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Abstract

This paper provides a method to identify components of preference reflecting
information and those reflecting only tastes. Important to this method is the
identification of a unique set of revealed probability assignments (called relevant
measures) from preferences over acts. We characterize these relevant measures
and show where they appear in representations of preferences. This method
works for a large set of preference models provided that the state space is treated
as if it had a symmetric, “i.i.d. with unknown parameters,” structure. Relevant
measures are shown to characterize revealed information and to help in identifying
taste components of preference representations. We apply our findings to four
well-known representations of ambiguity-sensitive preferences: the α-MEU model,
the smooth ambiguity model, the extended MEU with contraction model and the
vector expected utility model. For each representation, the theory identifies both
the set of relevant measures and components of the representation that reflect
only tastes.
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1 Introduction

In Savage’s subjective expected utility (SEU) theory [40], an individual’s preference
over acts (maps from states of the world to outcomes) can be described using two ar-
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guments, a subjective probability over states that enables her to identify each act with
a distribution over outcomes, and a von Neumann-Morgenstern (vNM) utility function
that describes her risk attitude (i.e., preference over distributions over outcomes). As
is well known, the assumption of state independence implicit in Savage’s postulates
P3 and P4 makes the taste aspect of an SEU preference independent of the subjective
probability over states, hence separating it from beliefs. This separation has enabled
theorists to examine non-expected utility models of risk attitudes while retaining the
same subjective probability as in SEU, thereby facilitating the analysis of systematic
violations of the vNM independence axiom in a subjective setting. From a more applied
perspective, this separation provides foundation for the useful and common practice in
economic modeling of thinking of beliefs as the component of a preference (representa-
tion) that may vary as information varies while taste components such as risk attitude
do not.

Other violations of Savage’s assumptions have motivated models that require a
richer description of uncertainty about states and attitudes toward this uncertainty.
In particular, this richness is useful for describing the individual’s perception of and
attitude towards ambiguity.1 Just as it proved useful in SEU to identify components
of preference reflecting information and those reflecting only tastes, it is useful to have
a method for doing so that can be applied more generally. Our main contribution
is providing such a method. Our method applies to a large set of preference models
provided that the state space is treated as if it had a symmetric, “i.i.d. with unknown
parameters,” structure. Thus, think of the state space as an infinite product, with the
unknown parameter being the distribution, `, on a single ordinate. If ` were given, the
distribution on the whole state space would be the i.i.d. product `∞. We describe below
how our method exploits this symmetry. In Section 1.2, we discuss how the restrictions
imposed by symmetry leave ample scope for application of the theory.

Central to our theory is defining a unique set of probability assignments that an
individual’s preferences reveal. We characterize such sets and show where they appear
in representations of preferences. We also show that these probabilities characterize
revealed information. Standard economic theory formally identifies information with
the realization of an event in the state space. A preference reveals the information
corresponding to a particular event if the complement of that event is Savage null ac-
cording to the preference and no closed strict subset of that event has a Savage null
complement. Considering symmetric preferences makes it possible for sets of probabil-
ities over a single ordinate of the state space to be identified with events in the whole
state space, and thus, formally, with revealed information. Given state independent
preferences, it is natural for us to define components of preference as reflecting only
tastes if they are independent of revealed information. Thus, tastes are components of
preference that are fixed and not affected by changing information. In this way, our

1We use ambiguity to mean subjective uncertainty about probabilities, in the sense of the decision
theory literature following Ellsberg [14]. See e.g., Ghirardato [22] who states “. . . ‘ambiguity’ corre-
sponds to situations in which some events do not have an obvious, unanimously agreeable, probability
assignment.”
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characterization of revealed probability assignments aids in identifying components of
preference representations reflecting information and those reflecting only tastes.

We illustrate our findings by applying them to four well-known representations of
ambiguity-sensitive preferences: the α-MEU model2 (see e.g., Ghirardato, Maccheroni
and Marinacci [23]), the smooth ambiguity model (see e.g., Klibanoff, Marinacci and
Mukerji [31], Nau [34], Seo [41]), the extended MEU with contraction model3 (see e.g.,
Gajdos et. al. [21], Gajdos, Tallon and Vergnaud [20], Kopylov [33], Tapking [44])
and the vector expected utility model (see Siniscalchi [43]). For each representation,
we identify both the set of revealed probability assignments and components of the
representation that reflect only tastes.

Next, we describe our notion of revealed probability assignments. We want to
model an individual behaving as if only certain distributions on states matter for his
preferences over acts. To illustrate, consider the literature on model uncertainty in
macroeconomics and finance (see e.g., Hansen and Sargent [27]). In this literature, a
dynamic stochastic general equilibrium (DSGE) model gives as output a probability
distribution on observables of the economy (e.g., GDP, inflation, interest rates, asset
prices, etc.), and these observables make up the states on which acts are defined. Dif-
ferent DSGE models or different values of parameters within a given class of models
give rise to different distributions on these states. Consider an investor who is uncer-
tain about the DSGE model and is choosing a portfolio of assets whose payoffs are
determined by future realizations of the observables. Assume the universe of models
generates i.i.d. distributions over states. We say that a given set of distributions L
matters for the investor’s preference if there are two portfolios, f and g, that yield the
same distribution of payoffs as each other under the remaining distributions and yet the
individual strictly prefers f over g. Given an investor who ultimately cares only about
the distribution over payoffs, this preference reveals that L matters because under the
other distributions there is no reason to choose f over g. We call a distribution, `, on
a single ordinate a relevant measure if the set of i.i.d. distributions generated by each
open set containing ` matters in the sense just described. These relevant measures are
the revealed probability assignments.

Consider such an investor who believes a particular set of DSGE models/i.i.d. dis-
tributions are the only ones that matter. Our theory says that one should model this
by making exactly these distributions the relevant measures in the investor’s objective
function. A typical comparative statics exercise under model uncertainty or ambiguity
is to vary the set of distributions appearing in the investor’s objective function. We
provide foundations for interpreting when such a manipulation corresponds to changing
only the set of distributions that the investor thinks matter. Moreover, our theory pro-
vides foundations for an additional comparative static – varying the class of preferences

2The α-MEU terminology comes from the fact that the representing functional is a convex combina-
tion of the maxmin expected utility (MEU) model of Gilboa and Schmeidler [26] and the corresponding
maxmax expected utility, with weights α ∈ [0, 1] and 1− α respectively.

3This model has a functional form that is a convex combination of MEU and expected utility with
coefficients β and 1− β respectively.

3



(e.g., moving from α-MEU to smooth ambiguity preferences) while holding the relevant
measures fixed.

These foundations are not obvious from standard preference representations or ax-
iomatizations as commonly found in the literature. To illustrate this, consider two MEU
preferences over acts f mapping from a state space S to an outcome space X, where
`1, `2 are distinct probability distributions over S and u is a vNM utility function:

min
p∈{`1,`2}

ˆ
u (f) dp, (1.1)

and

min
p∈{ 3

4
`1+ 1

4
`2,

1
4
`1+ 3

4
`2}

ˆ
u (f) dp. (1.2)

One might claim that it is “obvious” from these representations that these two individ-
uals have different distributions in mind since the sets of distributions in the preference
representation differ.4 However, (1.2) can be equivalently written as an α-MEU prefer-
ence with α = 3/4:

3

4
min

p∈{`1,`2}

ˆ
u (f) dp+

1

4
max

p∈{`1,`2}

ˆ
u (f) dp.

From this perspective, it seems just as “obvious” that these two individuals have the
same distributions in mind, and differ only in that (1.1) is more ambiguity averse than
(1.2) considering α as an index of ambiguity aversion.

A key element of our strategy for distinguishing between these possibilities is to
consider “symmetric” preferences over acts defined on the product space, S∞. Consider
preferences on this larger space that agree with the preferences over acts on a single
“slice” (i.e., an ordinate S) written above, and for which all the distributions appearing
in the representations are convex combinations of i.i.d. distributions (i.e., are symmetric
or exchangeable). One such extension of the above preferences is:

min
p∈{(λ`1+(1−λ)`2)∞:λ∈[0,1]}

ˆ
u (f) dp, (1.3)

and

min
p∈{(λ`1+(1−λ)`2)∞:λ∈[ 1

4
, 3
4

]}

ˆ
u (f) dp. (1.4)

A different extension is:

min
p∈{`∞1 ,`∞2 }

ˆ
u (f) dp, (1.5)

4Note that the convex hull of
{

3
4`1 + 1

4`2,
1
4`1 + 3

4`2
}

is a strict subset of the convex hull of {`1, `2}
so that whether we write the preferences as above or, equivalently, replace the sets above with their
respective convex hulls, the sets differ.
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and

min
p∈{ 3

4
`∞1 + 1

4
`∞2 , 1

4
`∞1 + 3

4
`∞2 }

ˆ
u (f) dp. (1.6)

Notice that under the first extension, (1.4) can no longer be re-written as an α-MEU
representation with α = 3/4, while under the second extension, (1.6) is equivalent to:

3

4
min

p∈{`∞1 ,`∞2 }

ˆ
u (f) dp+

1

4
max

p∈{`∞1 ,`∞2 }

ˆ
u (f) dp.

Our notion of relevant measures picks up this distinction – (1.3) and (1.4) have different
sets of relevant measures ({λ`1 + (1− λ)`2 : λ ∈ [0, 1]} and

{
λ`1 + (1− λ)`2 : λ ∈ [1

4
, 3

4
]
}

respectively), while (1.5) and (1.6) share the same set of relevant measures, {`1, `2}.
Thus by moving to the symmetric product state space environment, we see how exam-
ining the relevant measures lets one say that individuals with preferences as in (1.3)
and (1.4) reveal that they have distinct distributions on a slice S in mind (as in the
first “obvious” interpretation of (1.1) and (1.2)), while individuals with preferences as
in (1.5) and (1.6) reveal that they have the same distributions on a slice S in mind
and differ only in an aspect of preference that we show (see section 4) can formally be
identified as taste (as in the second “obvious” interpretation of (1.1) and (1.2)). With
symmetric preferences, the individual’s revealed information is completely characterized
by the relevant measures.

The rest of the paper is organized as follows. In the remainder of this section, we
discuss related literature (section 1.1) and the extent to which the symmetric setting of
our theory is of broad interest and applicability (section 1.2). Section 2 describes the
formal setting and notation. Section 3 defines Continuous Symmetric preferences and
the notion of relevant measure and provides the fundamental results relating relevant
measures to representations of Continuous Symmetric preferences. It also contains our
definition of revealed information and of tastes and relates them to relevant measures.
Section 4 applies these results to identify relevant measures and components represent-
ing tastes in four specific decision models. Appendix A shows how our theory may
be extended to preferences that violate symmetry due to observable differences across
slices/ordinates of the state space. All proofs and related material are contained in
Appendix B.

1.1 Related literature

There is an alternative approach in the literature to identifying sets of distributions
over states from an individual’s preferences (see Ghirardato, Maccheroni and Marinacci
[23], Nehring ([35],[36]), Ghirardato and Siniscalchi [24], Siniscalchi [42]). Loosely, this
approach identifies distributions from marginal rates of substitution in utility space.
A brief comparison with our approach is in order. An advantage of the alternative
approach is that it does not require a product state space or symmetry conditions on
preferences. As Ghirardato and Siniscalchi [24] emphasize, the distributions identified in

5



their approach are those that “identify candidate solutions to optimization problems.”
(p. 3) This is a different purpose than ours, and for the goals of this paper, a disadvan-
tage of the alternative is that any tastes not captured by the vNM utility function u,
such as ambiguity attitudes, will be incorporated into and affect the set of distributions
identified. For example, for the preference represented by (1.6) the set of distributions
identified by this alternative approach is the convex hull of

{
3
4
`∞1 + 1

4
`∞2 ,

1
4
`∞1 + 3

4
`∞2
}

which incorporates not only the relevant measures that our approach identifies but
also the parameters 3

4
, 1

4
that our approach identifies as tastes. That this occurs is not

surprising given the connection between the distributions and optimization problems
identified by Ghirardato and Siniscalchi – in general, one would expect the solution to
an optimization problem to depend on all tastes other than the vNM risk attitude that
they filter out, in addition to beliefs.

Another approach simply takes sets of probability distributions over the state space
as an objective primitive. Such models include those in Gajdos et. al. [21], Gajdos,
Tallon and Vergnaud [20], Kopylov [33], Wang [45], and Cerreia-Vioglio et. al. [9]. Our
theory provides a useful linkage with the objective approach. One illustration of this
is our Theorem 4.3 which shows that when the objectively given set in the extended
MEU with contraction model of Gajdos et. al. [21] consists of i.i.d. measures, these are
exactly the i.i.d. measures generated by the relevant measures. This confirms that in
this case the objective set of measures is indeed what the individual is behaving as if he
has in mind. In this sense, our approach is complementary to an objective approach.5

Our paper imposes a symmetry property on preferences. In doing so, we are follow-
ing the work of de Finetti [11] and Hewitt and Savage [29] in the context of expected
utility and recent extensions of this work to larger classes of preferences and various
notions of symmetry by Epstein and Seo ([15],[16],[17],[18]), Al-Najjar and de Castro
([7],[8]) and Cerreia-Vioglio et. al. [9]. None of these papers use any of these “symme-
tries” to explore the concept of which i.i.d. measures (or generalizations thereof) are
relevant nor the implications of this relevance for identifying tastes and information.
Our particular formalization of symmetry is a preference axiom we call Event Symme-
try (see Section 3). The relationship between this axiom and similar preference based
notions in the literature is detailed in Klibanoff, Mukerji and Seo [32].

1.2 Illustrating the ubiquity of symmetric (and partially sym-
metric) environments

We would like to convince the reader that restricting attention to symmetric preferences
leaves ample scope for application of the theory. Start by thinking of the preferences
as those of a doctor who sees and treats a sequence of patients each of whose condition
is determined by an associated disease state in S. A sequence of disease states, one

5Less related are models of preferences over sets of lotteries as in Olszewski [38] and Ahn [1]. As
these models lack acts and a state space, the question of which probabilities are relevant in evaluating
acts doesn’t arise.
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for each patient, is thus an element of S∞. We do not mean to suggest that the
theory is particularly tailored or appropriate for medical decisions, but it is useful
when thinking about abstract concepts to be able to bring intuition derived from more
familiar, concrete settings to bear. Symmetry is meant to reflect that the doctor thinks
the uncertainty about the disease state of each patient is the same.

If the doctor thinks that data on other patients can tell him anything about the
disease state of the patient at hand, by far the simplest and most common way of
modeling this (as is done, for example, in any setting where an i.i.d. data sample is
used to say something about a population that contains many members not in the
sample) is to assume symmetry of the doctor’s uncertainty across patients where the
specific i.i.d. distribution is unknown. Thus, even when modeling a decision concerning
only one patient, whenever such a decision may rely on information from treating other
patients, in the background is naturally a product state space of many patients with a
symmetric preference structure as in this paper.

What if not all ordinates are naturally considered symmetric for the decision at
hand? For a doctor, it is usual to think of categorizing patients according to observ-
able symptoms and history, the results of diagnostic tests, and demographic informa-
tion. Patients in different categories might react to treatment according to different
distributions. Replacing the overall symmetry assumption with symmetry conditional
on descriptions (where a description is a vector of observable characteristics) allows
our analysis and findings to be extended to such situations. This is done formally in
Appendix A by replacing our Event Symmetry axiom with an assumption of Partial
Symmetry. In our corresponding results, i.i.d. measures are replaced by functions map-
ping descriptions to i.i.d. measures. A standard linear regression model is an example
of such a function; given a description, ξ, the i.i.d. measure is normal with mean βξ
and variance σ2. The description in this case is simply a vector giving the values of
the regressors for a particular patient. The analogue of a set of relevant measures is
a set of pairs (β, σ) denoting a corresponding set of regression models. For example,
a doctor might act as if he views as relevant all regression models having β within
certain bounds (e.g., within a confidence interval) and σ fixed. Thus, although each
patient is different, a doctor who classifies them for treatment purposes based on a set
of observables naturally falls within the scope of our theory.

Next we move on to more economic contexts and discuss how the symmetric frame-
work fits in with three major strands of the economics literature applying ambiguity
models: experiments, macro-finance and game theory. Bossaerts et. al. [6] analyze
portfolio choices in an experiment involving a market for Arrow securities based on a
draw from an Ellsberg urn. They model the portfolio as chosen using an α-MEU model
with the set of probabilities reflecting the information provided to the subjects about
the composition of the urn. Our theory gives a foundation for treating the set of proba-
bilities in the α-MEU model in this way under the assumption that this α-MEU model
is representing preferences on one slice of a larger, symmetric problem. Given that the
bets are about a single draw that is, in principle, repeatable and that each draw would
be informative about the distribution of the other draws, just as in the example of the
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doctor, it is natural to assume symmetry of a subject’s uncertainty across draws where
the specific composition of the Ellsberg urn is unknown.

In dynamic models of asset pricing with model uncertainty/ambiguity (e.g., Ju and
Miao [30], Hansen and Sargent [27][28], Collard et. al. [10], and Epstein and Schneider
[19]), the state space is an infinite product, S∞, where a single ordinate represents the
uncertainty about per capita consumption growth and/or dividend growth in a given
period. When the unknown growth process is assumed to be i.i.d. by the representative
agent, our symmetry assumption is satisfied. The modeler typically chooses which i.i.d.
processes to write down in the agent’s objective function based on calibration to real-
ized real-world data (e.g., all distributions approximately matching certain moments in
the data). The relevant measures identified by our theory will be exactly the i.i.d. pro-
cesses the modeler has included. This provides a foundation for interpreting the agent
as viewing these as the possible i.i.d. processes, and thus the agent is informed by
real-world data to the same extent that the modeler’s choice of these distributions was.
For more complex processes, such as Markov, symmetry would need to be weakened,
but a similar exercise could be carried out. For Markov, one would impose invariance
with respect to some finite permutations instead of all finite permutations as in Event
Symmetry.6 In this case, the unknown process is Markov and the analogue of relevant
measures are relevant transition matrices of Markov processes with each matrix spec-
ifying the marginal distribution on an ordinate as a function of the realization of the
previous ordinate. Thus it is as if there is a different set of relevant measures for each
possible previous period’s growth.

Another context to which our theory readily applies is that of large-population mod-
els of games. In such models, there is a large society of individuals from which agents
are drawn at random and matched to play a game G repeatedly. After each play, agents
are separated and re-matched with (almost certainly) different co-players to eliminate
strategic repeated game effects – thus, at each play, agents myopically maximize their
current preferences. The approach is used to capture the idea that players form their
current beliefs about the action choices of their opponents by extrapolating from past
play they have encountered. Thus, in such models, the opponents’ actions are viewed as
if generated according to some unknown population distribution that is common across
all plays of the game. Viewing an ordinate of the state space as representing uncer-
tainty over opponents’ actions in a particular play of the game, the product state space
and symmetry are natural parts of such a framework. This literature typically aims
to restrict the player’s view of which unknown population distributions are possible to
be those distributions consistent with information the player has observed from past
plays. Our theory of relevant measures again provides a foundation for the practice of
incorporating these restrictions through the measures put in the representations of the
player’s preferences. For an example explicitly referencing ambiguity in this context see
Battigalli et. al. [4].

6Diaconis and Freedman [13] study the group of permutations characterizing a mixture of Markov
processes.
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2 Setting and Notation

Let S be a compact metric space and Ω = S∞ the state space with generic element
ω = (ω1, ω2, ...). The state space Ω is also compact metric (Aliprantis and Border [2,
Theorems 2.61 and 3.36]). Denote by Σi the Borel σ-algebra on the i-th copy of S,
and by Σ the product σ-algebra on S∞. An act is a simple Anscombe-Aumann act, a
measurable f : S∞ → X having finite range (i.e., f (S∞) is finite) where X is the set
of lotteries (i.e., finite support probability measures on an outcome space Z). The set
of acts is denoted by F , and % is a binary relation on F × F . As usual, we identify a
constant act (an act yielding the same element of X on all of S∞) with the element of
X it yields.

Denote by Π the set of all finite permutations on {1, 2, ...} i.e., all one-to-one and
onto functions π : {1, 2, ...} → {1, 2, ...} such that π(i) = i for all but finitely many
i ∈ {1, 2, ...}. For π ∈ Π, let πω =

(
ωπ(1), ωπ(2), ...

)
and (πf) (ω) = f (πω).

For any topological space Y , ∆ (Y ) denotes the set of (countably additive) Borel
probability measures on Y . Unless stated otherwise, a measure is understood as a
countably additive Borel measure. For later use, ba (Y ) is the set of finitely additive
bounded real-valued set functions on Y , and ba1

+ (Y ) the set of nonnegative probability
charges in ba (Y ). A measure p ∈ ∆ (S∞) is called symmetric if the order doesn’t
matter, i.e., p (A) = p (πA) for all π ∈ Π, where πA = {πω : ω ∈ A}. Denote by `∞ the
i.i.d. measure with the marginal ` ∈ ∆ (S). Define

´
S∞

fdp ∈ X by
(´

S∞
fdp

)
(B) =(´

S∞
f (ω) (B) dp (ω)

)
. (Since f is simple, this is well-defined.)

Fix x∗, x
∗ ∈ X such that x∗ � x∗. For any event A ∈ Σ, 1A denotes the act giving

x∗ on A and x∗ otherwise. Informally, this is a bet on A. A finite cylinder event A ∈ Σ
is any event of the form {ω : ωi ∈ Ai for i = 1, ..., n} for Ai ∈ Σi and some finite n.

Endow ∆ (S), ∆ (∆ (S)) and ∆ (S∞) with the relative weak* topology. To see what
this is, consider, for example, ∆ (S). The relative weak* topology on ∆ (S) is the
collection of sets V ∩∆ (S) for weak* open V ⊆ ba (S), where the weak* topology on
ba(S) is the weakest topology for which all functions ` 7−→

´
ψd` are continuous for all

bounded measurable ψ on S. Also note that a net `α ∈ ba (S) converges to ` ∈ ba (S)
under the weak* topology if and only if

´
ψd`α →

´
ψd` for all bounded measurable ψ

on S. For a set D ⊆ ∆(S), denote the closure of D in the relative weak* topology by
D.

The support of a probability measure m ∈ ∆ (∆ (S)), denoted suppm, is a relative
weak* closed set such that m ((suppm)c) = 0 and if G∩ suppm 6= ∅ for relative weak*
open G, m (G ∩ suppm) > 0. (See e.g., Aliprantis and Border [2, p.441].)

Let Ψn (ω) ∈ ∆ (S) denote the empirical frequency operator Ψn (ω) (A) = 1
n

∑n
t=1 I (ωt ∈ A)

for each event A in S. Define the limiting frequency operator Ψ by Ψ (ω) (A) =
limn Ψn (ω) (A) if the limit exists and 0 otherwise. Also, to map given limiting frequen-
cies or sets of limiting frequencies to events in S∞, we consider the natural inverses
Ψ−1 (`) = {ω : Ψ (ω) = `} and Ψ−1 (L) = {ω : Ψ (ω) ∈ L} for ` ∈ ∆ (S) and L ⊆ ∆ (S).
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3 Symmetry and Relevance

3.1 Symmetric Preferences

We start by stating the conditions on preferences over acts F that delineate the scope
of our theory of relevance. The theory will apply to preferences satisfying the following
axioms.

Axiom 1 (C-complete Preorder). % is reflexive, transitive and the restriction of % to
X is complete.

Notice that we allow % to be incomplete. Some of our results will later invoke
completeness.

Axiom 2 (Monotonicity). If f (ω) % g (ω) for all ω ∈ S∞, f % g.

Monotonicity rules out state-dependence of preferences over X. This allows us to
focus on states purely as specifying the resolution of acts.

Axiom 3 (Risk Independence). For all x, x′, x′′ ∈ X and α ∈ (0, 1), x % x′ if and only
if αx+ (1− α)x′′ % αx′ + (1− α)x′′.

This is the standard vNM Independence axiom on lotteries. This rules out non-
expected utility preferences over lotteries. It allows us to separate attitudes toward risk
from other aspects of preferences in a simple way, using a familiar vNM utility function.

Axiom 4 (Non-triviality). There exist x, y ∈ X such that x � y.

To describe our remaining axioms, it is notationally convenient to introduce the
binary relation %∗ derived from %:

f %∗ g if αf + (1− α)h % αg + (1− α)h for all α ∈ [0, 1] and h ∈ F .

Ghirardato, Maccheroni and Marinacci [23] refer to %∗ as an unambiguous preference.
We will not use this terminology here for reasons that will become clear later. As
they state, Klaus Nehring is the first one to suggest using this maximal independent
restriction %∗ of a given %, in a 1996 talk. See also Nehring ([35], [36], [37]). Observe
that, given Monotonicity and Risk Independence, %∗ and % are identical when restricted
to constant acts, while, for more general acts, f %∗ g implies f % g but the converse
may be false.

The key axiom delineating the domain of our theory is Event Symmetry which says
that the ordinates of S∞ are viewed as interchangeable.

Axiom 5 (Event Symmetry). For all finite cylinder events A ∈ Σ and finite permuta-
tions π ∈ Π, 1A ∼∗ 1πA.
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A natural notion of symmetry, as expressed through preferences, is that the decision
maker is always indifferent between betting on an event and betting on its permutation.
The use of the term “always” here means at least that this preference should hold
no matter what other act the individual faces in combination with the bet. In an
Anscombe-Aumann framework such as ours, this may be expressed by the statement
that

α1A + (1− α)h ∼ α1πA + (1− α)h for all α ∈ [0, 1] and all acts h, (3.1)

which is exactly 1A ∼∗ 1πA. In the language of Ghirardato and Siniscalchi [24], note
that, thinking of acts as state-contingent utility consequences of actions and h as a
status-quo, (3.1) says a move away from the status quo in the direction of 1A is in-
different to the same size move away from the status quo in the direction of 1πA no
matter what the status quo h and no matter how far one moves away from it. The idea
behind Event Symmetry is that such utility transfers are considered indifferent because
the ordinates are viewed as (ex-ante) identical. For preferences satisfying the usual
Anscombe-Aumann independence axiom, 1A ∼ 1πA implies 1A ∼∗ 1πA. For preferences
that may violate independence (e.g., because of ambiguity concerns), this is not true,
and thus we cannot substitute the former condition for the latter.

Remark 3.1. As written, Event Symmetry seems to depend on the choice of x∗, x∗ in
defining 1A. In fact, in the presence of our other axioms, Event Symmetry implies that
the analogous property holds for any choice of x∗, x

∗ ∈ X.

Combining all of these conditions defines the class of preferences we will work with:

Definition 3.1. % satisfies Symmetry if it satisfies C-complete Preorder, Monotonicity,
Risk Independence, Non-triviality, and Event Symmetry.

When we say that % is Symmetric, we mean that it satisfies Symmetry.
In addition to Symmetry, we will often need some form of continuity of preference.

Different forms of continuity will be more or less convenient for subsequent results. We
now state three forms of continuity that are used in the paper. The first and second
are standard mixture continuity requirements.

Axiom 6 (Mixture Continuity of %). For all f, g, h ∈ F , the sets {λ ∈ [0, 1] : λf +
(1− λ) g % h} and {λ ∈ [0, 1] : h % λf + (1− λ) g} are closed in [0, 1].

Mixture continuity of % appears many places in the literature. A weakening of this
requirement is the Mixture Continuity of %∗:7

7To see that this is a weakening, observe that

{λ ∈ [0, 1] : λf + (1− λ) g %∗ h}
=

⋂
α∈[0,1],f ′∈F

{λ ∈ [0, 1] : λ(αf + (1− α)f ′) + (1− λ) (αg + (1− α)f ′) % αh+ (1− α)f ′}.

Mixture Continuity of % implies this set is closed since it is the intersection of closed sets. The same
reasoning applies for the set {λ ∈ [0, 1] : h %∗ λf + (1− λ) g}.
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Axiom 7 (Mixture Continuity of %∗). For all f, g, h ∈ F , the sets {λ ∈ [0, 1] : λf +
(1− λ) g %∗ h} and {λ ∈ [0, 1] : h %∗ λf + (1− λ) g} are closed in [0, 1].

We will want additional continuity in order to restrict attention to countably addi-
tive measures. The standard approach to this in the literature is based on the applica-
tion to %∗ of the monotone continuity of Arrow [3], as in Ghirardato, Maccheroni and
Marinacci [23].

Axiom 8 (Monotone Continuity of %∗). For all x, x′, x′′ ∈ X, if An ↘ ∅ and x′ � x′′,
then x′ %∗ xAnx′′ for some n.

Definition 3.2. % satisfies Continuous Symmetry if it is Symmetric and satisfies Mix-
ture Continuity of %∗ and Monotone Continuity of %∗.

When we say that % is Continuous Symmetric, we mean that it satisfies Continuous
Symmetry.

3.2 Relevance

We now formalize what it means for a measure ` ∈ ∆ (S) to be relevant according to
preferences %. For notational convenience, let O` be the collection of open subsets of
∆ (S) that contains `. That is, for ` ∈ ∆ (S), O` = {L ⊆ ∆ (S) : L is open, ` ∈ L}.

Definition 3.3. A measure ` ∈ ∆ (S) is relevant (according to preferences %) if, for any

L ∈ O`, there are f, g ∈ F such that f � g and
´
fdˆ̀∞ =

´
gdˆ̀∞ for all ̂̀∈ ∆ (S) \L.

In words, ` is relevant if it satisfies the following property: For each open ball
around `, there are acts that are not indifferent despite generating identical induced
distributions over outcomes when any measure outside this ball governs the independent
realization of each ordinate S. The use of open balls is required only because ∆ (S) is
infinite. This definition is in the spirit of the notion of non-null as traditionally used
in decision theory (e.g., Savage [40]).8 To see the connection, recall that an event is
non-null if there are acts f � g such that f = g on all states outside of that event. We
consider open sets of measures, L ∈ O`, instead of events, and

´
fdˆ̀∞ =

´
gdˆ̀∞ for all

other measures ̂̀ instead of f = g on all other states.
Why is it enough to consider equality of the lotteries generated by f and g for i.i.d.

measures, ˆ̀∞ (and by linearity of the integral, therefore, for any mixtures over these
i.i.d. measures)? When % is Continuous Symmetric, we will show there is a natural
sense in which mixtures over i.i.d. measures (i.e., exchangeable measures) will be the
only ones that matter for preference. Furthermore, as Continuous Symmetry implies
expected utility on constant acts, one could replace

´
fdˆ̀∞ =

´
gdˆ̀∞ by the analogous

8The definition is also reminiscent of the definition of relevant subjective state in Dekel, Lipman
and Rustichini [12, Definition 1]. In the case of a finite subjective state space, a state is relevant if
there are two menus x � y, the valuations of which coincide on all other subjective states. The infinite
case uses open neighborhoods just as we do.
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condition on expected utilities,
´
u(f)dˆ̀∞ =

´
u(g)dˆ̀∞, without changing the meaning

of the definition within our theory.
Next we introduce an alternative notion of relevance (or, more precisely, irrelevance)

based on bets on events generated by limiting frequencies. In reading the definition
recall that, for A ⊆ ∆ (S), Ψ−1 (A) is the event that limiting frequencies over S lie in
A.

Definition 3.4. A measure ` ∈ ∆ (S) is irrelevant (according to preferences %) if, for
some L ∈ O`, Ψ−1 (L) is Savage null i.e., fΨ−1(L)g ∼ g for all f, g ∈ F .

That is, in an i.i.d. environment, ` ∈ ∆ (S) is irrelevant when what an act yields
on the limiting frequency event generated by an open neighborhood containing ` never
affects preference. It is as if the individual knows this limiting frequency event will not
happen.

3.3 Relevance and Continuous Symmetric Preferences

Assuming Continuous Symmetry, we show that the two notions of relevance offered
above agree, and we provide a representation of the set of relevant measures in ∆ (S).
We also show that any such preferences may be represented by an increasing func-
tional on the expected utilities generated by the relevant measures. Furthermore, up
to closure, all relevant measures are needed for such a representation.

We first provide a Bewley-style (Bewley [5]) representation result for the induced
relation %∗. Compared to similar results in the literature (e.g., Ghirardato, Maccheroni
and Marinacci [23], Gilboa et. al. [25], Ghirardato and Siniscalchi [24], Nehring [35])
the key difference is that Symmetry (and in particular, Event Symmetry) allows a de
Finetti-style decomposition of the representing set of measures, C, the Bewley set.

Lemma 3.1. Suppose % is reflexive and transitive. Then % is Continuous Symmetric
if and only if there exist a non-empty compact convex set M ⊆ ∆ (∆ (S)) and a non-
constant vNM utility function u such that

f %∗ g if and only if

ˆ
u (f) dp ≥

ˆ
u (g) dp for all p ∈ C, (3.2)

where C =
{´

`∞dm (`) : m ∈M
}

. Furthermore M is unique.

Given this representation, define the set R ≡
⋃
m∈M suppm ⊆ ∆ (S). The set R is

our candidate for the set of relevant measures in ∆ (S). De Finetti’s theorem (see He-
witt and Savage [29]) says that if we (or an agent) have a SEU preference, and if we are
indifferent among the orderings of experiments, then the agent’s subjective probability
measure can be decomposed into parameters, corresponding to i.i.d. measures, and a
unique probability measure over them. Our result goes beyond expected utility, and
even beyond probabilistic sophistication, and says that Continuous Symmetry playing
the role of indifference among the ordering of experiments, is equivalent to existence of
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a similar decomposition. Instead of a unique probability measure, when % is incom-
plete and/or violates the Anscombe-Aumann Independence axiom, our result delivers
a compact convex set of probability measures, M , over parameters corresponding to
i.i.d. measures. In this sense, R, the union of the supports of measures in M , is the set
of parameters given weight under %. Indeed, we now show that R is the set of relevant
measures according to preferences %.

Theorem 3.1. Assume % is Continuous Symmetric, and take R accordingly. Then, R
is the set of all relevant measures and is closed. Moreover, Rc is the set of all irrelevant
measures.

The theorem also says that R is the set of measures that are not irrelevant, and
therefore our two notions of relevance agree.

When R is finite, the same result holds without the use of neighborhoods in defining
irrelevant, i.e., Ψ−1 (`) is Savage null if and only if ` /∈ R.

The above results justify thinking of R as the unique set of parameters viewed as
subjectively possible since any other set of measures in ∆ (S) will either leave out some
relevant measures or include some irrelevant ones.

For complete preferences satisfying Continuous Symmetry, our next result shows
that (up to closure) all relevant measures are needed to represent preferences and thus
the i.i.d. measures generated from R, the set of all relevant measures, is the unique
minimal closed set of i.i.d. measures to do so.

Theorem 3.2. Suppose % is Continuous Symmetric and admits a real-valued repre-
sentation. Then, there is a non-constant vNM utility function u on X and a weakly
increasing functional G on{

f̃ ∈ [u(X)]R : f̃ (`) =

ˆ
u (f) d`∞ for some f ∈ F

}
such that

f 7−→ G

((ˆ
u (f) d`∞

)
`∈R

)
represents %. Furthermore, the measures in the representation are essentially unique
– if D ⊆ ∆ (S) and every element in D is relevant, ũ is a non-constant vNM utility
function, H is a functional on{

f̃ ∈ [ũ(X)]D : f̃ (`) =

ˆ
(ũ(f))d`∞ for some f ∈ F

}
and

f 7−→ H

((ˆ
(ũ(f))d`∞

)
`∈D

)
represents %, then D = R and ũ is a positive affine transformation of u.
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Under slightly different assumptions, the fact that the set of expected utilities with
respect to all i.i.d. measures can be monotonically aggregated to represent preferences
was shown in de Castro and Al-Najjar ([7],[8]). In this regard, the main contribution
of Theorem 3.2 is that R generates the unique closed subset of i.i.d. measures that
are essential for such a representation. It is worth remarking that Theorem 3.2 does
not imply that the set of i.i.d. measures generated from the relevant measures is the
minimal closed set of measures in ∆ (S∞) needed to represent preferences. In particular,
specific mixtures over these i.i.d. measures may suffice. Formally, this is reflected in
the fact that the Bewley set C may be a strict subset of ∆

(⋃
m∈M suppm

)
in Lemma

3.1.
One aim of the paper is to understand the connection between relevant measures

and preference representations. This theorem serves that goal by addressing the issue
for the general class of complete and Continuous Symmetric preferences. We see that
all decision makers having such preferences will have their preferences fully described
by specifying (1) the relevant measures (i.e., the set R), (2) risk attitudes (i.e., u) and
(3) how the expectations of (utility) acts with respect to the i.i.d. products of elements
of R should be aggregated (i.e., G). This third element may generally depend on some
combination of (possibly imprecise) likelihood judgments and any aspect of tastes not
captured by vNM risk attitude, for example, ambiguity attitude. To model preferences
of decision makers who have a set of i.i.d. measures in mind, one can simply place
those i.i.d. measures in the representation (together with u and G) and the theorem
guarantees that the resulting relevant measures are exactly those i.i.d. measures.

3.4 Tastes and revealed information

We begin with a fundamental principle that we apply to distinguish tastes from other
aspects of preferences. Tastes are aspects that are independent of changing information.
In order to formalize this, we need to define what it means for two preferences to reflect
the same information. In decision frameworks with a state space, information is modeled
as an event in the state space, i.e., a subset of states that, for example, corresponds
to the observation of a signal. Therefore different information corresponds to different
events. Events that do not intersect with the information are said to be ruled out by
that information. In terms of preferences, “ruling out” events means that the outcomes
in those events do not matter for preference (i.e., the ruled out events are Savage null).
Thus, it is natural to say that two agents act as if they have the same information when
their Savage null events coincide. We formalize this as follows:

Definition 3.5. Say % and %′ have the same revealed information if and only if
{A ∈ Σ : ∀f, g, h ∈ F , fAh ∼ gAh} = {A ∈ Σ : ∀f, g, h ∈ F , fAh ∼′ gAh}, i.e., they have
the same collection of Savage null events.

One seeming objection to this definition might be to point out that in, for example,
SEU, when priors have the same support but different weights on that support, it seems
like the different weights may reflect different information, yet our definition says those
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two preferences have the same revealed information. Upon closer inspection, however,
one realizes that if the different weights indeed have their origin in different information
then at some point one preference must have ruled out different events (for example,
particular signal realizations) than the other. The only reason that this would not
generate a difference in the set of null events is if the signals or other ruled out events
were left unmodeled. If these events were included in the state space, our definition
would indeed conclude that the two preferences reveal different information.

In our analysis we will restrict attention to revealed information that is compatible
with symmetry in the sense that the event that an empirical frequency does not converge
is Savage null. We call such preferences symmetrically informed :

Definition 3.6. % over acts F is symmetrically informed if [Ψ−1 (∆S)]
c

is Savage null.
Say that % is symmetrically informed of L, if L ⊆ ∆(S) is the smallest closed set such
that [Ψ−1 (L)]

c
is Savage null.

Being symmetrically informed of L ⊂ ∆(S) corresponds to ruling out the limiting
frequencies associated with measures in Lc. For Continuous Symmetric preferences, the
restriction to symmetrically informed preferences is without loss of generality. Recall
that each Continuous Symmetric preference has an associated set of relevant measures,
R. The next result shows that relevant measures completely capture revealed informa-
tion for Continuous Symmetric preferences.

Theorem 3.3. Each Continuous Symmetric preference is symmetrically informed of
R. Two Continuous Symmetric preferences have the same R if and only if they have
the same revealed information.

To formalize the idea of tastes as aspects of preference that are unchanging as
revealed information varies, it is useful to consider functional forms for numerical rep-
resentations of preferences. A functional form in this context is a function mapping
some arguments (often thought of as the pieces or parameters of the functional form)
into a numerical representation of preferences (a function assigning a real number to
each act in F). For example, the usual functional form for Continuous Symmetric SEU
preferences is

V (u, µ) ≡
ˆ

∆(S)

(ˆ
u(·)d`∞

)
dµ (`) (3.3)

with the arguments being a vNM utility function u and a probability measure µ. Notice
that for each choice of u and µ, this yields a function mapping acts to real numbers.

Using functional forms, we now define a test to identify when an argument reflects
only tastes, as opposed to any other aspect of preference such as information or belief.
By design the test is conservative – it will not classify an aspect as only taste if there is
any possibility of a connection to revealed information. Thus, we make no claim that
all possible types of tastes will be captured by this test. For example, suppose an in-
dividual’s ideology leads him to believe that certain states of the world are impossible.
Though it is plausible to think of such an ideology as a taste, it would not be picked
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up by this test since changes in ideology would be behaviorally indistinguishable from
changes in information. This test may be applied to any Continuous Symmetric pref-
erence. In fact, the symmetric structure is what enables us to separate out pure taste
aspects (beyond just risk preferences) from one’s behavior. The key is that, under sym-
metry, different probabilities assigned to an event in S can be distinguished in terms
of the limiting frequency events that they make null, and thus in terms of revealed
information. This allows a definition identifying a taste aspect as something that is
unrelated to the revealed information to be far more powerful than without symmetry,
as it is only under symmetry that we have the identification of revealed information
with subsets of 4(S) as delivered by Theorem 3.3.

Definition 3.7. Fix any functional form V (α, β) yielding a numerical representation
of Continuous Symmetric preference, with the domains of α and β denoted by A and
B, respectively, where A has at least two elements and if V (α, β) and V (α′, β) represent
the same preference, then α = α′.9 The argument α reflects only tastes if the following
properties hold:

(1) V (α, β) is defined on A× B, and
(2) for each β, the preferences represented by V (α, β) have the same revealed infor-

mation for all α ∈ A.

Consider the requirements of the definition in turn. If α is to be separated out as an
aspect of preference, a minimal requirement is that it may be specified freely, regardless
of the value of β. This is the content of property (1). Property (2) says that revealed
information is not influenced by α. Changing tastes alone should not change revealed
information.

Notice that this is not a very discriminating definition when A and B are such
that the collection, denoted L, of sets that preferences represented by V (α, β) can
be symmetrically informed of has few elements. For example, consider a collection
of Continuous Symmetric SEU preferences represented as in (3.3) such that all the
measures µ in the domain share the same support in ∆(S). All these preferences
have the same revealed information. Then the argument µ satisfies property (2), even
though it would fail to do so for any domain for µ allowing more than one support (and
thus more than one possible revealed information). Therefore the classification of an
argument α as reflecting only tastes is most convincing when L is a rich collection. For
this reason, when applying the definition, we consider domains A and B that induce
very large L, such as the collection of all subsets reflecting ambiguity (i.e., all finite,
non-singleton subsets of 4(S)) or of all finite subsets of 4(S).

To illustrate the definition of reflecting only tastes, again consider the Continuous
Symmetric SEU representation. It seems reasonable, and is customary, to say that
(normalized) u reflects only tastes.10 In fact, taking A to be the set of normalized u

9Using functional forms with two arguments is without loss of generality, as β can include as many
pieces or parameters of the functional form as one wishes.

10Here, and for the remainder of the paper, when we refer to normalized u, we mean u such that
u (x∗) = 0 and u (x∗) = 1.
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and B to be the set of µ with finite support satisfies Definition 3.7, and the corresponding
L is the collection of all finite subsets of ∆ (S). What if we swap A and B and check
if µ reflects only tastes? Since R = suppµ, Theorem 3.3 implies that property (2)
of Definition 3.7 is violated, since changing the support of µ changes the revealed
information. Thus µ does not reflect only tastes. Furthermore there is no way to split-
off from µ a part that reflects only tastes. To see this, consider separating the weights
applied to the ` ∈ suppµ from suppµ itself. Notice that this separation fails property
(1) of Definition 3.7 – the weights that may be chosen depend on the size of the support.
Furthermore, if one tries to satisfy property (1) by “artificially” changing the domain
A (in this example, for instance, by specifying strictly positive relative weights on the
whole of ∆ (S) and using a normalization of these to define the weights applied for any
given support) then the required uniqueness of α in the representation will be violated.

What should we make of the fact that the weights applied to the ` ∈ suppµ are
classified as neither reflecting only tastes nor as revealed information? To us, this
reflects a true uncertainty in the source of the weights that is not resolvable by the
given behavior. On the one hand, one may argue that the individual is “born with”
the weights (e.g., an ingrained bias) and therefore the weights are, at least in part,
tastes. Equally, one may argue that the individual may have received some unmodeled
information which affected the weights. Since this is not modeled, we have no way of
knowing. Hence, it is appropriate for the weights to remain unclassified.

This example has shown that our definition works as desired for Continuous Sym-
metric SEU preferences. The following lemma extends the identification of normalized
u as reflecting only tastes to any complete Continuous Symmetric preference using the
representation from Theorem 3.2:

Lemma 3.2. Suppose a Continuous Symmetric % is represented by

V (f) = G

((ˆ
u (f) d`∞

)
`∈D

)
where D ⊆ ∆(S), u is a non-constant vNM utility function and G is a weakly increasing
functional. If A is the set of normalized such u and B is the set of such G and D, then
u reflects only tastes.

Note that G is not classified as reflecting only tastes for the same reasons as the
weights applied to the ` ∈ suppµ were unclassified in SEU.

Neither the conclusions concerning SEU nor the identification of u as taste more
generally are particularly novel. The real power of our definitions becomes apparent
in the next section, where we apply them to ambiguity models involving tastes beyond
risk attitudes.
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4 Relevant measures and tastes in specific decision

models

In this section, we examine Continuous Symmetric versions of four models from the
ambiguity literature. For each, we identify the relevant measures and components of
the representation reflecting only tastes.

All of the results in this section are proved using the same basic strategy. Given a
closed set of measures D ⊆ ∆(S) taken from the functional form of the model, we first
show that every element of D is a relevant measure. Then, we verify (sometimes aided
by Lemma 3.1) that the preferences satisfy Continuous Symmetry. Finally, we either
(1) note that each representation is a weakly increasing function of

(´
u (f) d`∞

)
`∈D

and invoke Theorem 3.2, or (2) prove that all measures outside of D are irrelevant and
invoke Theorem 3.1, to conclude that all relevant measures are in D, and thus D is
the set of relevant measures. Once the set of relevant measures is identified, we apply
Definition 3.7 to show that certain components of the representation reflect only tastes.
In light of Lemma 3.2, normalized u reflects only tastes in each of the representations
below, and thus we do not repeat this fact in the statements of the individual results
and mention only the additional components reflecting tastes.

4.1 The α-MEU model

Theorem 4.1. If % is represented by

V (f) ≡ α min
p∈{`∞:`∈D}

ˆ
u (f) dp+ (1− α) max

p∈{`∞:`∈D}

ˆ
u (f) dp,

where D ⊆ ∆(S) is finite and u is a non-constant vNM utility function and α ∈ [0, 1],
then R = D. Moreover, if A is the set of such α and B is the set of such u and
non-singleton such D, then α reflects only tastes.

This demonstrates that when the set of measures in an α-MEU representation is a
finite set of i.i.d. products, the marginals generating this set are the relevant measures,
R, and that α reflects only tastes. Note that the finiteness restriction is necessary for
these α-MEU preferences to satisfy Monotone Continuity of %∗, while the restriction to
non-singleton D in applying Definition 3.7 is needed to ensure the required uniqueness
of α. When D is a singleton, α has no effect on preference and is thus redundant. This
is consistent with the idea that the tastes that α reflects are ambiguity attitudes and
there is ambiguity only when D is non-singleton.

4.2 The Smooth Ambiguity model

When we normalize φ in the following theorem, we set φ (u (x∗)) = 0 and φ (u (x∗)) = 1.
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Theorem 4.2. Assume % is represented by

U (f) ≡
ˆ

∆(S)

φ

(ˆ
u(f)d`∞

)
dµ (`)

where u is a non-constant vNM utility function, φ : u(X) → R is a strictly increasing
continuous function and µ ∈ ∆(∆(S)) such that either (i) there are m,M > 0 such
that m |a− b| ≤ |φ (a)− φ (b)| ≤ M |a− b| for all a, b ∈ u (X) or, (ii) suppµ is finite.
Then, R = suppµ. Moreover, if A is the set of normalized φ satisfying (i) and B is the
set of µ (not necessarily satisfying (ii)) with a non-singleton support and normalized
such u, then φ reflects only tastes. If A is the set of normalized φ (not necessarily
satisfying (i)) and B is the set of µ (satisfying (ii)) with a non-singleton support and
normalized such u, then φ reflects only tastes.

Thus, for such smooth ambiguity preferences satisfying either (i) or (ii), the relevant
measures are exactly the support of the second-order measure µ and normalized φ
reflects only tastes. Note that the requirement that either (i) or (ii) is satisfied is
necessary for these preferences to satisfy Monotone Continuity of %∗, and, similar to the
previous theorem, the restriction to µ with non-singleton support in applying Definition
3.7 is needed to ensure the required uniqueness of φ. This is again consistent with the
idea that φ reflects ambiguity attitudes and there is ambiguity only when the support
of µ is non-singleton. Note that the weights in µ are not classified as reflecting only
tastes. The reason is the same as was discussed for SEU in the previous section.

4.3 The Extended MEU with contraction model

This model has a functional form that is a convex combination of MEU and expected
utility.

Theorem 4.3. If % is represented by

W (f) ≡ β min
p∈{`∞:`∈D}

ˆ
u (f) dp+ (1− β)

ˆ
u (f) dq,

where D ⊆ ∆(S) is finite, q ∈ co {`∞ : ` ∈ D}, 0 < β ≤ 1 and u is a non-constant vNM
utility function, then R = D. Moreover, if A is the set of such β and B is the set of
normalized such u, such q and non-singleton such D, then β reflects only tastes.

This demonstrates that for an Extended MEU with contraction representation us-
ing a finite set of i.i.d. product measures, the marginals generating this set are the
relevant measures, R. Furthermore, β reflects only tastes, and this is consistent with
the interpretation offered in Gajdos et. al. [21]. Note that the finiteness restriction is
sufficient for these preferences to satisfy Monotone Continuity of %∗, and the restriction
to non-singleton D is for exactly the same reason as in Theorem 4.1.
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4.4 The Vector Expected Utility (VEU) model

Theorem 4.4. Suppose % is represented by a VEU functional, that is,

T (f) ≡
ˆ
u (f) dp+ A

((ˆ
ζiu (f) dp

)
1≤i≤n

)
,

where p is a probability measure on S∞, u is a non-constant vNM utility function,
ζ = (ζ1, ..., ζn) is a bounded, measurable vector-valued function on S∞ into Rn such
that
´
ζidp = 0, A(0) = 0, A(a) = A(−a) for all a ∈ Rn, and T is weakly monotonic. If

n is finite, p and the ζi’s are symmetric (i.e., p =
´
`∞dm (`) for some m ∈ ∆(∆(S))

and, for all π ∈ Π, ζi (ω) = ζi(πω) p almost-everywhere) and A is Lipschitz contin-
uous11, then R = suppm. Moreover, if A = γA′ for some A′ normalized such that

supf∈F∗

∣∣∣A′ ((´ ζiu (f) dp
)

1≤i≤n

)∣∣∣ = 1 where F∗ is the set of acts whose outcome is x∗

or x∗, then, if A is the set of γ ∈ (0,∞) and B is the set of such p, ζ, A′ and normalized
such u, then γ reflects only tastes.

Thus, for VEU preferences with Lipschitz continuous adjustment function A, sym-
metric baseline probability, p, and a finite number of symmetric adjustment factors, ζi,
the relevant measures, R, are those ` ∈ ∆ (S) given weight by p. The symmetry condi-
tions are imposed to ensure Event Symmetry, while n finite and the Lipschitz condition
are imposed to ensure Monotone Continuity of %∗. The last part of the result shows
that the scale of the adjustment function A, as measured by γ, reflects only tastes.
This is consistent with Propositions 2 and 4 of Siniscalchi [43] that imply a greater
scale corresponds to stronger ambiguity attitude.

A Appendix A: Relevance under Heterogeneous En-

vironments

A decision maker may face a situation where non-identical experiments are repeated.
For example, a doctor faces patients who may differ in ways important for the treatment
problem at hand. Another example is an agent who wants to make a decision based
on a regression model analysis where different data points may have different values of
the regressors. We describe a variation of our model that allows these heterogeneous
environments.

Let Ξ be a set of descriptions. We assume Ξ =
{
ξ1, ..., ξK

}
is a finite set for

simplicity. Descriptions categorize the ordinates (of S∞) so that it is only ordinates with
the same description that are viewed as symmetric by the decision maker. Formally,
we augment the state space S∞ by attaching a description to each ordinate S. Thus,
for a doctor facing many patients, each patient has a description ξ ∈ Ξ. A doctor
faces a sequence of patients whose descriptions may be different from each other. Let

11That is, there is an M > 0 such that |A (a)−A (b)| ≤M sup1≤i≤n |ai − bi| for all a, b ∈ Rn.

21



ξ̃ = (ξ̃1, ξ̃2, . . .) ∈ Ξ∞ be a sequence such that each element of Ξ appears infinitely often.
Let %ξ̃ be a preference on F when faced with ordinates whose descriptions form the

sequence ξ̃.
We assume the same axioms as in Section 3.1 on %ξ̃ with the exception of Event

Symmetry. Instead we assume Partial Event Symmetry.

Axiom 9 (Partial Event Symmetry). 1A ∼∗ξ̃ 1πA for π ∈ Π such that ξ̃i = ξ̃π(i) for all
i = 1, 2, ....

Partial Event Symmetry says that an agent views ordinates with the same descrip-
tions in the same way – as long as the descriptions are the same, the order does not
matter. In contrast, no restrictions are placed on preferences towards ordinates that
have different descriptions. For two ordinates with different descriptions, there is no
reason to believe that the two are symmetric. Viewing our earlier framework as one in
which there was only one possible description, Partial Event Symmetry is the natural
generalization of Event Symmetry.

Formally, therefore, we replace the assumption of Continuous Symmetry with Con-
tinuous Partial Symmetry :

Definition A.1. %ξ̃ satisfies Continuous Partial Symmetry if it satisfies C-complete
Preorder, Monotonicity, Risk Independence, Non-triviality, Partial Event Symmetry,
Mixture Continuity of %∗

ξ̃
and Monotone Continuity of %∗

ξ̃
.

Now, we can define relevant measures under heterogeneous environments. Since
beliefs may vary depending on descriptions, a relevant measure is a mapping l from Ξ
into ∆ (S). Let Ol denote an open subset of (∆ (S))Ξ containing l under the product

topology. For l ∈ (∆ (S))Ξ, denote by l
(
ξ̃
)

the product measure on S∞ whose i-th

coordinate marginal is l
(
ξ̃i

)
∈ ∆ (S). That is, l

(
ξ̃
)

= l
(
ξ̃1

)
⊗ l
(
ξ̃2

)
⊗ ....

Definition A.2. A mapping l ∈ (∆ (S))Ξ is relevant (according to preferences %ξ̃) if,

for any L ∈ Ol, there are f, g ∈ F such that f �ξ̃ g and
´
fdl̂

(
ξ̃
)

=
´
gdl̂
(
ξ̃
)

for all

l̂ ∈ (∆ (S))Ξ \L.

An irrelevant measure is also defined. Let ωk =
(
ωk1 , ω

k
2 , ...

)
be the subsequence

of ω=(ω1, ω2, ...) such that ωk takes all the coordinates having description ξk. For
L = L1 × ...× LK ∈ Ol, let

Ψ−1

ξ̃
(L) ≡

{
ω ∈ S∞ : Ψ

(
ωk
)
∈ Lk, k = 1, 2, ..., K

}
.

Definition A.3. A mapping l ∈ (∆ (S))Ξ is irrelevant (according to preferences %ξ̃)

if, for some L = L1 × ... × LK ∈ Ol, Ψ−1

ξ̃
(L) is Savage null i.e., fΨ−1

ξ̃
(L)g ∼ g for all

f, g ∈ F .
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When Ξ = {ξ} is a singleton, ξ̃ = (ξ, ξ, ...) and, therefore, it is as if L ⊆ ∆ (S) and

each l̂
(
ξ̃
)

is i.i.d., and the above definition reduces to our earlier definition of relevant

measures (Definition 3.3).
A standard linear regression is the case where the relevant measure is l and l (ξi) is

normal with mean βξi and variance σ2. Note that the description in this case is simply
a vector giving the values of the regressors for a particular observation. An example of
a set of relevant measures might be {l ∈ (∆ (S))Ξ :l (ξi) is normal with mean βξi and
variance 1 for β ∈ [b, b]2}. This reflects knowledge of normality and the variance, and
bounds on the coefficients within which any coefficients are seen as possible.

Relative to the homogeneous case, this framework: (1) allows for ordinates to dif-
fer according to Ξ, and (2) allows relevant measures to reflect beliefs about how the
marginals for one ξ ∈ Ξ relate to the marginals for another ξ′ ∈ Ξ. This last point is
important, for example, in capturing the case, mentioned above, where Ξ is related to
S according to a linear regression model.

We provide results similar to those in the homogeneous case:

Lemma A.1. Suppose %ξ̃ is reflexive and transitive. Then %ξ̃ satisfies Continuous
Partial Symmetry if and only if there exist a non-empty compact convex set M ⊆
∆
(

(∆S)Ξ
)

and a non-constant vNM utility function u such that ,

f %∗
ξ̃
g if and only if

ˆ
u (f) dp ≥

ˆ
u (g) dp for all p ∈ C, (A.1)

where C =
{´

l
(
ξ̃
)
dm (l) : m ∈M

}
. Furthermore M is unique.

Define R ≡
⋃
m∈M suppm ⊆ (∆S)Ξ.

Theorem A.1. Assume %ξ̃ satisfies Continuous Partial Symmetry. Take R accord-

ingly. Then, R ⊆ (∆S)Ξ is closed and is the set of all relevant mappings. Moreover,
Rc is the set of all irrelevant mappings in (∆S)Ξ.

And,

Theorem A.2. Assume %ξ̃ satisfies Continuous Partial Symmetry, and admits a real-
valued representation. Then, there is a non-constant vNM utility function u on X and
a weakly increasing functional G on [u(X)]R such that

f 7−→ G

((ˆ
u (f) dl

(
ξ̃
))

l∈R

)
represents %ξ̃. Furthermore, the measures in the representation are essentially unique

– if D ⊆ (∆S)Ξ and every element in D is relevant, u′ is a non-constant vNM utility
function, H is a functional on [u′(X)]D and

f 7−→ H

((ˆ
(u′(f))dl

(
ξ̃
))

l∈D

)
represents %ξ̃, then D = R and u′ is a positive affine transformation of u.
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B Appendix B: Proofs

Denote by B (S) the set of bounded measurable functions on S. Similarly for B (∆ (S))
and B (S∞).

B.1 Proofs of Lemmas 3.1 and A.1

The first is a special case of the latter and we prove the latter here.
We prove sufficiency of the stated axioms, first. We first show that %∗

ξ̃
satisfies the

properties assumed in Gilboa et. al. [25, Theorem 1]. Preorder, Monotonicity, Mixture
Continuity, Non-triviality, C-Completeness and Independence of %∗

ξ̃
follow directly from

the axioms we assume and the definition of %∗
ξ̃
. Therefore, by Gilboa et. al. [25,

Theorem 1], there exists a unique non-empty weak* closed and convex set C ⊆ ba+
1 (S∞)

and a non-constant vNM utility function, u : X → R, such that

f %∗
ξ̃
g if and only if

ˆ
u (f) dp ≥

ˆ
u (g) dp for all p ∈ C.

By Alaoglu’s Theorem, C is weak* compact. Monotone Continuity of %∗
ξ̃

implies C ⊆
∆ (S∞) by Ghirardato, Maccheroni and Marinacci [23, Remark 1]. Moreover, Partial
Event Symmetry implies every p ∈ C is partially symmetric on finite cylinder events.

Next, we prove the claim that every p ∈ C is of the form
´
l
(
ξ̃
)
dm (l) for some

m ∈ ∆
(

(∆S)Ξ
)

. (We prove this claim here because we did not find a proof of this

claim in the literature.) The proof is based on the idea of Hewitt and Savage [29].
Let Pξ̃ be the set of partially symmetric measures. Clearly, Pξ̃ is convex and also
weak-convergence compact as ∆ (S∞) is. Then, the Choquet Theorem (Phelps [39,
p.14]) implies that any element in Pξ̃ is a mixture of its extreme points. We need

to show that each extreme point is of the form l
(
ξ̃
)

. For notational simplicity, let

ξ̃ = (ξ1, ξ2, ξ1, ξ2, ...). Take any extreme point p, n ≥ 1 and event A ⊆ Sn. For each
finite cylinder B,

p (B) = p (πB) = p (A) p (πB|A) + p (Ac) p (πB|Ac) ,

where π ∈ Π is defined as follows: If n is even,

π (i) = i+ n.

If n is odd,

π (i) = n+ i− (−1)i .

(Since B is a finite cylinder, π can be made a finite permutation.) For example, if
B ⊂ S2 and n = 1, then π (1) = 3,π (2) = 2,π (3) = 1, and π (k) = k for k ≥ 4, and
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hence πB = {ω : (ω3, ω2) ∈ B}. Note that A and πB depend on different experiments.
Define q1, q2 ∈ ∆ (S∞) by

q1 (B) = p (πB|A) and

q2 (B) = p (πB|Ac)

for each finite cylinder B. Noting that ξ̃i = ξ̃π(i) for all i = 1, 2, ..., one can verify that
q1, q2 ∈ Pξ̃. We have just shown that p is a mixture of q1 and q2 that lie in Pξ̃. Since p
is an extreme point, p = q1 = q2. Therefore we have p (B) = p (A× πB) /p (A) where π
is defined as above. By the fact that p (B) = p (πB), p (A) p (πB) = p (A× πB) which
proves that p is a product measure. By partial symmetry w.r.t. ξ̃ = (ξ1, ξ2, ξ1, ξ2, ...),

p = `1 ⊗ `2 ⊗ `1 ⊗ `2 ⊗ ... and is of the form l
(
ξ̃
)

. Therefore, any element in Pξ̃ is a

mixture of product measures of the form l
(
ξ̃
)

.

Thus, C =
{´

l
(
ξ̃
)
dm (l) : m ∈M

}
for some non-empty M ⊆ ∆

(
(∆S)Ξ

)
. It is

clear that M is convex.
To see that M is weak* compact, take any net mα ∈M . Since C is weak* compact,

there is m′ ∈ C and a subnet m′λ of mα such that
ˆ (ˆ

ϕdl
(
ξ̃
))

dm′λ (l)→
ˆ (ˆ

ϕdl
(
ξ̃
))

dm′ (l) for each ϕ ∈ B (S∞) .

It suffices to show that each φ ∈ B
(

(∆S)Ξ
)

can be written as l 7→
´
ϕdl

(
ξ̃
)

for some

ϕ ∈ B (S∞). In fact,

φ (l) =

ˆ
S∞

φ
(
Ψ
(
ω1
)
, ...,Ψ

(
ωK
))
dl
(
ξ̃
)

(ω)

where Ψ
(
ωk
)

gives an empirical frequency limit when considering the experiments of

description ξk, that is, all coordinates t such that ξ̃t = ξk. Conclude that m′λ converges
to m′.

Uniqueness of M follows from uniqueness of C.
To show necessity, assume such a set M . It is clear that %∗

ξ̃
satisfies Monotonicity

and Risk Independence and thus %ξ̃ inherits these properties as well. Partial Event

Symmetry follows since each element of C is of the form
´
`∞dm (`) for some m ∈ M .

Non-triviality of %ξ̃ follows from non-constancy of u. Monotone Continuity of %∗
ξ̃

follows

from weak* compactness of C, which is implied by that of M . Mixture Continuity of
%∗
ξ̃

follows from Mixture Continuity of expected utility and the fact that intersections

of closed sets are closed.

B.2 Proofs of Theorems 3.1 and A.1

The two proofs are essentially the same and we prove the first only. We begin by showing
that R is relative weak* closed. The set R is relative weak* closed if it equals ∆(S)∩K
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for some weak* closed K ⊆ ba(S). Consider K equal to the weak* closure of R. That

R ⊆ ∆(S) ∩K is direct. To show ∆(S) ∩K ⊆ R, consider any limit point ̂̀∈ ∆(S)
of R. Lemma 3.1 implies that no ` outside of R is relevant – if

´
fd`∞ =

´
gd`∞ for

all ` ∈ R then
´
fdp =

´
gdp for all p ∈ C and thus f ∼∗ g implying f ∼ g. To

show that ̂̀∈ R, it therefore suffices to show that ̂̀ is relevant. Fix L ∈ Ồ. Then,(
L\
{̂̀}) ∩ R 6= ∅. Choose any ˜̀∈ (L\{̂̀}) ∩ R. Since ˜̀ is relevant, for L̃ ∈ O˜̀,

there are f, g ∈ F such that f � g and
´
fd`∞ =

´
gd`∞ for all ` ∈ ∆ (S) \L̃. Note

that
´
fd`∞ =

´
gd`∞ for all ` ∈ ∆ (S) \L ⊆ ∆ (S) \L̃. Since L is an arbitrary set in

Ồ, ̂̀ is relevant. Thus R = ∆(S) ∩K and R is relative weak* closed.
We next show that every ` ∈ Rc is irrelevant. Since, Rc is open, ` ∈ Rc implies

there exists L ∈ O` such that L ⊆ Rc. Note that ˆ̀∞ (Ψ−1 (L)) = 0 for all ˆ̀∈ R. Thus,
p (Ψ−1 (L)) = 0 for all p ∈ C. By Lemma 3.1, fΨ−1(L)g ∼ g for all f, g ∈ F , showing
that ` is irrelevant.

Next we show no ` ∈ R is irrelevant. Take any ` ∈ R and L ∈ O`. By Lemma
3.1, 1Ψ−1(L) %∗ 1∅ since

´
1Ψ−1(L)dp ≥

´
1∅dp for all p ∈ ∆ (S∞). Now show that

1Ψ−1(L) 6-∗ 1∅. Note that by definition of R there is m ∈ M such that L ∩ suppm 6= ∅.
Let p =

´
ˆ̀∞dm

(
ˆ̀
)

and compute

ˆ
1Ψ−1(L)dp = m (L) > 0 =

ˆ
1∅dp.

By Lemma 3.1, 1Ψ−1(L) 6-∗ 1∅. Therefore we have 1Ψ−1(L) �∗ 1∅, which implies that

α1Ψ−1(L) + (1− α)h % α1∅ + (1− α)h

for some α ∈ [0, 1] and h ∈ F . Note that both sides coincide outside of Ψ−1 (L) and
hence Ψ−1 (L) is irrelevant.

Show that R is the set of all relevant measures in ∆ (S). Observe that Lemma 3.1
implies that no ` outside of R is relevant – if

´
fd`∞ =

´
gd`∞ for all ` ∈ R then´

fdp =
´
gdp for all p ∈ C and thus f ∼∗ g implying f ∼ g. We now show that every

element of R is relevant. Take any ̂̀∈ R. Recall that we proved that ̂̀ is not irrelevant.
Thus, for any L ∈ Ồ, there are acts f and g such that fΨ−1(L)g � g. But for each

` ∈ ∆ (S) \L,
´
fΨ−1(L)gd`

∞ =
´
gd`∞. Thus, ̂̀ is relevant. This proves that R is the

set of all relevant measures in ∆ (S) .

B.3 Proofs of Theorems 3.2 and A.2

Again, we prove the first only. Let U : F → R represent %. Recall Lemma 3.1 guaran-
tees the existence of a non-constant affine utility u : X → R and a set C derived

there from %. Define G on
{
f̃ ∈ [u(X)]R : f̃ (`) =

´
u (f) d`∞ for some f ∈ F

}
by

G
((´

u (f) d`∞
)
`∈R

)
= U(f), which is well-defined because

´
u (f) d`∞ =

´
u (g) d`∞
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for all ` ∈ R implies
´
u (f) dp =

´
u (g) dp for all p ∈ C, which, by Lemma 3.1, implies

f ∼ g. Thus f 7−→ G
((´

u (f) d`∞
)
`∈R

)
represents %. Suppose

f̂ , ĝ ∈
{
f̃ ∈ [u(X)]R : f̃ (`) =

ˆ
u (f) d`∞ for some f ∈ F

}
are such that f̂ (`) ≥ ĝ (`) for all ` ∈ R and fix some corresponding acts f , g that
generate these expected utilities. Since

´
u (f) d`∞ ≥

´
u (g) d`∞ for all ` ∈ R,´

u (f) dp ≥
´
u (g) dp for all p ∈ C. By Lemma 3.1, this implies f % g. Therefore

G
(
f̃
)

= U(f) ≥ U(g) = G (g̃) which shows G is weakly increasing.

Uniqueness is shown as follows. Since every element in D is relevant, D ⊆ R by
Theorem 3.1. Since R is closed, D ⊆ R. We show that R ⊆ D. Suppose that ̂̀ /∈ D
for some ̂̀∈ ∆ (S). Since D is closed, there exists L ∈ Ồ such that L ⊆ ∆ (S) \D.

Since f 7−→ H
((´

(ũ(f))d`∞
)
`∈D

)
represents %, if

´
(ũ(f))d`∞ =

´
(ũ(g))d`∞ for all

` ∈ D ⊆ D ⊆ ∆ (S) \L, f ∼ g. If
´
fd`∞ =

´
gd`∞ for all ` ∈ D ⊆ D ⊆ ∆ (S) \L,

then, because ũ is affine,
´

(ũ(f))d`∞ =
´

(ũ(g))d`∞ for all ` ∈ D ⊆ D ⊆ ∆ (S) \L.

Therefore, ̂̀ can’t be relevant, and thus ̂̀ /∈ R by Theorem 3.1. Uniqueness of u up to
positive affine transformation is standard, as % restricted to constant acts is expected
utility.

B.4 Proof of Theorem 3.3

We prove the second sentence first. Let R′ and R′′ be the sets of relevant measures for
two Continuous Symmetric preferences, %′ and %′′. If ` ∈ R′\R′′, Ψ−1 (L) is Savage null
according to %′′ for some L ∈ O` by Theorem 3.1, but it is not Savage null according
to %′ by definition. Therefore, R′ 6= R′′ implies the two preferences do not have the
same revealed information.

The following claim is sufficient for the other direction, as it shows that R′ = R′′

implies that Savage null events coincide:
Claim: A ∈ Σ is Savage null if and only if `∞ (A) = 0 for all ` ∈ R.
Proof of Claim: Take the sets C and M defined in Lemma 3.1. Suppose `∞ (A) > 0
for some ` ∈ R. Then, we can take L ∈ O` such that ˆ̀∞ (A) > 0 for all ˆ̀∈ L. Since
R ≡

⋃
m∈M suppm ⊆ ∆ (S), p (A) > 0 for some p =

´
`∞dm (`) ∈ C and m ∈ M .

Therefore, by Lemma 3.1, λ1A + (1− λ)h � λ1∅ + (1− λ)h for some h ∈ F . Since
these two acts coincide on Ac, A is not Savage null. Now, for the other direction,
suppose that `∞ (A) = 0 for all ` ∈ R. Then,

´
u (fAh) dp =

´
Ac
u (h) dp =

´
u (gAh) dp

for all p ∈ C, by the definition of R and C. Lemma 3.1 implies that fAh ∼ gAh, and
thus A is Savage null.

We conclude by proving the first sentence, that any Continuous Symmetric % is
symmetrically informed of R. Let A = [Ψ−1 (R)]

c
. From Theorem 3.1, we know that

R is relative weak* closed. Observe that
´
u (fAg) dp =

´
u (g) dp for any acts f and

g, and p =
´
`∞dm (`) with suppm ⊆ R. Then by Lemma 3.1, fAg ∼∗ g which implies
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fAg ∼ g. This shows that A is Savage null according to %. Now we show that there is
no relative weak* closed set L ⊂ R such that [Ψ−1 (L)]

c
is Savage null. Suppose R′ ⊂ R

is such a set and take ` ∈ R\R′. Since R′ is relative weak* closed, there is some L ∈ O`
satisfying L ⊂ R\R′. Then, [Ψ−1 (L)] ⊂ [Ψ−1 (R′)]

c
is Savage null. Thus, ` is irrelevant.

By Theorem 3.1, ` ∈ Rc which is a contradiction.

B.5 Proof of Lemma 3.2

We check the definition of reflecting only tastes (Definition 3.7). First, given G and D,
normalized u is unique. Second, the utility function is defined for any (u,G,D) ∈ A×B
so that property (1) of the definition is satisfied. Third, since changing normalized u
while holding G and D fixed does not change the set of Savage null events, property
(2) is satisfied.

B.6 Proof of Theorem 4.1

Suppose % is represented by such a V (f). We first show that all measures in D are
relevant. Suppose ˆ̀ ∈ D and fix any open K ⊆ ∆ (S) such that ˆ̀ ∈ K. Consider
f = 1Ψ−1(K) and g = 1∅ and observe that

´
fd`∞ =

´
gd`∞ for all ` ∈ ∆ (S) \K.

Note that
´
u (f) d`∞ >

´
u (g) d`∞ for all ` ∈ K while

´
u (f) d`∞ ≥

´
u (g) d`∞

for all ` ∈ D. Thus, if α ∈ [0, 1), f � g and ˆ̀ is relevant. If α = 1, consider
instead f = 1

2
1Ψ−1(K) + 1

2
1Ψ−1(∆(S)\K) and g = 1

2
1∅ + 1

2
1Ψ−1(∆(S)\K) and observe that´

fd`∞ =
´
gd`∞ for all ` ∈ ∆ (S) \K while min`∈D

´
u (f) d`∞ = 1

2
u (x∗) + 1

2
u (x∗) >

u (x∗) = min`∈D
´
u (g) d`∞ so that f � g and again ˆ̀ is relevant.

We show that % is Continuous Symmetric. All axioms except Monotone Continuity
of %∗ are straightforward. To check the latter, consider V1 (f) ≡ minp∈{`∞:`∈D}

´
u (f) dp

first. The Bewley set of V1 is co ({`∞ : ` ∈ D}) and it is weak* compact since D is finite.
Thus, V1 satisfies Monotone Continuity of %∗. Similarly, V0 (f) = maxp∈{`∞:`∈D}

´
u (f) dp

also satisfies Monotone Continuity of %∗. Take An ↘ ∅ and x, x′, x′′ ∈ X such that
u (x′) > u (x′′). Then, there is n̄1 and n̄0 such that

V1 (λx′ + (1− λ)h) ≥ V1 (λxAnx
′′ + (1− λ)h)

for all λ ∈ [0, 1], h ∈ F and n ≥ n̄1, and

V0 (λx′ + (1− λ)h) ≥ V0 (λxAnx
′′ + (1− λ)h)

for all λ ∈ [0, 1], h ∈ F and n ≥ n̄2. Since V = αV1 + (1− α)V0,

V (λx′ + (1− λ)h) ≥ V (λxAnx
′′ + (1− λ)h) for n = max (n̄1, n̄2) .

Thus, Monotone Continuity of %∗ is satisfied.
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Observe that V (f) can be re-written as

H

((ˆ
u (f) d`∞

)
`∈D

)
≡ αmin

`∈D

ˆ
u (f) d`∞ + (1− α) max

`∈D

ˆ
u (f) d`∞,

and H so defined is weakly increasing. Therefore we may apply the uniqueness result
in Theorem 3.2 to conclude D = R. Since D is finite, D = D.

We check that α reflects only tastes. The only non-trivial part is uniqueness of α,
given u and non-singleton D. Note that increasing α strictly decreases the utility for
the bet 1Ψ−1(`) for ` ∈ D and the utility of a lottery that is indifferent to 1Ψ−1(`) does
not depend on α. Thus α is unique, given u and non-singleton D.

B.7 Proof of Theorem 4.2

Suppose % is represented by such a U (f). We first show that all measures in suppµ
are relevant. Suppose ˆ̀ ∈ suppµ and fix any open L ⊆ ∆ (S) such that ˆ̀ ∈ L.
Consider f = 1Ψ−1(L) and g = 1∅ and observe that

´
fd`∞ =

´
gd`∞ for all ` ∈

∆ (S) \L. Since φ is strictly increasing, φ
(´

u (f) d`∞
)
> φ

(´
u (g) d`∞

)
for all ` ∈ L

and φ
(´

u (f) d`∞
)
≥ φ

(´
u (g) d`∞

)
for all ` ∈ suppµ. By the definition of suppµ,

µ(L) > 0. Thus, f � g and ˆ̀ is relevant.
We next show that U satisfies Continuous Symmetry. We directly verify only the

following axioms: Monotone Continuity of %∗ and Mixture Continuity of % (and thus
Mixture Continuity of %∗). That the remaining axioms are satisfied is straightforward.

Monotone Continuity of %∗: Suppose that case (i) holds, so there are m,M > 0 such
that m |a− b| ≤ |φ (a)− φ (b)| ≤ M |a− b| for all a, b ∈ u (X). Fix any x, x′, x′′ ∈ X
with x′ � x′′. The only non-trivial case is x � x′. Without loss of generality, assume
u (x) = 1 > u (x′) = t′ > u (x′′) = 0 and [0, 1] ⊆ u (X). Suppose An ↘ ∅. Take ε′, ε > 0
so that

ε′ < t′ and m (t′ − ε′) (1− ε) ≥M (1− t′) ε.

Define ζn : ∆ (S) → R by ζn (`) = `∞ (An), and temporarily equip ∆ (S) with the
wc topology. Since wc open sets are weak* open, µ is well-defined on the Borel σ-
algebra generated by wc open sets. Then, by Lusin’s theorem (Aliprantis and Border
[2, Theorem 12.8]), there is a wc compact set L ⊆ ∆ (S) such that µ (L) > 1 − ε
and all ζn are wc continuous. Note that ζn converges monotonically to 0 pointwise.
Then by Dini’s Theorem (Aliprantis and Border [2, Theorem 2.66]), ζn on L converges
uniformly to 0. Hence there is N > 0 such that ζN = `∞ (AN) < ε′ for all ` ∈ L. To
see x′ %∗ xANx′′, and thus Monotone Continuity of %∗, compute, for any α ∈ [0, 1] and
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h ∈ F ,

U (αx′ + (1− α)h)− U (αxANx
′′ + (1− α)h)

=

ˆ
L

φ

(
αt′ + (1− α)

ˆ
hd`∞

)
− φ

(
α`∞ (AN) + (1− α)

ˆ
hd`∞

)
dµ (`)

+

ˆ
∆(S)\L

φ

(
αt′ + (1− α)

ˆ
hd`∞

)
− φ

(
α`∞ (AN) + (1− α)

ˆ
hd`∞

)
dµ (`)

>

ˆ
L

φ

(
αt′ + (1− α)

ˆ
hd`∞

)
− φ

(
αε′ + (1− α)

ˆ
hd`∞

)
dµ (`)

+

ˆ
∆(S)\L

φ

(
αt′ + (1− α)

ˆ
hd`∞

)
− φ

(
α + (1− α)

ˆ
hd`∞

)
dµ (`)

≥
ˆ
L

αm (t′ − ε′) dµ (`) +

ˆ
∆(S)\L

αM (t′ − 1) dµ (`)

= α [m (t′ − ε′)µ (L)−M (1− t′) (1− µ (L))]

≥ α [m (t′ − ε′) (1− ε)−M (1− t′) ε] ≥ 0.

Turn to the case where (ii) holds, so that suppµ is finite. Again suppose An ↘ ∅
and x � x′ � x′′. Since suppµ is finite, sup`∈suppµ `

∞ (An) → 0. Thus, for ε > 0
satisfying u (x′) > εu (x) + (1− ε)u (x′′), there is n > 0 such that `∞ (An) < ε for all
` ∈ suppµ. This implies

U (αx′ + (1− α)h)− U (αxAnx
′′ + (1− α)h)

=

ˆ
φ

(
αu (x′) + (1− α)

ˆ
u (h) d`∞

)
− φ

(
α (`∞ (An)u (x) + (1− `∞ (An))u (x′′)) + (1− α)

ˆ
u (h) d`∞

)
dµ (`)

≥ 0

for all α ∈ [0, 1], h ∈ F , and ` ∈ suppµ. Therefore, x′ %∗ xAnx′′ and Monotone
Continuity of %∗ holds.

Mixture Continuity of % (and thus Mixture Continuity of %∗): Fix acts f, g, h ∈ F
and consider a sequence λn ∈ [0, 1] such that λn → λ and λnf + (1 − λn)g % h for all
n. Therefore, for all n,

ˆ
∆(S)

φ

(
λn

ˆ
S∞

u(f)d`∞ + (1− λn)

ˆ
S∞

u(g)d`∞
)
dµ (`)

≥
ˆ

∆(S)

φ

(ˆ
S∞

u(h)d`∞
)
dµ (`) .

Since φ is continuous, by the Dominated Convergence Theorem (e.g., Aliprantis and
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Border [2, Theorem 11.21])

ˆ
∆(S)

φ

(
λn

ˆ
S∞

u(f)d`∞ + (1− λn)

ˆ
S∞

u(g)d`∞
)
dµ (`)

→
ˆ

∆(S)

φ

(
λ

ˆ
S∞

u(f)d`∞ + (1− λ)

ˆ
S∞

u(g)d`∞
)
dµ (`)

so that λf + (1− λ)g % h.
Next, observe that U (f) can be re-written as

H

((ˆ
u (f) d`∞

)
`∈suppµ

)

≡
ˆ

∆(S)

φ

(ˆ
S∞

u(f)d`∞
)
dµ (`) ,

and H so defined is weakly increasing. Therefore we may apply the uniqueness result
in Theorem 3.2 to conclude R = suppµ. Since suppµ is relative weak* closed by
definition, suppµ = D.

We check φ reflects only tastes under the two specifications of A and B. All except
uniqueness of normalized φ, given u and µ with a non-singleton support is straightfor-
ward. Observe that the preference restricted to acts measurable with respect to the
σ-algebra generated by the limiting frequency events Ψ−1 (`) is a subjective utility pref-
erence with the belief µ and utility φ ◦ u. Since suppµ is non-singleton, φ ◦ u is unique
up to normalization. Since φ is normalized and u is given, φ is unique. This shows that
φ reflects only tastes.

B.8 Proof of Theorem 4.3

Suppose % is represented by such a W (f). We first show that all measures in D are
relevant. Suppose ˆ̀∈ D and fix any open L ⊆ ∆ (S) such that ˆ̀ ∈ L. Consider f =
1Ψ−1(L) and g = 1∅ and observe that

´
fd`∞ =

´
gd`∞ for all ` ∈ ∆ (S) \L. Observe that´

u (f) d`∞ >
´
u (g) d`∞ for all ` ∈ L while

´
u (f) d`∞ ≥

´
u (g) d`∞ for all ` ∈ D and

thus also
´
u (f) dq ≥

´
u (g) dq. Therefore, if β < 1 and q(Ψ−1(L)) > 0, f � g and ˆ̀ is

relevant. If either β = 1 or q(Ψ−1(L)) = 0, consider instead f = 1
2
1Ψ−1(L)+

1
2
1Ψ−1(∆(S)\L)

and g = 1
2
1∅ + 1

2
1Ψ−1(∆(S)\L) and observe that

´
fd`∞ =

´
gd`∞ for all ` ∈ ∆ (S) \L

while min`∈D
´
u (f) d`∞ = 1

2
u (x∗) + 1

2
u (x∗) > u (x∗) = min`∈D

´
u (g) d`∞ so that

f � g and again ˆ̀ is relevant.
We now show that % satisfies Continuous Symmetry. To invoke Lemma 3.1, we

demonstrate that %∗ may be represented as in (3.2). Suppose
´
u (f) dp ≥

´
u (g) dp

for all p ∈ co {β`∞ + (1− β)q : ` ∈ D}. Fix any λ ∈ [0, 1] and acts f, g, h ∈ F , and let
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ˆ̀∞ ∈ arg minp∈{`∞:`∈D}
´
u (λf + (1− λ)h) dp. Then

W (λf + (1− λ)h)

=

ˆ
u (λf + (1− λ)h) d

(
β ˆ̀∞ + (1− β)q

)
≥
ˆ
u (λg + (1− λ)h) d

(
β ˆ̀∞ + (1− β)q

)
≥ W (λg + (1− λ)h)

so that f %∗ g. Going the other direction, suppose f %∗ g and that there exists a p̂ ∈
co {β`∞ + (1− β)q : ` ∈ D} such that

´
u (f) dp̂ <

´
u (g) dp̂. This implies that there

exists an ˆ̀ ∈ D such that
´
u (f) d

(
β ˆ̀∞ + (1− β)q

)
<
´
u (g) d

(
β ˆ̀∞ + (1− β)q

)
.

Let ĥ = 1Ψ−1(D\ˆ̀). Choose λ̂ ∈ (0, 1) small enough to satisfy

(1− λ̂)(u(x∗)− u(x∗))

> λ̂max[

ˆ
u (f) dˆ̀∞ − min

p∈{`∞:`∈D}

ˆ
u (f) dp,

ˆ
u (g) dˆ̀∞ − min

p∈{`∞:`∈D}

ˆ
u (g) dp].

Then

min
p∈{`∞:`∈D}

ˆ
u
(
λ̂f + (1− λ̂)ĥ

)
dp

=

ˆ
u
(
λ̂f + (1− λ̂)ĥ

)
dˆ̀∞

<

ˆ
u
(
λ̂g + (1− λ̂)ĥ

)
dˆ̀∞

= min
p∈{`∞:`∈D}

ˆ
u
(
λ̂g + (1− λ̂)ĥ

)
dp.

Therefore, as β > 0,

W
(
λ̂f + (1− λ̂)ĥ

)
=

ˆ
u
(
λ̂f + (1− λ̂)ĥ

)
d
(
β ˆ̀∞ + (1− β)q

)
<

ˆ
u
(
λ̂g + (1− λ̂)ĥ

)
d
(
β ˆ̀∞ + (1− β)q

)
= W (λg + (1− λ)h)

contradicting f %∗ g. Summarizing, we have shown that

f %∗ g if and only if

ˆ
u (f) dp ≥

ˆ
u (g) dp for all p ∈ co {β`∞ + (1− β)q : ` ∈ D} .
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Therefore, applying Lemma 3.1 and noting that co {β`∞ + (1− β)q : ` ∈ D} is weak*
compact because D is finite, % represented by W (f) satisfies Continuous Symmetry.

Observe that, since q ∈ co {`∞ : ` ∈ D}, W (f) can be re-written as

H

((ˆ
u (f) d`∞

)
`∈D

)
≡ β min

p∈{`∞:`∈D}

ˆ
u (f) dp+ (1− β)

ˆ
u (f) dq,

and H so defined is weakly increasing. Therefore we may apply the uniqueness result
in Theorem 3.2 to conclude D = R. Since D is finite, D = D.

To show that β reflects only tastes, we show that β is unique, given u, q and non-
singleton D, as properties (1) and (2) of Definition 3.7 are straightforward. Note that
increasing β strictly decreases the utility for the bet 1Ψ−1(`) with q (Ψ−1(`)) > 0 and
the utility for a lottery indifferent to 1Ψ−1(`) does not depends on β. Thus, β is unique,
given u, q and non-singleton D.

B.9 Proof of Theorem 4.4

First we show that each measure in suppm is relevant. Suppose ˆ̀ ∈ suppm and fix
any open L ⊆ ∆ (S) such that ˆ̀ ∈ L. Take x1, x2, x3 ∈ X such that x2 ∼ 1

2
x1 + 1

2
x3

and x1 � x3. Define two acts f and g by

f (ω) =

{
x1 if Ψ (ω) ∈ L
x2 otherwise

and g (ω) =

{
x3 if Ψ (ω) ∈ L
x2 otherwise

.

Since
´
fdˆ̀∞ =

´
gdˆ̀∞ for all ̂̀∈ ∆ (S) \L, it suffices to show that f � g. Assume

f ∼ g. Then, for each i = 1, ..., n,

ˆ
ζiu (f) dp =

ˆ
Ψ−1(L)

ζiu (x1) dp+

ˆ
Ω\Ψ−1(L)

ζiu (x2) dp

=

ˆ
Ψ−1(L)

ζi [u (x1)− u (x2)] dp+

ˆ
Ω

ζiu (x2) dp

=

ˆ
Ψ−1(L)

ζi [u (x1)− u (x2)] dp

=

ˆ
Ψ−1(L)

ζi [u (x2)− u (x3)] dp = −
ˆ
ζiu (g) dp.

The third equality follows because
´
ζidp = 0, and the fourth comes from x2 ∼ 1

2
x1+ 1

2
x3.

Then, f ∼ g implies

ˆ
u (f) dp+ A

((ˆ
ζiu (f) dp

)
1≤i≤n

)
=

ˆ
u (g) dp+ A

((ˆ
ζiu (g) dp

)
1≤i≤n

)
.
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As A (a) = A (−a), this yields
´
u (f) dp =

´
u (g) dp which contradicts m (L) > 0 since

x1 � x3. Thus, f � g and each measure in suppm is relevant.
Next, we show that all measures in ∆(S)\ suppm are irrelevant. Suppose ˆ̀ ∈

∆(S)\ suppm. There exists an open L ⊆ ∆ (S) such that ˆ̀∈ L and L ⊆ ∆(S)\ suppm.
We take arbitrary acts f and g, and show that fΨ−1(L)g ∼ g. Since

´
1Ψ−1(L)d`

∞ for
any ` ∈ suppm, we haveˆ

u
(
fΨ−1(L)g

)
d`∞ =

ˆ
u (g) d`∞ and

ˆ
ζiu
(
fΨ−1(L)g

)
d`∞ =

ˆ
ζiu (g) d`∞

for each i = 1, ..., n. Thus,ˆ
u
(
fΨ−1(L)g

)
dp =

ˆ
u (g) dp and

ˆ
ζiu
(
fΨ−1(L)g

)
dp =

ˆ
ζiu (g) dp

for each i = 1, ..., n. This implies T (fΨ−1(L)g) = T (g). Therefore, all measures in
∆(S)\ suppm are irrelevant.

Next, we show that % satisfies Continuous Symmetry. The form assumed for p and
the symmetry property assumed for each ζi ensure that Event Symmetry is satisfied.
The other properties in Symmetry along with Mixture Continuity of % follow directly
from the properties of VEU (see Siniscalchi [43]). Mixture Continuity of % implies
Mixture Continuity of %∗. To see Monotone Continuity of %∗, observe that x′ %∗ xAkx′′

if and only if, for all α ∈ [0, 1] and h ∈ F ,

αu(x′) + A

((
(1− α)

ˆ
u(h)ζidp

)
1≤i≤n

)
≥ α (p(Ak)u(x) + (1− p(Ak)u(x′′))

+ A

((
α

[
u(x)

ˆ
Ak

ζidp+ u(x′′)

ˆ
Ack

ζidp

]
+ (1− α)

ˆ
u(h)ζidp

)
1≤i≤n

)
.

Since p is countably additive and ζi is bounded and measurable, Ak ↘ ∅ implies
p(Ak) → 0 and

´
Ak
ζidp → 0 and

´
Ack
ζidp →

´
S∞

ζidp = 0. Therefore, since n is

finite and A is Lipschitz continuous, there exists a k such that Ak is small enough so
that x′ %∗ xAkx′′. This proves Monotone Continuity of %∗.

Finally, applying Theorem 3.1, the fact that all measures in ∆(S)\ suppm are ir-
relevant implies no measures in ∆(S)\ suppm are relevant. Therefore R = suppm.

We now show that γ reflects only tastes. Again, uniqueness is the only part that
may not be straightforward. By Theorem 1 of Siniscalchi [43], the scale of A is uniquely
determined, given p, ζ, A′ and u.
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