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Polarization and Ambiguity†

By Sandeep Baliga, Eran Hanany, and Peter Klibanoff*

A number of voters are in a television studio before a US presidential debate. They 
are asked the likelihood that the Democratic candidate will cut the budget deficit, as 
he claims. Some think it is likely and others unlikely. The voters are asked the same 
question again after the debate. They become even more convinced that their initial 
inclination is correct. A similar phenomenon can arise in financial markets. “Bulls” 
and “bears” have different beliefs. On seeing the same macroeconomic forecasts, 
they become more bullish and bearish, respectively. Individuals observe the same 
evidence, and yet their beliefs move in opposite directions and end up further apart.

Similar polarization of beliefs has been documented in experiments. For exam-
ple, Darley and Gross (1983) randomize subjects into different groups. They show 
one group evidence suggesting a child is from a high socioeconomic background; 
another that she is from a low socioeconomic background. The former predict the 
child’s reading abilities are higher than the latter. The groups then watch a film of 
the child taking an oral test on which she answers some questions correctly and oth-
ers incorrectly. Those who received the information that the child came from a high 
socioeconomic background, rate her abilities higher than before; those who received 
the information indicating she came from a low socioeconomic background rate her 
lower than before. Thus, the common evidence—the film—leads beliefs to polarize.

We follow Dixit and Weibull (2007) in defining polarization as follows: suppose 
that, prior to observing a common signal, two individuals have different beliefs and 
individual A’s belief first-order stochastically dominates individual B’s. Their beliefs 
exhibit polarization if, after observing the common signal, individual A’s posterior 
dominates his prior and individual B’s prior dominates his posterior.

Consider two individuals who agree on the probability of each signal conditional 
on an underlying parameter and use Bayes’ rule to update their beliefs. We show 
polarization cannot occur. As individuals share the same theory connecting param-
eters to signals, a given signal increases one individual’s belief if and only if it 
increases the other’s (Theorem 1).
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In contrast, we show that polarization can occur as an optimal response to ambi-
guity aversion (i.e., aversion to subjective uncertainty about probabilities). We do 
this within a simple prediction model: an individual must predict the value of a 
parameter that determines the distribution of a random variable. The individual 
views the parameter as ambiguous and is ambiguity averse. He observes a signal 
that can inform his predictions. His payoff is decreasing in the squared difference 
between his prediction and the parameter. This is a standard model apart from 
ambiguity aversion.

How does ambiguity aversion affect behavior? An individual is exposed to ambi-
guity when the expected payoff to his strategy varies with probabilities over which 
he is uncertain. Different strategies may involve different exposure to ambiguity. 
Suppose there are just two possible parameter values, 0 and 1. If the individual pre-
dicts    1 _ 2   , then the difference between the prediction and the parameter is the same no 
matter what the parameter value. Thus, this prediction strategy completely hedges 
against ambiguity, i.e., removes any exposure to the ambiguity about the parameter. 
However, if the individual predicts 1, the squared difference is much higher when the 
parameter is 0 than when it is 1, exposing the individual to ambiguity. An ambiguity-
averse individual will tend to favor strategies that reduce exposure. Reducing expo-
sure is not the only concern of such an individual—for example, the more weight his 
beliefs place on the parameter equaling 1, the higher his optimal prediction.

Simple strategies such as “predict   1 _ 2  ” or “predict 1” are generally not optimal when 
a signal is forthcoming, as these strategies fail to condition on anticipated informa-
tion. An optimal contingent strategy will make the prediction an increasing function 
of the observed signal likelihood ratio. We focus on individuals who form an ex ante 
optimal contingent strategy (i.e., optimal assuming full commitment to that strategy 
once chosen) and who are indeed willing to carry it out after each possible contin-
gency. Such an individual is said to be dynamically consistent.1 Dynamic consistency 
is assumed in almost all standard economic analysis. Any theory of updating that is 
not dynamically consistent will lead to worse outcomes as evaluated by ex ante wel-
fare. Also, studying the dynamically consistent case identifies the key effects leading 
to polarization that apply even when substantial dynamic inconsistency may be pres-
ent (see Section IIIB).

Suppose the individual concludes that “predict   3 _ 4   if the signal is high,   1 _ 2   if the 
signal is medium, and   1 _ 4   if the signal is low” is his optimal strategy. This strat-
egy leaves him partially exposed to the ambiguity about the parameter. Notice, 
however, that this exposure varies with the signal received. He is not exposed to 
ambiguity after a medium signal but is exposed after a high or low signal. Under 
ambiguity aversion, the greater exposure to ambiguity after seeing a high or low 
signal may lead to an increased desire to hedge against this ambiguity, while the 
lack of exposure after seeing a medium signal may diminish the value of hedg-
ing. These changed hedging motives, ceteris paribus, could lead the individual to 
want to depart from the ex ante optimal strategy. We call this the hedging effect. 
There is also a more standard effect having nothing to do with ambiguity attitude. 
After a signal is realized, the likelihoods of this signal are no longer relevant for 

1 See, e.g., Hanany and Klibanoff (2007, 2009) for such an approach to modeling ambiguity-averse individuals 
and for discussion and references to alternative approaches.
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optimality going forward. We call this the likelihood effect. Because of this effect, 
after seeing the signal, if beliefs were not updated to incorporate that signal’s 
likelihoods, the individual might want to depart from the ex ante optimal strategy. 
Dynamically consistent updating must neutralize both the hedging and the likeli-
hood effects of the signal on the incentives of an ambiguity-averse individual. 
Bayesian updating counterbalances only the likelihood effect. The presence of the 
hedging effect leads dynamically consistent updating to necessarily depart from 
Bayes’ rule under ambiguity aversion.2 Importantly, the hedging effect may alter 
the direction of updating. Moreover, the hedging effect (but not the likelihood 
effect) depends on the ex ante optimal strategy which, in turn, is influenced by the 
individual’s beliefs before observing the signal. Through this chain of reasoning, 
beliefs can influence the direction of updating. This allows for the possibility of 
polarization. We study when polarization does and does not occur.

Even under ambiguity aversion, we show that polarization does not occur after 
observing the highest or the lowest signals (Theorem  2). Thus, polarization is a 
possibility only at signals with an intermediate likelihood ratio. We can offer a par-
ticularly clean result if the intermediate signal is neutral (i.e., has equal probability 
under both parameter values). Then the hedging effect is the only reason to update 
beliefs—there is no likelihood effect. We show that individuals with sufficiently 
extreme and opposite beliefs display polarization after observing a common neutral 
intermediate signal (Theorem 3). When there are exactly three possible signals and 
there is constant relative ambiguity aversion, we provide necessary and sufficient 
conditions for polarization (Theorem 4) that apply even when the intermediate sig-
nal is not neutral.

All of the above results apply whether or not the two individuals have the same 
degree of ambiguity aversion as long as initial beliefs differ. Finally, even if indi-
viduals have the same beliefs, as long as several conditionally independent observa-
tions are available then if they observe different private signals before observing a 
common signal, they can have different beliefs by the time they see the common 
signal and, at that point, our above results apply. We now turn to our model. Related 
literature is discussed at the end of the article.

I. The Model and Benchmark Result

Consider an individual who is concerned with the value of a parameter θ ∈ Θ ⊂ 핉. 
His beliefs are given by a full-support prior μ. To help inform the individual about 
θ, conditionally independent observations from a random variable X given θ may be 
available. This random variable has distribution  π θ  and takes values in a finite set  
such that each x ∈  has  π θ (x) > 0 for some θ ∈ Θ. For example, θ might indicate a 
child’s reading ability, while  π θ  might be the distribution of scores on a reading test 
for a child with that ability.

2 In contrast, for an expected utility maximizer, dynamic consistency requires that subjective beliefs are updated 
using Bayes’ rule, thus ruling out polarization.
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We assume that Θ is finite and, without loss of generality, index Θ so that  θ 1  <  
θ 2  < ⋯ <  θ  | Θ |  . A distribution    η   (first-order) stochastically dominates    η   if

  ∑  
i=1

   
k

      η   (  θ i  )  ≥  ∑  
i=1

   
k

      η   (  θ i  )  for all k ∈ {1, 2, … , | Θ |}.

The dominance is strict if at least one of these inequalities is strict. We adopt the 
following definition of polarization due to Dixit and Weibull (2007):

DEFINITION 1: Fix two individuals with beliefs    η   and    η   over Θ and with com-
mon support such that    η   stochastically dominates    η  . After they both observe a sig-
nal x ∈  whose likelihood given θ ∈ Θ is  π θ  ( x ) , we say that polarization occurs if 
and only if the resulting posterior beliefs,    ν   and    ν  , respectively, lie further apart, 
i.e.,    η   stochastically dominates    ν   and    ν   stochastically dominates    η   with at least one 
dominance strict.

Starting from two beliefs, one higher than the other, polarization occurs when the 
observation of a common signal leads the higher belief to move higher and the lower 
belief to move lower. The requirement that one initial belief be higher than the other 
is essential to rule out the possibility that posteriors move in opposite directions but 
toward each other. If initial beliefs were not ranked, one were updated upward and 
the other downward, it would not be clear whether beliefs had moved toward or 
away from one another. Even if the requirement that initial beliefs be ranked were 
somehow relaxed, the results of this article would continue to hold. Our benchmark 
impossibility result (Theorem 1) does not rely on the initial beliefs being ranked. 
Additionally, in the setting we use in the next section to show polarization under 
ambiguity aversion, beliefs can always be ranked by dominance. In more complex 
settings, this aspect of defining polarization may matter. We favor Definition  1 
because whenever it identifies polarization, there is no doubt that beliefs are moving 
away from one another.

The following result shows that, in this setting, under Bayesian updating, irre-
spective of any nonbelief aspect of preference, polarization cannot occur. The theo-
rem and proof formalize the intuitive statement that, as long as their priors share 
the same support, if two individuals who use Bayes’ rule see the same observation 
and agree on the probability of each observation conditional on the parameter, it is 
impossible for them to update in opposite directions in the sense of first-order sto-
chastic dominance. All proofs are in the online Appendix.

THEOREM 1: Fix two individuals as in Definition 1. Polarization cannot occur if 
they use Bayesian updating.

II. Polarization and Ambiguity

For the remainder of the article, suppose the individual’s goal is to predict the 
value of the parameter θ. For tractability, we assume Θ = {0, 1} so there are just 
two possible parameter values. Accordingly, throughout this section let μ denote 
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μ(θ = 1). For example, θ = 1 might indicate a child has high reading ability and 
the prediction α ∈ [0, 1] might be interpreted as a probability that the child has high 
reading ability. We make the standard assumption that the payoff to a prediction 
α is given by quadratic loss; i.e., −(α − θ ) 2 . To avoid tedious corner cases, we 
assume  π θ  has full support for each θ. The individual can condition his prediction 
on an observation x ∈  drawn from the random variable X.3 Hence, his strategy is 
a function α :  → 핉. We use uppercase X and lowercase x to distinguish between 
the random variable and its realization, respectively.4 We assume the individual 
views θ as ambiguous, is risk neutral and evaluates prediction strategies accord-
ing to ambiguity averse smooth ambiguity preferences (Klibanoff, Marinacci, and 
Mukerji 2005). Specifically, any prediction strategy is evaluated according to the 
concave objective function

  E (μ,1−μ) ϕ[ E  π θ   (−(α ( X )  − θ ) 2 )],

where ϕ is increasing, concave, and continuously differentiable, E is the expectation 
operator (with respect to the subscripted distribution), (μ, 1 − μ) is the belief about 
θ and  π θ  is the distribution of X given θ. Observe that if ϕ is linear (i.e., ambiguity 
neutrality), the objective function reduces to expected quadratic loss. The concavity 
of ϕ reflects ambiguity aversion. We will sometimes additionally assume constant  

relative ambiguity aversion γ ≥ 0, in which case ϕ(u) =   
−(− u )  1+γ 
 _ 1 + γ   for u ≤ 0.

The optimal strategy  α ∗ (x) is the unique solution to the first-order conditions:

(1)    
 α ∗  ( x ) 
 _  

1 −  α ∗  ( x ) 
     

 ϕ′ [ E  π 0  (−( α ∗ (X) ) 2 )]
  __   

 ϕ′ [ E  π 1  (−(1 −  α ∗  ( X )  ) 2 )]
      π 0 (x) _ 
 π 1 (x)

   =   
μ
 _ 

1 − μ
  

for each x ∈ .
The difference from the usual prediction problem with ambiguity neutrality is the  

presence of the term   
 ϕ′  [  E  π 0  (−( α  ∗ (X ) ) 2 )]

  __  
 ϕ′  [  E  π 1  (−(1 −  α  ∗ (X ) ) 2 )]   on the left-hand side of (1). Under  

ambiguity aversion, ϕ is concave, and this term reflects the desire to hedge or 
reduce the variation in expected payoffs as a function of the ambiguous parameter 
θ. Ambiguity aversion ensures that when expected payoffs across the θs differ, the  
ϕ′  ratio pushes the optimal prediction strategy in the direction of equalizing them by 
moving the predictions toward the θ with the lower expected payoff. This is the man-
ifestation of the value that ambiguity-averse individuals place on hedging against 
ambiguity. For this reason, we call this  ϕ′  ratio the hedging motive. It compares the 
marginal value of an extra unit of expected utility when θ = 0 to the marginal value 
when θ = 1. When these expected payoffs are equal (i.e., a perfect hedge) the hedg-
ing motive equals one. Values above (below) one reflect a stronger (weaker) desire 

3 Extensions of our results to the case of multiple conditionally independent observations may be found in the 
working paper version (Baliga, Hanany, and Klibanoff 2013).

4 For example, α(X) is a random (since the observation is yet to be realized) prediction, while α(x) is the real-
ized prediction.
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to shift expected payoff from θ = 1 to θ = 0, i.e., to hedge by adjusting the predic-
tion strategy  α ∗  downward.

We have the following useful implication of (1) that is true independent of ambi-
guity attitude: for any x, y ∈ ,

(2)    
 α ∗ (x)
 _ 

1 −  α ∗ (x)
     

 π 0 (x) _ 
 π 1 (x)

   =   
 α ∗ (y)
 _ 

1 −  α ∗ (y)
     

 π 0 (y) _ 
 π 1 (y)

   .

The intuition for this equality is the standard one concerning equating marginal rates 
of substitution across signal realizations.

In a prediction problem, updating maps beliefs about θ and new observations 
to posterior beliefs about θ. Dynamically consistent updating is updating that pre-
serves the optimality of the contingent strategy  α ∗  ( x )  after the observation is real-
ized (i.e., ex ante optimal updating).5 Let  ν x  denote the posterior probability of θ = 1 
after observing x. Dynamically consistent updating is equivalent to these posteriors  
ν x  satisfying

(3)    
 α ∗  ( x ) 
 _  

1 −  α ∗  ( x ) 
     

 ϕ′  [ − ( α ∗  ( x )  ) 2  ]
  __  

 ϕ′  [ −(1 −  α ∗  ( x )  ) 2  ]
   =   

 ν x  _ 
1 −  ν x 

  

for all x ∈ . Note that (3) is simply the first-order condition of the continuation 
prediction problem, evaluated at the ex ante optimal strategy  α ∗  ( x ) , after x has 
been realized and assuming beliefs at that point are  ν x  . It therefore guarantees that  
 α ∗  ( x )  remains optimal upon seeing the observation. After the next result, we describe 
the difference, under ambiguity aversion, between dynamically consistent updating 
and Bayesian updating and show how the former allows polarization. First we show 
that several natural properties that hold under ambiguity neutrality continue to hold 
under ambiguity aversion:

PROPOSITION 1: (i) For each realization x ∈ , the optimal prediction  α ∗  ( x )  is 
an increasing function of μ (the prior probability of θ = 1) and of the likelihood  
ratio   

 π 1 (x)
 _ 

 π 0 (x)   . The best constant (i.e., not varying with x) prediction is also an increasing  

function of μ;

 (ii) The optimal prediction after observing x is an increasing function of the poste-
rior  ν x  . Furthermore,  ν x  ⋛ μ if and only if the optimal prediction after observing x 
and the (ex ante) best constant prediction are similarly ordered. Under dynamically 
consistent updating, the optimal prediction after observing x is  α ∗  ( x ) .

Proposition 1 implies that polarization as defined in terms of beliefs is equiva-
lent to polarization in actions (here, predictions). A common signal moves opti-
mal actions further apart and in opposite directions exactly when that signal moves 
beliefs further apart and in opposite directions. To see this, observe from the first 

5 For a thorough discussion and analysis of dynamically consistent updating under ambiguity aversion see 
Hanany and Klibanoff (2009).
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part of the proposition that prior beliefs have the same order as the respective best 
predictions made without using the observation. From the second part of the propo-
sition, posterior beliefs after a common signal compare to the prior beliefs in the 
same way as the optimal predictions after a common signal compare to the best 
predictions made without using the signal. Combining these yields the equivalence.

For the remainder of this section we assume dynamically consistent updating. 
Suppose a signal x is observed. Dynamic consistency requires that the optimal pre-
diction strategy after this observation also be the optimal prediction strategy ex ante 
contingent on observing x. As emphasized above, under ambiguity aversion, the 
optimal prediction strategy is partly driven by the desire to hedge. Before the signal 
is realized, the hedging motive is as in (1). However, after observing x, the interim 
hedging motive is as in (3). These hedging motives are typically not equal. As we 
highlighted in the opening section, the individual’s hedging motive changes since he 
no longer needs to account for variation in his expected payoffs induced by the sig-
nal realization. To carry out the optimal prediction strategy, dynamically consistent 
updating departs from Bayesian updating in a way that exactly offsets this hedging 
effect. We use this to offer a characterization of the direction of dynamically con-
sistent updating:

PROPOSITION 2: The posterior  ν x  is above/equal to/below the prior μ if and 
only if

(4)    
 ϕ′  [ − ( α ∗  ( x )  ) 2  ]

  __  
 ϕ′  [ −(1 −  α ∗  ( x )  ) 2  ]

     
 π 1 (x) _ 
 π 0 (x)

   ⋛   
 ϕ′  [ E  π 0  (−( α ∗  ( X )  ) 2  )]

   __   
 ϕ′  [  E  π 1  (−(1 −  α ∗  ( X )  ) 2  )]

   .

Notice that in addition to the hedging motive terms, (4) includes the likelihood 
ratio for the newly observed signal. This term reflects the likelihood effect referred 
to in the opening section. Thus (4) formalizes the statement that dynamically consis-
tent updating offsets both the hedging and likelihood effects (while Bayesian updat-
ing offsets only the likelihood effect). The condition in (4) is not always easy to 
apply, as it involves the endogenously determined optimal strategy  α ∗ . Nevertheless, 
we can prove some general properties of updating directly from this inequality: 

Observing a signal  x  H  with the highest likelihood ratio (i.e.,  x  H  ∈  arg max    
x∈

      π 1 (x)
 _ 

 π 0 (x)   )  

always leads to updating upwards and observing a signal,  x  L , with the lowest likeli-
hood ratio always leads to updating downwards. One implication is that polarization 
cannot occur after “extreme” common signals.

THEOREM 2: After observing  x  H  ( x  L  ), the posterior  ν x  is above (below) 
the prior μ. It is also above (below) the Bayesian update of μ given  x  H   
( x  L  ).

Remark 1: If the signal is informative, so that   
 π 1 ( x  H  )
 _ 

 π 0 ( x  H  )
   > 1 >    π 1 ( x  L  )

 _ 
 π 0 ( x  L  )

   , then above  

(below) in the statement of the theorem may be replaced by strictly above (strictly 
below).
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We turn to our main positive results. Suppose there are two  individuals with 
beliefs    η   >    η   (we continue our abuse of notation and denote    η  (θ = 1) and    η  (θ = 1) 
by    η   and    η  , respectively). In all other respects, the individuals are equivalent. If they 
are ambiguity neutral, we know that polarization is impossible, from Theorem 1. If 
they both observe the same extreme signal, we know they will update in the same 
direction and thus fail to polarize, from Theorem 2. So, assume the individuals are 
ambiguity averse and there are at least three signals with distinct likelihood ratios. 
Thus, there is at least one intermediate (i.e., nonextreme) signal, and these are the 
only signals after which individuals’ beliefs can possibly exhibit polarization. When 
and why can polarization occur?

Suppose an individual observes a signal,  x  M , with intermediate likelihood ratio. 
Substituting for predictions  α ∗  ( x ) , x ≠  x  M  using (2), inequality (4) becomes

(5)     
 ϕ′  [ −( α ∗  (  x  M  )  ) 2  ]

  __  
 ϕ′  [ −(1 −  α ∗ ( x  M  ) ) 2 ]

     
 π 1 ( x  M  )
 _ 

 π 0 ( x  M  )
  

   ⋛   

 ϕ′   [  −( α ∗ ( x  M   )) 2   ∑  
y∈

   
 

    π 0 (y)  (     
 π 1 (y) _ 
 π 0 (y)

  
   ___    

 α ∗ ( x  M  )   
 π 1 (y) _ 
 π 0 (y)

   + (1 −  α ∗ ( x  M  ))   
 π 1 ( x  M  )
 _ 

 π 0 ( x  M  )
  
   )  2   ] 
     _____      

 ϕ′   [ −(1 −  α ∗  (  x  M   )  ) 2   ∑  
y∈

   
 

    π 1 (y)  (     
 π 1 ( x  M  )
 _ 

 π 0 ( x  M  )
  
   ___    

 α ∗  (  x  M  )    
 π 1 (y) _ 
 π 0 (y)

   + (1 −  α ∗ ( x  M  ))   
 π 1 ( x  M )
 _ 

 π 0 ( x  M )
  
   )  2   ] 

   .

The direction of this inequality determines the direction of updating. The connec-
tion between  α ∗  (  x  M   )  (and thus beliefs, since  α ∗  (  x  M   )  is increasing in beliefs by 
Proposition 1), and the direction of this inequality may be quite complex. It is sim-
plest in the case where the signal is not only intermediate but also neutral (i.e.,  π 0 (x)  
=  π 1 (x)). In the theorem below, we show that when  α ∗  (  x  M  )  (and thus belief) for one 
individual is close to 0 and for another is close to 1, polarization occurs after they 
commonly observe a neutral signal.

THEOREM 3 (Polarization and Ambiguity): Assume there is a neutral signal, at 
least one informative signal, and twice continuously differentiable ϕ with ϕ″ < 0 <  
ϕ′ . Polarization occurs after commonly observing a neutral signal if belief    η   is suf-
ficiently close to 1 and belief    η   is sufficiently close to 0.

Sketch of Proof (for the full proof see the online Appendix): When  α ∗  (  x  M  )  is 
close to 0, if θ = 0 then predictions will be close to perfect, both interim and ex ante. 
Since payoffs are relatively insensitive to small changes in predictions in the neigh-
borhood of perfection, any differences in the interim and ex  ante expected pay-
offs when θ = 0 (i.e., any differences in the arguments of  ϕ′  in the numerators on 
each side of (5)) will be very small and will have minimal influence on updating  



3079Baliga et al .: Polarization and amBiguityVol. 103 no. 7

(since −   ϕ″
 _ ϕ′   is finite).6 In contrast, if θ = 1, predictions close to 0 will be very costly 

and small improvements in those predictions would be valuable. Therefore, (since  

−   ϕ″
 _ ϕ′   is nonzero) it is the differences in interim and ex ante expected payoffs when 

θ = 1 that drive the comparison of hedging motives when predictions are close to 
0. Differentiating the arguments of the  ϕ′  terms in the denominators with respect 
to  α ∗ ( x  M  ), and evaluating at  α ∗ ( x  M  ) = 0, yields that the ex ante expected payoff 
when θ = 1 is higher than the interim payoff when θ = 1 if and only if the expected  

likelihood,  ∑  y∈   
    π 1 ( y)   

 π 1 ( y)
 _ 

 π 0 ( y)   , is higher than the realized likelihood,   
 π 1 ( x  M  )
 _ 

 π 0 ( x  M  )
   . This  

comparison reflects the fact that the predictions  α ∗ ( y) optimally move toward 1 by  

an amount proportional to the likelihood   
 π 1 ( y)
 _ 

 π 0 ( y)   so the expected or realized likelihoods  

reflect the expected or realized improvements in the prediction when θ = 1. Notice 
that this expected likelihood is always larger than 1 because of the complementarity 
between the  π 1  terms, so that if  x  M  is a neutral signal this condition will be satisfied.

As a result, when the signal likelihood   
 π 1 ( x  M  )
 _ 

 π 0 ( x  M  )
   is below  ∑  y∈  

 
    π 1 ( y)   

 π 1 ( y)
 _ 

 π 0 ( y)   , for all  

sufficiently low beliefs η (so that  α ∗ ( x  M  ) is sufficiently close to 0) the hedging 
motive is bigger ex ante than after seeing the signal, and so updating will be shaded 
downward compared to Bayesian updating. Similar reasoning for  α ∗ ( x  M  ) close to 1  

shows that when   
 π 1 ( x  M  )
 _ 

 π 0 ( x  M  )
   lies above   1 __  

 ∑  y∈  
 
    π 0 ( y)    π 0 ( y)

 _  π 1 ( y)  
   , for sufficiently high η, updating  

will be shaded upward compared to Bayesian updating. When the signal is neu-
tral, Bayesian updating is flat, so these arguments imply updating will be down-
ward when belief is sufficiently low and upward when belief is sufficiently high, 
generating polarization.

Remark 2: In this argument, the important aspect of quadratic loss is that the mar-
ginal payoff to improving a prediction is diminishing in the quality (i.e., closeness 
to the truth) of the prediction and vanishes at perfection. Any payoff function of the 
form ψ(| α − θ |) where ψ : [0, 1] → R is a twice continuously differentiable func-
tion satisfying  ψ′ (0) = 0 and ψ″ < 0 will yield a similar result.

A. Threshold Rules for Updating

To further investigate when polarization occurs, we turn to a particularly clean 
structure for determining the direction of updating. Given an observation x, say that 
updating follows a threshold rule if there is a threshold τ ∈ [0, 1] such that all beliefs 
above the threshold are updated upward and those below the threshold are updated 
downward. Under ambiguity neutrality, the threshold is always degenerate—a given 
observation x either leads all priors to be updated upward or all priors to be updated  

downward depending on how the likelihood ratio   
 π 1 (x)
 _ 

 π 0 (x)   compares to 1. In contrast,  

6 The role of assuming ϕ″ < 0 <  ϕ′  is to ensure that both the hedging motive,  
  ϕ′  [ −  α  2  ] _  

 ϕ′  [ −(1 − α )  2  ]
  , and ambiguity  

aversion (as measured by  −   ϕ″
 _ 

 ϕ′   , the coefficient of (absolute) ambiguity aversion (see Klibanoff, Marinacci, and  

Mukerji 2005)), are bounded away from zero and infinity.
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under ambiguity aversion, updating may follow a nontrivial threshold rule. In the 
online Appendix, we provide a characterization of when updating follows a thresh-
old rule (Proposition 5). To provide an explicit description, for the remainder of this 
section, we specialize by assuming constant relative ambiguity aversion and that 
there are exactly three distinct likelihood ratios associated with signals. Under these 
conditions, we show that updating always follows a threshold rule and we can explic-
itly derive the thresholds. By Theorem 2, all beliefs are updated in the same direc-
tion after extreme signals. Hence, we study thresholds given the intermediate signal.

Polarization is obviously impossible if two individuals have the same beliefs and have 
the same degree of ambiguity aversion. If, however, there is heterogeneity on either 
dimension, individuals may exhibit polarization when they observe a common signal. 
Theorem 4 and Proposition 3 characterize the conditions for a signal to lead to polariza-
tion when there is heterogeneity across individuals in beliefs and/or ambiguity aversion.

THEOREM 4: Assume constant relative ambiguity aversion and exactly three dis-
tinct likelihood ratios. There exist    τ  ,    τ   ∈ [0, 1] such that polarization occurs after 
commonly observing a signal with the nonextreme likelihood ratio if and only if 
belief    η   ≥    τ   and belief    η   ≤    τ   with at least one inequality strict.

Notice that whenever the thresholds satisfy    τ   < 1 or    τ   > 0, there exist beliefs that 
generate polarization. The theorem relies on the following proposition establishing 
that updating follows a threshold rule. The proposition is proved by explicitly con-
structing the threshold.

PROPOSITION 3: Assume constant relative ambiguity aversion γ > 0 and exactly three 
distinct likelihood ratios. The posterior  ν  x  M   is above/equal to/below the prior μ when 
the latter is above/equal to/below a threshold τ (γ,  π 0  ,  π 1  ) that is independent of μ.

Theorem 4 and Proposition 3 specialize immediately for the cases where hetero-
geneity is either only in beliefs or only in ambiguity aversion.

COROLLARy 1: Assume exactly three distinct likelihood ratios. Then,

 (a)  Polarization with Homogeneous Beliefs: Two individuals with beliefs η and 
constant relative ambiguity aversions    γ  and    γ  exhibit polarization after 
observing the intermediate signal if and only if

 τ (   γ ,  π 0  ,  π 1  ) ≤ η ≤ τ (   γ ,  π 0  ,  π 1  )

  with at least one inequality strict; and

 (b)  Polarization with Heterogeneous Beliefs: Two individuals with constant 
relative ambiguity aversion γ and beliefs    η   and    η   exhibit polarization after 
observing the intermediate signal if and only if

    η   ≥ τ (γ,  π 0  ,  π 1  ) ≥    η  

  with at least one inequality strict.
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When the intermediate signal is a neutral signal, thresholds always lie strictly 
between 0 and 1 and take a particularly simple form:

COROLLARy 2: Assume constant relative ambiguity aversion γ > 0 and exactly 
three distinct likelihood ratios. If  x  M  is a neutral signal, the threshold τ (γ,  π 0  ,  π 1  ) is

   1  __   

1 +   (    π 1  (  x  H  ) 
 _ 

 π 0  (  x  H  ) 
     

 π 1  (  x  L  ) 
 _ 

 π 0  (  x  L  ) 
   )  γ+  1 _ 

2
  

 

   ∈ (0, 1).

Heterogeneous tastes or beliefs are the source of polarization under ambiguity in 
Theorem 4. But this cannot explain the polarization observed by Darley and Gross 
(1983), where the groups exhibiting polarization were homogeneous. In their study, 
heterogeneity was induced across groups at the interim stage by showing them dif-
ferent initial evidence. Our previous results, together with their extension to pre-
diction after observing multiple signals as described in the working paper version 
(Baliga, Hanany, and Klibanoff 2013), imply that exactly this device can generate 
polarization in an ex ante homogeneous prediction problem. For example, suppose 
there are two individuals with a common coefficient of relative ambiguity aver-
sion γ > 0, a common prior μ =   1 _ 2   and signals with three distinct likelihood ratios 
and symmetric likelihoods (i.e.,  π 0 ( x  L  ) =  π 1 ( x  H  ),  π 0 ( x  M  ) =  π 1 ( x  M ), and  π 0 ( x  H  )  
=  π 1 ( x  L  )). The individuals are allowed to condition their prediction on two condi-
tionally independent observations. Suppose one individual observes the sequence 
{  x  L ,  x  M  }, while the other observes the sequence {  x  H ,  x  M  }. The multisignal ver-
sion of Theorem 2 implies that after one observation the first individual will have 
updated beliefs    η   <   1 _ 2  , and the second individual will have updated beliefs    η   >   1 _ 2   . 
From Corollary 2 and symmetry of the likelihoods, the threshold for updating upon 
observing  x  M  is τ (γ,  π 0 ,  π 1 ) =   1 _ 2   . Since the beliefs    η   and    η   are on opposite sides 
of this threshold, Theorem 4 implies that polarization will occur after the second 
observation,  x  M .

More generally, as long as the threshold is interior and enough observations are 
available, polarization is possible after an intermediate signal. This follows since 
if one individual observes a long sequence of high signals and another observes a 
long sequence of low signals, their posteriors will end up on different sides of this 
threshold. If they then observe a common intermediate signal, they will update in 
opposite directions and polarize. A formal statement of this result on polarization in 
a homogeneous environment may be found in Baliga, Hanany, and Klibanoff (2013, 
Theorem 3.4).

III. Related Literature and Concluding Remarks

A. Related Literature

Dixit and Weibull (2007) show that polarization cannot occur under Bayesian 
updating in the standard linear-normal model where individuals’ (different) pri-
ors and (common) noise are normally distributed. Signals in this model satisfy the 
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monotone likelihood ratio property (MLRP). They also argue via example that polar-
ization can occur if signals do not satisfy MLRP. On closer inspection, however, 
their examples violating MLRP do not display polarization. In fact, our Theorem 1 
shows that polarization cannot occur under Bayesian updating, whether MLRP or 
normality holds or not. Instead, in their examples, while the means or the medians 
of two individuals’ beliefs move further apart after observing a common signal, their 
beliefs are not further apart according to stochastic dominance.

Acemoglu, Chernozhukov, and yildiz (2009) study asymptotic disagreement in a 
model where individuals have different priors on parameters and also different distri-
butions on signals conditional on the parameter. They show that posteriors on param-
eters can diverge. Kondor (2012) shows that polarization can be generated when 
individuals see different private signals that are correlated with a common public sig-
nal. Andreoni and Mylovanov (2012) provide a similar theory and test their model 
experimentally. Rabin and Schrag (1999) study a model of confirmatory bias where 
agents ignore signals that do not conform with their first impressions, and thus updat-
ing is simply assumed to be biased in the direction of current beliefs, directly generat-
ing polarization. Notice that in all of these papers, individuals may disagree about the 
likelihood of a publicly observed signal conditional on the parameter. This is likely to 
be a common, if unsurprising, source of polarization. In contrast, in our model, condi-
tional on the parameter, all individuals agree on the distribution over signals and their 
independence, and yet an interesting theory of polarization still emerges.

The only other paper we know of relating ambiguity to polarization is Zimper and 
Ludwig (2009). They study particular forms of dynamically inconsistent updating in a 
model where agents are Choquet expected utility maximizers (Schmeidler 1989), and 
polarization is defined as divergence of “expected” signal probabilities as the number 
of observations goes to infinity. This contrasts with our model, where updating is opti-
mal in the sense of dynamic consistency, beliefs have the standard additive form, and 
polarization is defined after any signal realization rather than as a limit phenomenon.

B. Concluding Remarks

The arrival of information changes the hedging motive of ambiguity-averse 
individuals. Optimal (i.e., dynamically consistent) updating must counteract this 
hedging effect in addition to the more familiar likelihood effect. We show that this 
delivers a theory of polarization—describing when it can occur and when it cannot.

The model and theory can be extended in several ways. First, we have assumed 
the individual has perfect foresight of the number of observations that will be avail-
able before he needs to take an action and that there is only one action required in the 
problem. Suppose instead that foresight is limited and the individual believes that he 
must take an action after fewer observations than will, in reality, be available. This is 
a natural description of the approach plausibly taken by subjects in the experiments 
of Darley and Gross (1983). Suppose (i)  the individual uses dynamically consis-
tent updating in the part of the problem he foresees; and (ii) when faced with the 
unforeseen continuation problem, he applies dynamically consistent updating to the 
continuation starting from the posterior beliefs inherited from the foreseen problem. 
Then, the possibility of polarization and the logic behind it described in our analysis 
continue to hold.
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Second, our results are developed using the smooth ambiguity model of Klibanoff, 
Marinacci, and Mukerji (2005). One benefit of using this model is that, like the 
standard Bayesian expected utility model, it allows us to describe beliefs, and thus 
polarization, through a probability measure. It is not obvious how to best define 
polarization for other models of ambiguity-averse preferences. Putting that aside, 
the fundamental connection between ambiguity aversion and dynamically con-
sistent updating that must counteract a hedging effect is present in any complete 
preference model of ambiguity aversion. Exactly when such a connection generates 
polarization is likely to vary with choice of model, and spelling out these conditions 
for different models is left for future research. Such an investigation may require 
additional tools, as the smooth ambiguity model allows us to characterize the unique 
solution of our prediction problem using first-order conditions.

Finally, we have assumed fully dynamically consistent updating. As was men-
tioned in the opening section, the effects we identify continue to generate polariza-
tion even under substantially weaker assumptions. For example, after observing a 
signal, suppose the individual maximizes a weighted sum of utility under dynami-
cally consistent updating and utility under Bayesian updating.7 As long as there is 
strictly positive weight on the former, all of our qualitative results on polarization 
under ambiguity aversion are preserved.
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