 2 D2, � �
R
(u � hjE)dr. Suppose � >

R
(u � hjE)dr. Then by

the event-wise continuity of
R
(�) dr and (iii), there would exist an a 2 D1

such that
R
adr < �, a contradiction. Thus, � =

R
(u � hjE)dr. Similarly,

one can show that a 2 D1 implies
R
adr >

R
(u � hjE)dr. Therefore,

R
adr >R

(u � hjE)dr �
R
bdr for all a 2 D1 and b 2 D2. Let r̂ be the extension of

r to 2S obtained by assigning zero to all measurable events in Ec. By the
de�nitions of TE;h (VE;g;B) and Q

E;h;B
E , r̂ 2 TE;h (VE;g;B) \QE;h;BE .

(h 2 B, TE;h (VE;g;B) \ QE;h;BE 6= ; =) [h %E;g;B f for all f 2 B with
f = h on Ec]) Let r̂ be an element of TE;h (VE;g;B)\QE;h;BE . Since r̂ 2 QE;h;BE ,R
(u�h)dr̂ �

R
(u�f)dr̂ for all f 2 B with f = h on Ec. Since r̂ 2 TE;h (VE;g;B),R

(u�f)dr̂ >
R
(u�h)dr̂ for all f such that VE;g;B (u � f) > VE;g;B (u � h). Thus

VE;g;B (u � f) � VE;g;B (u � h) � 0 for all f 2 B with f = h on Ec. Since
VE;g;B (u � �) represents %E;g;B by (i), this implies h is conditionally optimal
among all f 2 B with f = h on Ec.
Proof of Theorem 2.1. Note that applying the above lemma where

h is taken to be the unconditionally optimal act g and E is non-null yields
TE;g (VE;g;B) \ QE;g;BE 6= ; as a characterization of DC for update rules in Y.

The next lemma is the key to proving Proposition 2.1.
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Lemma A.2 For any (%; E; g; B) 2 D and h 2 int (A),

TE;h (VE;g;B) = @
?VE;g;B (u � h) \�(E).

Proof. De�ne I : RS ! R by

I(a) =

�
VE;g;B(a) if a 2 u(X)S
�1 otherwise.

Fix a = u � h. We begin by proving TE;h (VE;g;B) = @?I (a) \�(E):

@?I (a) \�(E)

=

�
p 2 �(E) :

�
b 2 RS : I (b) > I (a)

	
�
�
b 2 RS :

Z
bdp >

Z
adp

��
=

�
p 2 �(E) :

�
b 2 u(X)S : I (b) > I (a)

	
�
�
b 2 RS :

Z
bdp >

Z
adp

��
=

�
p 2 �(E) :

�
b 2 u(X)S : VE;g;B (b) > VE;g;B (a)

	
�
�
b 2 u(X)S :

R
bdp >

R
adp

	 �
=

�
p 2 �(E) :

R
(u � f)dp >

R
adp

for all f 2 A such that VE;g;B (u � f) > VE;g;B (a)

�
= TE;h (VE;g;B) .

To complete the proof, we show that @?I (a) = @?VE;g;B (a). Since VE;g;B (b) �
I (b) for all b 2 RS and VE;g;B (a) = I (a), @?VE;g;B (a) � @?I (a). We now
prove the opposite inclusion. Suppose q 2 @?I (a). If q =2 @?VE;g;B (a) then
there exists a b 2 RS such that VE;g;B (b) > VE;g;B (a) and

R
bdq �

R
adq. Since

E is non-null and VE;g;B is continuous, there exists an â in the interior of u(X)S

such that VE;g;B (b) > VE;g;B (â) > VE;g;B (a) and
R
bdq �

R
adq <

R
âdq. Since

â is in the interior of u(X)S there exists a � 2 (0; 1) such that �b+ (1� �)â is
in the interior of u(X)S. By quasiconcavity, VE;g;B (�b+ (1� �)â) � VE;g;B (â)
while by linearity,

R
(�b+(1��)â)dq <

R
âdq. Now by increasing �b+(1��)â

by a small enough amount on each state in E, we obtain by a c 2 u(X)S such
that VE;g;B (c) > VE;g;B (â) and

R
cdq <

R
âdq. This contradicts q 2 @?I (a).

Therefore, @?I (a) � @?VE;g;B (a) and thus @?I (a) = @?VE;g;B (a) as desired.
Proof of Proposition 2.1. By Lemma A.2, we can replace TE;g (VE;g;B)

by @?VE;g;B (u � g) \ �(E) in the statement of Theorem 2.1. Since QE;g;BE �
�(E), @?VE;g;B (u � g)\�(E)may be further replaced by @?VE;g;B (u � g) with-
out a¤ecting the result.
The following lemma is used in proving the subsequent lemma that, in

turn, is invoked in proving the next two results in the paper:
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Lemma A.3 Fix an interior act g and preference representation (V; u) 2 	.
For any closed, convex set of utility acts, D, and interior utility act a = u�g 2
D such that V (a) > V (b) for all b 2 D, b 6= a, there exists a closed, convex
set of acts, B, such that g 2 B and u �B = D.

Proof. Fix any such D and a. There exist consequences z and z such
that V (u � z) � V (b) � V (u � z) for all b 2 D. Thus, each b 2 D can
be associated with an act that in each state yields lotteries putting positive
probability on only z and/or z and for each b 2 D there is a unique such
act. Let B̂ be the set of acts constructed in this way from D. Consider any
f; h 2 B̂ and any � 2 (0; 1). Since u � f , u � h 2 D, D is convex and u is
a¢ ne, u � (�f + (1� �)h) = �u � f + (1� �)u � h 2 D. Since �f + (1� �)h
in each state yields lotteries putting positive probability on only z and/or z,
this must be the unique such act associated with �u � f + (1 � �)u � h 2 D
and thus �f + (1� �)h 2 B̂. This proves B̂ is convex. Let B = co(B̂ [ fgg).
B is closed and convex and contains g. Since u � B̂ = D by construction and
u � g 2 u � B̂, the fact that u is a¢ ne implies u �B = D.

Lemma A.4 Given a smooth ambiguity preference, %, with � concave and
di¤erentiable, an interior act g and a non-null event E, there always exists a
feasible set B such that (i) g 2 B, (ii) g is optimal in B according to % and
if f 2 B and f s g then u � f = u � g, (iii) QE;g;BE (where f(s) s g(s) on Ec
is substituted for f = g on Ec in the de�nition) is a singleton.

Proof. If E is a singleton, then B = fgg works. Otherwise, consider
the indi¤erence curve through g. Let D be the intersection of the set u �
ff 2 A j f(s) s g(s) on Ecg and a closed ball of utility acts having u � g on
its boundary, tangent at u � g to the unique (by di¤erentiability of � and
interiority of u�g) hyperplane in utility space through u�g supporting the set
u � ff 2 A j f % gg. D is convex since it is the intersection of two convex sets
and it is also closed. By construction, the projection of D onto E, denoted
projE (D), has a unique supporting hyperplane at projE (u � g). Thus, there
is a unique r 2 �(E) such that

R
(u � g)dr �

R
bdr for all b 2 D. By Lemma

A.3, there exists a feasible set of acts B such that g 2 B and u � B = D. By
construction of D, g is optimal in B and any other optimal act in B must have
the same utility pro�le, so (ii) is satis�ed. Finally, applying the de�nition of
QE;g;BE (and replacing f(s) s g(s) on Ec for f = g on Ec in that de�nition),
yields QE;g;BE = frg proving (iii).
Proof of Proposition 3.1. For expected utility preferences, � is a¢ ne

and the only aspect of the belief relevant for preferences over acts is the reduced

39

Hanany and Klibanoff: Updating Ambiguity Averse Preferences

Published by The Berkeley Electronic Press, 2009



measure v � E��. Applying Bayes� rule yields expected utility preferences
with � and u and updated reduced measure vE;g = E�E;g�E = vE. Since
the conditional representation is continuously di¤erentiable, @?VE;g;B (u � g)\
�(E) = fvEg. Unconditional optimality of g implies vE 2 QE;g;BE . As u � g
is interior, Proposition 2.1 then implies that Bayes�rule satis�es DC for such
preferences. We prove it does so uniquely. Since the updated preferences may
depend on only (%; E; g), and since u�g is interior in u�A, by Lemma A.4 we
can without loss of generality �x a problem with a feasible set having optimum
g for which QE;g;BE is a singleton. Then invoking Proposition 2.1 again, DC
implies

vE;g (s) = vE(s) for all s 2 E.
Thus, updating must be Bayesian in the sense that the updated preferences
over acts are identical to those generated by using Bayes�rule.
Proof of Theorem 3.1. Since E�E;g� (E�Ea) is �nite, concave and di¤er-

entiable at a = u�g and u�g is interior, the unique element of @?VE;g;B (u � g)\
�(E) may be found by taking the gradient of E�E;g� (E�Ea) at a = u � g and
normalizing. This yields

�
E�E;g [�

0(E�E (u�g))�E(s)]
E�E;g [�

0(E�E (u�g))]

�
s2S
. Therefore, Proposition

2.1 says U satis�es DC if and only if
E�E;g [�

0(E�E (u�g))�E(s)]
E�E;g [�

0(E�E (u�g))]
2 QE;g;BE . Since g is

unconditionally optimal, an element of QE;g;B may be obtained by di¤erenti-
ating E�� (E�a) with respect to a 2 RS, evaluating at a = u�g, and normaliz-
ing. This yields E�[�0(E�(u�g))�(s)]

E�[�0(E�(u�g))] for all s 2 S. Since E�[�0(E�(u�g))�(s)]
E�[�0(E�(u�g))] 2 QE;g;B,

its conditional on E, E�[�0(E�(u�g))�(s)]
E�[�0(E�(u�g))�(E)] for s 2 E and 0 otherwise, must be

an element of QE;g;BE . As u � g is interior in u � A, Lemma A.4 implies
there exists an appropriate B such that QE;g;BE is a singleton. For such a B,

therefore,
E�E;g [�

0(E�E (u�g))�E(s)]
E�E;g [�

0(E�E (u�g))]
2 QE;g;BE if and only if

E�E;g [�
0(E�E (u�g))�E(s)]

E�E;g [�
0(E�E (u�g))]

=

E�[�0(E�(u�g))�(s)]
E�[�0(E�(u�g))�(E)] for all s 2 E. As U does not depend on B except through g
(since U 2 U), the proposition follows.
Proof of Theorem 3.2.
By Theorem 3.1, in order to satisfy DC it must be that

E�E;g [�
0(E�E(u � g))�E(s)]

E�E;g [�
0(E�E(u � g))]

=
E�[�0(E�(u � g))�(s)]
E�[�0(E�(u � g))� (E)]

for all s 2 E.

For any RB reweighting, substituting for �E;g yields

E�[� (�; �; u; g; E)�0(E�E(u � g))�(s)]
E�[� (�; �; u; g; E)�0(E�E(u � g))� (E)]

=
E�[�0(E�(u � g))�(s)]
E�[�0(E�(u � g))� (E)]

for all s 2 E.

(A.1)
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The smooth rule is de�ned by setting

� (�; �; u; g; E) = �SM (�; �; u; g; E) �
(

�0(E�(u�g))
�0(E�E (u�g))

if � (E) > 0

0 otherwise
.

Substituting this � into Equation A.1, it is immediate that the smooth rule
satis�es DC.
To show that it is the unique such RB reweighting, �x �; u; g and E. When E

is a singleton, the value of � at E is irrelevant. Therefore, assume E contains at
least two states. Observe that if � (�; �; u; g; E) = k�SM (�; �; u; g; E) for k 6=
0, this is the same as the smooth rule, since the multiplicative factor cancels out
in the normalization. So, in order for an RB reweighting to be di¤erent than
the smooth rule, there must exist �1 6= �2 with �i (E) > 0; i = 1; 2 and positive
real numbers k1 6= k2 such that � (�1; �; u; g; E) = k1�

SM (�1; �; u; g; E) and
� (�2; �; u; g; E) = k2�

SM (�2; �; u; g; E). Fix such �1; �2. There exists a �3

with �3 (E) > 0 such that �3E is di¤erent than at least one of �
1
E or �

2
E and a

k3 > 0 such that � (�3; �; u; g; E) = k3�SM (�3; �; u; g; E). k3 must di¤er from
at least one of k1 and k2. Therefore, without loss of generality, assume �1E 6= �2E
(since we can substitute �3 for one or the other if this is not the case). We will
show that this implies DC is violated. Consider %2 PSM corresponding to a
smooth ambiguity representation using u, � and a � having support f�1; �2g
and �x a selection function selecting that (�; �) for %.
For such a �, the left-hand side of (A.1) is equal to:

k1�
0(E�1(u � g))�1(s)� (�1) + k2�0(E�2(u � g))�2(s)� (�2)

k1�
0(E�1(u � g))�1(E)� (�1) + k2�0(E�2(u � g))�2(E)� (�2)

for all s 2 E.

From (A.1), this must equal

�0(E�1(u � g))�1(s)� (�1) + �0(E�2(u � g))�2(s)� (�2)
�0(E�1(u � g))�1(E)� (�1) + �0(E�2(u � g))�2(E)� (�2)

for all s 2 E

for DC to hold. Simplifying yields

k1
�
�0(E�1(u � g))�

�
�1
�
�0(E�2(u � g))�

�
�2
�� �
�1(s)�2(E)� �2(s)�1(E)

�
= k2

�
�0(E�1(u � g))�

�
�1
�
�0(E�2(u � g))�

�
�2
�� �
�1(s)�2(E)� �2(s)�1(E)

�
.

Since k1 6= k2, the only case in which this can be true is if, for all s 2 E,�
�0(E�1(u � g))�

�
�1
�
�0(E�2(u � g))�

�
�2
�� �
�1(s)�2(E)� �2(s)�1(E)

�
= 0.
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As �0 > 0, this requires

�1(s)�2(E)� �2(s)�1(E) = 0 for all s 2 E,

meaning
�1E = �

2
E,

a contradiction. Therefore no other RB reweighting can satisfy dynamic con-
sistency.
Proof of Proposition 3.2. According to the smooth rule, �E\F;g =
�0(E�(u�g))

�0(E�E\F (u�g))
�(�)�(E\F )P

�̂2�

�0(E�̂(u�g))
�0(E�̂E\F (u�g))

�(�̂)�̂(E\F )
. Similarly, updating on E then F using the smooth

rule produces

�
�E;g

�
F;g

=

�0(E�E (u�g))
�0(E�EF (u�g))

�E;g (�)�E (F )P̂
�2�

�0(E�̂E (u�g))
�0(E�̂EF

(u�g))�E;g (�̂) �̂E (F )

=

�0(E�E (u�g))
�0(E�EF (u�g))

�0(E�(u�g))
�0(E�E (u�g))

� (�)� (E)�E (F )P̂
�2�

�0(E�̂E (u�g))
�0(E�̂EF

(u�g))
�0(E�̂(u�g))
�0(E�̂E (u�g))

� (�̂) �̂ (E) �̂E (F )

=

�0(E�(u�g))
�0(E�EF (u�g))

� (�)� (E \ F )P̂
�2�

�0(E�̂(u�g))
�0(E�̂EF

(u�g))� (�̂) �̂ (E \ F )
.

Since �EF =
� �E

�E(F )
if s 2 E \ F

0 otherwise
= �E\F ,

�
�E;g

�
F;g
= �E\F;g. This proves

commutativity.
Before proving Proposition 3.3, we show a quite useful lemma and corollary

deriving implications of strict concavity of �.

Lemma A.5 Assume � is strictly concave. If f 2 B and f s g, then
� (f� 2 �(S) j E�u � f 6= E�u � gg) = 0.

Proof of Lemma A.5. Let b = u � g and a = u � f . We show that
for any f such that � (f� 2 � j E�a 6= E�bg) > 0 and E�� (E�a) = E�� (E�b),
�f + (1 � �)g � g for all � 2 (0; 1). To see this, �x such an a. By strict
concavity of � and � (f� 2 � j E�a 6= E�bg) > 0, E�� (�E�a+ (1� �)E�b) >
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E� (�� (E�a) + (1� �)� (E�b)) = �E�� (E�a)+(1��)E�� (E�b) = E�� (E�b).
Since g is optimal in B and B is convex, if f 2 B with f s g then

� (f� 2 � j E�u � f 6= E�u � gg) = 0.

Corollary A.1 Assume � is strictly concave and � is absolutely continu-
ous with respect to �. If f 2 B, f s g and f(s) s g(s) on Ec then
� (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) = 0.

Proof of Corollary A.1. Lemma A.5 and absolute continuity imply
� (f� 2 �(S) j E�u � f 6= E�u � gg) = 0. f(s) s g(s) on Ec implies E�u �
f 6= E�u � g () E�Eu � f 6= E�Eu � g for � 2 �(S) n�(Ec). Thus,
� (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) = 0.
Proof of Proposition 3.3. By Theorem 3.2, the smooth rule satis-

�es DC. We �rst show that g s f implies g sE;g;B f . By strict concavity
of � and Lemma A.5, if g is optimal in B and f 2 B with g s f then
� (f� 2 � j E�u � f 6= E�u � gg) = 0. By Corollary A.1, absolute continuity
and f(s) s g(s) onEc imply �E;g (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) =
0. Thus, for all f 2 B with f(s) s g(s) on Ec, g s f implies g sE;g;B f .
It remains to show that g � f implies g �E;g;B f . We prove this by

contradiction. Suppose f 2 B with f(s) s g(s) on Ec, g � f and g sE;g;B
f (since DC holds, the possibility f �E;g;B g is not relevant). Since the
set ff 2 B j f(s) s g(s) on Ecg is convex and � is strictly concave, by the
arguments used in the proof of Lemma A.5 applied to %E;g;B,

�E;g (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) = 0.

From the de�nition of the smooth rule, this implies

� (f� 2 �(S) n�(Ec) j E�u � f 6= E�u � gg) = 0,

implying g s f , a contradiction.
Proof of Proposition 3.4. Fix %2 PSM with S = f1; 2; 3g, E = f1; 2g,

Z = R, u (z) = z for z 2 Z, and smooth ambiguity representation with

�f(0:01; 0; 0:99)g = �f(0; 0:01; 0:99)g = 1
2
, and � (z) =

�
2(z � 1) 12 if z � 2

z if z � 2 .

The key feature of this � that we exploit in our argument is that it exhibits
a decreasing coe¢ cient of Arrow-Pratt relative risk aversion (corresponding
to decreasing relative ambiguity aversion) in the range z � 2. Consider
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g = (1700; 1700; 0), h = (1000; 1000; 0), f1 = (1700; 500; 0), f2 = (500; 1700; 0)
and B = cofg; h; f1; f2g. Since g weakly dominates all acts in B, it is uncon-
ditionally optimal (and, in fact, uniquely so). Observe that h s f1 s f2 (since
6 = � (10) = 1

2
� (17) + 1

2
� (5) = 4 + 2 = 6). Since E consists of only two

states, any update rule U 2 U delivers a probability measure, call it p̂, over
the conditional probability of state 1 (which we denote by �). We will show
that either f1 �E;g;B h or f2 �E;g;B h and thus that DC1 fails.
Observe that f1 �E;g;B h if and only if

� (1000) < Ep̂� (�1700 + (1� �)500)
, 999

1
2 < Ep̂ (499 + 1200�)

1
2 .

Similarly, f2 �E;g;B h if and only if

� (1000) < Ep̂� (�500 + (1� �)1700)
, 999

1
2 < Ep̂ (1699� 1200�)

1
2 .

We will show that the sum of these two inequalities holds. This implies that
at least one of the two inequalities must hold.
The sum of the two right-hand side expectations is

Ep̂
h
(499 + 1200�)

1
2 + (1699� 1200�)

1
2

i
and subtracting twice 999

1
2 yields

Ep̂
h
(499 + 1200�)

1
2 + (1699� 1200�)

1
2 � 2 � 999 12

i
.

Examining the integrand for a �xed � 2 [0; 1] gives

(499 + 1200�)
1
2 + (1699� 1200�)

1
2 � 2 � 999 12 . (A.2)

As a function of �, (A.2) is strictly concave, and attains a maximum at � = 1
2
.

Therefore, if (A.2) is positive at the boundary points � = 0 and � = 1 then it
is positive for all � 2 [0; 1]. At � = 0 and � = 1, (A.2) becomes

1699
1
2 + 499

1
2 � 2 � 999 12 > 0:3433 > 0.

Therefore, for any p̂, either f1 �E;g;B h or f2 �E;g;B h and thus DC1 fails.
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To show that DC2 must fail, consider the same setting as above, except that
now g = (1000; 1000; 0) and B = fgg. Since B is a singleton, g is trivially
unconditionally optimal. Recall that g s f1 s f2. That either f1 �E;g;B g
or f2 �E;g;B g and thus that DC2 fails follows from the same calculations as
above.
Proof of Proposition 4.1. Given Theorem 2.1, it su¢ ces to show that

TE;g (VE;g;B) = argminp2�G
?
E;g;B

�R
(u � g) dp; p

�
. De�ne I : RS ! R by

I(a) =

�
VE;g;B(a) if a 2 u(X)S
�1 otherwise.

Fix a = u�g. One step in the proof of Lemma A.2 showed that TE;g (VE;g;B) =
@?I (a)\�(E). Therefore, we are done if we can show argminp2�G?E;g;B

�R
adp; p

�
= @?I (a) \�(E). To prove this equality we show the double inclusion of the
sets.
�) Suppose q 2 argminp2�G?E;g;B

�R
adp; p

�
. By de�nition, G?E;g;B is in-

creasing in its �rst argument. For all f 2 A s.t.
R
(u � f) dq �

R
adq,

infp2�G
?
E;g;B

�R
(u � f) dp; p

�
� G?E;g;B

�R
(u � f) dq; q

�
� G?E;g;B

�R
adq; q

�
=

infp2�G
?
E;g;B

�R
adp; p

�
. Therefore,

R
(u � f) dq �

R
adq implies VE;g;B(u�f) �

VE;g;B(a) and thus I(u � f) � I(a). So,

I (b) � I (a) for all b 2 RS s.t.
Z
bdq �

Z
adq

)
�
b 2 RS :

Z
bdq �

Z
adq

�
�
�
b 2 RS : I (b) � I (a)

	
)
�
b 2 RS : I (b) > I (a)

	
�
�
b 2 RS :

Z
bdq >

Z
adq

�
thus q 2 @?I (a). Clearly q 2 �. It remains to show q 2 �(E). Since
h 2 int (A), there is an " > 0 such that (a + "q(Ec))E(a � "q(E)) 2 u(X)S.
Observe

R
(a+ "q(Ec))E(a� "q(E))dq =

R
adq. Since E is non-null, if q(Ec) >

0, VE;g;B ((a+ "q(Ec))E(a� "q(E))) > VE;g;B(a) contradicting q 2 @?I (a). So
q 2 @?I (a) \�(E).
�) Suppose q 2 @?I (a) \�(E). Then q 2 � and

inf
p2�

G?E;g;B

�Z
adp; p

�
= inf

p2�
sup
f2A

�
u
�
xf
�
:

Z
(u � f) dp �

Z
(u � h)dp

�
� u

�
xh
�
= G?E;g;B

�Z
adq; q

�
,
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where the inequality holds because h satis�es the expectation constraint for any
p and the last equality uses the de�nition of @?I (a) to rule out doing any better
than h when the measure is q. This shows q 2 argminp2�G?E;g;B

�R
adp; p

�
.

Proof of Corollary 4.1. By Proposition 4.1, a rule in W satis�es DC
if and only if QE;g;BE \ argminp2�G?E;g;B

�R
(u � g) dp; p

�
6= ;. For variational

preferences, one can show (using e.g., [2008] and Theorem 3 in [2006a]) that

G?E;g;B

�Z
(u � g) dp; p

�
=

Z
(u � g) dp+ cE;g;B (p) .

Proof of Proposition 4.2. By Proposition 4.1 and the form of G? for
variational preferences, optimality of g is equivalent to

QE;g;B \ argmin
p2�

�Z
(u � g) dp+ c (p)

�
6= ;.

Let r 2 QE;g;B \ argminp2�
�R
(u � g) dp+ c (p)

�
. Since p (E) = 0 implies

c (p) = 1, r (E) > 0. For any p 2 �(E),
R
(u � g) dp 
E r + c

�
p
E r

�
�R

(u � g) dr+ c (r). Since
R
(u � g) dp
E r = r(E)

R
(u � g) dp+

R
Ec
(u � g) dr,

r(E)
R
(u � g) dp+ c

�
p
E r

�
� r(E)

R
(u � g) drE + c (r). Thus

R
(u � g) dp+

1
r(E)

c
�
p
E r

�
�
R
(u � g) drE+ 1

r(E)
c
�
rE 
E r

�
, so rE is an element of argminp2�(E)

(
R
(u � g) dp + 1

r(E)
c
�
p
E r

�
). Since Ec Savage-null implies cE;g;B(p) = +1

for p =2 �(E) (because u is unbounded either above or below) and since sub-
tracting the constant, minq2�(E) c

�
q 
E r

�
, does not a¤ect the minimization,

rE 2 argminp2�(
R
(u � g) dp+ cE;g;B(p)). Since

rE 2 QE;g;BE \ argmin
p2�

�Z
(u � g) dp+ cE;g;B(p)

�
,

g is conditionally optimal by Corollary 4.1. It remains to show that cE;g;B
satis�es the conditions required of an ambiguity index in a variational repre-
sentation. cE;g;B is non-negative and grounded by construction. It is straight-
forward to verify that cE;g;B inherits convexity and lower semi-continuity from
c.
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