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Abstract

This paper axiomatizes an intertemporal version of the Smooth Ambiguity decision model

developed in Klibanoff, Marinacci, and Mukerji (2005). A key feature of the model is that it

achieves a separation between ambiguity, identified as a characteristic of the decision maker’s

subjective beliefs, and ambiguity attitude, a characteristic of the decision maker’s tastes. In

applications one may thus specify/vary these two characteristics independent of each other,

thereby facilitating richer comparative statics and modeling flexibility than possible under

other models which accommodate ambiguity sensitive preferences. Another key feature is

that the preferences are dynamically consistent and have a recursive representation. There-

fore techniques of dynamic programming can be applied when using this model.
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1 Introduction

This paper axiomatizes and investigates a model of recursive preferences over intertemporal

plans, extending the smooth ambiguity model developed in Klibanoff, Marinacci, andMukerji

(2005) (henceforth KMM) to a setting involving dynamic decision making.

In KMM we propose and axiomatize a model of preferences over acts such that the

decision maker prefers act  to act  if and only if E (E ◦ ) ≥ E (E ◦ ), where E
is the expectation operator,  is a vN-M utility function,  is an increasing transformation,

and  is a subjective probability over the set Π of probability measures  that the decision
maker thinks are relevant given his subjective information. A key feature of our model is

that it achieves a separation between ambiguity, identified as a characteristic of the decision

maker’s subjective beliefs, and ambiguity attitude, a characteristic of the decision maker’s

tastes. We show that attitudes towards pure risk are characterized by the shape of , as

usual, while attitudes towards ambiguity are characterized by the shape of  Ambiguity

itself is defined behaviorally and is shown to be characterized by properties of the subjective

set of measures Π. One advantage of this model is that the well-developed machinery for
dealing with risk attitudes can be applied as well to ambiguity attitudes. The model is

also distinct from many in the literature on ambiguity in that it allows smooth, rather than

kinked, indifference curves. This leads to different behavior and improved tractability, while

still sharing the main features (e.g., Ellsberg’s Paradox). The maxmin expected utility model

(e.g., Gilboa and Schmeidler (1989)) with a given set of measures may be seen as a limiting

case of our model with infinite ambiguity aversion.1

The functional representation obtained in KMM is particularly useful in economic mod-

eling in answering comparative statics questions involving ambiguity. Take an economic

model where agents’ beliefs reflect some ambiguity. Next, without perturbing the infor-

mation structure, it is useful to know how the equilibrium would change if the extent of

ambiguity aversion were to decrease; e.g., if we were to replace ambiguity aversion with

ambiguity neutrality, holding information and risk attitude fixed. (See, for example, Gollier

(2005) for a portfolio choice application.) Another useful comparative statics exercise is

to hold ambiguity attitudes fixed and ask how the equilibrium is affected if the perceived

ambiguity is varied (see Jewitt and Mukerji (2008) for a definition and characterization of

the notion of "more ambiguous"). Working out such comparative statics properly requires a

model which allows a conceptual/parametric separation of (possibly) ambiguous beliefs and

ambiguity attitude, analogous to the distinction usually made between risk and risk attitude.

The model and functional representation in KMM allows that, whereas such a separation

is not evident in the pioneering and most popular decision making models that incorporate

ambiguity, namely, the multiple priors/maxmin expected utility (MEU) preferences (Gilboa

and Schmeidler (1989)) and the Choquet expected utility (CEU) model of Schmeidler (1989).

While the preference model in KMM achieves the task of separating ambiguity and am-

biguity attitude, the scope of application of this model is limited by the fact that it is a

timeless framework. Many economic questions involving uncertain environments, especially

in macroeconomics and finance, are more intuitively modeled using intertemporal decision

1For alternative developments of similar models see Ergin and Gul (2004), Nau (2006), Neilson (1993)

and Seo (2006). All of these models draw inspiration from Segal (1987), the earliest paper relating ambiguity

sensitive behavior to a two-stage functional relaxing reduction.
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making frameworks. It is of interest to re-examine such questions by adding an ambiguity

dimension. Computation and analysis of intertemporal choices is greatly facilitated by ap-

plying recursive methods. For these methods to be applicable, preferences have to satisfy

a certain dynamic consistency property. A number of recent papers, including Epstein and

Schneider (2003b), Wang (2003), Hayashi (2005), and Maccheroni, Marinacci, and Rustichini

(2006b), have provided preference foundations for extending other ambiguity models to an

intertemporal framework while satisfying this dynamic consistency. All of these, however,

share the limitation inherent in the atemporal models they extend, of failing to separate

ambiguity from ambiguity attitude without restricting the range of ambiguity attitudes.

The present paper avoids this limitation, as does the contemporaneous work of Hanany and

Klibanoff (2007a), the only other preference model we know of extending KMM to a dynamic

setting. A major difference between the two extensions is that our model is recursive while

that in Hanany and Klibanoff (2007a) is not. We discuss these and other papers further in

Section 7.

The present paper, then, presents the first recursive model of intertemporal preferences

that are ambiguity sensitive and dynamically consistent that does allow a separation of

ambiguity from ambiguity attitude. To see why such a preference model can be useful, recall

the classic equity premium puzzle. The equity premium puzzle originally refers to the fact

that the Lucas (Lucas (1978)) intertemporal general equilibrium model can fit data with

steady consumption growth, low risk-free rates and high risk premiums only if the coefficient

of (relative) risk aversion is allowed to be high in absolute value. This is a puzzle in the

sense that, given the consumption risk identified in the data, the value of risk aversion

coefficient required to explain the observed premium is incompatible with behavior under

risk observed in other domains, for example in experiments. Various authors (e.g., Chen

and Epstein (2002), Epstein and Wang (1994)) have shown theoretically using dynamic

extensions of the MEU model that ambiguity aversion has the potential to explain the

equity premium puzzle. They argue that ambiguity aversion adds to an agent’s aversion to

uncertainty over and above risk aversion, and so may add to the risk premium.2 To evaluate

the potential of an approach based on ambiguity, one has to be able to identify the extent

of ambiguity aversion needed in conjunction with the ambiguity consistent with the data to

explain the observed premium. Then one can check whether that value of ambiguity aversion

agrees with levels observed when examining behavior on other domains. To conduct such an

exercise, it is absolutely necessary to have a framework that allows one to separate ambiguity

from ambiguity aversion and that allows for a variable degree of ambiguity aversion and a

quantification of this degree. Only then may we be able to infer from the data a measure of

ambiguity and ambiguity aversion. Indeed, recent work by Ju and Miao (2007) successfully

applies the model developed in this paper along these lines (see also Hansen (2007)).

In the present paper the basis of the dynamic model is the state space , the set of

all observation paths generated by an event tree, a graph of decision/observation nodes.

The root node of the tree, 0, branches out into a set of (immediate) successor nodes each

of which represents a stochastic contingency at time  = 1 and is generically denoted by
1 Each node 1 further branches out into (immediate) successor nodes 2 at time  = 2
and so on into the infinite future.  is the set of all paths through this event tree; the

2However, see Gollier (2005) for caveats to this reasoning.
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generic element of  is denoted by  The decision maker’s elements of choice are plans

 each of which associates a payoff to each pair ( ). The decision maker is (subjectively)
uncertain about which stochastic process gives the appropriate description of probabilities

on the event tree. The domain of this uncertainty is given by a finite parameter space Θ,
each element of which (generically denoted by ) is a vector of parameters exhaustively

describing a particular stochastic process . We denote by  ( | ) the probability under
distribution  that the observation path will belong to the set , given that we have reached

node . Correspondingly,  (+1; 
) is the probability under distribution  that the next

observation will be +1, given we have reached node 
. The decision maker’s subjective prior

belief about the stochastic process, elicited from his preferences, is described by a distribution

, defined on 2Θ, i.e.,  : 2Θ → [0 1]. The decision maker’s posterior belief about which
stochastic process applies at a node  is given by the Bayesian posterior distribution  (· | ).
In the formal analysis that follows we obtain assumptions and conditions on preferences

such that preferences on plans  , at a node , are represented by the following recursive

functional form:

 () = 
¡

¡

¢¢
+ −1

∙Z
Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶


¡
 | ¢¸ 

where  () is a recursively defined value function,  is a vN-M utility index,  is a dis-

count factor and  a function whose shape characterizes the DM’s ambiguity attitude (as in

KMM). Note that the represented preferences are recursive and dynamically consistent even

though they depart from expected utility (and are also not probabilistically sophisticated

(Machina and Schmeidler (1992))). Furthermore, there is a separation between ambiguity

and ambiguity attitude along with flexibility in the modeling of each.

The next section sets out the formal structure of the model. Section 3 describes assump-

tions on preferences that are then shown to deliver the representation in Section 4. That

section also includes a discussion of our approach and addresses some important existence

and uniqueness questions. Results characterizing Bayesian updating and learning in the

model appear in Section 5. Section 6 contains two examples: one comparing with recursive

multiple priors, and one on the equity premium. Related literature is discussed in Section

7, followed by a brief concluding section. Proofs are contained in Appendices A and B.

2 Set-Up

2.1 Modeling Information

Denote by T an infinite time horizon {1   }. Consider a sequence of discrete random
variables {}∈T with values in finite observation spaces X, endowed with their power sets

A = 2
X. Each X consists of possible observations just before time , and  ∈ X denotes a

realization of the random variable . For convenience, we assume that all  are surjective,

so that X is the set of all possible realizations of each .

Let  =
Q

∈T X be the set of all possible observation paths  = (1   ). Denote

by  =
Q

=1X the collection of all finite paths 
 = (1  ). Each finite observation
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11 =X

)1(1 =s

21 =X

12 =X

)2(1 =s

0s

)1,1(2 =s

)2,1(2 =s

)1,2(2 =s

)2,2(2 =s

22 =X

12 =X

22 =X

Figure 1: The first few time periods of an event tree with X = {1 2}.

path  identifies a decision/observation node, which is the history of observations up to time

. For this reason we denote by  a generic time  node, while S denotes the set of all nodes;
i.e., S =∪∈T . On S there is a natural partial order, >, where  > 

0
means that node 

is a successor of node 
0
 In particular,  () with  ≥ , is the set of time  successors of

the node , i.e.,  () = { ∈  :  > }  Note that any node is considered a successor
of itself. We often denote a generic element of +1 () by ( +1) as it emphasizes the
way in which the successor is generated.

On  we consider the product -algebra Σ = ⊗∈TA generated by all one-dimensional

cylinder sets  ×
Q

6=∈T X, where  ∈ A. For brevity, we denote by {1  } the
cylinder set with base 1 × · · · ×, namely,

{1  } = 1 × · · · × ×X+1 × · · ·
Figure 1 illustrates the first few time periods in our setting.In the figure, 1 = {(1) (2)}

and 2 = {(1 1) (1 2) (2 1) (2 2)} are the sets of time 1 and time 2 nodes, respectively.
An example of a cylinder set is the set of all observation paths with 1 = 1 and 2 = 1.
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We define onΣ a family of probability distributions {}∈Θ, whereΘ is a finite parameter
space. Throughout we assume that  (1  )  0 for all “elementary” cylinder sets
{1  }.3 For each  ∈ Σ,


¡
 | ¢ = ( (∩{1})

(1)
if  ∈ T

 () if  = 0

is the conditional distribution of  given  = (1  ). In words,  ( | ) is the
probability under distribution  that the observation path will belong to , given we have

reached node .4

For each  ∈ T , the one-step-ahead probability distribution  (·; ) : A+1 → [0 1] at
node  = (1  ) ∈  is determined by


¡
+1; 


¢
= 

¡©
 +1

ª | ¢ =  (1   +1)

 (1  )
 ∀+1 ∈ X+1,

where { +1} and  denote the elementary cylinder sets {1   +1} and {1  },
respectively. In words,  (+1; 

) is the probability under distribution  that the next

observation will be +1, given we have reached node 
.

The prior distribution  is defined on 2Θ, i.e.,  : 2Θ → [0 1]. Given any suitable  ∈ Σ,
the posterior distribution  (· | ) : 2Θ → [0 1] is defined as follows:

 ( | ) =
R

 () R

Θ
 () 

 ∀ ∈ 2Θ∀ ∈ Σ.

In particular, if  is the cylinder {1  } ∈ Σ, then

 ( | 1  ) =

R

 (1  ) R

Θ
 (1  ) 

 ∀ ∈ 2Θ.

Example 1 Assume X = X for all  and suppose that each  makes the sequence {}∈T
i.i.d., with common marginal distribution  : A → [0 1]. In this case, the probability
distributions  are given by the product probabilities 

∞
 : Σ→ [0 1], uniquely determined

by  as follows:

∞ (1  ) =
Y

=1

 () 

3Observe the notational difference between the history (1  ), an element of the Cartesian productQ
=1 X , and the cylinder {1  }, the subset of Σ given by {1} × · · · × {} ×X+1 × · · ·. For brevity,

we write  (1  ) in place of  ({1  }).
4The finiteness assumptions on both the parameter space Θ and the observation spaces X along with the

full support assumption on  allow us to avoid a number of technical modeling issues as well as sidestep
the issue of preferences following zero-probability events. These issues are not central to our paper. We

believe that all but the results in Section 5 could be suitably extended to apply to non-finite environments

and appropriately non-null events. For this reason we maintain integral notation. See Section 5 for some

discussion of the role of finiteness there.
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for each cylinder set {1  } ∈ Σ. Hence, for each node  ∈  and observation +1 ∈
+1, we have


¡
+1; 


¢
=

Q+1
=1  ()Q
=1  ()

=  (+1) 

while, for each cylinder set {1  } ∈ Σ and each set  ⊆ Θ,

 ( | 1  ) =

R

∞ (1  ) R

Θ
∞ (1  ) 

=

R


Q
=1  () R

Θ

Q
=1  () 

.

N

Example 2 Assume againX = X for all  and suppose now that each  makes the sequence
{}∈T a homogeneous Markov chain with transition function  : X−1 × A → [0 1] for
 ≥ 2, where  ( ·) : A → [0 1] is a probability measure on A for each  ∈ X−1,
and  (· ) : X−1 → [0 1] is an A−1-measurable function for each  ∈ A. Given an

initial probability distribution  (
0) on A1, the probability distributions  are uniquely

determined by  as follows:

 (1  ) = 
¡
0
¢
(1)

−1Y
=1

Z


 ( +1)

for each cylinder set {1  } ∈ Σ. Hence, for each  = (1  ) ∈  and +1 ∈ X+1,


¡
+1; 


¢
=

 (
0) (1)

Q
=1  ( +1)

 (0) (1)
Q−1

=1  ( +1)
=  ( +1) 

while, for each {1  } ∈ Σ and each  ⊆ Θ,

 ( | 1  ) =

R

 (

0) (1)
³Q−1

=1

R

 ( +1)

´
R

Θ
 (0) (1)

³Q−1
=1

R

 ( +1)

´




N

2.2 Plans

At the initial time ( = 0) and at each subsequent time , the decision maker (DM) chooses
a “consumption” plan, detailing current and future consumption. The available information

at  is given by the realizations of the random variables 1  . At the initial time  = 0,
the DM has not yet observed any realizations.

Let C be a payoff space, which is assumed to be a compact interval in R endowed with
the standard topology of the real line. Consider a map  : T ∪ {0} ×  → C that associates
a payoff to each pair ( ). We can represent  as a collection {}∈T ∪{0}, with  :  → C
for each  ≥ 0.
We say that  is a plan if 0 is {∅ }-measurable (i.e., it is a constant) and each  is

 (1 )-measurable for each  ∈ T . In other words, setting Σ =  (1 ) for each
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 ∈ T and Σ0 = {∅ },  is a plan whenever it is a payoff stream adapted to the filtration

{Σ}∈T ∪{0}. As  (1  ) is the -algebra generated by the cylinder sets {1  },
each  actually depends only on the finite paths 

 ∈  and  (1  ) reads as follows:
“ (1  ) ∈ C is the time  payoff the DM receives if he arrives at the node identified by

 = (1  ).” Here we adopt the convention 0 = {∅}.
For this reason we can regard a plan  as a function  : S → C defined over the set of

nodes S. For convenience, this is the way we will view plans throughout the paper. Denote
the set of all such plans by F .
A subset of plans of special interest are the deterministic plans. Let  ∈ F denote a

deterministic plan, i.e., a payoff stream such that the payoff obtained at each time  does

not depend on the particular node reached at that time. Formally, for each  there is  ∈ C,
denoted by  (), such that () =  (), ∀ ∈ . Finally, given  ∈ C, with a (standard)
slight abuse of notation we will also use  to denote the constant stream that pays off  at

each node.

2.3 Continuation Plans

It will be important to have a notion of a continuation plan that specifies payoffs only from

a node  onward. We define the set of continuation plans at node  to be the restriction

of the set of plans F to successors of , i.e., to ∪≥ (), and denoted it by F with

generic element . Given a plan  , the continuation plan induced by  at , denoted |,
is the restriction of  to successors of . Observe that while  is a generic function from

∪≥ () to C, | is a specific such function determined by  .
We next introduce the concept of mixed continuation plans. An -mixed continuation

plan is a probability distribution on F. For example, given a finite collection {}=1 of
continuation plans in F, and a corresponding set of probabilities {}=1, { }=1 denotes
the -mixed continuation plan given by the lottery⎧⎪⎨⎪⎩

1 (
 ) for each  >  with probability 1
...

...

 (
) for each  >  with probability 

In words, the -mixed continuation plan corresponds to a randomization at node  over the

continuation plans {}=1 in F, such that with (an objective) probability  the continua-

tion plan  is followed on all nodes that succeed 

Though these mixed plans can be studied in full generality, for our purposes it is enough

to consider mixing over deterministic plans. Let D be the subset of F consisting of the

deterministic continuation plans at  As D =
Y

≥
C, we can endow D with the product

topology. Below, we make use of the set of -mixed deterministic continuation plans given

by the set P of all countably additive Borel probability measures defined on (DB) 
where B is the Borel -algebra induced by the product topology.
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2.4 Second Order Acts

Definition 1 A second order act is any function f : Θ→ C that associates an element of
Θ to a payoff. We denote by F the set of all second order acts.

We introduced second order acts in KMM and used preferences over them to reveal the

DM’s subjective uncertainty about the probabilities of the observations. They will play

a similar role in this paper. There is a question whether preferences over these acts are

observable, and thus, the extent to which assumptions on such preferences are behaviorally

meaningful. For example, in what sense can one check that the DM prefers a bet paying off

if 1 is the process governing the observations to a bet paying off if 2 is the true process?

The only sense in which this could be more difficult than observing choices among usual

Savage acts is that one could doubt that the true process could be verified. However, in a

dynamic environment as in the current paper, given enough time and sufficient stationarity

of the processes, one can discriminate as finely as desired among the finite set of parameters

Θ. This follows from recent results in the literature on Bayesian consistency (see Lijoi,

Prunster, andWalker (2007)) which imply that under stationarity assumptions the estimator

constructed by updating a strictly positive (e.g., uniform) distribution over Θ by Bayes’ rule
is a consistent estimator of the true parameter.

In this sense, a bet that this estimator will assign sufficiently high weight to 1 at a date

sufficiently far in the future, is approximately a bet on 1 (i.e., a bet that the true process

is 1). Further informative discussion of the nature and verifiability of second order acts is

contained in KMM, pp. 1854 and 1856.

2.5 Preferences

We will be concerned with preferences over two domains. Of primary interest are the DM’s

preferences at each node  over plans and mixtures over deterministic continuation plans,

F ∪P. At each 
, this is denoted by the binary relation <. The second order acts, F, are

the other domain of interest. Let <2 denote the DM’s preference ordering over F at node
.

3 Assumptions on Preferences

Our assumptions on preferences fall naturally into two major categories. First are four as-

sumptions that are quite standard for an intertemporal setting and are not tied in any special

way to the smooth ambiguity model. They are followed by four assumptions analogous to

the three assumptions KMM used to derive the (atemporal) smooth ambiguity model. It

is how these last assumptions are integrated into the intertemporal setting that is key in

determining the sense in which the current theory is an extension of the earlier one.

3.1 Four Standard assumptions

The assumptions in this section are imposed on preferences over plans at each time  and

each node  ∈ .
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Assumption 1 (Weak Order) < on F is complete and transitive.

Assumption 2 (Monotonicity) Given any   ∈ F, if  () ≥  () for all  ≥ , then

 < . If, in addition,  and  are deterministic and ()  () for at least some  ≥ 

then  Â .
5

Assumption 3 (Archimedean) Given any  ∈ F and 1 2 ∈ C, if 1 Â  Â 2, then

there exist   ∈ (0 1) such that 1 + (1− )2 Â  Â 1 + (1− )2.

Note, in the above assumption, 1+(1−)2 is simply a constant plan yielding the real
number 1 + (1− )2 at each node.

Assumption 4 (Dynamic Consistency) Given any   ∈ F, if () = () then

 <(+1)  for all +1 =⇒  < 

The first three assumptions are standard and are clearly necessary for any monotonic,

real-valued and suitably continuous representation. Observe that monotonicity immediately

implies consequentialism, i.e., given any   ∈ F
| = | =⇒  ∼  (1)

In words, in evaluating plans at a node only payoffs from that point onward matter.6 This

rules out past realized payoffs or payoffs at unrealized nodes affecting preference. There

are a number of circumstances in which it may be plausible for consequentialism to be

violated (see e.g., Machina (1989) concerning risk and Pollak (1970) or Abel (1990) from

the large literature on habit formation in consumption). However, it is quite useful in

practice as it ensures that each problem may be approached and analyzed at the time it is

encountered without regard to what occurred or did not occur in the (often unknown and

possibly complex) past.7

Of the four assumptions above, the only one that imposes conditions relating preferences

at different nodes is dynamic consistency. Some condition across preferences at different

nodes is needed to pin down dynamic behavior. Dynamic consistency is the standard way

of doing this in the economics literature, as some variation of it is inherent in any recursive

functional form. Informally, dynamic consistency says that if two plans give the same payoff

today, and, no matter what happens in between, one of the plans is always preferred to

the other at the next time, then that plan should also be preferred today. The essence is

that today’s preference over plans that may differ only from tomorrow onward should agree

with "tomorrow’s preference" over those plans in cases where "tomorrow’s preference" is

unanimous (i.e., does not depend on what is observed between today and tomorrow).

5In the second part of the axiom, time is the only argument of the acts as they are deterministic.
6Note that (1) is, as Hanany and Klibanoff (2007b) emphasize, only part of consequentialism. The

assumption that preferences are conditioned only on nodes, and not, for example, on other aspects of the

choice problem such as the feasible set of plans available at the initial node, is also part of consequentialism.

This aspect of consequentialism is built in to our framework by the fact that the collection of preferences

over acts we examine is subscripted only by nodes, .
7It would be messy, but not conceptually difficult, to extend our analysis to cover the case where past

payoffs may affect preferences. Essentially the functions in our representation would all need to have the past

payoff history as an additional argument. See e.g., Kreps and Porteus (1978) and Johnsen and Donaldson

(1985) for examples of recursive structures with history-dependence.
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3.2 Embedding the (Atemporal) KMM Representation

We now lay out the additional assumptions that, together with the standard four above, will

deliver recursive smooth ambiguity preferences. To help motivate these additional assump-

tions and to elucidate the sense in which the recursive theory extends the smooth ambiguity

model, it is useful to briefly review the three assumptions used to derive the smooth am-

biguity model in KMM. The first KMM assumption is that preferences over a subclass of

acts called lottery acts (which may be thought of as essentially lotteries over outcomes) are

continuous expected utility preferences. A natural analogue to lottery acts in the setting of

the current paper are the -mixed deterministic continuation plans, P, that were defined in

section 2.3. Rather than lotteries over single outcomes, these are lotteries over deterministic

streams of outcomes, as is appropriate to our intertemporal setting. Our first assumption

in this section will be that at each node  preferences over P are continuous expected

discounted utility preferences. Our second assumption in this section guarantees that in-

tertemporal and risk trade-offs are stable across nodes. In terms of the representation, this

will be equivalent to constancy across nodes of the discount factor and the utility function.

These two assumptions together form a natural intertemporal analogue to the first assump-

tion in KMM. The second KMM assumption states that preferences over second order acts

are continuous subjective expected utility preferences. In the present context, second order

acts are functions from the parameter space, Θ, to the outcome space, C. Therefore, our
third assumption will be that, at each node, preferences over second order acts are continuous

subjective expected utility preferences. Moreover, we will assume that the utility function

is stable across nodes. KMM also proposes a natural association between acts and second

order acts that works as follows: given an act, for each parameter value, the associated

second order act yields the certainty equivalent of the act under the distribution implied by

the parameter value. Finally, the third KMM assumption requires preference over acts to

agree with preference over the associated second order acts. In our dynamic setting, our last

assumption is also of this form. However, the role of acts is played by continuation plans at

 that are constant from time +1 onward but where that constant may depend on the node
reached at +1 (“one-step-ahead continuation plans”) and the role of certainty equivalent of
such a continuation plan given a parameter value is played by the outcome that, if received

from +1 onward in place of what the continuation plan would give from then on leaves the
DM indifferent. This fourth assumption makes clear the sense in which the intertemporal

model extends the KMM model: KMM applies at time  when considering plans where all

the uncertainty is resolved between  and + 1. We now make all of this more formal.
From the above discussion, it is clear that we need to consider preferences over -mixed

deterministic continuation plans in addition to preferences over plans. The next assumption

says that < on P is continuous expected discounted utility and identifies, from the point

of view of preference, a degenerate mixtures in P with a corresponding plan. In reading it

recall that a deterministic continuation plan  might well be induced by a plan which is

deterministic from  onwards but not deterministic overall.

Assumption 5 (Discounting) For each  ∈ D, there exists a plan  ∈ F with | = 

such that  ∼ { 1}. At each node  ∈  < on P is represented by the expectation

10



of a von Neumann-Morgenstern utility index  : D → R which has the form

 () =
X
≥

− ( ()) (2)

for  ∈ (0 1)   continuous and not constant on C. Moreover,  is unique and  is

unique up to positive linear transformations.

Note that this assumption is not stated purely in terms of preferences, as the preceding

ones are. This should not be bothersome, however, as a purely preference-based foundation

for the utility indices,  , can be done exactly as in Theorem 2 of Epstein (1983).

Next is the invariance assumption that will guarantee that  and  in Assumption 5

do not depend on the node . To state it we need some notation: given any  0 00 ∈ C, we
denote by (0 00 ) the deterministic continuation plan that pays off 0 at , 00 at +1, and
 from + 2 onwards.

Assumption 6 (Invariance) Given any  0 ∈ T ∪ {0}, any  ∈ [0 1], and any set of
consequences  

0
 

00
   

0
 

00
 with  = 1 2, we have:

{(01 001 1)  ; (01 001  1)  1− } < {(02 002 2)  ; (02 002  2)  1− }

if and only if

{(01 001 1)0  ; (01 001  1)0  1− } <0 {(02 002 2)0  ; (02 002  2)0  1− } 

This has the stated consequence:

Lemma 1 Under Assumption 6, there is  ∈ (0 1) and  : C → R continuous and not

constant such that in Assumption 5,  =  and  =  for all .

Our next assumption states that preferences over second order acts have a continuous

subjective expected utility representation.

Assumption 7 (SEU on Second Order Acts) There exists a unique (additive) proba-

bility  : 2
Θ → [0 1] and a continuous, strictly increasing  : C → R such that, for all

f g ∈ F,
f <2 g⇐⇒

Z
Θ

 (f ())  ≥
Z
Θ

 (g ()) .

Moreover,  is unique up to positive affine transformations, provided 0   ()  1 for
some  ⊆ Θ.

Remark 1 As is true for Assumption 5 (Discounting), more primitive axioms, such as

those used in Theorem V.6.1 of Wakker (1989), could be applied to <2 to deliver this
assumption. Notice, as  does not have the subscript  Assumption 7 implicitly assumes

that <2 restricted to constant elements of F does not vary with  Moreover, observe if

there is no  ⊆ Θ such that 0   ()  1, then  can be unique up to only monotone

transformations.
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To state our final assumption, we first need to define one-step-ahead continuation plans

and one-step-ahead certainty equivalents. Let F∗ be the subset of continuation plans in
F that yield a stream, constant from  + 1 onwards, that only depends on the immediate
successor node of . These are one-step-ahead continuation plans. Formally, F∗ is the set©

 ∈ F : (
) = (

+1) ∀ +1 ∈ +1
¡

¢
,∀  ∈ 

¡
+1

¢
∀  + 1

ª


Given any continuation plan  ∈ F , consider for each +1 ∈ X+1 the deterministic

continuation plan

 (+1) =
¡

¡

¢
 (

 +1) (
 +1)  (

 +1) 
¢


Formally,  (+1) ∈ F∗ is given by  (+1) () =  (
) and  (+1) () = (

 +1)
for all  ≥ + 1

Definition 2 Given any one-step-ahead continuation plan  ∈ F∗, the one-step-ahead
certainty equivalent of  given ,  (), is a payoff  such that, for any  ∈ F, if
| = ( ()      ), then

 ∼
©
 (+1)  

¡
+1; 


¢ª

+1∈X+1 .

In other words, the one-step-ahead certainty equivalent of the one-step-ahead continua-

tion plan  is the payoff making the DM indifferent at  between the continuation plan

having that payoff from time + 1 onwards and the -mixed plan which pays off  (+1)
with probability  (+1; 

). Observe that such a mixed plan is indeed an element of P .

Definition 3 Given  ∈ F∗, 2 ∈ F denotes a second order act associated with 

defined as follows

2 () =  () for all  ∈ Θ

Assumption 8 (Consistency with Associated Second Order Acts) Given   ∈
F∗ and associated 2 2 ∈ F, if  () =  (

),

 <  ⇐⇒ 2 <2 2

for some   ∈ F with | =  and | = .

4 Main Representation Theorem

In this section, we show that our assumptions yield a recursive smooth ambiguity represen-

tation of < over plans. To do this, it will be helpful to be able to refer directly to induced

preferences over continuation plans rather than always referring back to preferences over

plans. To this end, consider for each  and , induced preference relations <∗ on F ∪P,

the union of continuation plans at node  and -mixed deterministic continuation plans.

We call these induced preferences because they are fully determined by <. On P define

<∗=<. On the set of continuation plans, F, define <∗ as follows:

12



| <∗ | ⇐⇒  <  ∀| | ∈ F 

Observe that each element of F can be represented as |, where  is a suitable plan in the
sense of having that element of F as continuation at 

. By consequentialism, as expressed

in (1), the particular plan  used for such representation is immaterial, and so <∗ is well
defined on F. Finally, when comparing elements of F and P, complete the specification

of <∗ from < in the obvious manner:

| <∗ ⇐⇒  <  and  <∗ | ⇐⇒  <  ∀ ∈ F   ∈ P.

We begin by using the assumptions to get a representation of <∗ restricted to plans in F∗
sharing the same payoff at  This will be a key step in deriving the main representation

theorem. Denote by U the range of (1− )−1 .

Proposition 1 Suppose Assumptions 1-8 hold. Then there exist continuous and strictly

increasing functions  : C → R and  : U → R, and an additive probability  : 2Θ → [0 1]
such that, given any   ∈ F∗ with  () =  (

), we have  <∗  if and only ifZ
Θ



µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶



≥
Z
Θ



µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶

 

The probability  is unique and the function  is unique up to positive affine transforma-

tions. Moreover, given , the function  is unique up to positive affine transformations,

provided 0   ()  1 for some  ⊆ Θ. If ̃ =  + ,   0, then the associated ̃ is

such that ̃( + 
1− ) =  (), where  ∈ U .

Given  ∈ C and  ∈ , let  ∈ F be the deterministic continuation plan such that

 () =  for all  ≥ .

Definition 4 Given  ∈ F and  ∈ , the continuation certainty equivalent, , of
 at  is a payoff  ∈ C such that  ∼∗ |.

Lemma 2 For each  and , there exists a continuation certainty equivalent.

Denote by  the constant continuation plan in F paying off  at 
 and at all nodes

that follow it.

Definition 5 The continuation value of  at  is given by  () =  ().

Given our assumptions, the function  : F → R represents < on plans. In fact, by

definition and by Assumption 5, we have:

 <  ⇐⇒ | <∗ | ⇐⇒  <∗ 
⇐⇒  () ≥  ()⇐⇒  () ≥  () 
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TheMonotonicity assumption implies that if  () ≥  () for all  ≥ , then  () ≥  ().
If, in addition,  and  are deterministic and ()  () for at least some  ≥  then

Monotonicity implies  ()   (). We refer to a functional  as monotonic if it

satisfies these two properties given by Monotonicity.

We can now state our main representation result:

Theorem 1 For each  and , let < be a binary relation on F ∪ P and <2 be a binary
relation on F. Assumptions 1-8 hold if and only if there exists an additive probability  :
2Θ → [0 1] for each  and continuous and strictly increasing functions  : C → R and

 : U → R, such that

(i) On F, each preference < is represented by the monotonic recursive functional  :
F → R given by

 () = 
¡

¡

¢¢
+ −1

∙Z
Θ



µZ
X+1

(+1) () 
¡·; ¢¶ 

¸
; (3)

(ii) On P, each preference < is represented by the expected discounted utility functional

 : P → R given by

 () =

Z
D

" ∞X
=

− ( ())

#
;

(iii) On F, each preference <2 is represented by the subjective expected utility functional
 2
 : F→ R given by

 2
 (f) =

Z
Θ



µ
 (f ())

1− 

¶
.

The uniqueness properties of ,  and  are as stated in Proposition 1.

Equation (3) in (i) is our desired recursive representation of preferences over plans at

each node and is the main result of this theorem. The representations in parts (ii) and

(iii) over mixed deterministic continuation plans and second order acts, respectively, fol-

low quite directly from the discounting and invariance assumptions and the assumption

of SEU on second order acts. Notice that in equation (3), the aggregation across pos-

sible time  + 1 continuation values is done according to the KMM smooth ambiguity

functional — this links the dynamic and timeless smooth ambiguity models. The term

−1
hR

Θ

³R

X+1 (+1) ()  (·; )
´


i
should be interpreted as the utility equivalent

of the possibly ambiguous (in the sense that each  may induce a different distribution over)

continuation values.

Although it may not be immediately apparent, in the case of ambiguity neutrality (i.e.,

 affine), (3) reduces to subjective expected discounted utility with Bayesian updating. We

show this formally in the next proposition, where we make explicit the corresponding prior

belief. We also show that this belief is relevant to and recoverable from preferences with any

ambiguity attitude, as long as  is differentiable.
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To state the proposition, it is helpful to define the standard notion of a predictive dis-

tribution as in Bayesian statistics (i.e., the -average of the ’s). Given  , define the

predictive distribution  : Σ→ [0 1] by:

 () =

Z
Θ


¡
 | ¢  ()  ∀ ∈ Σ

In particular, using  to denote 0 , 0 () =
R
Θ
 ()  (). Observe that  () =

 ( ∩ ). We denote by  (+1  +) the probability of the cylinder set determined
by ( +1  +) (i.e.,  ({ +1  +})). In particular, the one-step-ahead pre-
dictive distribution at  is the marginal on X+1 of , and the probability it assigns to

+1 = +1 is denoted (+1).

Proposition 2 Given, for each , a  as in (3), there exists a unique countably additive

probability  : Σ→ [0 1] such that,

(i) if  is affine, then

 () =

Z


" ∞X
=

− ( ())

#
 (4)

where the measure  is related to the ’s and the ’s (via the predictive distributions)

through the formula

 ({1     }) = 0 (1)(1) (2) · · · (1−1) ()  (5)

for each  ≥ 1 and 1     , and  is the Bayesian update of ;8

(ii) if  is differentiable, then

 ()  [
((( +1     +)))]

 ()  [(())]

¯̄̄̄
=

= 
¡©
 +1     +

ª¢
for each  ≥ 1   +1     + and deterministic plan .

Part (i) of the above result verifies that when  is affine we get discounted expected

utility with Bayesian updating of a unique measure on paths, . This measure is uniquely

determined by the product of one-step-ahead predictive distributions. Equation (5) implies

that the one-step-ahead predictive distribution at any node is exactly the one-step-ahead

marginal of the Bayesian update of .

Part (ii) of the proposition shows that the marginal rate of substitution

 ()  [
((( +1     +)))]

 ()  [(())]

¯̄̄̄
=

at  between utility at  and the present discounted utility at ( +1     +), when eval-
uated at any deterministic plan , is the Bayesian conditional probability  ({ +1     +})

8That is,  () ≡  ( ∩ )  () for all  ∈ S and  ∈ Σ
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of { +1     +} given  according to . This shows that  can be meaningfully char-

acterized solely in terms of behavior toward plans even when preferences are ambiguity

sensitive, as long as  is differentiable (i.e., preferences are smooth). Under expected util-

ity (with monetary payoffs and differentiable utility) subjective probability measures the

trade-offs at the margin, evaluated at a riskless position, between sure payoffs and payoffs

contingent on a specific event. As the proposition shows, analogously,  measures the trade-

offs at the margin between utility at  and (discounted) utility at successor nodes, when

these trade-offs are evaluated at a deterministic plan.

In addition to , we have the predictive distributions, , which are determined from

preferences over second order acts. It is natural to ask whether the  agree with the 

everywhere, and not simply for the one-step-ahead marginals. As we will show in Section 5,

this question is equivalent to the question of whether the  are the Bayesian updates of .

4.1 Discussion of Our Approach

To give some additional insight into the derivation of the model, we present an alternative

approach using a different final consistency assumption and show why it runs into difficulty.

One might have thought that Assumption 8 could be formulated as follows:

First, some modified definitions. Given any continuation plan  ∈ F , consider for

each  = ( +1 +2     +   ) ∈  ∩ {1  } the deterministic continuation plan

 () =
¡

¡

¢
 (

 +1) (
 +1 +2)  (

 +1 +2     +) 
¢
.

Definition 6 Given any continuation plan  ∈ F, the certainty equivalent of  given
,  (), is a payoff  such that¡


¡

¢
     

¢ ∼∗ © ()   ¡ | ¢ª∈∩{1} .
In other words, the certainty equivalent of the continuation plan  is the payoff making the

DM indifferent between the continuation plan having that payoff from time +1 onwards and
the -mixed plan which pays off according to  () with probability  ( | ). Observe
that such a mixed plan is an element of P and so via Assumption 5 it is in the domain of

the induced preference <∗ 

Definition 7 Given  ∈ F, ̂
2 ∈ F denotes a (hatted) second order act associated

with  defined as follows

̂2 () =  () for all  ∈ Θ

Assumption 9 (Consistency with Hatted Second Order Acts) Given    ∈ F

and ̂2 ̂2 ∈ F, if  () =  (
) 

 <  ⇐⇒ ̂2 <2 ̂2

for some   ∈ F with | =  and | = .
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Notice the difference between this approach and the one we have taken. In our approach,

the consistency assumption is applied only to one-step-ahead continuation plans. In this

approach it applies to all continuation plans. One can show, along the lines of the proof

of Theorem 1, that substituting this new assumption for Assumption 8 and dropping dy-

namic consistency (Assumption 4) implies that there exists the following “reduced-form”

representation for º on plans:

̂ () = 
¡

¡

¢¢
+ −1

⎡⎣Z
Θ



⎛⎝ X
∈∩{}


¡
 | ¢ X

≥+1
−(+1)( () ())

⎞⎠ 

⎤⎦ (6)

where  ( | ) is the probability of the path  given history  and given that the true para-
meter is  and  () () is the time  payoff according to plan  along path . A comparison of
equation (6) with equation (3) reveals that, though they agree in evaluating one-step-ahead

continuation plans, in general they are quite distinct. In particular, (6) will generally violate

dynamic consistency, while (3) will generally violate the modified consistency assumption

(Assumption 9).

Generally, one can think of two ways of relating preferences in a dynamic model to those

in an atemporal setting. The first is by viewing the atemporal model as the special case of

the dynamic model with one-period of uncertainty. This is the nature of our recursive exten-

sion of the smooth ambiguity model — the atemporal model corresponds to preferences over

one-step-ahead continuation plans sharing the same current payoff. The second is by viewing

the atemporal model as a reduced-form of the dynamic model, abstracting away from the

dynamic structure yet representing the same preferences. The alternative dynamic represen-

tation in equation (6) bears this type of relation to the atemporal model for continuation

plans sharing the same current payoff.

It would certainly be an elegant result to have a dynamic model that related to the atem-

poral model in both ways. We do not generally have this. In this regard, we suggest that

the modified consistency assumption used in deriving the reduced form may not be com-

pelling, in that it requires the DM to behave as if all uncertainty were resolving immediately

when, in fact, this would be true only for one-step-ahead continuation plans. Why does this

matter in our set-up? It matters because our DM is both ambiguity sensitive and respects

consequentialism (as noted in Section 3.1, the latter property follows from Monotonicity

(Assumption 2)). Ambiguity sensitivity will, in general, result in non-separabilities in the

evaluation of payoffs across mutually exclusive future events. Consequentialism requires

that, once a given node has been reached, payoffs at unrealized events cannot influence pref-

erences. When all uncertainty resolves immediately, there is no tension between these two.

When it resolves gradually, however, there will generally be a strong tension. Consider, for

example, a DM who obeys the reduced-form consistency assumption evaluating, at , a

trade-off between utility at node ( +1 +2) and utility at node (
 +1 

0
+2). Because

of ambiguity and the DM’s sensitivity to it, this trade-off may well depend on the utility at

a third, mutually exclusive, node, say, ( 00+1). However, if this DM reaches node ( +1),
then consequentialism demands that the outcome at ( 00+1) does not matter in evaluating
the same trade-off. This is why there is a conflict between the reduced-form consistency and

dynamic consistency. It seems reasonable that a DM who is aware of the full implications

of the dynamic setting will anticipate the decision opportunity at node ( +1), and want
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to evaluate the consumption possibilities (implied by ) that obtain beyond (
 +1) us-

ing the view of ambiguity that will become available at ( +1) rather than the view of
ambiguity expressed through  . Thus it is not obvious that the DM think the evaluation

of  is on par with evaluating an associated second order act for which all uncertainty,

by definition, resolves immediately upon taking the decision. But this is exactly what the

reduced-form approach described in this section assumes. In other words, a difficulty with

the reduced-form approach is that ambiguity present at , and reflected in , would figure

in the (current) evaluation of the associated second order act, whereas this ambiguity is not

relevant to evaluating the part of the consumption stream that comes beyond ( +1) if
that node were to be reached.

Although the recursive and reduced-form approaches conflict in general, there are two im-

portant special cases in which they can be reconciled. First, if  is affine, so that preferences

are ambiguity neutral, there is no conflict between the two. Second, if  is differentiable

and we restrict attention to local behavior at deterministic plans, again the two approaches

are compatible. When exploring updating in Section 5.1, these domains of agreement prove

quite useful. In both these domains, the tension discussed above is absent because the DM

is ambiguity neutral either globally ( affine) or locally around deterministic plans ( dif-

ferentiable). Therefore the marginal trade-off between two nodes is independent from the

outcome at any mutually exclusive third node.

From the point of view of dynamic applications, it is worth noting that even if both

a reduced form and a recursive representation were available, it is the recursive form that

will be of far more use because of its tractability. The only potential disadvantage of a

recursive relative to a reduced form representation, is that existence and uniqueness of the

representation becomes a more subtle issue. This is the subject of the next section.

4.2 Existence and Uniqueness

If our preferences obeyed the “reduced-form” representation discussed above, they would

be explicitly determined once the elements , , ,  and  are specified. However, the

preference functional, , that by Theorem 1 represents the preference < on plans, is only

implicitly defined by the recursive equation (3). Therefore, an important issue is whether,

for a given specification of the elements , , ,  and , such a recursive equation admits a

unique monotonic solution. Otherwise, Theorem 1 would be of little use; without uniqueness,

it is difficult to understand what it is beyond , , ,  and  that determines preference.

Approachability of this solution through iterative methods is also of practical interest.

Our first result in this section shows that there always exists a solution to the recursive

equation (3) in the representation. We then provide two sets of sufficient conditions for

uniqueness and monotonicity of the solution. Proposition 3 shows that any solution is unique

and monotonic when restricted to plans that eventually become deterministic. Theorem 3

shows that uniqueness and monotonicity for all plans holds under conditions on  weak

enough to encompass many cases of interest. Under the same conditions, iterative methods

for finding  are guaranteed to converge.

The general existence result is the following:
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Theorem 2 For each  there exists a  () satisfying the recursive equation (3) in Theorem
1.

If the time horizon were finite, a simple backward induction argument would be enough

to solve equation (3), and the solution would be unique and monotonic. In our infinite hori-

zon set-up this is no longer possible, but we can still prove a very general uniqueness and

monotonicity result for eventually deterministic plans, that is, plans that become determin-

istic after a finite time.

Proposition 3 When restricted to eventually deterministic plans, the recursive equation (3)

has a unique and monotonic solution.

We nowmove to explore the case of more general plans. For our uniqueness results, we will

need to refer to several classes of functions : functions with a non-decreasing coefficient of

absolute ambiguity aversion, functions with a non-increasing coefficient of relative ambiguity

aversion and functions with a strong form of a decreasing coefficient of absolute ambiguity

aversion.9 We will denote these classes as IAAA, IRAA and SDAAA, respectively.

Formally, we will say that a continuous and strictly increasing function  : U → R is
IAAA if it is twice continuously differentiable and is such that the function

 () = −
00 ()
0 ()

is non-decreasing, while it is IRAA if the function

 () = −
00 ()

0 ()
=  ()

is non-decreasing and is SDAAA if the function

 () = − 00 ()

[0 ()]2
=

 ()

0 ()

is non-increasing. Of note for applications, the union of these classes includes, among others,

the following classic cases:

1. The class of constant absolute ambiguity aversion (CAAA) functions:

 () =

½
+  if  () = 0 for all  ∈ U

−− +  if  () =   0 for all  ∈ U

where   0 and  ∈ R. KMM showed that these functions may be thought of as

displaying constant ambiguity attitude.

9This terminology follows that used in KMM. In particular, KMM relates the Arrow-Pratt coefficient of

 to ambiguity attitude.
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2. The class of constant relative ambiguity aversion (CRAA) functions:

 () =

½


1−
1− +  if  () =  6= 1 for all  ∈ U

 ln+  if  () = 1 for all  ∈ U

where   0 and  ∈ R. By analogy, one might view these functions as displaying
constant relative ambiguity attitude.

3. Quadratic functions that are increasing on the relevant domain.

We can now state a result showing uniqueness and monotonicity if  is either IAAA,

IRAA or a subset of SDAAA.

Theorem 3 Assume U ⊆ R+ and  is twice differentiable on R++. There are unique

and monotonic  satisfying the recursive equation (3) in Theorem 1 if at least one of the

following holds:

(i)  is IAAA; or

(ii) 0 ∈ U and  is IRAA; or
(iii)  is SDAAA and concave and sup≥0  ()  1.

It is worth noting that under conditions (i), (ii) or (iii) the unique solution can be

found via contraction arguments and this provides uniform convergence of iterative methods

of finding a solution. See Appendix B for a formal statement. We emphasize that the

above conditions are sufficiency conditions only and we have not been able to construct a

counterexample failing uniqueness or monotonicity. We also note that the difficulty in finding

complete conditions for uniqueness is not unique to our model. Other, far older and quite

popular non-linear recursive models, for example those of Epstein and Zin (1989), are in a

similar situation (see Marinacci and Montrucchio (2007)).

5 Bayesian Updating and Learning

5.1 Bayesian Updating of 

At the end of Section 4 we raised the issue of whether the beliefs  derived in Proposition 2

agree with the predictive distributions  . Recall that Proposition 2 guaranteed that their

one-step ahead marginals agree. We remarked that the question of overall agreement was

equivalent to the question of whether the  were the Bayesian updates of . In this section,

we make precise the conditions under which this is true and discuss the significance of this

result.

Consider the DM’s marginal trade-off between utility at  and (discounted) utility at a

successor node ( +1     +), when evaluated at a deterministic plan. One could imag-
ine, because this trade-off is being made given only information available at , the trade-off

could be recoverable from preferences over second order acts at  alone, in particular from

20



. If the DM were expected utility over plans with beliefs given by the -average of the

, the trade-off would indeed be identified by the “-step-ahead” predictive distribution

 (+1     +). Clearly, assuming such global ambiguity neutrality is very strong, and
would defeat the whole purpose of our modeling exercise. This is where the limitation to eval-

uating trade-offs at deterministic plans comes in. All that is needed for  (+1     +)
to identify these trade-offs is that the DM is ambiguity neutral “locally around determinism”

with beliefs given there by the -average of the . If our model is truly smooth (i.e., 

differentiable), such local ambiguity neutrality is perfectly compatible with overall sensitivity

to ambiguity, just as local risk-neutrality is compatible with global risk aversion or love in

the standard expected utility model.

This motivates the following assumption which says exactly that the marginal trade-off

between utility at  and (discounted) utility at a successor node ( +1     +), when
evaluated at a deterministic plan is given by  (+1     +), which, recall, is completely
determined by <2 through  .

Assumption 10 (MRS) For each deterministic plan ,

 ()  [
((( +1     +)))]

 ()  [(())]

¯̄̄̄
=

=  (+1     +) (7)

for each  ≥ 1   +1     +.

We will show that with  differentiable, if  is updated by Bayes’ rule then our model

implies Assumption MRS, and furthermore, under mild conditions, Assumption MRS implies

 must be updated by Bayes’ rule in our model.

It is informative to note that Assumption MRS is implied by the reduced-form dynamic

smooth ambiguity model with discounted utility (as in (6)) when  is differentiable. Why is

this true? Any such model is locally ambiguity neutral (i.e., locally expected utility) around

any deterministic plan. Under ambiguity neutrality, -average probabilities precisely reveal

utility trade-offs at the margin. In this sense, Assumption MRS is a very limited version of

the closure sometimes assumed for recursive models — here we are not demanding that each

< on plans is represented by a reduced-form dynamic smooth ambiguity model, but simply

that it shares the relationship between the predictive distributions and marginal rates of

substitution around determinacy with that model.

Observe that closure is (in combination with recursion) what delivers anything that dy-

namic recursive models have to say about updating — for expected utility it delivers Bayes’

rule applied to the overall prior, for recursive multiple priors (Epstein and Schneider (2003b))

it delivers prior—by-prior Bayesian updating applied to the overall rectangular set of priors,

for recursive variational preferences (Maccheroni, Marinacci, and Rustichini (2006b)) it de-

livers a condition on how the ambiguity index must be updated. Our next result shows

that adding limited closure in the form of Assumption MRS to our earlier assumptions is

equivalent to Bayesian updating of the predictive distributions.

Theorem 4 Assume each < satisfies Assumptions 1-8 and that  is differentiable. Then,

Assumption MRS is equivalent to the predictive distributions being related by Bayes’ rule

(i.e.,  () = 0 ( ∩ ) 0 (
) for each    ∈ Σ.)
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To sketch why this holds, recall that under our model, as was shown in Proposition 2,

the expression on the left-hand-side of Assumption MRS is given by the product of one-step-

ahead predictive distributions. In this way, this trade-off among plans is decomposed into

the product of a series of one-step-ahead tradeoffs, each of which is determined (through

the  (+1)     (+1+) respectively) by preferences over second order acts at

different nodes. This stringing together of one-step-ahead trade-offs reflects the dynamic

consistency imposed on the model. Assumption MRS says that the same expression is given

by  (+1     +), the -step-ahead predictive distribution at 
, which is determined

(through ) by preferences over second order acts at 
 alone. The consistency between

this sequence of one-step-ahead distributions and the single -step-ahead distribution can

be achieved only when the predictive distributions are related by Bayes’ rule.

Bayesian updating of the predictive distributions is easily seen to be implied by the 
being derived from  by Bayes’ rule, however the converse is not always true. We now

provide a condition under which the two are equivalent. This condition requires a certain

diversity among the distributions . We subsequently show that this condition is commonly

satisfied.

Definition 8 The full rank condition holds if, for each node , there exist −1 elementary
cylinder sets 

1      


−1 such that the × matrix

 ≡

⎡⎢⎢⎢⎣
1    1

1
¡


1 | 
¢

   
¡


1 | 
¢

...
...

...

1
¡


−1 | 
¢

   
¡


−1 | 
¢
⎤⎥⎥⎥⎦

is of full rank, where Θ = {1     }.
Corollary 1 Assume each < satisfies Assumptions 1-8 and that  is differentiable. If the

full rank condition holds, then the MRS condition (7) is equivalent to Bayesian updating of

the  (i.e.,  () =  () (
) 
R
Θ
 (

)  for all   ).

Observe that for each , since the event tree and observations continue forever, there is

an infinite number of ways to select − 1 elementary cylinder sets. The full rank condition
requires simply that one such selection yields a non-singular matrix. As singularity of a

matrix is a non-generic property,10 one should expect that the full rank condition would

generally be satisfied. In any case, our next result shows that when the  correspond to

homogeneous Markov processes, as is likely to be assumed in many applications, the full

rank condition is naturally and easily satisfied.

Proposition 4 Assume X = X for all  and suppose that each  makes the sequence

{}∈T a homogeneous Markov chain with transition function  : X × A → [0 1]. Then,
the full rank condition holds provided there is an initial outcome 0 ∈ X so that  (

0) (·) =
 (

0 ·) for all  and there is no redundancy in Θ with respect to the transition functions on

the diagonal.11

10That is, the set of × singular matrices has zero Lebesgue measure in R×.
11That is, if 0 6= 00, then there exist  ∈ X such that 0 ( ) 6= 00 ( ).
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It is worth noting that in the classic i.i.d. case, a special case of homogeneous Markov, the

no redundancy requirement simply says that each  corresponds to a different i.i.d. process

and the initial outcome requirement is irrelevant.

Assumption MRS is the key to justifying Bayesian updating of beliefs in our model.

Under mild conditions, we have shown the two are equivalent. Any rationale for Assumption

MRS is thus a rationale (in conjunction with the other assumptions underlying our model,

especially dynamic consistency) for applying Bayes’ rule to .

To conclude this section, we summarize the argument for Assumption MRS. Consider a

DM whose preferences < and <2 satisfy Assumptions 1-8 and whose  is revealed to be
affine. This DM is ambiguity neutral and evaluates plans according to discounted expected

utility. How does such a DM trade-off, at a deterministic plan given information at node ,

marginal utility obtainable at  with (discounted) marginal utility obtainable at a future

node further down the event tree? This trade-off is determined by nothing but the DM’s

belief (conditional on information at ) about the chances of reaching the future node. Given

expected utility preferences on plans, it is natural that this belief is the -average of the

 (· | ) probabilities of reaching the future node, where  is inferred from the DM’s <2
preferences. Next we recall from (ii) of Proposition 2, that for a DM with any differentiable

 this trade-off, given that it is measured at determinacy, is the same as that obtained under

ambiguity neutrality, so again it should be described by the -average of the  (· | ).
This is precisely Assumption MRS. So why would it make sense to update  by Bayes’ rule?

First, because the predictive distributions would then also be updated by Bayes’ rule, hence

ensuring that Assumption MRS held. Second, under the easily satisfied full rank condition,

this is the only updating rule that would be consistent with both Assumption MRS and our

dynamically consistent model.

5.2 Learning About 

Bayesian updating of  generates a theory of learning under ambiguity, enabling us to under-

stand the conditions under which the effect of ambiguity on preferences would (or would not)

eventually fade away with progressive accumulation of observations. We explore this issue

by giving conditions under which ambiguity may be “learned away” followed by an example

of a growth model where those conditions do not hold and ambiguity never completely fades

away, despite learning.

Proposition 5 Assume Bayesian updating of . Suppose 0 ∈ supp () is the true parame-
ter and suppose that each  makes the process {}∈T stationary and ergodic.12 If −1 is
Lipschitz, then

lim
→∞

¯̄̄̄
 ()− 

¡

¡

¢¢− 

Z
X+1

(+1) () 0
¡
+1; 


¢¯̄̄̄
= 0 0 −  (8)

for all  ∈ F, and the convergence is uniform over F.
12The terms “stationary” and “ergodic” here follow their standard usage in the probability and statistics

literature; see e.g. Durrett (1991), p. 291.
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In words, as observations build up, the approximate recursive representation

 () ≈ 
¡

¡

¢¢
+ 

Z
X+1

(+1) () 0
¡
+1; 


¢

(9)

of the function  () is more and more accurate, provided the process is ergodic and sta-
tionary. This is a large class of processes which includes, for instance, i.i.d., exchangeable

and ARCH(1) models (see Lijoi, Prunster, and Walker (2007)). In particular, in our setting

all stationary Markov processes are in this class.

In Section 2.2 we observed that a plan  can be viewed as a collection {}∈T ∪{0}, where
each  :  → C is a  (1 )-measurable function. From this standpoint, (9) means

that the value function  () looks more and more similar toZ


X
≥

− ( ()) 0
¡
 | ¢ 

Summing up, the DM is more and more choosing as if he knew the true parameter.

It is important to note that this result depends in a strong way on our assumption that the

parameter space Θ is finite. In more general environments, such convergence of preference

to preference under knowledge of the true parameter need not occur. A simple example of

this is given below.

Example 3 Consider a Markov switching model for the growth process for an economy

(similar to e.g., Hamilton (1989)). Let  denote the GDP of the economy at time . The

growth of the economy is determined by the equation  = −1 where  is the gross

growth rate of GDP between −1 and . This growth rate is stochastic and has a distribution
determined by a Markov binary state variable .  = 1 corresponds to a relatively favorable
growth rate distribution (a “boom”) and  = 0 corresponds to a relatively unfavorable
growth rate distribution (a “bust”).

Given the value of , the growth rate of the economy is determined by

 |  ∼ ( 
2
) if  = 0 (10)

where ( 
2
) denotes a lognormal distribution with parameters ( 

2
).

Finally, the state process follows a Markov chain with initial state 1 and transition

matrix

P=

∙
0 1− 0
1− 1 1

¸
where 0 = (+1 = 0| = 0) and 1 = (+1 = 1| = 1). We assume, for simplicity,
that  0 

2
0 1 and 21 are known to the DM.

In the language of our model, let a parameter  = {}∞=1 ∈ Θ = {0 1}∞. Each period
what is observed is GDP, . Thus, the observation space is  = + for each time . Note

that both the parameter space and the observation space in this example are infinite, in

contrast to our assumption above that both of these spaces are finite. The infinite parameter
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space is crucial to the learning behavior in the example, but the observation space could just

as well be finite (with the growth rate process appropriately discretized) and the message

of the example would not change. Given ,  (+1 | ) =  (+1 |  −1     0).
Given our assumptions, this can be computed as follows:  (+1 |  −1     0) =

 (+1 | ) = 
³
+1


;+1  

2
+1

´
where  is the lognormal density and +1 = +1 is

the (+ 1)st ordinate of .
Suppose that the DM perceives ambiguity about the process generating the growth rate.

This must be reflected in the initial beliefs, 0 , over Θ. On Θ, consider the product -
algebra Λ = ⊗∈T 2{01} generated by all one-dimensional cylinder sets  ×

Q
6=∈T {0 1},

where  ∈ 2{01}. Suppose 0 on Λ is as follows: for all  ∈  = {1 2   },Ã
0

Ã
{0} ×

Y
∈T  6=

{0 1}
!
 0

Ã
{1} ×

Y
∈T  6=

{0 1}
!!

= ( 1− ) −1

where  ∈ [0 1] is a belief that the initial 1 = 0 and  is the transition matrix given earlier.
Because  (+1 | ) =  (+1 |  −1     0) = 

³
+1


;+1 

2
+1

´
depends on 

only through +1, the relevant conditionals for  will beÃ


Ã
{0} ×

Y
∈T  6=+1

{0 1}
!
 

Ã
{1} ×

Y
∈T  6=+1

{0 1}
!!

=

Ã
0

Ã
{0} ×

Y
∈T  6=+1

{0 1} |  −1     0

!
 0

Ã
{1} ×

Y
∈T  6=+1

{0 1} |  −1     0

!!
≡ ¡

+1
¡

¢
 1− +1

¡

¢¢

The expression for the above may be found recursively by applying Bayes rule. Specifi-

cally,

1
¡
0
¢
= 

1
¡
1
¢
=


³
1
0
;0 

2
0

´

³
1
0
;0 

2
0

´
+ (1− )

³
1
0
;1 

2
1

´
and, for  = 1 2    

+1
¡

¢
= 

¡

¢
0 +

¡
1− 

¡

¢¢
(1− 1) 

+1
¡
+1

¢
=

+1 (
) 
³
+1


;0 

2
0

´
+1 () 

³
+1


;0 

2
0

´
+ (1− +1 ())

³
+1


;1 

2
1

´ .
So, ¡

+1
¡

¢
 1− +1

¡

¢¢
=
¡

¡

¢
 1− 

¡

¢¢

 .
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The important feature is that, as long as 0 and 1 are strictly between 0 and 1, beliefs
about the relevant part of  never approach degeneracy. This implies that ambiguity remains

relevant to preferences even in the limit, in contrast to the result in Proposition 5. What

drives the example is the DM views the environment as one in which some new and relevant

ambiguity arrives each period. From this perspective, the important feature of the example is

that the DMperceives ambiguity about +1 no matter howmany periods have been observed.

One special case of our example occurs when 0 = 1 − 1. In this case past observations

are completely uninformative about state +1 and thus +1 and so no reduction in relevant

ambiguity occurs through learning.

Why is not an example like this one possible when the parameter space Θ is finite? The

intuition is that either knowledge of  becomes eventually irrelevant to payoffs or, to the

extent that it remains relevant, the DM will observe more and more data, and thus will

eventually be able to learn the relevant aspects of .

The above example showing how ambiguity may persist in our model when the parameter

space is rich complements findings on the persistence of ambiguity in earlier models (see e.g.,

Epstein and Schneider (2003a), Maccheroni and Marinacci (2005)).

6 Examples

We present an example adapted from one in the section on dynamic ambiguity in the excellent

survey paper by Backus, Routledge, and Zin (2004) along with an example looking at the

implications for asset prices.

6.1 Event Tree Example

This example serves to explicitly illustrate the mechanics of calculating with the model.

Moreover, the results of these calculations illustrate an important relationship between our

model and the recursive multiple priors model of Epstein and Schneider (2003b). As was the

case (see Klibanoff, Marinacci, and Mukerji (2005)) with the timeless versions of the smooth

ambiguity model and the multiple priors model, the recursive multiple priors form may be

viewed as a limiting case of recursive smooth ambiguity as ambiguity aversion is taken to

infinity.

The example (drawn from Backus, Routledge, and Zin (2004), p. 38, an elaboration on

an example from Seidenfeld and Wasserman (1993)) is based on the information structure

depicted in Figure 1 from Section 2.1.

There is an asset,  , that yields the following payoffs, at time  = 2, as a function of the
time 2 node realized in the tree:

 (1 1) = 1 + 

 (1 2) = 

 (2 1) = 1
 (2 2) = 0

, where  is a non-negative constant. Assume that  yields 0 at all

other time periods. The realizations of the random variables that determine the paths in

the tree are governed by a process with two parameters,  and . The parameter space is
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Θ = {( ) :  ∈ {−̄ ̄}  ∈ {−̄ ̄}} where ̄ ∈ [0 1) and ̄ ∈ [0 1] are constants. As a
function of the parameters, the path probabilities are given by:

()(1 1) =
(1 + )(1 + )

4


()(1 2) =
(1 + )(1− )

4


()(2 1) =
(1− )(1− )

4


()(2 2) =
(1− )(1 + )

4


It follows that

()(1) =
(1 + )

2


()(2) =
(1− )

2


()(1; 
1 = (1)) =

(1 + )

2


()(2; 
1 = (1)) =

(1− )

2


()(1; 
1 = (2)) =

(1− )

2


()(2; 
1 = (2)) =

(1 + )

2


For simplicity and ease of comparison with Backus, Routledge, and Zin (2004), assume

 is the identity and there is no discounting (i.e.,  = 1).13 Normalize  so that  (1) = 1
and  (0) = 0.
How is  evaluated? Given that the payoff is zero from time 3 onward, we can solve

backwards starting from time 2. (11)() = (1 + ) = 1+  (12)() =  (21)() = 1 and
(22)() = 0. Now we write the valuations at the time 1 nodes:

(1)() = −1
∙
(·|1=(1))

∙
(1 + )

2
(1 + ) +

(1− )

2


¸¸
= −1

∙
(·|1=1)

∙
(1 + )

2
+ 

¸¸
and

(2)() = −1
∙
(·|1=(2))

∙
(1− )

2
(1) +

(1 + )

2
(0)

¸¸
= −1

∙
(·|1=(2))

∙
(1− )

2

¸¸
13This does not strictly satisfy our assumptions, as Assumption 5 requires  ∈ (0 1)
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 Finally,

0() = −1
∙


∙
(1 + )

2
(1)() +

(1− )

2
(2)()

¸¸
.

Now take  to be uniform across the four parameter configurations and assume Bayesian

updating. For tractability let

 () =

½
1−−
1−−    0
   = 0

We set the same values for ̄ ̄ and  as Backus, Routledge, and Zin (2004): ̄ = ̄ = 1
2

and  = 1. This yields 0() =
1

ln

µ
4

3
2

(1+

2 )

2

¶
= ln 4


+ 3

2
− 2


ln
¡
1 + 


2

¢
when   0

(ambiguity aversion) and 0() = 1 when ambiguity neutrality ( = 0) prevails. Backus,
Routledge, and Zin (2004) calculate the valuation using the recursive multiple priors model

of Epstein and Schneider (2003b) to be 1
2
. This is the valuation obtained in our model in

the infinitely ambiguity averse limit. Specifically, lim→∞ 0() =
1
2
. For more moderate

ambiguity aversion, 0() will lie between
1
2
and 1 as displayed in Figure 2.
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Α
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Figure 2: Plot of 0() as the coefficient of ambiguity aversion, , increases from 0 to 20.

6.2 Asset pricing example

The point of this example is to illustrate the empirical scope of the recursive smooth am-

biguity model in an asset pricing context, such as the case of the equity premium puzzle,

discussed in the introductory section. The example draws heavily on the recent work of Ju
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and Miao (2007) who apply our model. The setting is a Lucas-type intertemporal general

equilibrium model of an exchange economy with a single representative agent. The agent

trades a stock with uncertain returns with unit supply (a Lucas tree) and a risk-free bond

with zero supply. The stock pays dividends  in period  = 0 1 2 . The dividend process
is

ln

µ
+1



¶
= ̄ + +1 (11)

where  is i.i.d. standard normal. However, the agent is uncertain about  ≡ (̄ )  and
has a prior 0 over Θ the set of possible ’s. The agent has recursive smooth ambiguity
preferences over contingent consumption streams, , represented as:

() = () + −1
∙Z

Θ



µZ
X+1

(+1) () (+1|)
¶
(|)

¸


where  =  and  is a dividend process as described in (11) and (|) is the Bayesian
update of 0 given observations of dividends up to time . Suppose  () = ln  and
 () = − exp(−)
Let +1 and +1 denote the gross returns on the stock and bond, respectively, be-

tween periods  and  + 1. Let  denote the period  financial wealth and let  be the

proportion of wealth after consumption invested in the uncertain asset. The agent’s budget

constraint is given by

+1 = ( − )+1 (12)

where the market return +1 is given by

+1 = +1 + (1− )+1

One may formulate the agent’s problem using a standard dynamic programming argu-

ment, showing that it satisfies the following Bellman equation :

( ) =  ln() +  ln[(exp(−((+1 +1))))]

subject to the budget constraint (12).

Denoting the bond price as 

 and the stock price , the FOC (for the case where

 () = log  and  () = − exp(−)) is:


[ (

0(+1))] = 

 

0()


[ ((+1 ++1)

0(+1))] = 
0()

where  is a measure absolutely continuous w.r.t.  having Radon-Nikodym derivative


() = () ≡ 0( ((+1+1)))

[0( ((+1+1)))]
. Using these conditions, it may be shown that the

pricing kernel, +1, is given by,

+1 = 

µ


+1

¶
 () = 

µ


+1

¶
exp(−((+1 +1)))



£
exp(−((+1 +1)))

¤
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and the risk free rate by,

1

+1
= 

[+1] = 

∙


µ


+1
)

¶¸


 is key to understanding why ambiguity aversion may raise the predicted equity pre-

mium; it effectively changes the posterior from  to   with the latter overweighting ’s

associated with lower continuation values. It is as if there were more weight on dividend

processes with high variances and low means. This may lower the risk free rate and increase

the equity premium. The extent of overweighting increases as the coefficient of ambiguity

aversion, , rises. We may assess a plausible range for  by, for instance, looking at the

experimental data on ambiguity premiums in Ellsberg-like experiments. Camerer (1999)

suggests an ambiguity premium on the order of 10-20% of the expected value of a bet. For

the log-exponential specification with a uniform , for example, a 10% premium corresponds

to an  ≈ 61.
How much effect ambiguity aversion has depends, of course, on the ambiguity reflected

in . One approach to identifying this is what Hansen (2007) calls “statistical ambiguity.”

Starting with a uniform prior and updating it on the basis of the data () would yield

posteriors that are largely data driven. There is more ambiguity the “fatter” the poste-

rior, i.e., the less informative the data is about the statistical process driving the future

outcomes. While  in this example must eventually be statistically learned, a specification

which includes “hidden states” will allow ambiguity to persist, as explored in Hansen (2007)

and suggested in our Example 3. Ju and Miao (2007) pursue this suggestion and show that

ambiguity aversion with a power-power specification for  and  may explain a significant

part of the equity premium along with related empirical phenomena.

Thus the recursive smooth ambiguity model provides a framework which one may use

to assess whether ambiguity may plausibly and significantly affect the equity premium, and

more generally, asset market equilibria.

7 Related literature

A number of recent papers have proposed dynamic preference models allowing for ambigu-

ity. The most obvious difference between our model and all others is that only ours is a

recursive extension of the smooth ambiguity model of KMM. The only other work we know

of proposing any dynamic extension of the smooth ambiguity model is the recent model of

updating smooth ambiguity preferences developed in Hanany and Klibanoff (2007a). Their

approach is fundamentally different, in that the KMM model is taken to determine prefer-

ences over plans and conditional preferences are found by updating beliefs, . This method

of extension is shown to be incompatible with the dynamic consistency assumed in this pa-

per, thus leading to a non-recursive model. Imposing a dynamic consistency property that

weakens consequentialism, they derive an update rule. Since their dynamic consistency is

enough so that plans chosen according to the KMM model are carried out, the Hanany and

Klibanoff (2007a) model allows for different behavior than our recursive approach, including,

for example, plausible behavior in some natural dynamic extensions of the Ellsberg Paradox.

On the other hand, their update rule is non-consequentialist in that it generally requires

30



updating to depend on past choices, and the lack of recursion may make solving problems

more difficult.

Many of the existing dynamic ambiguity models extend the MEU and/or CEU models.

We briefly discuss some of these models here. We focus on those models that display at least

some form of dynamic consistency. The tension between non-expected utility and dynamic

consistency (e.g., Machina (1989), Karni and Schmeidler (1991), and Ghirardato (2002))

and, more specifically, non-probabilistically sophisticated behavior (such as sensitivity to

ambiguity) and dynamic consistency (e.g., Epstein and LeBreton (1993)) is well known. For

example, the best known proposals for extending MEU or CEU by applying updating pro-

cedures (e.g., Dempster-Shafer updating or Full Bayesian updating or Maximum Likelihood

updating) to the sets of measures or non-additive measures appearing in those theories all

fail to generally satisfy dynamic consistency. As mentioned in the Introduction, Epstein

and Schneider (2003b), Wang (2003), Hayashi (2005) have provided preference foundations

for extending the MEU model to an intertemporal framework while preserving the dynamic

consistency needed for recursion. Epstein and Schneider (2003b) characterize the recursive

subclass of the MEUmodel. It builds on the insight of Sarin andWakker (1998) that limiting

attention to particular filtrations or decision trees may relax the force of dynamic consistency

enough to allow the consistent extension of some MEU preferences. The Wang (2003) model

satisfies a stronger dynamic consistency condition and maintains recursivity while allowing

for attitudes towards the timing of the resolution of uncertainty (a la Kreps and Porteus

(1978), Epstein and Zin (1989)) and departing from the MEU class of preferences. Hayashi

(2005) provides a generalization of Epstein and Schneider (2003b) also in the direction of

allowing for attitudes towards the timing of the resolution of uncertainty, also maintaining

recursivity and, except where it coincides with Epstein and Schneider (2003b), leaving the

MEU class. The essential lack of reduction to MEU over plans in these two papers is analo-

gous to the lack of reduction of our model to the KMM smooth ambiguity model over plans.

In all three cases it is this lack of reduction that is key to accommodating the dynamic con-

sistency satisfied by recursive models. Hansen and Sargent (2001) describe a robust control

approach to model uncertainty. One formulation of their model may be viewed as a dynamic

extension of a subset of MEU. As described by Epstein and Schneider (2003b), this exten-

sion satisfies a version of dynamic consistency that requires consistency only relative to a

given optimal plan and updates sets of measures in a way that is non-consequentialist. The

preferences in Hanany and Klibanoff (2007b) are not recursive in general, but provide a way

of extending the entire class of MEU preferences by requiring dynamic consistency but, as

mentioned above when discussing Hanany and Klibanoff (2007a), allowing updating of the

set of measures to depend on non-consequentialist aspects of the choice problem. They ex-

tend Epstein and Schneider’s recursive multiple priors model in the sense that for the subset

of MEU preferences defined by that model, both approaches are equivalent to Full Bayesian

updating (i.e., applying Bayes’ rule to each measure in the set of measures). All of these

approaches, however, share the limitation inherent to the MEU model of failing to separate

ambiguity from ambiguity attitude without restricting the range of ambiguity attitudes. A

similar limitation also applies to some recent extensions of CEU proposed by Eichberger,

Grant, and Kelsey (2005) and Nishimura and Ozaki (2003). Recently, Maccheroni, Mari-

nacci, and Rustichini (2006a) developed a class of preferences called variational preferences,

which include both MEU preferences and a version of Hansen and Sargent (2001) preferences
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known as multiplier preferences as special cases. In Maccheroni, Marinacci, and Rustichini

(2006b), they extend variational preferences to an intertemporal setting and also charac-

terize when this extension is dynamically consistent, thus generalizing the characterization

of Epstein and Schneider (2003b) for MEU. However, as with MEU and CEU, variational

preferences are also subject to the limitation mentioned above concerning the separation of

ambiguity from ambiguity attitude.

One view of the model in the present paper is as representing the preferences of a DM

concerned with robustness to model/parameter uncertainty. As we discussed in Section 5, the

model allows for learning through updating beliefs concerning this uncertainty. The combi-

nation of robustness concerns with learning has been mentioned as an important challenge for

the literature on model uncertainty by Hansen and Sargent (2006) who also investigate these

issues. As mentioned in the application section, Ju and Miao (2007) use log-exponential and

power-power specifications of our model to examine asset prices under ambiguity or concern

for robustness and learning, while Hansen (2007) looks at these concerns using a continuous-

time version of a log-exponential specification.

Siniscalchi (2004) takes a different approach to dynamic behavior than the rest of the

literature we have discussed. Rather than focusing on dynamic consistency of preferences

over acts, following the literature starting from Strotz (1955-6) he accepts the fact that

preferences over acts may be dynamically inconsistent and investigates behavior that is

sophisticated in the sense that when the DM is considering a decision tree that involves

future choices, it is assumed that the DM can correctly anticipate those choices (which will

be governed by conditional preferences). Then the unconditional preferences are applied in

comparing the acts that result from replacing the future choice nodes with the future choices.

His framework is not tied to a specific model. In principle, this could form the basis of an

alternative strategy for extending smooth ambiguity preferences to dynamic settings.

8 Conclusion

We have proposed, axiomatized and investigated a model of recursive preferences over in-

tertemporal plans, extending the smooth ambiguity model developed in Klibanoff, Marinacci,

and Mukerji (2005) to a setting involving dynamic decision making. The model has the de-

sirable properties of allowing sensitivity to ambiguity, of separating ambiguity attitude from

ambiguity perception, of dynamic consistency and consequentialism, of a well-founded theory

of updating beliefs via Bayes’ rule, thereby generating a theory of learning under ambiguity

and, finally, of nesting the standard discounted expected utility model as a special case. One

notable benefit of the separation provided is the ability to do comparative statics in am-

biguity attitude for dynamic problems while holding information and ambiguity perception

unchanged. A full range of ambiguity attitudes, including ambiguity neutrality, is available

for any given beliefs.

9 Appendix A: Proofs

Proof of Lemma 1. Let  0 ∈ T ∪ {0}. Set 01 = 001 = 1 ≡ 0, 01 = 001 = 1 ≡ 00,
02 = 002 = 2 = 02 = 002 = 2 ≡ . Given  ∈ C and  ∈ , let  ∈ F be the deterministic
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continuation plan such that  () =  for all  ≥ . Then, Assumption 6 means that, for all

 ∈ [0 1] and all  0 00 ∈ C, we have:

{0 ; 00 1− } ∼  ⇐⇒
©
0
0  ; 

00
0  1− 

ª ∼0 0  (13)

Then, Assumption 5 implies that, for all  ∈ [0 1] and all  0 00 ∈ C,
 (

0)
1− 

+
 (

00)
1− 

(1− ) =
 ()

1− 
(14)

⇐⇒ 0 (
0)

1− 0
+

0 (
00)

1− 0
(1− ) =

0 ()

1− 0
,

and so, for all  ∈ [0 1] and all  0 00 ∈ C,

 (
0) +  (

00) (1− ) =  () (15)

⇐⇒ 0 (
0) + 0 (

00) (1− ) = 0 () .

Normalize  and 0 so that

 (
∗) = 0 (

∗) = 1 and  (
∗∗) = 0 (

∗∗) = 0 (16)

for some ∗ ∗∗ ∈ C. Taking  = 1, there exists a strictly increasing  such that

 () =  (0 ())  ∀ ∈ C. (17)

In particular,  (1) = 1 because 1 =  (
∗) =  (0 (

∗)) =  (1). By (15) and (17), for all
 ∈ [0 1] and all 0 00 ∈ C we have:

 (0 (
0)) +  (0 (

00)) (1− ) =  (0 (
0) + 0 (

00) (1− )) 

Hence,  (1)  =  () for all  ∈ [0 1], and so (17) implies  () = 0 () for all  ∈ C.
Set  = 0 ≡ . When  = 1 and 1 = 2 ≡ , Assumption 6 means that, for all

 0 
00
 ∈ C with  = 1 2,

{(01 001 )  1} < {(02 002 )  1}⇐⇒ {(01 001 )0  1} <0 {(02 002 )0  1} 

By Assumption 5,

 (01) +  (
00
1) ≥  (02) +  (

00
2) (18)

⇐⇒  (01) + 0 (
00
1) ≥  (02) + 0 (

00
2) .

Since C is an interval of R and  is continuous, the normalization (16) we chose is such that
[0 1] ⊆  (C). Hence, we can choose 01 001 02 002 ∈ C so that  (002) ≥  (001), and

 =
 (01)−  (02)
 (002)−  (001)



Thus, (18) implies  ≥ 0 . A similar argument proves the converse inequality, and so

 = 0 . ¥
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Proof of Lemma 2. Consider the ordering <∗ restricted to F. W.l.o.g., set C = [ ].
By Assumption 2,  <∗ | <∗  Suppose  Â∗ | Â∗ , otherwise the result is

trivially true. Set

∗ = sup
©
 ∈ [0 1] : | <∗  + (1− )

ª


Suppose ∗ = 0, i.e.,  + (1− ) Â∗ | for all  ∈ (0 1]. As  Â∗ | Â∗ ,
by Assumption 3, there is  ∈ (0 1) such that | Â∗  + (1− ), a contradiction.
Next, suppose ∗ = 1. This means that | <∗  + (1− ) for all  ∈ [0 1). As
 Â∗ | Â∗ , by Assumption 3, there is  ∈ (0 1) such that  + (1− ) Â∗ | , a
contradiction.

Finally, suppose ∗ ∈ (0 1). If  ∈ (∗ 1], by the definition of ∗ we have  +
(1− ) Â∗ |. If  ∈ [0 ∗), Assumption 2 implies ∗ + (1− ∗) Â∗  +
(1− ). Hence, | <∗ +(1− ). For, suppose per contra that +(1− ) Â∗
|. Then, Assumption 2 implies +(1− ) Â∗ | for all  ∈ [ 1], which contradicts
the definition of ∗.
It remains to prove that ∗ + (1− ∗) ∼∗ |. Suppose | Â∗ ∗ + (1− ∗).

By Assumption 3 and consequentialism, there is  ∈ (0 1) such that
| Â∗  (∗ + (1− ∗)) + (1− )

That is, | Â∗ (∗ + (1− )) + (1− ∗). This implies | Â∗  +(1− ) for

all  ∈ [0 ∗ + (1− )], which contradicts the definition of ∗ since ∗ + (1− )  ∗.
Suppose ∗ + (1− ∗) Â∗ |. By Assumptions 3 and consequentialism, there is

 ∈ (0 1) such that
 (∗ + (1− ∗)) + (1− ) Â∗ |

That is, ∗ + ( (1− ∗) + (1− )) Â∗ |. This implies  + (1− ) Â∗ | for
all  ∈ [∗ 1], which contradicts the definition of ∗ since ∗  ∗. ¥

Proof of Proposition 1. We begin by showing that the function  is strictly increasing.

Let 1 2 ∈ F be two constant plans, with 1 () = 1 and 2 () = 2 ∀ ≥ 0. Then, by
Assumptions 2, 5, Lemma 1, and by the definition of <∗, we have:

1  2 ⇒ 1 Â 2 ⇒ 1| Â∗ 2|
⇒ 

¡
1|

¢
 

¡
2|

¢
⇒  (1)

1− 


 (2)

1− 
⇒  (1)   (2) 

Next consider  ∈ F∗ and the associated  (). By definition,¡

¡

¢
  ()   ()    ()  

¢ ∼∗ © (+1)   ¡+1; ¢ª+1∈X+1
By Assumption 5,

((
)) +

( ()))

1− 

=
X

+1∈X+1

¡
+1; 


¢ ∙

((
)) +

((
 +1))

1− 

¸
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Hence,

( ()) =
X

+1∈X+1

¡
+1; 


¢
((

 +1)) (19)

By Assumption 8,  <∗  ⇐⇒ 2 <2 2. By Assumption 7, 2 <2 2 ⇔
R
Θ

¡
 ()

¢
 ≥R

Θ

¡
 ()

¢
. Hence,

 <∗  ⇐⇒
Z
Θ


¡
 ()

¢
 ≥

Z
Θ


¡
 ()

¢
 (20)

Since  and  are strictly increasing, 
¡
 ()

¢
= 

µ




()


1−

¶
for some strictly increasing

. In particular,  =  ◦ −1 ◦ (1− ). Since  and  are continuous, so is . Substituting

for 
¡
 ()

¢
in (20) and using (19), we get

 <∗ 

⇐⇒
Z



Ã

¡
 ()

¢
1− 

!
 ≥

Z


Ã

¡
 ()

¢
1− 

!


⇐⇒
Z



µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶



≥
Z



µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶



which proves the representation claim in the Proposition. The uniqueness claims follow

straightforwardly from the uniqueness in Assumptions 5 and 7. ¥

Proof of Theorem 1. We begin by showing that the assumptions imply the represen-

tations. Using Lemma 1, Assumption 5 and Assumption 6 imply the representation .

Assumption 7 and setting  =  ◦ −1 ◦ (1− ) delivers the representation  2
 over second

order acts. The argument for the representation  of preferences over plans is more in-

volved. By Definition 5, |+1 ∼∗(+1) (+1) for any +1 ∈ X+1 and any plan  ∈ F .
Define a continuation plan ̃ ∈ F as follows:

̃
³

0
´
=

½
() if 

0
= 

(+1)(
0) if 

0 > ( +1)

By Assumption 4, given any   ∈ F ,
|+1 <∗(+1) |+1 for all +1 =⇒ | <∗ | (21)

whenever () = (). By (21), | ∼∗ ̃. Moreover, the continuation plan ̃ belongs to
F∗ .
The function  : F → R defined by  () =  () represents< on plans. Moreover,

by Assumptions 5 and 6,

 () =  () =
X
≥

− () =
 ()

1− 
. (22)
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Assumption 2 ensures that  is monotonic in the sense mentioned in the text before the

statement of Theorem 1.

Suppose   ∈ F are such that () = () By definition,

(+1)(
0) = (+1)

and

(+1)(
0) = (+1) for all 

0 ≥ + 1

By (22),

(+1) () (1− ) = ((+1))

and

(+1) () (1− ) = ((+1))

for each ( +1). By Proposition 1,

 < 

⇐⇒ | <∗ | ⇐⇒ ̃ <∗ ̃

⇐⇒
Z
Θ



µZ
X+1

((+1))

1− 


¡
+1; 


¢¶



≥
Z
Θ



µZ
X+1

((+1))

1− 


¡
+1; 


¢¶



⇐⇒
Z
Θ



µZ
X+1

(1− )(+1) ()

1− 


¡
+1; 


¢¶



≥
Z
Θ



µZ
X+1

(1− )(+1) ()

1− 


¡
+1; 


¢¶



⇐⇒ −1
∙Z

Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶



¸
≥ −1

∙Z
Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶



¸


All this implies that  ( ()) + −1
hR

Θ

³R

X+1 (+1) ()  (+1; 
)
´


i
repre-

sents < over plans sharing the same payoff at 


To extend the representation to all plans, define ∗ ∈ F as follows:14

∗
³

0
´
=

⎧⎪⎨⎪⎩

¡

0¢

if 
0 ≯ 

−1 ◦ (1− )−1
ÃR
Θ



Ã R
X+1

(+1) ()  (·; )
!


!
if 

0 > 

and 0 ≥ + 1

Note that ∗ shares the same payoff with  at  and that the outer inverse in the bottom

term exists because  is defined over the range of 
1− . Now we show that  ∼ 

∗
. Observe

14Note ∗ is a plan, not a continuation plan; to this extent there is here some abuse of notation.
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that, Z
Θ



µZ
X+1

(+1) (
∗
) 

¡
+1; 


¢¶



=
R
Θ



⎛⎜⎜⎜⎜⎝
Z
X+1



Ã
−1 ◦ (1− )−1

ÃR
Θ



Ã R
X+1

(+1) ()  (+1; 
)

!


!!
1− 


¡
+1; 


¢
⎞⎟⎟⎟⎟⎠ 

=

Z
Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶

.

Therefore,


¡
∗
¡

¢¢
+ −1

∙Z
Θ



µZ
X+1

(+1) (
∗
) 

¡
+1; 


¢¶



¸
= 

¡

¡

¢¢
+ −1

∙Z
Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶



¸
.

So, by what we proved before,  ∼ 
∗
 . Note that any 

∗
 has a deterministic continuation

plan ∗| at 
. Hence, by Assumption 5,

 () =  (
∗
) = 

¡
∗|

¢
= 

¡

¡

¢¢
+



1− 
 ◦ −1 ◦ (1− )−1

µZ
Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶

)

¶
= 

¡

¡

¢¢
+ −1

µZ
Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶



¶


as desired.

Now we show that the representations imply the assumptions. Assumptions 1 and 3

follow from the real-valued nature of the representations . Assumption 2 follows from

the stated monotonicity of the . Assumption 4 follows from the recursivity of . That

for each  ∈ D, there exists a plan  ∈ F with | =  such that  ∼ { 1}
follows from observing that  collapses to discounted expected utility as in  for plans

deterministic from  onward (that this is the unique solution for  in such a case follows

from Proposition 3). The remainder of Assumptions 5 and 6 may be verified from the

representation  . Substituting  = 
³


1−

´
in the representation  2

 yields Assumption

7. To verify Assumption 8, observe that for   ∈ F∗ and associated 2 2 ∈ F, if  ()
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=  (
),

2 <2 2

⇐⇒
Z
Θ



µ
( ())

1− 

¶


≥
Z
Θ



µ
( ())

1− 

¶


⇐⇒
Z



µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶



≥
Z



µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶



⇐⇒ 
¡
(

)
¢
+ −1

µZ


µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶



¶
≥ 

¡
(

)
¢
+ −1

µZ


µZ
X+1

((
 +1))

1− 


¡
+1; 


¢¶



¶
⇐⇒  () ≥  () for   with | =  and | = .

¥
The next lemma is a standard result (see e.g., page 401 of Durrett (1991).)

Lemma 3 Suppose 1 2 : Σ → [0 1] are countably additive probabilities. If 1 () =
2 ()  0 for all elementary cylinder sets , then 1 = 2.

Proof of Proposition 2. Define  on elementary cylinder sets by (5). Lemma 3 says  is

the unique countably additive extension to Σ. We next show that () holds by calculating
 ()[(((+1+)))]

()[((
))]

¯̄̄̄
=

.

By Theorem 1,  () =  ( ()) + −1
hR

Θ

³R

X+1 (+1) ()  (·; )
´


i
. Differ-

entiating  () with respect to ((
)) yields  ()  [((

))] = 1.
Straightforward but tedious calculations, omitted for brevity, may be used to show that,

for general , when evaluated at any deterministic  ,

 () 
£
((

¡
 ∗+1     

∗
+

¢
))
¤

 ()  [(())]

¯̄̄̄
¯
=

= 
¡
∗+1

¢
∗+1

¡
∗+2

¢ ∗    ∗ ∗+1
∗
+−1

¡
∗+

¢
(24)

= 

¡
 ∗+1     

∗
+

¢
 ()

= 
¡
∗+1     

∗
+

¢
.

This proves (). To show (), suppose  is affine, so that  () ≡ + for some   0  ∈ R.
Substituting into (3) yields,

 () = 
¡

¡

¢¢
+ 

µ
1



∙


Z
Θ

µZ
X+1

(+1) () 
¡
+1; 


¢¶

 () + 

¸
− 



¶
= 

¡

¡

¢¢
+ 

Z
X+1

(+1) ()  (+1) 
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By Theorem 3, such a recursive functional has a unique and monotonic solution. We now

check that (4) is that solution. Substituting for (+1) () yields

 () = 
¡

¡

¢¢
+ 

Z
X+1

ÃZ


" ∞X
=+1

−(+1) ( ())

#
(+1) (

 )

!
 (+1)

= 
¡

¡

¢¢
+ 

Z


" ∞X
=+1

−(+1) ( ( ))

#


µZ
X+1

(+1) (
)  (+1)

¶

= 
¡

¡

¢¢
+ 

Z


" ∞X
=+1

−(+1) ( ( ))

#


µZ
X+1

 ( ∩ ( +1))
 ( +1)

 (+1)

¶

= 
¡

¡

¢¢
+ 

Z


" ∞X
=+1

−(+1) ( ( ))

#


µ
 ( ∩ )
 ()

¶

=

Z


" ∞X
=

− ( ())

#
 (

 ) .

This proves () and completes the proof.. ¥

Proof of Theorem 4. Assume the predictive distributions are related by Bayes’ rule. From

Proposition 2,

 ()  [(((
 +1     +)))]

 ()  [(())]

¯̄̄̄
=

= 
¡©
 +1     +

ª¢
=  (+1) ∗    ∗ 1+−1 (+)

= 
0 (

 +1)

0 ()

0 (
 +1 +2)

0 ( +1)
  

0 (
 +1     +)

0 ( +1     +−1)

= 
0 (

 +1     +)

0 ()

=  (+1     +) .

This proves the direction of the proposition going from Bayesian updating of the predictive

distributions to the MRS condition.

Now, for the other direction, assume the MRS condition (7) holds. Combining the MRS

condition and Proposition 2 yields

 (+1     +) = 
¡©
 +1     +

ª¢
for each  ≥ 1   +1     + where  () ≡

(∩)
()

 ∀ ∈ S∀ ∈ Σ. Therefore,
by Lemma 3,

 () =  ()  ∀ ∈ S∀ ∈ Σ.

Observe that

 () =  () =
 ( ∩ )
 ()

=
0 ( ∩ )
0 ()

.
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This proves Bayes’ rule holds for the predictive distributions.. ¥

Proof of Corollary 1. Assume the existence of the sets 

1      


−1 in the statement of
the full rank condition for each . From Theorem 4, the MRS condition (7) is equivalent to

Bayesian updating for predictive distributions. Therefore, for each ,



⎡⎢⎢⎢⎣
 (1)
 (2)
...

 ()

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1


¡


1

¢
...


¡


−1
¢
⎤⎥⎥⎥⎦ . (25)

Observe that Equation (25) has a unique solution  since 
 is of full rank. Calculation

shows that  () =
()()

0(
)

=
()()

Θ ()
for  = 1     is a solution, and thus the

unique solution. This proves the MRS condition implies Bayesian updating of the .

For the other direction, assume  () =
()()

Θ ()
for  = 1    . For any  ∈ Σ,

 () =

Z
Θ


¡
 | ¢  = X

=1

 ( ∩ )
 (

)
 ()

=
X
=1

 ( ∩ )
 (

)

 () (
)P

=1  (
) ()

=

P
=1  ( ∩ ) ()P

=1  (
) ()

=

R
Θ
 ( ∩ ) R
Θ
 () 

=
0 ( ∩ )
0 ()

.

Thus, the predictive distributions are updated by Bayes’ rule on  ∈ Σ, which, by Theorem
4, implies the MRS condition (7).. ¥

Proof of Proposition 4. Fix any . Since X and Θ are finite, let |X | =  and |Θ| =  and

index their elements as 1     and 1     , respectively with 1 =  (if 
 = 0 adopt

the convention that  = 0). We use  to denote  ( ). Our maintained assumption
that each elementary cylinder set is given positive weight by each  implies 0    1
for all   .

Claim. Given any , there is an elementary cylinder { +1     +}, with  = +1 =
+ , such that

0
¡©
 +1     +

ª | ¢ 6= 00
¡©
 +1     +

ª | ¢  ∀0 00 ∈ Θ (26)

Proof of the Claim. Observe that any {+1     +} can be identified with a unique
×  matrix  = () of non-negative integers, where  is the number of times the pair

( ) occurs in the sequence {+1     +}. In particular, for each  ∈ {1   },


¡©
 +1     +

ª | ¢ =  ( +1)
Y
=1

Y
=1



 .
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Though it is not true that every suchmatrix has an associated sequence {+1     +},
the following restrictions are sufficient to ensure it:  is symmetric, written ∈  ( ),
and its all entries are strictly positive (i.e.,  ≥ 1). This follows from a well known property
of strongly connected directed multigraphs: there is a path traversing each edge exactly once

and starting and ending at the same vertex (known as an Eulerian circuit) if and only if each

vertex has the same number of outgoing edges as incoming edges (e.g., Theorem 1.4.24 in

West (2001)). To relate this to the matrix, think of the directed multigraph with  vertices,

corresponding to the  elements 1    , and with  edges going from vertex  to vertex

 for each  . Since  ≥ 1 this multigraph is strongly connected. Symmetry implies that
each vertex has the same number of outgoing edges as incoming edges. Given an Eulerian

circuit, one may start at any vertex and, by following the circuit, traverse every edge exactly

once and end at that same vertex. If we start from the vertex corresponding to (= 1), the
+1     + is simply an ordered list of the vertices visited along the path corresponding

to the Eulerian circuit. Observe that without loss of generality we can set  = +1 = + .

We now show that there exists { +1     +} with  = +1 = + such that, for

each 0 00 with 0 6= 00,

0 ( +1)
Y
=1

Y
=1



0 6= 00 ( +1)

Y
=1

Y
=1



00  (27)

Since 0    1, (27) is equivalent to

ln
¡
0 ( )

¢
+

X
=1

X
=1

 ln (0) 6= ln
¡
00 ( )

¢
+

X
=1

X
=1

 ln (00) .

Any  ∈  ( ) that does not satisfy (27) must have, for some 0 6= 00,

ln
¡
0 ( )

¢− ln ¡00 ( )¢+ X
=1

X
=1

 (ln (0)− ln (00)) = 0. (28)

Denote by Γ the, possibly empty, set of all  ∈  ( ) that satisfy (28). It is convex
and closed. Moreover, (28) can be written as,

∗∗ =
ln
¡
00 ( )

¢− ln ¡0 ( )¢
ln (∗∗0)− ln (∗∗00)

−

P
6=∗

P
=1

 (ln (0)− ln (00)) +
P
 6=∗

∗ (ln (∗0)− ln (∗00))

ln (∗∗0)− ln (∗∗00)
where ∗ is chosen so that ∗∗0 6= ∗∗00. No redundancy in Θ with respect to the transition
functions on the diagonal implies such an ∗ exists (notice that diagonal elements are not
restricted by the symmetry requirement). Therefore, Γ has dimension at most 2−1 (+ 1)−
1, where dim ( ( )) = 2−1 (+ 1). We conclude that Γ is a nowhere dense subset of

R
(+1)

2 .
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Since there are
¡

2

¢
distinct pairs 0 00, the set of all  ∈  ( ) that solve (28) for

at least one pair is the union of
¡

2

¢
nowhere dense subsets of R

(+1)
2 . Hence, it is still a

nowhere dense subset of R
(+1)

2 , and so there exists a symmetric  with strictly positive

rational entries such that (27) is satisfied for all distinct pairs 0 00. Multiplying this matrix
by the product of the denominators,  , and adding  − 1 to 11 yields an integer valued
 ∈  ( ) also satisfying (27) since both sides of (27) are taken to the power  . Any
cylinder { +1     +} with  = +1 = + associated with such a matrix is assigned

distinct  ({ +1     +} | ), as desired. ¤

Let { ̂+1     ̂+} be the elementary cylinder set that satisfies (26), with  = ̂+1 =
̂+ . Setting 



1 = { ̂+1     ̂+}, 

2 = { ̂+1     ̂+  ̂+1     ̂+}, and so on,
delivers  of the form ⎡⎢⎢⎢⎢⎢⎣

1    1
1    
21    2
...

...
...

−11    −1

⎤⎥⎥⎥⎥⎥⎦
where  =  ( )

Q
=1

Q
=1 


 ∈ (0 1). Given an -tuple {}=1 ⊆ R, supposeP−1

=0 

 = 0 for all  = 1 . If some of the  are not zero, then the equationP−1

=0 

 = 0 has degree at least 1 and at most  − 1, and so it has at most  − 1

solutions. But, {}=1 is a set of  distinct solutions of the this equation, a contradiction.

We conclude that all  must be zero. Hence, the transpose of 
 (and so  itself) has

full rank. ¥
The following Bayesian consistency result is a special case of that shown by Lijoi, Prun-

ster, and Walker (2007).

Lemma 4 Suppose that each  makes the process {}∈T stationary and ergodic. Given
any 0 ∈ supp ()  we have

lim
→∞

 ( | 1  ) = 0 ()  0 

for all  ∈ Θ

Proof of Proposition 5. By Lemma 4, 0 −  we have

lim
→∞

| ( | 1  )− 0 ()| = 0 ∀ ∈ Θ (29)

Let ∗ be the subset of , with 0 (
∗) = 1, for which (29) holds. Fix a path (1   ) ∈

∗. Now  will denote the time  node reached on the fixed path.

Since Θ is finite, given any   0 there is  ≥ 1 such that for all  ≥  we have:

max
∈Θ

| ( | 1  )− 0 ()| ≤ .

As −1 is Lipschitz, there is   0 such that¯̄
−1 ()− −1 ()

¯̄
≤  |− | ∀  ∈  (U) .
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Hence, for all  ≥  we have:¯̄̄̄
 ()−

∙

¡

¡

¢¢
+ 

Z
X+1

(+1) () 0
¡
+1; 


¢¸¯̄̄̄

= 

¯̄̄̄
¯−1

ÃX
∈Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶


¡
 | ¢!− Z

X+1
(+1) () 0

¡
+1; 


¢¯̄̄̄¯

≤ 

¯̄̄̄
¯X
∈Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶


¡
 | ¢− 

µZ
X+1

(+1) () 0
¡
+1; 


¢¶¯̄̄̄¯

= 

¯̄̄̄
¯X
∈Θ



µZ
X+1

(+1) () 
¡
+1; 


¢¶ ¡


¡
 | ¢− 0 ()

¢¯̄̄̄¯
≤ 

X
∈Θ

¯̄̄̄


µZ
X+1

(+1) () 
¡
+1; 


¢¶¯̄̄̄ ¯̄


¡
 | ¢− 0 ()

¯̄
≤ 

X
∈Θ

(max {| ( ())|  | ( ())|})  =  (max {| ( ())|  | ( ())|}) |Θ| .

As  was arbitrary, we conclude that for the fixed path (1   ) ∈ ∗ it holds

lim
→∞

¯̄̄̄
 ()− 

¡

¡

¢¢− 

Z
X+1

(+1) () 0
¡
+1; 


¢¯̄̄̄
= 0

Since the path (1   ) ∈ ∗ was arbitrary and 0 (
∗) = 1, in turn this implies the

result.

Observe that  is only a function of  and 0, and in particular is not a function of  .

Moreover, the bound on the difference¯̄̄̄
 ()−

∙

¡

¡

¢¢
+ 

Z
X+1

(+1) () 0
¡
+1; 


¢¸¯̄̄̄

derived above is also independent of  . Therefore this bound holds for all  simultaneously.

Thus, the difference converges to zero uniformly over  . Specifically, for any   0, there
exists  ≥ 1 such that for all  ≥ , and all plans  ,¯̄̄̄

 ()−
∙

¡

¡

¢¢
+ 

Z
X+1

(+1) () 0
¡
+1; 


¢¸¯̄̄̄

≤  (max {| ( ())|  | ( ())|}) |Θ| .
¥

10 Appendix B: Recursive Equations and Proofs for

Section 4.2

In this Appendix we will present some results on recursive equations that will imply the

results of Section 4.2, as shown at the end of this Appendix.
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10.1 Functions

Consider the set  (S) of all bounded real-valued functions on S, endowed with the supnorm
k·k∞. The pair ( (S)  k·k∞) is a Banach space.
Given a subset  of R, set  (S ) = { ∈  (S) :  () ∈  for all  ∈ S}. When  =

[0∞), we just write + (S). If  is closed, the pair ( (S )  ∞) is a complete metric
space, where ∞ is the supnorm metric.

10.2 Existence

Given  ∈  (S) and  ∈ (0 1), set

 =

∙
inf∈S  ()
1− 


sup∈S  ()
1− 

¸


Observe that  ⊆ R+ if and only if  ∈ + (S).
Consider the recursive equation:


¡

¢
= 

¡

¢
+ −1

µZ
Θ



µZ
X+1


¡
 +1

¢


¡
+1; 


¢¶



¶
 (30)

where  ∈  (S ),  :  → R+ is a strictly monotone function, and  : 2
Θ → [0 1] is any

probability measure on the power set of Θ at node .

Our purpose is to show that (30) has a solution, possibly unique. In fact, if we set

 =  ◦  , then any solution of (30) would be a solution for (3).
In order to solve (30), we need to consider the operator  on  (S ) given by

 ()
¡

¢
= 

¡

¢
+ −1

µZ
Θ



µZ
X+1


¡
 +1

¢


¡
+1; 


¢¶



¶
(31)

Lemma 5 We have  () ∈  (S ) whenever  ∈  (S ).

Proof. Since  is strictly monotone,  is non-decreasing, i.e.,  (1) ≤  (2) if 1 ≤ 2.

Consider the functions ∗ 
∗ ∈  (S ) respectively given by ∗ () = inf∈S ()

1− and ∗ () =
sup∈S ()

1− for all  ∈ S. By the monotonicity of  , we have

inf∈S  ()
1− 

= inf
∈S

 () + 
inf∈S  ()
1− 

≤  (∗) ≤  ()

≤  (∗) ≤ sup
∈S

 () + 
sup∈S  ()
1− 

=
sup∈S  ()
1− 

for all  ∈  (S ). Hence,  () ∈  (S ). ¥

By Lemma 5, we can write  :  (S ) →  (S ). Moreover, it is easy to see that the
recursive equation (30) has a solution if and only if  has a fixed point.

We begin with a general existence result for fixed points.
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Proposition 6 The operator  :  (S )→  (S ) given by (31) has a fixed point provided
 ∈  (S) and  :  → R is strictly monotone.

Proof. Observe that  (S ) is a complete lattice with respect to the pointwise order ≤.
In fact, given any subset  of  (S ), define ∗ ∗ ∈  (S ) by ∗ () = sup∈  () and
∗ () = inf∈  () for each  ∈ , respectively. It is easy to check that ∗ and ∗ are,
respectively, the least upper bound and the greatest lower bound of  under the order ≤.
Since the operator  :  (S ) →  (S ) is monotone, by the Tarski Fixed Point

Theorem (see Tarski (1955, Thm 1)), we conclude that  has a fixed point. ¥

10.3 Uniqueness and Monotonicity

Proposition 7 The operator  :  (S )→  (S ) given by (31) has a unique fixed point
provided  is eventually deterministic, i.e., for each 

0 ∈ S there exist a node 00 ∈ S with

00 ≥ 

0
and a function 00 : N→ R such that  () = 00 () for all 

 ∈ S with  ≥ 
00
.

In this case, such fixed point is such that  () =
X

≥0
00 (+ ) for all  ∈ S with

 ≥ 
00
.

Proof. Let 
00 ∈ S and 00 : N→ R such that  () = 00 () for all 

 ∈ S with  ≥ 
00
.

By hypothesis,

 ()
¡

¢
= 00 () + −1

µZ
Θ



µZ
X+1


¡
 +1

¢


¡
+1; 


¢¶



¶


for all  ∈ S with  ≥ 
00
, and it is easy to check that there exists a fixed point b such thatb () =X

≥0
00 (+ ) for all  ∈ S with  ≥ 

00
.15

Suppose there exists a fixed point  ∈  (S ) with  6= b on all  ∈ S with  ≥ 
00
.

Then, there exists  ≥ 
00
such that  () 6=

X
≥0

00 (+ ). As  is a fixed point, we

have


¡

¢
= 00 () + −1

µZ
Θ



µZ
X+1


¡
 +1

¢


¡
+1; 


¢¶



¶


and so



µ
 ()− 00 ()



¶
=

Z
Θ



µZ
X+1


¡
 +1

¢


¡
+1; 


¢¶



Hence, there exist 0+1 
00
+1 ∈ X+1 such that


¡
 0+1

¢ ≥  ()− 00 ()


≥ 

¡
 00+1

¢


On the other hand, for each +1 ∈ X+1 we have


¡
 +1

¢
= 00 (+ 1) + −1

µZ
Θ



µZ
X+2


¡
 +1 +2

¢


¡
+2;

¡
 +1

¢¢¶
(+1)

¶


15Since  is bounded, also the function 00 is bounded. Hence, the series
X

≥0 
+00 (+ ) is

absolutely convergent.
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and so a similar argument shows that there exist 0+2 
00
+2 ∈ X+2 such that


¡
 +1 

0
+2

¢ ≥  ( +1)− 00 (+ 1)


≥ 

¡
 +1 

00
+2

¢


Hence,


¡
 0+1 

0
+2

¢ ≥  ()− 00 ()− 00 (+ 1)

2
≥ 

¡
 00+1 

00
+2

¢


By proceeding in this way, we get


¡
 0+1  

0
+

¢ ≥  ()−P−1
=0 

00 (+ )


(32)

≥ 
¡
 00+1  

00
+

¢


If  () 
X

≥0
00 (+ ), then

lim


 ()−P−1
=0 

00 (+ )


= +∞

while

lim


 ()−P−1
=0 

00 (+ )


= −∞

if  () 
X

≥0
00 (+ ). In both cases, (32) leads to a contradiction because  is

bounded. We conclude that  () =
X

≥0
00 (+ ) for all  ∈ S with  ≥ 

00
. ¥

Next we refine the existence result of the previous section by providing sufficient condi-

tions under which  is a contraction, and so it has a unique fixed point.

Theorem 5 The operator  :  (S ) →  (S ) given by (31) has a unique fixed point
provided  ∈ + (S) and  : R+ → R is twice differentiable on R++ and satisfies one of the
following three conditions:

(i)  is IAAA;

(ii)  is IRAA and inf∈  ()  0;

(iii)  is SDAAA, concave and sup≥0  ()  1.

Proof. The theorem and the proposition immediately below follow from collecting several

uniqueness and global attractivity results proven in Marinacci and Montrucchio (2007). ¥

Under conditions (i), (ii) or (iii), the unique fixed point can be found via a contraction

argument, and this implies the following property useful for iteratively approaching the

solution:
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Proposition 8 Suppose conditions (i), (ii) or (iii) of Theorem 5 hold. Given any initial

condition 0 ∈  (S ), the sequence  () of iterates uniformly converges to ∗, i.e.,
k ()− ∗k∞ → 0.

The final result we need shows that a unique fixed point must be monotonic in the sense

we used in the main text. We proceed by first proving a key consequentialist property holds

and then proving the monotonicity result.

Lemma 6 Let  be a subset of  (S). Suppose the operator  :  (S )→  (S ) given by
(31) has a unique fixed point, , for each  ∈ . Then, for any 1 2 ∈ , 1 () = 2 ()
for all  ≥  implies 1

() = 2
().

Proof. Fix  and suppose to the contrary that 1 () = 2 () for all  ≥  but 1
() 6=

2
(). Now construct ̂1

∈  (S ) as follows:

̂1
() =

⎧⎨⎩
1

() if  ®  and  ® 

2
() if  > 

 () if  >  and  6= 

where


³

0
´
≡ 1

³

0
´
+ −1

ÃZ
Θ



ÃZ
X0+1

̂1

³

0
 0+1

´


³
0+1; 

0
´!

0

!


for   
0
are the unique values determined by the recursion from the already specified

values of ̂1
. By construction, ̂1

() is a fixed point of  for 1, but ̂1
() 6= 1

()
contradicting the assumed uniqueness. ¥

Proposition 9 Let  be a subset of  (S). Suppose the operator  :  (S ) →  (S )
given by (31) has a unique fixed point, , for each  ∈ . Then, for any 1 2 ∈ ,

1 () ≥ 2 () for all  ≥  implies 1
() ≥ 2

(). If, in addition, 1 and 2 are

deterministic and 1()  2() for at least some  ≥  then 1
()  2

().

Proof. For deterministic  (i.e.,  such that the value at a node  depends only on the

time at which the node occurs), one may verify that  (
) =

X
≥0

 (+) is a fixed

point, and, therefore, given the assumption of uniqueness, must be the unique fixed point.

Thus, for deterministic 1 and 2 with 1 () ≥ 2 () for all  ≥  and 1()  2()
for at least some  ≥ , 1

()  2
(). More generally, consider 1 2 ∈  and the

associated unique fixed points 1
and 2

. Suppose that for some node , 1 () ≥ 2 ()
for all  ≥ . If 1 () = 2 () for all  ≥ , the result follows from Lemma 6. Suppose

then that 1 ()  2 () for at least one  ≥ . S is countable, so let D = {1 2   } be
an enumeration of the successors of  where 1 ()  2 (). We may approach 1 from 2
on  ≥  through a countable number of steps by changing the value at one node at a time.

That is, construct a sequence, {}  such that 0 = 2 and, for   0  has the same
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value as −1 at all but the node , with  () = 1 (). Note that if we start from a

 for which  has a unique fixed point and change the value of  at only one node, there

will still be a unique fixed point (by recursion backward from the time of the change). Let©


ª
be the associated sequence of unique fixed points. Observe that since  = −1 at

all nodes except , Lemma 6 implies  = −1 at all strict successors of  and at all

successors of  that are neither predecessors nor successors of . Therefore, at ,

 () = 1 () + −1
µZ

Θ



µZ
X+1

−1 ( +1)  (+1; )

¶


¶
 2 () + −1

µZ
Θ



µZ
X+1

−1 ( +1)  (+1; )

¶


¶
= −1 () .

Thus, working backwards by recursion,  ()  −1 () for all successors of 
 that are

predecessors of  (the inequality is strict since all finite paths were assumed to have positive

probability). In particular,  (
)  −1 (

). This holds for all  in the sequence, so
2

() = 0 (
)   (

) for all   0. Since lim→∞  (
) ≤ 1

(), we have
2

() ≤ 1
(). ¥

10.4 Proofs for Section 4.2

Proof of Theorem 2. It follows from Proposition 6.. ¥
Proof of Proposition 3. It follows from Proposition 7 and Proposition 9. ¥

Proof of Theorem 3. It follows from Theorem 5 and Proposition 9. ¥
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