
Polarization and Ambiguity∗

Sandeep Baliga† Eran Hanany‡ Peter Klibanoff§

February 1, 2013

Abstract

We offer a theory of polarization as an optimal response to ambi-

guity. Suppose individual A’s beliefs first-order stochastically dominate

individual B’s. They observe a common signal. They exhibit polariza-

tion if A’s posterior dominates her prior and B’s prior dominates her

posterior. Given agreement on conditional signal likelihoods, we show

that polarization is impossible under Bayesian updating or after observ-

ing extreme signals. However, we also show that polarization can arise

after intermediate signals as ambiguity averse individuals implement

their optimal prediction strategies. We explore when this polarization

will occur and the logic underlying it.
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1 Introduction

A number of voters are in a television studio before a U.S. Presidential debate.

They are asked the likelihood that the Democratic candidate will cut the

budget deficit, as he claims. Some think it is likely and others unlikely. The

voters are asked the same question again after the debate. They become even

more convinced that their initial inclination is correct. A similar phenomenon

can arise in financial markets. “Bulls” and “bears” have different beliefs.

On seeing the same macroeconomic forecasts, they become more bullish and

bearish respectively. Individuals observe the same evidence, and yet their

beliefs move in opposite directions and end up further apart.

Similar polarization of beliefs has been documented in experiments. For

example, Darley and Gross (1983) randomize subjects into different groups.

They show one group evidence suggesting a child is from a high socioeconomic

background; another that she is from a low socioeconomic background. The

former predict the child’s reading abilities are higher than the latter. The

groups then watch a film of the child taking an oral test on which she answers

some questions correctly and others incorrectly. Those who received the infor-

mation that the child came from a high socioeconomic background, rate her

abilities higher than before; those who received the information indicating she

came from a low socioeconomic background rate her lower than before. Thus,

the common evidence - the film - leads beliefs to polarize.

We follow Dixit and Weibull (2007) in defining polarization as follows: Sup-

pose that, prior to observing a common signal, two individuals have different

beliefs and individual A’s belief first-order stochastically dominates individual

B’s. Their beliefs exhibit polarization if, after observing the common signal,

individual A’s posterior dominates his prior and individual B’s prior dominates

his posterior.

Consider two individuals who agree on the probability of each signal condi-

tional on an underlying parameter and use Bayes’ rule to update their beliefs.

We show polarization cannot occur. As individuals share the same theory con-

necting parameters to signals, a given signal increases one individual’s belief
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if and only if it increases the other’s (Theorem 2.1).

In contrast, we show that polarization can occur as an optimal response

to ambiguity aversion (i.e., aversion to subjective uncertainty about proba-

bilities). We do this within a simple prediction model: An individual must

predict the value of a parameter that determines the distribution of a random

variable. The individual views the parameter as ambiguous and is ambiguity

averse. He observes a signal that can inform his predictions. His payoff is de-

creasing in the squared difference between his prediction and the parameter.

This is a standard model apart from ambiguity aversion.

How does ambiguity aversion affect behavior? An individual is exposed to

ambiguity when the expected payoff to his strategy varies with probabilities

over which he is uncertain. Different strategies may involve different exposure

to ambiguity. Suppose there are just two possible parameter values, 0 and 1.

If the individual predicts 1
2
, then the difference between the prediction and the

parameter is the same no matter what the parameter value. Thus, this predic-

tion strategy completely hedges against ambiguity, i.e., removes any exposure

to the ambiguity about the parameter. However, if the individual predicts 1,

the squared difference is much higher when the parameter is 0 than when it is

1, exposing the individual to ambiguity. An ambiguity averse individual will

tend to favor strategies that reduce exposure. Reducing exposure is not the

only concern of such an individual – for example, the more weight his beliefs

place on the parameter equaling 1, the higher his optimal prediction.

Simple strategies such as “predict 1
2
” or “predict 1” are generally not op-

timal when a signal is forthcoming, as these strategies fail to condition on

anticipated information. An optimal contingent strategy will make the predic-

tion an increasing function of the observed signal likelihood ratio. We focus

on individuals who form an ex-ante optimal contingent strategy (i.e., optimal

assuming full commitment to that strategy once chosen) and who are indeed

willing to carry it out after each possible contingency. Such an individual is

said to be dynamically consistent.1 Dynamic consistency is assumed in almost

1See e.g., Hanany and Klibanoff (2007, 2009) for such an approach to modeling ambiguity
averse individuals and for discussion and references to alternative approaches.
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all standard economic analysis. Any theory of updating that is not dynami-

cally consistent will lead to worse outcomes as evaluated by ex-ante welfare.

Also, studying the dynamically consistent case identifies the key effects leading

to polarization that apply even when substantial dynamic inconsistency may

be present (see the Concluding Remarks).

Suppose the individual concludes that “predict 3
4

if the signal is high, 1
2

if

the signal is medium, and 1
4

if the signal is low” is his optimal strategy. This

strategy leaves him partially exposed to the ambiguity about the parameter.

Notice, however, that this exposure varies with the signal received. He is not

exposed to ambiguity after a medium signal but is exposed after a high or

low signal. Under ambiguity aversion, the greater exposure to ambiguity after

seeing a high or low signal may lead to an increased desire to hedge against

this ambiguity, while the lack of exposure after seeing a medium signal may

diminish the value of hedging. These changed hedging motives, ceteris paribus,

could lead the individual to want to depart from the ex-ante optimal strategy.

We call this the hedging effect. There is also a more standard effect having

nothing to do with ambiguity attitude. After a signal is realized, the likelihoods

of this signal are no longer relevant for optimality going forward. We call this

the likelihood effect. Because of this effect, after seeing the signal, if beliefs

were not updated to incorporate that signal’s likelihoods, the individual might

want to depart from the ex-ante optimal strategy. Dynamically consistent

updating must neutralize both the hedging and the likelihood effects of the

signal on the incentives of an ambiguity averse individual. Bayesian updating

counterbalances only the likelihood effect. The presence of the hedging effect

leads dynamically consistent updating to necessarily depart from Bayes’ rule

under ambiguity aversion.2 Importantly, the hedging effect may alter the

direction of updating. Moreover, the hedging effect (but not the likelihood

effect) depends on the ex-ante optimal strategy which, in turn, is influenced

by the individual’s beliefs before observing the signal. Through this chain of

reasoning, beliefs can influence the direction of updating. This allows for the

2In contrast, for an expected utility maximizer, dynamic consistency requires that sub-
jective beliefs are updated using Bayes’ rule, thus ruling out polarization.
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possibility of polarization. We study when polarization does and does not

occur.

Even under ambiguity aversion, we show that polarization does not occur

after observing the highest or the lowest signals (Theorem 3.1). Thus, polar-

ization is a possibility only at signals with an intermediate likelihood ratio.

We can offer a particularly clean result if the intermediate signal is neutral

(i.e., has equal probability under both parameter values). Then the hedging

effect is the only reason to update beliefs – there is no likelihood effect. We

show that individuals with sufficiently extreme and opposite beliefs display

polarization after observing a common neutral intermediate signal (Theorem

3.2). When there are exactly three possible signals and there is constant rel-

ative ambiguity aversion, we provide necessary and sufficient conditions for

polarization (Theorem 3.3) that apply even when the intermediate signal is

not neutral.

All of the above results apply whether or not the two individuals have the

same degree of ambiguity aversion as long as initial beliefs differ. Finally, even

if individuals have the same beliefs, as long as several conditionally indepen-

dent observations are available then if they observe different private signals

before observing a common signal, they can have different beliefs by the time

they see the common signal and, at that point, our above results apply. We

now turn to our model. Related literature is discussed at the end of the paper.

2 The Model and Benchmark Result

Consider an individual who is concerned with the value of a parameter θ ∈
Θ ⊂ R. His beliefs are given by a full-support prior µ. To help inform the

individual about θ, conditionally independent observations from a random

variable X given θ may be available. This random variable has distribution πθ

and takes values in a finite set X such that each x ∈ X has πθ(x) > 0 for some

θ ∈ Θ. For example, θ might indicate a child’s reading ability, while πθ might

be the distribution of scores on a reading test for a child with that ability.

We assume that Θ is finite and, without loss of generality, index Θ so that
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θ1 < θ2 < ... < θ|Θ|. A distribution η̂ (first-order) stochastically dominates η̌ if

k∑
i=1

η̌ (θi) ≥
k∑
i=1

η̂ (θi) for all k ∈ {1, 2, ..., |Θ|}.

The dominance is strict if at least one of these inequalities is strict. We adopt

the following definition of polarization due to Dixit and Weibull (2007):

Definition 2.1. Fix two individuals with beliefs η̌ and η̂ over Θ and with com-

mon support such that η̂ stochastically dominates η̌. After they both observe

a signal x ∈ X whose likelihood given θ ∈ Θ is πθ (x), we say that polarization

occurs if and only if the resulting posterior beliefs, ν̌ and ν̂ respectively, lie

further apart, i.e., η̌ stochastically dominates ν̌ and ν̂ stochastically dominates

η̂ with at least one dominance strict.

Starting from two beliefs, one higher than the other, polarization occurs

when the observation of a common signal leads the higher belief to move higher

and the lower belief to move lower. The requirement that one initial belief be

higher than the other is essential to rule out the possibility that posteriors

move in opposite directions but toward each other. If initial beliefs were not

ranked, one were updated upward and the other downward, it would not be

clear whether beliefs had moved toward or away from one another. Even if the

requirement that initial beliefs be ranked were somehow relaxed, the results of

this paper would continue to hold. Our benchmark impossibility result (The-

orem 2.1) does not rely on the initial beliefs being ranked. Additionally, in

the setting we use in the next section to show polarization under ambiguity

aversion, beliefs can always be ranked by dominance. In more complex set-

tings, this aspect of defining polarization may matter. We favor Definition 2.1

because whenever it identifies polarization, there is no doubt that beliefs are

moving away from one another.

The following result shows that, in this setting, under Bayesian updating,

irrespective of any non-belief aspect of preference, polarization cannot occur.

The theorem and proof formalize the intuitive statement that, as long as their

priors share the same support, if two individuals who use Bayes’ rule see the
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same observation and agree on the probability of each observation conditional

on the parameter, it is impossible for them to update in opposite directions

in the sense of first-order stochastic dominance. All proofs are in the online

Appendix.

Theorem 2.1. Fix two individuals as in Definition 2.1. Polarization cannot

occur if they use Bayesian updating.

3 Polarization and Ambiguity

For the remainder of the paper, suppose the individual’s goal is to predict

the value of the parameter θ. For tractability, we assume Θ = {0, 1} so

there are just two possible parameter values. Accordingly, throughout this

section let µ denote µ(θ = 1). For example, θ = 1 might indicate a child

has high reading ability and the prediction α ∈ [0, 1] might be interpreted as

a probability that the child has high reading ability. We make the standard

assumption that the payoff to a prediction α is given by quadratic loss; i.e.,

−(α − θ)2. To avoid tedious corner cases, we assume πθ has full support for

each θ. The individual can condition his prediction on an observation x ∈ X
drawn from the random variable X.3 Hence, his strategy is a function α : X →
R. We use uppercase X and lowercase x to distinguish between the random

variable and its realization, respectively.4 We assume the individual views

θ as ambiguous, is risk neutral and evaluates prediction strategies according

to ambiguity averse smooth ambiguity preferences (Klibanoff, Marinacci and

Mukerji (2005)). Specifically, any prediction strategy is evaluated according

to the concave objective function

E(µ,1−µ)φ
[
Eπθ(−(α (X)− θ)2)

]
,

3Extensions of our results to the case of multiple conditionally independent observations
may be found in the working paper version (Baliga, Hanany and Klibanoff (2013)).

4For example, α (X) is a random (since the observation is yet-to-be-realized) prediction,
while α(x) is the realized prediction.
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where φ is increasing, concave and continuously differentiable, E is the ex-

pectation operator (with respect to the subscripted distribution), (µ, 1 − µ)

is the belief about θ and πθ is the distribution of X given θ. Observe that if

φ is linear (i.e., ambiguity neutrality), the objective function reduces to ex-

pected quadratic loss. The concavity of φ reflects ambiguity aversion. We will

sometimes additionally assume constant relative ambiguity aversion γ ≥ 0, in

which case φ(u) = − (−u)1+γ

1+γ
for u ≤ 0.

The optimal strategy α∗ (x) is the unique solution to the first-order condi-

tions:
α∗ (x)

1− α∗ (x)

φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]

π0(x)

π1(x)
=

µ

1− µ
(3.1)

for each x ∈ X .

The difference from the usual prediction problem with ambiguity neutral-

ity is the presence of the term
φ′[Eπ0 (−(α∗(X))2)]

φ′[Eπ1 (−(1−α∗(X))2)]
on the left-hand side of (3.1).

Under ambiguity aversion, φ is concave, and this term reflects the desire to

hedge or reduce the variation in expected payoffs as a function of the am-

biguous parameter θ. Ambiguity aversion ensures that when expected payoffs

across the θ’s differ, the φ′ ratio pushes the optimal prediction strategy in the

direction of equalizing them by moving the predictions toward the θ with the

lower expected payoff. This is the manifestation of the value that ambiguity

averse individuals place on hedging against ambiguity. For this reason, we

call this φ′ ratio the hedging motive. It compares the marginal value of an

extra unit of expected utility when θ = 0 to the marginal value when θ = 1.

When these expected payoffs are equal (i.e., a perfect hedge) the hedging mo-

tive equals one. Values above (below) one reflect a stronger (weaker) desire

to shift expected payoff from θ = 1 to θ = 0, i.e., to hedge by adjusting the

prediction strategy α∗ downward.

We have the following useful implication of (3.1) that is true independent

of ambiguity attitude: for any x, y ∈ X ,

α∗ (x)

1− α∗ (x)

π0(x)

π1(x)
=

α∗ (y)

1− α∗ (y)

π0(y)

π1(y)
. (3.2)
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The intuition for this equality is the standard one concerning equating marginal

rates of substitution across signal realizations.

In a prediction problem, updating maps beliefs about θ and new observa-

tions to posterior beliefs about θ. Dynamically consistent updating is updating

that preserves the optimality of the contingent strategy α∗ (x) after the obser-

vation is realized (i.e., ex-ante optimal updating).5 Let νx denote the posterior

probability of θ = 1 after observing x. Dynamically consistent updating is

equivalent to these posteriors νx satisfying

α∗ (x)

1− α∗ (x)

φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]
=

νx
1− νx

(3.3)

for all x ∈ X . Note that (3.3) is simply the first-order condition of the contin-

uation prediction problem, evaluated at the ex-ante optimal strategy α∗ (x),

after x has been realized and assuming beliefs at that point are νx. It there-

fore guarantees that α∗ (x) remains optimal upon seeing the observation. After

the next result, we describe the difference, under ambiguity aversion, between

dynamically consistent updating and Bayesian updating and show how the

former allows polarization. First we show that several natural properties that

hold under ambiguity neutrality continue to hold under ambiguity aversion:

Proposition 3.1. (i) For each realization x ∈ X , the optimal prediction α∗ (x)

is an increasing function of µ (the prior probability of θ = 1) and of the

likelihood ratio π1(x)
π0(x)

. The best constant (i.e., not varying with x) prediction is

also an increasing function of µ;

(ii) The optimal prediction after observing x is an increasing function of the

posterior νx. Furthermore, νx R µ if and only if the optimal prediction after

observing x and the (ex-ante) best constant prediction are similarly ordered.

Under dynamically consistent updating, the optimal prediction after observing

x is α∗ (x).

Proposition 3.1 implies that polarization as defined in terms of beliefs is

equivalent to polarization in actions (here, predictions). A common signal

5For a thorough discussion and analysis of dynamically consistent updating under ambi-
guity aversion see Hanany and Klibanoff (2009).
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moves optimal actions further apart and in opposite directions exactly when

that signal moves beliefs further apart and in opposite directions. To see this,

observe from the first part of the proposition that prior beliefs have the same

order as the respective best predictions made without using the observation.

From the second part of the proposition, posterior beliefs after a common

signal compare to the prior beliefs in the same way as the optimal predictions

after a common signal compare to the best predictions made without using

the signal. Combining these yields the equivalence.

For the remainder of this section we assume dynamically consistent updat-

ing. Suppose a signal x is observed. Dynamic consistency requires that the

optimal prediction strategy after this observation also be the optimal predic-

tion strategy ex ante contingent on observing x. As emphasized above, under

ambiguity aversion, the optimal prediction strategy is partly driven by the

desire to hedge. Before the signal is realized, the hedging motive is as in (3.1).

However, after observing x, the interim hedging motive is as in (3.3). These

hedging motives are typically not equal. As we highlighted in the Introduction,

the individual’s hedging motive changes since he no longer needs to account

for variation in his expected payoffs induced by the signal realization. To carry

out the optimal prediction strategy, dynamically consistent updating departs

from Bayesian updating in a way that exactly offsets this hedging effect. We

use this to offer a characterization of the direction of dynamically consistent

updating:

Proposition 3.2. The posterior νx is above/equal to/below the prior µ if and

only if
φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]

π1(x)

π0(x)
R

φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]
. (3.4)

Notice that in addition to the hedging motive terms, (3.4) includes the

likelihood ratio for the newly observed signal. This term reflects the likelihood

effect referred to in the Introduction. Thus (3.4) formalizes the statement that

dynamically consistent updating offsets both the hedging and likelihood effects

(while Bayesian updating offsets only the likelihood effect). The condition in

(3.4) is not always easy to apply, as it involves the endogenously determined
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optimal strategy α∗. Nevertheless, we can prove some general properties of

updating directly from this inequality: Observing a signal xH with the highest

likelihood ratio (i.e., xH ∈ arg max
x∈X

π1(x)
π0(x)

) always leads to updating upwards

and observing a signal, xL, with the lowest likelihood ratio always leads to

updating downwards. One implication is that polarization cannot occur after

“extreme” common signals.

Theorem 3.1. After observing xH (resp. xL), the posterior νx is above (resp.

below) the prior µ. It is also above (resp. below) the Bayesian update of µ

given xH (resp. xL).

Remark 3.1. If the signal is informative, so that π1(xH)
π0(xH)

> 1 > π1(xL)
π0(xL)

, then

above (resp. below) in the statement of the theorem may be replaced by strictly

above (resp. strictly below).

We turn to our main positive results. Suppose there are two individuals

with beliefs η̂ > η̌ (we continue our abuse of notation and denote η̂(θ = 1)

and η̌(θ = 1) by η̂ and η̌ respectively). In all other respects, the individuals

are equivalent. If they are ambiguity neutral, we know that polarization is

impossible, from Theorem 2.1. If they both observe the same extreme signal,

we know they will update in the same direction and thus fail to polarize, from

Theorem 3.1. So, assume the individuals are ambiguity averse and there are

at least three signals with distinct likelihood ratios. Thus, there is at least

one intermediate (i.e., non-extreme) signal and these are the only signals after

which individuals’ beliefs can possibly exhibit polarization. When and why

can polarization occur?

Suppose an individual observes a signal, xM , with intermediate likelihood

ratio. Substituting for predictions α∗ (x) , x 6= xM using (3.2), inequality (3.4)
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becomes:

φ′[−(α∗
(
xM
)
)2]

φ′[−(1− α∗ (xM))2]

π1(xM)

π0(xM)
(3.5)

R

φ′[−(α∗
(
xM
)
)2
∑

y∈X π0(y)(
π1(y)
π0(y)

α∗(xM )
π1(y)
π0(y)

+(1−α∗(xM ))
π1(xM )

π0(xM )

)2]

φ′[−(1− α∗ (xM))2
∑

y∈X π1(y)(
π1(xM )

π0(xM )

α∗(xM )
π1(y)
π0(y)

+(1−α∗(xM ))
π1(xM )

π0(xM )

)2]

The direction of this inequality determines the direction of updating. The

connection between α∗
(
xM
)

(and thus beliefs, since α∗
(
xM
)

is increasing in

beliefs by Proposition 3.1) and the direction of this inequality may be quite

complex. It is simplest in the case where the signal is not only intermediate

but also neutral (i.e., π0(x) = π1(x)). In the theorem below, we show that

when α∗
(
xM
)

(and thus belief) for one individual is close to 0 and for another

is close to 1, polarization occurs after they commonly observe a neutral signal.

Theorem 3.2. Polarization and Ambiguity: Assume there is a neutral signal,

at least one informative signal and twice continuously differentiable φ with

φ′′ < 0 < φ′. Polarization occurs after commonly observing a neutral signal if

belief η̂ is sufficiently close to 1 and belief η̌ is sufficiently close to 0.

Sketch of proof (for the full proof see the online Appendix): When

α∗
(
xM
)

is close to 0, if θ = 0 then predictions will be close to perfect, both

interim and ex-ante. Since payoffs are relatively insensitive to small changes

in predictions in the neighborhood of perfection, any differences in the interim

and ex-ante expected payoffs when θ = 0 (i.e., any differences in the arguments

of φ′ in the numerators on each side of (3.5)) will be very small and will have

minimal influence on updating (since −φ′′

φ′
is finite).6 In contrast, if θ = 1,

predictions close to 0 will be very costly and small improvements in those

predictions would be valuable. Therefore, (since −φ′′

φ′
is non-zero) it is the

6The role of assuming φ′′ < 0 < φ′ is to ensure that both the hedging motive, φ′[−α2]
φ′[−(1−α)2] ,

and ambiguity aversion (as measured by−φ′′

φ′ , the coefficient of (absolute) ambiguity aversion

(see Klibanoff, Marinacci and Mukerji (2005))), are bounded away from zero and infinity.
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differences in interim and ex-ante expected payoffs when θ = 1 that drive the

comparison of hedging motives when predictions are close to 0. Differentiating

the arguments of the φ′ terms in the denominators with respect to α∗
(
xM
)

and evaluating at α∗
(
xM
)

= 0, yields that the ex-ante expected payoff when

θ = 1 is higher than the interim payoff when θ = 1 if and only if the expected

likelihood,
∑

y∈X π1(y)π1(y)
π0(y)

, is higher than the realized likelihood, π1(xM )
π0(xM )

. This

comparison reflects the fact that the predictions α∗(y) optimally move toward

1 by an amount proportional to the likelihood π1(y)
π0(y)

so the expected or realized

likelihoods reflect the expected or realized improvements in the prediction

when θ = 1. Notice that this expected likelihood is always larger than 1

because of the complementarity between the π1 terms, so that if xM is a

neutral signal this condition will be satisfied.

As a result, when the signal likelihood π1(xM )
π0(xM )

is below
∑

y∈X π1(y)π1(y)
π0(y)

,

for all sufficiently low beliefs η (so that α∗
(
xM
)

is sufficiently close to 0), the

hedging motive is bigger ex-ante than after seeing the signal and so updating

will be shaded downward compared to Bayesian updating. Similar reasoning

for α∗
(
xM
)

close to 1 shows that when π1(xM )
π0(xM )

lies above 1∑
y∈X π0(y)

π0(y)
π1(y)

, for

sufficiently high η, updating will be shaded upward compared to Bayesian

updating. When the signal is neutral, Bayesian updating is flat, so these

arguments imply updating will be downward when belief is sufficiently low

and upward when belief is sufficiently high, generating polarization.

Remark 3.2. In this argument, the important aspect of quadratic loss is that

the marginal payoff to improving a prediction is diminishing in the quality (i.e.,

closeness to the truth) of the prediction and vanishes at perfection. Any payoff

function of the form ψ(|α− θ|) where ψ : [0, 1] → R is a twice continuously

differentiable function satisfying ψ′(0) = 0 and ψ′′ < 0 will yield a similar

result.

3.1 Threshold Rules for Updating

To further investigate when polarization occurs, we turn to a particularly clean

structure for determining the direction of updating. Given an observation x,
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say that updating follows a threshold rule if there is a threshold τ ∈ [0, 1] such

that all beliefs above the threshold are updated upward and those below the

threshold are updated downward. Under ambiguity neutrality, the threshold is

always degenerate – a given observation x either leads all priors to be updated

upward or all priors to be updated downward depending on how the likelihood

ratio π1(x)
π0(x)

compares to 1. In contrast, under ambiguity aversion, updating

may follow a non-trivial threshold rule. In the online Appendix, we provide a

characterization of when updating follows a threshold rule (Proposition A.2).

To provide an explicit description, for the remainder of this section, we spe-

cialize by assuming constant relative ambiguity aversion and that there are

exactly three distinct likelihood ratios associated with signals. Under these

conditions, we show that updating always follows a threshold rule and we can

explicitly derive the thresholds. By Theorem 3.1, all beliefs are updated in the

same direction after extreme signals. Hence, we study thresholds given the

intermediate signal.

Polarization is obviously impossible if two individuals have the same be-

liefs and have the same degree of ambiguity aversion. If, however, there is

heterogeneity on either dimension, individuals may exhibit polarization when

they observe a common signal. Theorem 3.3 and Proposition 3.3 characterize

the conditions for a signal to lead to polarization when there is heterogeneity

across individuals in beliefs and/or ambiguity aversion.

Theorem 3.3. Assume constant relative ambiguity aversion and exactly three

distinct likelihood ratios. There exist τ̂ , τ̌ ∈ [0, 1] such that polarization occurs

after commonly observing a signal with the non-extreme likelihood ratio if and

only if belief η̂ ≥ τ̂ and belief η̌ ≤ τ̌ with at least one inequality strict.

Notice that whenever the thresholds satisfy τ̂ < 1 or τ̌ > 0, there exist

beliefs that generate polarization. The theorem relies on the following propo-

sition establishing that updating follows a threshold rule. The proposition is

proved by explicitly constructing the threshold.

Proposition 3.3. Assume constant relative ambiguity aversion γ > 0 and ex-

actly three distinct likelihood ratios. The posterior νxM is above/equal to/below
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the prior µ when the latter is above/equal to/below a threshold τ(γ, π0, π1) that

is independent of µ.

Theorem 3.3 and Proposition 3.3 specialize immediately for the cases where

heterogeneity is either only in beliefs or only in ambiguity aversion.

Corollary 3.1. Assume exactly three distinct likelihood ratios. Then,

(a) Polarization with Homogeneous Beliefs: Two individuals with beliefs η

and constant relative ambiguity aversions γ̂ and γ̌ exhibit polarization after

observing the intermediate signal if and only if

τ(γ̂, π0, π1) ≤ η ≤ τ(γ̌, π0, π1)

with at least one inequality strict; and

(b) Polarization with Heterogeneous Beliefs: Two individuals with constant

relative ambiguity aversion γ and beliefs η̂ and η̌ exhibit polarization after

observing the intermediate signal if and only if

η̂ ≥ τ(γ, π0, π1) ≥ η̌

with at least one inequality strict.

When the intermediate signal is a neutral signal, thresholds always lie

strictly between 0 and 1, and take a particularly simple form:

Corollary 3.2. Assume constant relative ambiguity aversion γ > 0 and ex-

actly three distinct likelihood ratios. If xM is a neutral signal, the threshold

τ(γ, π0, π1) is
1

1 +
(
π1(xH)
π0(xH)

π1(xL)
π0(xL)

)γ+ 1
2

∈ (0, 1).

Heterogeneous tastes or beliefs are the source of polarization under am-

biguity in Theorem 3.3. But this cannot explain the polarization observed

by Darley and Gross (1983), where the groups exhibiting polarization were

homogeneous. In their study, heterogeneity was induced across groups at the
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interim stage by showing them different initial evidence. Our previous results,

together with their extension to prediction after observing multiple signals as

described in the working paper version (Baliga, Hanany and Klibanoff (2013)),

imply that exactly this device can generate polarization in an ex ante homoge-

neous prediction problem. For example, suppose there are two individuals with

a common coefficient of relative ambiguity aversion γ > 0, a common prior

µ = 1
2

and signals with three distinct likelihood ratios and symmetric likeli-

hoods (i.e., π0

(
xL
)

= π1

(
xH
)
, π0

(
xM
)

= π1

(
xM
)

and π0

(
xH
)

= π1

(
xL
)
).

The individuals are allowed to condition their prediction on two condition-

ally independent observations. Suppose one individual observes the sequence

{xL, xM}, while the other observes the sequence {xH , xM}. The multi-signal

version of Theorem 3.1 implies that after one observation the first individual

will have updated beliefs η̌ < 1
2

and the second individual will have updated

beliefs η̂ > 1
2
. From Corollary 3.2 and symmetry of the likelihoods, the thresh-

old for updating upon observing xM is τ(γ, π0, π1) = 1
2
. Since the beliefs η̌ and

η̂ are on opposite sides of this threshold, Theorem 3.3 implies that polarization

will occur after the second observation, xM .

More generally, as long as the threshold is interior and enough observations

are available, polarization is possible after an intermediate signal. This follows

since if one individual observes a long sequence of high signals and another

observes a long sequence of low signals, their posteriors will end up on different

sides of this threshold. If they then observe a common intermediate signal,

they will update in opposite directions and polarize. A formal statement of

this result on polarization in a homogeneous environment may be found in

Baliga, Hanany and Klibanoff (2013, Theorem 3.4).

4 Related Literature and Concluding Remarks

4.1 Related Literature

Dixit and Weibull (2007) show that polarization cannot occur under Bayesian

updating in the standard linear-normal model where individuals’ (different)
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priors and (common) noise are normally distributed. Signals in this model

satisfy the monotone likelihood ratio property (MLRP). They also argue via

example that polarization can occur if signals do not satisfy MLRP. On closer

inspection, however, their examples violating MLRP do not display polar-

ization. In fact, our Theorem 2.1 shows that polarization cannot occur under

Bayesian updating, whether MLRP or normality holds or not. Instead, in their

examples, while the means or the medians of two individuals’ beliefs move fur-

ther apart after observing a common signal, their beliefs are not further apart

according to stochastic dominance.

Acemoglu, Chernozhukov and Yildiz (2009) study asymptotic disagreement

in a model where individuals have different priors on parameters and also dif-

ferent distributions on signals conditional on the parameter. They show that

posteriors on parameters can diverge. Kondor (2012) shows that polarization

can be generated when individuals see different private signals that are corre-

lated with a common public signal. Andreoni and Mylovanov (2012) provide a

similar theory and test their model experimentally. Rabin and Schrag (1999)

study a model of confirmatory bias where agents ignore signals that do not

conform with their first impressions, and thus updating is simply assumed to

be biased in the direction of current beliefs, directly generating polarization.

Notice that in all of these papers, individuals may disagree about the likelihood

of a publicly observed signal conditional on the parameter. This is likely to be

a common, if unsurprising, source of polarization. In contrast, in our model,

conditional on the parameter, all individuals agree on the distribution over

signals and their independence, and yet an interesting theory of polarization

still emerges.

The only other paper we know of relating ambiguity to polarization is

Zimper and Ludwig (2009). They study particular forms of dynamically in-

consistent updating in a model where agents are Choquet expected utility

maximizers (Schmeidler (1989)), and polarization is defined as divergence of

“expected” signal probabilities as the number of observations goes to infinity.

This contrasts with our model, where updating is optimal in the sense of dy-

namic consistency, beliefs have the standard additive form and polarization is
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defined after any signal realization rather than as a limit phenomenon.

4.2 Concluding Remarks

The arrival of information changes the hedging motive of ambiguity averse

individuals. Optimal (i.e., dynamically consistent) updating must counteract

this hedging effect in addition to the more familiar likelihood effect. We show

that this delivers a theory of polarization – describing when it can occur and

when it cannot.

The model and theory can be extended in several ways. First, we have as-

sumed the individual has perfect foresight of the number of observations that

will be available before he needs to take an action and that there is only one

action required in the problem. Suppose instead that foresight is limited and

the individual believes that they must take an action after fewer observations

than will, in reality, be available. This is a natural description of the approach

plausibly taken by subjects in the experiments of Darley and Gross (1983).

Suppose (1) the individual uses dynamically consistent updating in the part

of the problem he foresees; and (2) when faced with the unforeseen continua-

tion problem, he applies dynamically consistent updating to the continuation

starting from the posterior beliefs inherited from the foreseen problem. Then,

the possibility of polarization and the logic behind it described in our analysis

continue to hold.

Second, our results are developed using the smooth ambiguity model of

Klibanoff, Marinacci and Mukerji (2005). One benefit of using this model

is that, like the standard Bayesian expected utility model, it allows us to

describe beliefs, and thus polarization, through a probability measure. It is

not obvious how to best define polarization for other models of ambiguity

averse preferences. Putting that aside, the fundamental connection between

ambiguity aversion and dynamically consistent updating that must counteract

a hedging effect is present in any complete preference model of ambiguity

aversion. Exactly when such a connection generates polarization is likely to

vary with choice of model and spelling out these conditions for different models

18



is left for future research. Such an investigation may require additional tools,

as the smooth ambiguity model allows us to characterize the unique solution

of our prediction problem using first-order conditions.

Finally, we have assumed fully dynamically consistent updating. As was

mentioned in the Introduction, the effects we identify continue to generate

polarization even under substantially weaker assumptions. For example, after

observing a signal, suppose the individual maximizes a weighted sum of utility

under dynamically consistent updating and utility under Bayesian updating.7

As long as there is strictly positive weight on the former, all of our qualitative

results on polarization under ambiguity aversion are preserved.
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A Online Appendix to accompany Baliga, Hanany

and Klibanoff, “Polarization and Ambigu-

ity”, American Economic Review

This Appendix contains all proofs not included in the main text and some

further results on the direction of updating.

A.1 Proofs not in the Main Text

Proof. [Proof of Theorem 2.1] Bayesian updating is only well-defined follow-

ing positive probability signals. Therefore, assume
∑

i η̌ (θi) πθi (x) > 0 and∑
i η̂ (θi) πθi (x) > 0. We use proof by contradiction. Suppose two individuals

use Bayesian updating and that η̌ stochastically dominates ν̌ and ν̂ stochas-

tically dominates η̂ with at least one dominance strict (i.e., that polarization

occurs). Observe that η̌ stochastically dominates ν̌ implies η̌ (θ1) ≤ ν̌ (θ1) =
η̌(θ1)πθ1 (x)∑
i η̌(θi)πθi (x)

and η̌
(
θ|Θ|
)
≥ ν̌

(
θ|Θ|
)

=
η̌(θ|Θ|)πθ|Θ| (x)∑

i η̌(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≥
∑
i

η̌ (θi) πθi (x) ≥ πθ|Θ| (x) . (A.1)

Similarly, observe that ν̂ stochastically dominates η̂ implies η̂ (θ1) ≥ ν̂ (θ1) =
η̂(θ1)πθ1 (x)∑
i η̂(θi)πθi (x)

and η̂
(
θ|Θ|
)
≤ ν̂

(
θ|Θ|
)

=
η̂(θ|Θ|)πθ|Θ| (x)∑

i η̂(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≤
∑
i

η̂ (θi) πθi (x) ≤ πθ|Θ| (x) . (A.2)

The only way for (A.1) and (A.2) to be satisfied simultaneously is when

πθ1 (x) =
∑
i

η̌ (θi) πθi (x) =
∑
i

η̂ (θi) πθi (x) = πθ|Θ| (x) . (A.3)

Notice that under (A.3) η̂ (θ1) = ν̂ (θ1), η̂
(
θ|Θ|
)

= ν̂
(
θ|Θ|
)
, η̌ (θ1) = ν̌ (θ1)

and η̌
(
θ|Θ|
)

= ν̌
(
θ|Θ|
)
. Given

∑
i η̌ (θi) πθi (x) =

∑
i η̂ (θi) πθi (x), consider the

1



induction hypothesis that, for some 1 ≤ n < |Θ|,

η̂ (θi) = ν̂ (θi) and η̌ (θi) = ν̌ (θi) for i = 1, ..., n.

Under this hypothesis, η̌ stochastically dominates ν̌ implies η̌ (θn+1) ≤ ν̌ (θn+1) =
η̌(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

and ν̂ stochastically dominates η̂ implies η̂ (θn+1) ≥ ν̂ (θn+1) =
η̂(θn+1)πθn+1

(x)∑
i η̂(θi)πθi (x)

=
η̂(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

. Therefore,

η̂ (θn+1) = ν̂ (θn+1) and η̌ (θn+1) = ν̌ (θn+1) .

Since we showed above that the induction hypothesis holds for n = 1, we

conclude that η̌ stochastically dominates ν̌ and ν̂ stochastically dominates η̂

implies η̌ = ν̌ and η̂ = ν̂. This contradicts our supposition of polarization.

Proof. [Proof of Proposition 3.1] It is immediate from (3.1) that α∗ (x) ∈ (0, 1)

since µ ∈ (0, 1) and φ′ > 0. To prove (i), fix any x ∈ X and, from (3.2),

observe that for any y ∈ X , α∗ (y) is a strictly increasing function of α∗ (x) in

any solution of the system of first-order conditions. This and the fact that φ is

concave implies that the left-hand side of (3.1) is strictly increasing in α∗ (x)

and decreasing in π1(x)
π0(x)

. The right-hand side of (3.1) is strictly increasing

in µ and constant in α∗ (x). Therefore, α∗ (x) is well-defined and strictly

increasing in µ and π1(x)
π0(x)

. The first-order condition describing the best constant

prediction, which we denote here by ᾱ, is

ᾱ

1− ᾱ
φ′[−(ᾱ)2]

φ′[−(1− ᾱ)2]
=

µ

1− µ
. (A.4)

Again, concavity of φ implies that the left-hand side is strictly increasing in ᾱ

and thus the best constant prediction is strictly increasing in µ.

To prove (ii), let β∗ (x) denote the optimal prediction after observing x.

By the first-order conditions for optimality, these predictions must satisfy

β∗ (x)

1− β∗ (x)

φ′[−(β∗ (x))2]

φ′[−(1− β∗ (x))2]
=

νx
1− νx

. (A.5)
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Therefore, by the same reasoning as in (i), β∗ (x) is strictly increasing in the

posterior νx. Comparing (A.4) and (A.5) and using concavity of φ yields

νx R µ

if and only if

β∗ (x) R ᾱ.

Finally, under dynamically consistent updating, from (3.3), the posteriors

must satisfy
α∗ (x)

1− α∗ (x)

φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]
=

νx
1− νx

.

Therefore, β∗ (x) = α∗ (x).

Proof. [Proof of Proposition 3.2] Dynamically consistent updating implies that

(3.3) is satisfied in addition to (3.1). Combining the two equalities yields,

νx R µ

if and only if

φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]
R

φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]

π0(x)

π1(x)
.

Proof. [Proof of Theorem 3.1] By Proposition 3.2,

νxH ≥ µ

if and only if

φ′[−(α∗
(
xH
)
)2]

φ′[−(1− α∗ (xH))2]
≥ φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]

π0(xH)

π1(xH)
. (A.6)
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For all y ∈ X , since π1(xH)
π0(xH)

≥ π1(y)
π0(y)

, it follows from part (i) of Proposition 3.1

that

α∗
(
xH
)
≥ α∗ (y) .

Therefore (α∗
(
xH
)
)2 ≥ Eπ0(α∗ (X))2 and (1− α∗

(
xH
)
)2 ≤ Eπ1(1− α∗ (X))2.

As φ is concave, this implies

φ′[−(α∗
(
xH
)
)2]

φ′[−(1− α∗ (xH))2]
≥ φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]
. (A.7)

Since π1(xH)
π0(xH)

≥ 1, (A.6) follows. Thus νxH ≥ µ.

Furthermore, (3.3), (A.7) and (3.1) imply

νxH

1− νxH
=

α∗
(
xH
)

1− α∗ (xH)

φ′[−(α∗
(
xH
)
)2]

φ′[−(1− α∗ (xH))2]

≥
α∗
(
xH
)

1− α∗ (xH)

φ′[Eπ0(−(α∗ (X))2)]

φ′[Eπ1(−(1− α∗ (X))2)]

=
µ

1− µ
π1(xH)

π0(xH)
,

where the last expression is the posterior ratio generated by Bayesian up-

dating of µ after observing xH .

An analogous argument shows µ ≥ νxL and

νxL

1− νxL
≤ µ

1− µ
π1(xL)

π0(xL)
.

Proof. [Proof of Theorem 3.2] Recall that the optimal prediction α∗(x) is con-

tinuous and increasing in the prior probability of θ = 1. Denote this probability

by η. As the optimal prediction is 0 if η = 0 and 1 if η = 1, considering η close

enough to 0 or η close enough to 1 is equivalent to considering α∗(x) close

enough to 0 or 1 respectively. The proof strategy for determining updating for

sufficiently extreme beliefs will be to consider updating for sufficiently extreme

predictions.
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Observe, by applying (3.1) and (3.3), that dynamically consistent updating

of η after seeing x ∈ X will be shaded upward/equal to/shaded downward

compared to Bayesian updating if and only if

φ′[−(α∗ (x))2]φ′[−
∑
y∈X

π1(y)(1− α∗ (y))2] (A.8)

R φ′[−(1− α∗ (x))2]φ′[−
∑
y∈X

π0(y)(α∗ (y))2].

From (3.2), α∗ (y) = βπ1,π0(α∗ (x) ; y) where βπ1,π0 : [0, 1] × X → [0, 1] is

defined by βπ1,π0(z; y) =
z
π1(y)
π0(y)

z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

for all z ∈ [0, 1] and y ∈ X . Define

the function f : [0, 1]→ R such that

f(z) =
φ′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]

φ′[−(1− z)2]
−
φ′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

φ′(−z2)
.

Under our assumptions, f is continuous and differentiable. By comparing f

with (A.8), observe that when z = α∗ (x) ∈ (0, 1), the direction in which

updating is shaded relative to Bayesian updating is determined by the sign

of f . Therefore we want to determine the sign of f(z) when z is close 0 and

when it is close to 1. By the assumptions in the statement of the theorem,

0 < φ′(0) < φ′(−1) <∞ where the last inequality comes from the fact that φ′

is continuous on [−1, 0] and thus bounded. Then f(0) = f(1) = 0. Therefore,

the sign of f(z) when z is close 0 and when it is close to 1 is determined by

the sign of f ′(z) at 0 and 1 respectively. Differentiating f (and denoting the
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derivative of βπ1,π0 with respect to z evaluated at (z; y) by β′π1,π0
(z; y)) yields,

f ′(z) =
2φ′′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]

∑
y∈X π1(y)(1− βπ1,π0(z; y))β′π1,π0

(z; y)

φ′[−(1− z)2]

−
2φ′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]φ′′[−(1− z)2](1− z)

(φ′[−(1− z)2])2

+
2φ′′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

∑
y∈X π0(y)(βπ1,π0(z; y))β′π1,π0

(z; y)

φ′(−z2)

−
2φ′′(−z2)(z)φ′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

(φ′(−z2))2 .

Thus,

f ′(0) = 2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(0; y)

]
+(0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(0; y)

]

and

f ′(1) = (0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(1; y)

]
+2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(1; y)

]
.

Since φ′′ is negative and finite (since φ′′ is continuous on a bounded inter-

val), the coefficient of ambiguity aversion, −φ′′

φ′
, is everywhere positive and

finite. This allows us to conclude that the sign of f ′(0) is the same as

the sign of 1 −
∑

y∈X π1(y)β′π1,π0
(0; y), while the sign of f ′(1) is the sign of

1−
∑

y∈X π0(y)β′π1,π0
(1; y). Differentiating βπ1,π0(z; y) shows that β′π1,π0

(0; y) =
π1(y)
π0(y)

/π1(x)
π0(x)

and β′π1,π0
(1; y) = π1(x)

π0(x)
/π1(y)
π0(y)

. Thus f ′(0) < 0 and f ′(1) < 0 if and

only if
1∑

y∈X π0(y)π0(y)
π1(y)

<
π1(x)

π0(x)
<
∑
y∈X

π1(y)
π1(y)

π0(y)
. (A.9)

Summarizing, we have shown that f is negative for values sufficiently close

to 0 and positive for values sufficiently close to 1 if and only if (A.9) is satisfied.

Therefore, it is exactly under these conditions that updating will be shaded

downward compared to Bayesian updating for beliefs sufficiently close to 0 and
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shaded upward compared to Bayesian updating for beliefs sufficiently close to

1.

We now show that a neutral signal necessarily satisfies (A.9). Note that∑
y∈X π1(y)π1(y)

π0(y)
≥ 1 and

∑
y∈X π0(y)π0(y)

π1(y)
≥ 1 because the strictly convex

constrained minimization problem minw1,...,w|X|

∑|X |
i=1

w2
i

vi
subject to

∑|X |
i=1wi =

1, assuming
∑|X |

i=1 vi = 1 and vi > 0 for i = 1, ..., |X |, has first order conditions

equivalent to wi
vi

constant in i, thus the minimum is achieved at 1∑|X|
i=1 vi

= 1

with wi = vi∑|X|
i=1 vi

= vi. Moreover, since there exists at least one informative

signal, i.e., y ∈ X such that π1(y)
π0(y)

6= 1, the unique minimum is not attained

and so
∑

y∈X π1(y)π1(y)
π0(y)

> 1 and
∑

y∈X π0(y)π0(y)
π1(y)

> 1. Thus, (A.9) is always

satisfied if π1(x)
π0(x)

= 1 (i.e., if x is a neutral signal).

Finally, observe that if x is a neutral signal, then, since Bayesian updating

would be flat, updating shaded downward implies updating is downward and

updating shaded upward implies updating is upward, generating polarization.

Remark A.1. The theorem remains true if φ′(0) = 0 and the requirements of

the theorem are otherwise satisfied. This case requires an argument based on

second-order comparisons. Intuitively, second-order differences that were pre-

viously masked may now become important in the limit because the zero cre-

ates unboundedly large ambiguity aversion (as measured by −φ′′

φ′
) near perfect

predictions. Specifically, one can show that, for beliefs close to θ, a second-

order comparison yields that the payoff following a neutral signal is larger than

the expected payoff before seeing the signal. This drives the comparison of ex-

ante versus interim hedging effects and generates the polarization. Moreover,

in this case, the polarization result may be extended beyond neutral signals

to all signals having a likelihood ratio lying in an interval containing 1.

Proof. [Proof of Proposition 3.3] From Lemma A.1, νxM R µ if and only if

∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

[α∗(xM)π1(y)
π0(y)

+ (1− α∗(xM))π1(xM )
π0(xM )

]2
R 0. (A.10)
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We consider the following exhaustive list of possibilities:

(i)
(
π1(xM )
π0(xM )

) 1
γ

+2

≥ π1(xH)
π0(xH)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the

left-hand side of (A.10) is strictly positive, and therefore updating is always

upward, so set τ(γ, π0, π1) = 0. Note that a necessary condition for this case

is that π1(xM )
π0(xM )

> 1.

(ii)
(
π1(xM )
π0(xM )

) 1
γ

+2

≤ π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the

left-hand side of (A.10) is strictly negative, and therefore updating is always

downward, so set τ(γ, π0, π1) = 1. Note that a necessary condition for this

case is that π1(xM )
π0(xM )

< 1.

(iii) π1(xH)
π0(xH)

>
(
π1(xM )
π0(xM )

) 1
γ

+2

> π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

<

π1(xH)
π0(xH)

, in the left-hand side of (A.10), the term for y = xL is positive and has

a denominator strictly decreasing in α∗(xM), the term for y = xM is constant

in α∗(xM), and the term for y = xH is negative and has a denominator strictly

increasing in α∗(xM). Therefore the whole sum is strictly increasing in α∗(xM)

and thus can change signs at most once. Three sub-cases are relevant:

(iii)(a) the left-hand side of (A.10) is non-negative when 0 is plugged in for

α∗(xM). In this case, updating is always upward, so set τ(γ, π0, π1) = 0.

(iii)(b) the left-hand side of (A.10) is non-positive when 1 is plugged in for

α∗(xM). In this case, updating is always downward, so set τ(γ, π0, π1) = 1.

(iii)(c) otherwise. In this case, continuity and strict increasingness of the left-

hand side of (A.10) in α∗(xM) implies there exists a unique solution for a in

(0, 1) to

∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(aπ1(y)
π0(y)

+ (1− a)π1(xM )
π0(xM )

)2
= 0.

Since (A.11) holds with equality when z = a, using constant relative ambiguity

aversion (φ′(z) = (−z)γ) and given the monotonicity of α∗(xM) in µ, the

associated threshold for µ may be found by substituting z = a into (A.11)

with equality and solving for µ = τ(γ, π0, π1). Doing this yields

τ(γ, π0, π1)

1− τ(γ, π0, π1)
=

(
a

1− a

)2γ+1

.
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Therefore

τ(γ, π0, π1) =
a2γ+1

a2γ+1 + (1− a)2γ+1 .

Collecting these results into an overall expression, the threshold is defined by:

τ(γ, π0, π1) =
b2γ+1

b2γ+1 + (1− b)2γ+1 ,

where

b ≡


0 if S(0) ≥ 0

a if S(a) = 0 and a ∈ (0, 1)

1 if S(1) ≤ 0

and

S(λ) ≡
∑

y∈{xL,xM ,xH}

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(λπ1(y)
π0(y)

+ (1− λ)π1(xM )
π0(xM )

)2
.

Proof. [Proof of Theorem 3.3 ] Polarization is equivalent to ν̂ ≥ η̂ and ν̌ ≤
η̌ with at least one inequality strict. If γ = 0, updating is Bayesian and

polarization is impossible by Theorem 2.1, so set τ̂ = 1 and τ̌ = 0. By

Proposition 3.3, if γ > 0 then polarization occurs if and only if η̂ ≥ τ(γ̂, π0, π1)

and η̌ ≤ τ(γ̌, π0, π1) with at least one inequality strict, where the τ function is

the one defined in that result.

Proof. [Proof of Corollary 3.1] From Proposition 3.3, τ̂ = τ(γ̂, π0, π1) and

τ̌ = τ(γ̌, π0, π1). The rest is immediate from Theorem 3.3.

Proof. [Proof of Corollary 3.2] From Proposition 3.3, such a threshold exists.

Since π0(xM) = π1(xM) implies π0(xL) − π1(xL) = π1(xH) − π0(xH) > 0,

calculation shows that the relevant case in the proof of Proposition 3.3 is case

(iii)(c). Thus τ(γ, π0, π1) = a2γ+1

a2γ+1+(1−a)2γ+1 = 1

1+( 1−a
a )

2γ+1 where a ∈ (0, 1) is

9



the unique solution of S(a) = 0. Simplifying yields

1− a
a

=

√
π1 (xH)

π0 (xH)

π1 (xL)

π0 (xL)
.

A.2 Further Results on the Direction of Updating

The next result combines Proposition 3.2 and equations (3.2) and (3.3) to

show a general form relating fundamentals to the direction of updating.

Proposition A.1. The posterior νx is above/equal to/below the prior µ if and

only if the fundamentals (µ, φ, π1, π0) are such that

z

1− z
φ′[−z2]

φ′[−(1− z)2]
R

µ

1− µ
, (A.11)

for the unique z ∈ (0, 1) solving

z

1− z

φ′

[
−z2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

]

φ′

[
−(1− z)2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

] (A.12)

=
µ

1− µ
π1(x)

π0(x)
.

Proof. Substituting (3.3) into (3.4) and rearranging yields

α∗(x)

1− α∗(x)

φ′[−α∗(x)2]

φ′[−(1− α∗(x))2]
R

µ

1− µ
.

From (3.2), we obtain for all y ∈ X ,

α∗(y) =
α∗(x)π1(y)

π0(y)

α∗(x)π1(y)
π0(y)

+ (1− α∗(x)) π1(x)
π0(x)

.
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Using this together with (3.3), α∗ (x) is the unique solution to

α∗ (x)

1− α∗ (x)

φ′

[
−α∗ (x)2∑

y∈X
π0(y)

(
π1(y)
π0(y)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

]

φ′

[
−(1− α∗ (x))2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

]

=
µ

1− µ
π1(x)

π0(x)
.

In interpreting inequality (A.11), it is important to realize that z is an

increasing function of beliefs µ (as follows from the argument used in proving

part (i) of Proposition 3.1 with z playing the role of α∗ (x)). In fact, (A.12)

combines (3.2) and (3.3). This implies that z = α∗(x), the optimal prediction

given the observation x. From (A.12), in the case of ambiguity neutrality (φ

affine) z
1−z is simply a multiple of µ

1−µ so that updating is either always upward

(if π1(x)
π0(x)

≥ 1) or always downward (if π1(x)
π0(x)

≤ 1). Similarly, we see that under

ambiguity aversion, z
1−z is generally a non-linear function of µ

1−µ (reflecting the

balancing of the desire to hedge with the likelihood based motivation from the

ambiguity neutral case) which creates the possibility that inequality (A.11)

may change direction as beliefs µ change. In general, the regions where it

goes one way and where it goes the other may be very complex. We now

offer a characterization of when updating follows a threshold rule so that A.11

changes direction at most once.

Proposition A.2. There is a threshold rule for updating µ after observing x
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if and only if

φ′[−z2]

φ′[−(1− z)2]

π1(x)

π0(x)
(A.13)

−
φ′

[
−z2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

]

φ′

[
−(1− z)2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
z
π1(y)
π0(y)

+(1−z)π1(x)
π0(x)

)2

]

as a function of z has at most one zero in (0, 1) and, if a zero exists, (A.13)

is increasing at that zero.

Proof. The result follows by combining the definition of a threshold updating

rule with the characterization of the direction of updating given by Proposition

A.1.

Finally, we present a lemma showing how inequality (3.4), which identifies

the direction of updating after observing a signal, simplifies under the assump-

tion of constant relative ambiguity aversion. In proving Theorem 3.3, we use

this inequality to help establish and calculate the threshold rule.

Lemma A.1. With constant relative ambiguity aversion γ > 0, the posterior

νx is above/equal to/below the prior µ if and only if

∑
y∈X

π1 (y)

(
π1(x)
π0(x)

) 1
γ

+2

− π1(y)
π0(y)(

α∗(x)π1(y)
π0(y)

+ (1− α∗(x))π1(x)
π0(x)

)2 R 0. (A.14)

Proof. From inequality (A.11) and equation (A.12), νx R µ if and only if

φ′[−(α∗ (x))2]

φ′[−(1− α∗ (x))2]

π1(x)

π0(x)
R

φ′

[
−α∗(x)2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

]

φ′

[
−(1− α∗(x))2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

] .

(A.15)
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Under constant relative ambiguity aversion, φ′(z) = (−z)γ and therefore

(A.15) is equivalent to

(
π1(x)

π0(x)

) 1
γ

R

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

∑
y∈X

π1(y)
(
π1(x)
π0(x)

)2

(
α∗(x)

π1(y)
π0(y)

+(1−α∗(x))
π1(x)
π0(x)

)2

.

Simplifying yields inequality (A.14).
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