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Abstract

This paper develops algorithms for dynamically consistent updating of ambiguous

beliefs in the maxmin expected utility model of decision making under ambiguity.

Dynamic consistency is the requirement that ex-ante contingent choices are respected

by updated preferences. Such updating, in this context, implies dependence on the

feasible set of payoff vectors available in the problem and/or on an ex-ante optimal act

for the problem. Despite this complication, the algorithms are formulated concisely

and are easy to implement, thus making dynamically consistent updating operational

in the presence of ambiguity.

Key Words: Utility Theory, Uncertainty Modelling, Risk Analysis, Updating Beliefs,

Ambiguity

1 Introduction

A central task facing any theory of decision making under uncertainty is updating preferences

in response to new information (see e.g., Winkler 1972). Since updated preferences govern

future choices, it is important to know how they relate to information contingent choices

made ex-ante. Dynamic consistency is the requirement that ex-ante contingent choices are

respected by updated preferences (see Hanany and Klibanoff 2007 for a formal definition of

dynamic consistency and a detailed discussion of its relation to other dynamic consistency
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concepts in the decision theory literature). This consistency is implicit in the standard way

of thinking about a dynamic choice problem as equivalent to a single ex-ante choice to which

one is committed, and is thus ubiquitous in decision analysis.

Under subjective expected utility (EU), updating preferences by applying Bayes’ rule

to the subjective probability is the standard way to update. Why is this so? Dynamic

consistency is the primary justification for Bayesian updating. Not only does Bayesian

updating imply dynamic consistency, but, if updating consists of specifying a conditional

probability measure for each (non-null) event, dynamic consistency implies these conditional

measures must be the Bayesian updates. Even under the view that Bayesian updating should

be taken as given, this tells us that dynamic consistency comes “for free”under EU.

The study of dynamic consistency is in a well defined sense the study of optimal updating,

as dynamically consistent update rules result in maximal (ex-ante) welfare. Moreover, since

dynamic consistency leads to a well-established theory of updating under expected utility,

it makes sense to ask what it implies for the updating of more general preferences. In a

recent paper, Hanany and Klibanoff 2007 pursued this strategy to update preferences of the

max-min expected utility (MEU) form (Gilboa and Schmeidler 1989). For these preferences,

beliefs are ambiguous in the sense that they are represented by a (compact and convex) set

of probability measures, rather than the usual single measure of EU, and acts are evaluated

by the minimum expected utility generated by these measures. MEU preferences are widely

used in modeling ambiguity averse behavior, as exemplified by the famous Ellsberg 1961

paradoxes (for a survey of economic applications of MEU see Mukerji and Tallon 2004). The

objective of this paper is to offer ways to explicitly compute the decision maker’s (DM’s)

updated beliefs according to the update rules suggested by Hanany and Klibanoff 2007, thus

making these rules operational. For each rule, the updated ambiguous beliefs are computed

using constructive algorithms. The algorithms we describe allow explicit implementation of

these rules, for example via computer programs. The rules allow the dynamically consistent

updating of any set of MEU beliefs upon observing any non-null event. These rules all are

generalizations of Bayesian updating in the sense that they specialize to Bayes’rule when

the set of measures is a singleton. In common with Bayesian updating and many other

models, our approach does not address preferences conditional on completely unanticipated

(i.e., null) events. Similarly, it does not consider costs, cognitive or otherwise, of describing

events. For a discussion of these and other aspects of dynamic decisions see, e.g., Hacking

1967, Modica 2008, Schipper 2010.

To better understand the issues involved in dynamically consistent updating under am-

biguity, consider a version of Ellsberg’s three-color problem. There is an urn containing 120

balls, 40 of which are known to be black (B) and 80 of which are somehow divided between
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red (R) and yellow (Y), with no further information on the distribution. A ball is to be drawn

at random from the urn, and the DM faces a choice among bets paying off depending on the

color of the drawn ball. Any such bet may be written as a triple (uB, uR, uY ) ∈ R3 where

each ordinate represents the payoff if the respective color is drawn. Typical preferences have

(1, 0, 0) preferred to (0, 1, 0) and (0, 1, 1) preferred to (1, 0, 1), reflecting a preference for the

less ambiguous bets. Notice that these preferences entail a preference to bet on black over

red when no bet is made on yellow and a preference to bet on red over black when a bet is

also made on yellow (thus violating the sure-thing principle of EU). Now consider a simple

dynamic version of this problem. In the dynamic version, there is an interim information

stage, where the DM is told whether or not the drawn ball was yellow. The DM is allowed to

condition her choice of betting on black or red on this information. In the first choice pair,

the bet on black or red is not paired with a bet on yellow, so the choice “Bet on B”leads to

the payoff vector (1, 0, 0) while the choice “Bet on R”leads to payoffs (0, 1, 0). In the second

choice pair, a bet on yellow is included, so the choice “Bet on B”leads to the payoff vector

(1, 0, 1) while the choice “Bet on R”leads to payoffs (0, 1, 1). Since the DM can condition on

whether or not a yellow ball is drawn, the complete set of pure strategies available in each

choice problem is: (“Bet on B”if not Y; “Bet on B”if Y), (“Bet on B”if not Y; “Bet on R”

if Y), (“Bet on R”if not Y; “Bet on B”if Y), (“Bet on R”if not Y; “Bet on R”if Y). Notice

that when translated into payoff vectors, these strategies yield only {(1, 0, 0), (0, 1, 0)} in the
first choice problem and {(1, 0, 1), (0, 1, 1)} in the second choice problem. If payoff vectors
are what the DM cares about, then this provides a strong argument that choices in the

dynamic version of the Ellsberg problem should be the same as in the original problem since

the feasible payoff vectors are the same. This is closely related to ensuring that the value of

information is always non-negative, another desirable principle for decision making (see e.g.,

Wakker 1988). If choices in the dynamic version of the problem differed from those in the

original problem (where the choices are made before the information is revealed) then the

DM would strictly prefer to face the original problem, thus declining the (free) information.

What kind of rules for updating ambiguous beliefs imply that the choices in the dynamic

version are the same as in the original problem (not only for this example, but in general)?

In Hanany and Klibanoff 2007 we provide such rules, and also show that any such rules

must depend on the feasible set of payoff vectors available in the problem and/or on an

ex-ante optimal act for the problem. To make this clear, consider the following specification

of MEU preferences that allow the Ellsberg choices in the example above. For any MEU

preference over payoff vectors in R3, there exists a compact and convex set of probability

measures, C, over the three colors and a utility function, u : R → R, such that ∀f, g ∈
R3, f % h ⇐⇒ minq∈C

∫
(u ◦ f)dq ≥ minq∈C

∫
(u ◦ h)dq. Let u (x) = x for all x ∈ R
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and let C =
{(

1
3
, α, 2

3
− α

)
| α ∈

[
1
4
, 5

12

]}
, a set of measures symmetric with respect to the

probabilities of red and yellow and consistent with the information that 40 of the 120 balls

are black. Observe that, indeed, (1, 0, 0) is preferred to (0, 1, 0) and (0, 1, 1) is preferred

to (1, 0, 1) according to these preferences. If we apply full Bayesian updating (Bayesian

conditioning of each measure in C) conditional on the event E = {B,R}, the updated set
of measures is CE =

{
(α, 1− α, 0) | α ∈

[
4
9
, 4

7

]}
. According to these updated preferences,

“Bet on B”is strictly preferred to “Bet on R”conditional on learning E = {B,R}, leading
(1, 0, 0) to be selected over (0, 1, 0) in choice problem 1, in agreement with the unconditional

preferences, but also leading (1, 0, 1) to be selected over (0, 1, 1) in choice problem 2, in

conflict with the unconditional preferences. It follows that for an update rule to maintain

the choices according to the unconditional preferences for both choice problems, the rule

must depend on the feasible set and/or on an ex-ante optimal act. A dynamically consistent

update in this example corresponds to Bayesian updating of measures in a particular strict

subset of the ex-ante set of measures, specifically the conditional set of measures is C1
E ={

(α, 1− α, 0) | α ∈
[

1
2
, 4

7

]}
for choice problem 1 and C2

E =
{

(α, 1− α, 0) | α ∈
[

4
9
, 1

2

]}
in

choice problem 2. This emphasizes that although natural analogues to updating beliefs

under EU exist for updating beliefs under ambiguity, dynamic consistency requires novel

procedures that operate somewhat differently.

The prior literature on updating ambiguous beliefs in MEU proposes and explores rules

that, in fact, fail dynamic consistency for at least some MEU preferences. This literature

includes many well-known rules, such as full (or generalized) Bayesian updating, maximum

likelihood updating, or Dempster-Shafer updating. Full Bayesian updating calls for updating

each measure in a set of priors according to Bayes’rule (see Jaffray 1992, 1994, Fagin and

Halpern 1991, Wasserman and Kadane 1990, Walley 1991, Sarin and Wakker 1998, Pires

2002, Siniscalchi 2001, Wang 2003 and Epstein and Schneider 2003 for papers suggesting,

deriving or characterizing this update rule in various settings). Maximum likelihood up-

dating says that, of the set of priors, only those measures assigning the highest probability

to the observed event should be updated using Bayes’rule, and the other priors should be

discarded (see Gilboa and Schmeidler 1993). Kriegler 2009 advocates a hybrid approach

applying full Bayesian updating to a set of measures formed through ε-contamination where

additionally ε is updated through a maximum likelihood procedure. Both full Bayesian and

maximum likelihood updating are given an interpretation in terms of epistemic belief hierar-

chies by Walliser and Zwirn 2011. For Dempster-Shafer updating see Dempster 1968, Shafer

1976. Jaffray 1999 suggests that the inconsistency between unconditional and conditional

preferences might be resolved in a way that is a compromise between the different prefer-

ences. He examines a selection criterion that chooses a plan that is “not too bad”in a utility
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sense according to any of these preferences and is not dominated in that no feasible plan is

better according to all the preferences. Nielsen and Jaffray 2006 construct algorithms for

implementing the approach suggested by Jaffray 1999 in the context of risk.

In contrast to this literature, Hanany and Klibanoff 2007 identify update rules that

are dynamically consistent for any MEU preferences upon observing any non-null event.

Given the necessary dependence of the consistent rules on the feasible set and/or an ex-ante

optimal act, the practicality of their implementation is an issue. This motivates the present

paper, where we provide algorithms for computing the updated beliefs determined by these

consistent rules. In developing the algorithms and proving that they implement the various

rules, we draw on techniques from convex analysis.

In the next section we describe the framework for our analysis. Section 3 describes

algorithms to compute updated beliefs. Section 4 provides a short summary. Proofs are

collected in Appendix A. Appendix B collects some useful results from polyhedral theory.

Code for an implementation of the algorithms in the paper using Wolfram Mathematica is

available as an online supplement on the journal webpage or from the authors.

2 Framework

Consider the set X of all simple (i.e., finite-support) lotteries over a set of consequences Z,

a finite set of states of nature S endowed with the algebra Σ of all events, and the set A
of all acts, i.e. functions f : S → X. Consider a non-degenerate max-min expected utility

(MEU, Gilboa and Schmeidler 1989) preference relation % over A, for which there exists
a compact and convex set of probability measures with a finite set of extreme points, C,

and a vonNeumann-Morgenstern (vN-M) EU function, u : X → R, such that ∀f, h ∈ A,
f % h ⇐⇒ minq∈C

∫
(u ◦ f)dq ≥ minq∈C

∫
(u ◦ h)dq. Let PMEU denote the set of all such

preference relations. If % is non-degenerate, C is unique and u is unique (among vN-M EU

functions) up to positive affi ne transformations. As usual, ∼ and � denote the symmetric
and asymmetric parts of %.
Let N (%) denote the set of events E ∈ Σ for which ∀q ∈ C, q(E) > 0. We limit attention

to updating on events that are non-null in this sense. For E ∈ Σ, let ∆ (E) denote the set

of all probability measures on Σ giving weight 0 to Ec. For any q ∈ ∆ (S) with q(E) > 0,

we denote by qE ∈ ∆ (E) the measure obtained through Bayesian conditioning of q on E.

Let B denote the set of all non-empty subsets of acts B ⊆ A such that B is convex

(with respect to the usual Anscombe-Aumann 1963 mixtures) and compact with a finite set

of extreme points. Elements of B are considered feasible sets and their convexity could be
justified, for example, by randomization over acts. Compactness is needed to ensure the
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existence of optimal acts.

Assume a preference %∈ PMEU , an event E ∈ N (%) and an act g ∈ A chosen according
to % from a feasible set B ∈ B before the realization of E (i.e., g % f, for all f ∈ B).

Denote by T the set of all such quadruples (%, E, g, B). An update rule is a function

U : T → PMEU , producing for each (%, E, g, B) ∈ T a MEU conditional preference, denoted
%E,g,B, representable using the same (up to normalization) vN-M utility function u as % and
a non-empty, closed and convex set of conditional measures CE,g,B ⊆ CE ≡ {qE | q ∈ C},
with a finite set of extreme points. Such a conditional preference is viewed as governing

choice upon the realization of the conditioning event E. Let UBayes denote the set of all such
update rules.

Abusing notation in the standard way, x ∈ X is also used to denote the constant act for

which ∀s ∈ S, f(s) = x. For any f, h ∈ A, we use fEh to denote the act equal to f on E
and h on Ec, the complement of E. General vectors in R|S| will be called utility acts. If
a and b are utility acts, we use aEb to denote the utility act equal to a on E and b on Ec.

Since S is finite, we sometimes identify probability measures with vectors in R|S| normalized
to sum to 1. For an arbitrary convex, compact set of real vectors, A, denote by ext(A) the

set of extreme points of A. Let C̄ = ext (C) and B̄ = ext (u ◦B), thus C = co
(
C̄
)
and

u ◦ B = co
(
B̄
)
, where co denotes the convex hull operator. This implies that CE is the

convex hull of a finite number of points. For each a ∈ R|S| and ξ ∈ R, denote the half-space{
c ∈ R|S| | a · c ≥ ξ

}
by W ξ

a and the hyperplane
{
c ∈ R|S| | a · c = ξ

}
by Hξ

a.

As discussed in the introduction, the update rules considered in this paper depend on an

initially optimal act g and the feasible set B. Before introducing update rules, we describe

a simple algorithm for computing an initially optimal act.

Algorithm 2.1 Solve the linear program,

(o∗, λ∗) ∈ arg max
(o,λ)∈R×[0,1]|B̄| o

s.t.∑
s∈S
∑

a∈B̄ λaasqs ≥ o , ∀q ∈ C̄∑
a∈B̄ λa = 1.

(P)

Let b =
∑

a∈B̄ λ
∗
aa and g ∈ B such that b = u ◦ g.

Proposition 2.1 The act g is optimal in B according to %.

The following example will be used throughout the paper to demonstrate our results.
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Figure 2.1: The set of probability measures C for our leading example (see Example 2.1).
Updating of C must result in a subset of ∆(E).

Example 2.1 Consider a state space S = {1, 2, 3, 4} and two investment options l, n leading
to state contingent monetary payments (−5,−5, 20, 20) and (10,−15, 10,−15), respectively.

For simplicity, assume risk neutrality and take utility u over monetary outcomes in Z = R
to be the identity function (our analysis applies to any assumption on risk attitudes). The

ambiguous beliefs on the state space are represented by the set C = co{(0.4, 0.4, 0.1, 0.1),

(0.1, 0.4, 0.25, 0.25), (0.4, 0.1, 0.25, 0.25)}. Before investing, it is possible to pay a cost of

1 to reveal whether the event E = {1, 2} is true and make an investment decision based
on this information. Figure 2.1 illustrates the sets C and ∆(E) within the simplex of all

probability measures over S. Thus, before randomization, there are seven feasible alterna-

tives: the two investment options l, n without buying the information, the non-investment

option and four information contingent investment possibilities. This is summarized by the

feasible utility set u ◦ B = co{(−5,−5, 20, 20), (10,−15, 10,−15), (0, 0, 0, 0), (−6,−6, 19, 19),

(9,−16, 9,−16), (−6,−6, 9,−16), (9,−16, 19, 19)}. Applying Algorithm 2.1 results in an op-

timum o∗ = 1 and λ∗ = (0, 0, 0, 0, 0, 0, 1), i.e. buy the information and invest in n if E and

in l if not E. Note that b = u ◦ g = (9,−16, 19, 19), evaluated by minq∈C
∑

s∈S bsqs = 1. In

the next section we analyze the updated ambiguous beliefs in this problem. Throughout the

paper we analyze the case where E is observed —similar analysis, omitted for brevity, can be

done for the case where Ec is observed.
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3 Computing updated beliefs

3.1 Dynamically consistent update rules

Dynamic Consistency, an important and intuitive property of update rules, means that initial

contingent plans should be respected after receiving information. In our framework, the act

g should remain optimal also conditionally.

Axiom 3.1 DC (Dynamic Consistency). For any (%, E, g, B) ∈ T , if f ∈ B with f = g

on Ec, then g %E,g,B f .

Observe that conditional optimality of g is checked against all feasible acts f such that

f = g on Ec. Why check conditional optimality only against these acts? Consider an

environment where the DM has a fixed budget to allocate across bets on various events. It

would be nonsensical (and would violate payoff dominance on the realized event) to require

that the ex-ante optimal allocation of bets remained better than placing all of one’s bets on

the realized event. This justifies the restriction of the conditional comparisons to acts that

could feasibly agree on Ec. An act f = g on Ec will be called comparable to g.

Among rules satisfying desiderata such as dynamic consistency, there are those that are

most conservative in the sense of maintaining the most ambiguity in the process of updating.

In general, this means that the updated set of measures should be the largest possible subset

of CE, in the sense of set inclusion, while still satisfying the desiderata. Examining such

rules is particularly illuminating because they reveal the precise extent to which dynamic

consistency forces the DM to eliminate measures present in the unconditional set when

updating. If, for example, one views full Bayesian updating (updating all measures in the

initial set) as “the right thing to do” then examining these rules shows how far one must

depart from this to maintain consistency. Note that if dynamic consistency is ignored, and all

rules in UBayes are considered, ambiguity maximization would uniquely select full Bayesian
updating.

Let us now observe the implications of DC for updating. The following algorithm can be

used to compute the set of updated beliefs under the unique ambiguity maximizing update

rule (denoted UDC max) within the dynamically consistent rules in UBayes. Having found
an initially optimal act g in Step 3.1.A, the algorithm computes in Step 3.1.B the set of

feasible utility acts comparable to g. Step 3.1.C computes Bayesian conditional measures

normal to hyperplanes supporting this set at g. Only these measures can be used to evaluate

g conditionally if dynamic consistency is required. If we were to stop the algorithm at this

point and return co(Q̄E), this would be a dynamically consistent update rule but need not

maximize ambiguity. To maximize ambiguity, Step 3.1.D finds the minimum evaluation of
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g according to these measures, and computes the updated beliefs as the set of conditional

measures that evaluate g at least as high as this minimum.

Algorithm 3.1 Step 3.1.A: Compute b = u ◦ g and o∗ = minq∈C̄
∑

s∈S bsqs.
1

Step 3.1.B: Compute L̄ ≡ ext[co(B̄) ∩s∈Ec Hbs
I(s)], where I(s) ∈ R|S| denotes an s-indicator,

i.e. Is(s) = 1 and Iŝ(s) = 0 for ŝ 6= s.2

Step 3.1.C: Compute Q̄E ≡ ext[co(C̄E) ∩a∈L̄W 0
b−a], where C̄E ≡ ext(CE).

Step 3.1.D: Compute ŪE ≡ ext[co(C̄E) ∩ W 0
b−β11

], where β1 ≡ minq∈Q̄E
∑

s∈S bsqs and 1

denotes the constant (1, ..., 1) ∈ R|S|. Return co(ŪE).

Proposition 3.1 Algorithm 3.1 results in the updated set of measures, CE,g,B, produced by

the update rule UDCmax.

Example 3.1 We apply the algorithm to our leading example. Since we already have an

optimal utility act b = (9,−16, 19, 19) and its value o∗ = 1, we start by finding the set L̄,

the extreme points of the set of feasible acts comparable to g. The set of extreme points of

co(B̄) ∩H19
I(3) is {(9,−16, 19, 19), (−6,−6, 19, 19), (−4.75,−4.75, 19, 19)}. Then intersecting

with H19
I(4) leaves this set unchanged, so this is L̄. Note that this set includes the optimal util-

ity act b, the utility act corresponding to the choice of buying the information and investing

always in l, and the utility act (−4.75,−4.75, 19, 19) resulting from a convex combination

of the no investment option and investing in l without buying the information. Next we

find the set C̄E, the extreme points of the set obtained by Bayesian conditioning of all mea-

sures in C (see the top part of Figure 3.1). The conditionals of the measures in C̄ are

{(0.5, 0.5, 0, 0), (0.2, 0.8, 0, 0), (0.8, 0.2, 0, 0)}. Since the first of these conditionals is in the
convex hull of the other two, C̄E = {(0.2, 0.8, 0, 0), (0.8, 0.2, 0, 0)}. Notice that if one adopted
this set as the updated ambiguous beliefs, i.e. followed the full Bayesian rule, the optimal

choice given E would be not to follow the optimal act and instead invest in l. This would result

in the utility act (−6,−6, 19, 19), which is dominated (in every state) by the feasible act invest

in l without buying the information. This demonstrates that full Bayesian updating may be

an undesirable update rule. In contrast, UDCmax is dynamically consistent, and thus does not

suffer from such phenomena. To see this, we continue to follow the algorithm and next find

Q̄E, the extreme points of the set of measures supporting the conditional optimality of g. Since∣∣L̄∣∣ = 3, co(C̄E) is intersected thrice, to ensure measures that support the feasible set compa-

rable to g. Since b is always an element of L̄ and b− b = 0, the intersection based on b never

1If g is not known, one can apply Algorithm 2.1 to carry out this step.
2When computing the extreme points of the intersection of a list of hyperplanes/half-spaces with the

convex hull of a finite set of points, this algorithm and all subsequent ones use standard procedures from
polyhedral theory (e.g., as in Appendix B) and thus we do not detail these procedures here.
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Figure 3.1: Illustration of Algorithm 3.1 for computing the update rule UDC max (see Example
3.1).
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imposes any restriction. Considering b−(−6,−6, 19, 19) = (15,−10, 0, 0), W 0
(15,−10,0,0) corre-

sponds to the set of measures such that 15q1−10q2 ≥ 0 (see the middle part of Figure 3.1), so

the set of extreme points of co(C̄E) ∩W 0
(15,−10,0,0) is {(0.4, 0.6, 0, 0), (0.8, 0.2, 0, 0)}. The final

intersection, with W 0
(13.75,−11.25,0,0), requires 13.75q1− 11.25q2 ≥ 0 and thus shrinks the set of

extreme points to {(0.45, 0.55, 0, 0), (0.8, 0.2, 0, 0)}, which is Q̄E (see the bottom part of Figure

3.1). Note that any conditional measure putting weight lower than 0.45 to state 1 does not

support the conditional optimality of g because it becomes worse than (−4.75,−4.75, 19, 19).

Finally we calculate ŪE, the set of extreme points of the set of updated ambiguous beliefs. Ob-

serve that β1 = min{(9,−16, 19, 19)·(0.45, 0.55, 0, 0), (9,−16, 19, 19)·(0.8, 0.2, 0, 0)} = −4.75.

Since q ∈ co(C̄E), (b − β11) · q ≥ 0 if and only if 13.75q1 − 11.25q2 ≥ 0, which is not

weaker than the restrictions already imposed, so ŪE ≡ co(C̄E) ∩ W 0
b−β11

= Q̄E. Thus

CE,g,B = co{(0.45, 0.55, 0, 0), (0.8, 0.2, 0, 0)}. Note that given these updated ambiguous beliefs,
the optimal act is conditionally equivalent to −4.75, which is better than −6, the payment if

one invests instead in l. Thus dynamic consistency is satisfied. The example shows that it

is necessary to eliminate some of the measures in the original set, in particular all measures

that conditionally give weight lower than 0.45 to state 1. When a plan is made initially to

follow the optimal act, the updated ambiguous beliefs represented by CE,g,B justify this plan:

contingent on learning E, it will be optimal to carry it out.

Note that computing the updated ambiguous beliefs is a hard problem because it involves

computing the extreme points of intersections of convex hulls of finite sets of points, which

is known to be hard. If these computations could be done effi ciently, then all the algorithms

in this paper would be polynomial in the size of the problem.

It is also worth noting that in cases where the feasible set has a special structure such

that f, f ′ ∈ B =⇒ fEf
′ ∈ B, the restriction f = g on Ec in the statement of DC is

superfluous, thus the computation of Step 3.1.B can be simplified to L̄ ≡ {a ∈ B̄ | a = b

on Ec}. Such feasible sets arise, for example, whenever one starts from a decision tree with

branches corresponding to events E and Ec and derives B by first specifying what is feasible

conditional on E, denoted BE, and what is feasible conditional on Ec, denoted BEc , and

then combining the two so that B =
{
h ∈ A | h = fEf

′ for some f ∈ BE, f ′ ∈ BEc
}
.

3.2 More robust dynamic consistency

It may be desirable to strengthen dynamic consistency, so that all initially optimal acts

comparable to g should remain optimal conditional on E.

Axiom 3.2 PFI (Robust Dynamic Consistency).3 For any (%, E, g, B) ∈ T , if f ∈ B with
3This axiom was named PFI (Preservation of Feasible Optimal Indifference) by Hanany and Klibanoff
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f = g on Ec and f ∼ g, then f ∼E,g,B g.

The following algorithm can be used to compute the set of updated beliefs under the

unique ambiguity maximizing update rule (denoted UDC∩PFI max) within the rules in UBayes

satisfyingDC and PFI. As in Algorithm 3.1, steps 3.2.A and 3.2.B find an initially optimal
act g, the set of feasible acts comparable to g and the set of measures supporting the

conditional optimality of g. Step 3.2.C computes the measures normal to hyperplanes

separating the feasible acts comparable to g from the acts strictly better than g. Step 3.2.D
uses one of these measures to compute the set of initially optimal acts comparable to g. Step

3.2.E computes the Bayesian conditional measures normal to hyperplanes supporting this
set at g. Only these measures can be used to evaluate g conditionally if robust dynamic

consistency is required. To maximize ambiguity, Step 3.2.F finds the minimum evaluation

of g according to these measures, and computes the updated beliefs as the set of conditional

measures that evaluate all initially optimal acts at least as high as this minimum.

Algorithm 3.2 Step 3.2.A: Compute b = u ◦ g and o∗ as in Step 3.1.A of Algorithm 3.1.

Step 3.2.B: Compute L̄, Q̄E as in steps 3.1.B and 3.1.C of Algorithm 3.1, respectively.

Step 3.2.C: Compute R̄ ≡ ext[co(C̄) ∩Ho∗
b ∩a∈L̄W 0

b−a].

Step 3.2.D: Compute J̄ ≡ ext[co(L̄) ∩Ho∗
qg ∩q∈C̄ W 0

q−qg ], where q
g ∈ R̄.

Step 3.2.E: Compute K̄E ≡ ext[co(Q̄E) ∩a∈J̄ H0
b−a].

Step 3.2.F: Compute ŪE ≡ ext[co(C̄E)∩a∈J̄W 0
a−β21

], where β2 ≡ minq∈K̄E
∑

s∈S bsqs. Return

co(ŪE).

Proposition 3.2 Algorithm 3.2 results in the updated set of measures, CE,g,B, produced by

the update rule UDC∩PFI max.

The following example serves to demonstrate the comparative robustness of updating

underPFI andDC, as compared to updating under onlyDC. It also illustrates the algorithm
above.

Example 3.2 We apply the algorithm to our leading example. It can be verified that the

optimum found using Algorithm 2.1 is unique, thus PFI has no bite. Therefore we mod-

ify the example slightly and assume that the cost of buying the information is 2. Applying

Algorithm 2.1 again, the previous optimal act — buy the information and invest in n if E

and in l if not E — remains optimal. With the new cost, this is an optimal utility act

2007. We call it Robust Dynamic Consistency here, as upon reflection, this seems a more informative name.
To maintain continuity with our earlier nomenclature we will nonetheless continue to refer to it by the initials
PFI.

12



Figure 3.2: Illustration of Algorithm 3.2 for computing the update rule UDC∩PFI max (see
Example 3.2).
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b = (8,−17, 18, 18) with optimal value o∗ = 0. The set of feasible utility acts comparable

to g now has the extreme points L̄ = {(8,−17, 18, 18), (−7,−7, 18, 18), (−4.5,−4.5, 18, 18)}.
The set of measures supporting the conditional optimality of g now has the extreme points

Q̄E = {(0.5, 0.5, 0, 0), (0.8, 0.2, 0, 0)} (see the top part of Figure 3.2). Note that the change
in L̄ caused a change in Q̄E. In particular, any conditional measure putting weight less

than 0.5 to state 1 now does not support the conditional optimality of g because it be-

comes worse than (−4.5,−4.5, 18, 18). Observe that co(C̄) ∩ Ho∗
b = {(0.4, 0.4, 0.1, 0.1)},

so R̄ = {qg} = {(0.4, 0.4, 0.1, 0.1)}. Next we find J̄ , the extreme points of the initially

optimal acts comparable to g. The intersection co(L̄) ∩ Ho∗
qg results in the extreme points

{(8,−17, 18, 18), (−4.5,−4.5, 18, 18)}. Since
∣∣C̄∣∣ = 3, we need 3 more intersections, which

leave the set unchanged, so this is J̄ . Note that the second extreme point of the initially

optimal acts results from a convex combination of the no investment option and investing in

l without buying the information. We move on to compute K̄E, the extreme points of the set

of measures supporting the conditional optimality of all initially optimal acts comparable to

g. Since
∣∣J̄∣∣ = 2 but the intersection based on b ∈ J̄ never imposes any restriction, we inter-

sect Q̄E once, which leads to K̄E = {(0.5, 0.5, 0, 0)} (see the top part of Figure 3.2). Finally,
we compute ŪE, the set of extreme points of the set of updated beliefs. Observe that β2 =

min{(8,−17, 18, 18) · (0.5, 0.5, 0, 0)} = −4.5. Intersecting co(C̄E) with W 0
a−β21

for each a ∈ J̄
leads to ŪE = Q̄E (see the bottom part of Figure 3.2). Thus the updated ambiguous beliefs

under UDC∩PFI max are CE,g,B = co{(0.5, 0.5, 0, 0), (0.8, 0.2, 0, 0)}. Applying Algorithm 3.1

to compute the updated ambiguous beliefs under UDC max for this example gives the same set

CE,g,B. To see the comparative robustness of updating under PFI and DC, consider the up-
dated ambiguous beliefs given a different initially optimal act, corresponding to the utility act

(−4.5,−4.5, 18, 18). Under UDC∩PFI max, the updated beliefs will be the same as above because

this rule guarantees that all initially optimal acts in co{(8,−17, 18, 18), (−4.5,−4.5, 18, 18)}
remain optimal conditionally. However, UDC max for this case coincides with full Bayesian

updating, i.e. results in more conditional measures in the updated set compared to the case

with the former initially optimal act. This additional ambiguity would have affected the con-

ditional optimality of the utility act (8,−17, 18, 18), while none of it affects the conditional

optimality of (−4.5,−4.5, 18, 18) due to the constancy on E. Incidentally, for UDCmax with

the initially optimal act (−4.5,−4.5, 18, 18), in contrast to Example 3.1, Step 3.1.D has an

effect: it expands the updated set from co(Q̄E) = co{(0.2, 0.8, 0, 0), (0.5, 0.5, 0, 0)} (see the
top part of Figure 3.2) to co(ŪE) = co{(0.2, 0.8, 0, 0), (0.8, 0.2, 0, 0)}.
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3.3 Reference dependent updating

Consider an additional condition which, in the presence of DC, implies PFI and is stronger
than PFI only for infeasible acts.

Axiom 3.3 RA (g as a Reference Act). For any (%, E, g, B) ∈ T , if f ∈ A with f = g on

Ec and f ∼ g, then f %E,g,B g.

One way of viewing RA is as saying that updating must preserve or increase ambiguity

affecting g more than ambiguity affecting any act f indifferent and comparable to g.4 RA
has the advantage of simplifying the updated beliefs in the following important special case.

When the initially optimal act g is constant (in utilities) on Ec, we can use a simple threshold

rule based on the probability each measure assigns to E to obtain the updated set. It follows

that a suffi cient condition for the threshold rule to apply occurs when Ec is a singleton, i.e.,

information is learned one state at a time, a not uncommon occurrence.

The strengthening of PFI to RA does not follow from dynamic consistency consider-

ations, however the condition does not seem unreasonable and has the above-mentioned

simplification as its main virtue. In RA, the part of the indifference curve through g agree-
ing with g on Ec is picked out for a special role in updating. This part of the indifference

curve may be thought of as the portion where g is being used as a reference act. The axiom

requires that g occupy an extremal position in the conditional preference relative to the other

elements of this part of the (unconditional) indifference curve (through g) consisting of acts

agreeing with g on Ec.

The following algorithm can be used to compute the set of updated beliefs in this special

case under the unique ambiguity maximizing update rule (denoted UDC∩RAmax) within the

rules in UBayes satisfying DC and RA. The key new step that provides the simplification to
a threshold rule is Step 3.3.D. This step selects the measures to update by comparing the
weight they give to E with qg (E) and updates all measures giving weakly more weight than

qg (E) (if u ◦ g > o∗ on Ec), weakly less weight (if u ◦ g < o∗ on Ec) or all measures in C (if

u ◦ g = o∗ on Ec).

Algorithm 3.3 Step 3.3.A: Compute b = u ◦ g and o∗ as in Step 3.1.A of Algorithm 3.1.

Step 3.3.B: Compute L̄, R̄ as in Step 3.1.B of Algorithm 3.1 and Step 3.2.C of Algorithm

3.2, respectively.

Step 3.3.C: Compute qgE ∈ arg min{qE |q∈R̄}
∑

s∈E bs (qE)s. Let q
g ∈ R̄ such that qgE is its

4An alternative strengthening of PFI is obtained by replacing f %E,g,B g with g %E,g,B f in RA.
However, a small modification of the example in the proof of Proposition 13 in Hanany and Klibanoff 2007
can be used to show there is no update rule in UBayes satisfying the alternative condition (and in fact, no
such rule exists in the larger family of update rules that allows updating measures outside C).
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Bayesian conditional on E.

Step 3.3.D: Compute ŪE ≡ ext({qE | q ∈ co(C̄)∩Wαqg(E)
α
∑
s∈E I(s)

}), where α ≡ sign[b(Ec)−o∗];
return co(ŪE).

Figure 3.3: Illustration of Algorithm 3.3 for computing the update rule UDC∩RAmax (see
Example 3.3).

Example 3.3 We apply this algorithm also to our leading example. Assume again that

the cost of buying the information is 2. Recall the optimal act g = (8,−17, 18, 18) with

optimal value o∗ = 0 and the measure in R̄ = {qg} = {(0.4, 0.4, 0.1, 0.1)}, which uniquely
separates the feasible acts comparable to g from the acts preferred to g (see Figure 3.3).

Note that u ◦ g is constant on Ec. Since sign(18− o∗) = 1, Wαqg(E)
α
∑
s∈E I(s)

is equivalent to the

condition q(E) ≥ qg(E). The unique measure in co(C̄) satisfying this condition is qg, thus

ŪE includes only its Bayesian conditional. Therefore the updated beliefs are represented by

CE,g,B = {(0.5, 0.5, 0, 0)}. In general, the updated beliefs are not necessarily reduced to a
single measure. For example, consider the optimal act g = (0, 0, 0, 0). Since g is constant on

Ec and sign(0− o∗) = 0, ŪE = C̄E. Thus the updated beliefs coincide with those obtained by

the full Bayesian update rule, i.e. CE,g,B = {(0.2, 0.8, 0, 0), (0.8, 0.2, 0, 0)}.
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In fact, the algorithm producing the threshold rule is valid somewhat more generally than

suggested above. It works whenever there is no ambiguity about the conditional expectation

of g on Ec, in the sense that the initially optimal act g has the same conditional EU on Ec

according to each measure in C giving positive probability to Ec.

Proposition 3.3 Assume that u(X) = R and
∫
Ec
bdqEc is the same for all q ∈ C with

q(Ec) > 0. Algorithm 3.3, with b(Ec) replaced by
∫
Ec
bdqEc if there exists q ∈ C with

q(Ec) > 0 and replaced by o∗ otherwise, results in the updated set of measures, CE,g,B,

produced by the update rule UDC∩RAmax.

The rule UDC∩RAmax may also lead to intermediate updated ambiguous beliefs, i.e. to a

strict subset of CE which is not a singleton, as demonstrated in the following example.

Example 3.4 Let Z = R, C̄ = {( 8
24
, 10

24
, 4

24
, 2

24
), ( 5

24
, 4

24
, 10

24
, 5

24
)}, B̄ = {(2, 1, 3, 0), (0, 3, 3, 0)}

and E = {1, 2}. For the unique initially optimal act, b = u◦g = (0, 3, 3, 0) and o∗ = 21
12
. Note

that u(X) = R and for all q ∈ C, q(Ec) > 0 and
∫
Ec
bdqEc = 2. Applying Algorithm 3.3, L̄ =

B̄ and R̄ = {( 8
24
, 10

24
, 4

24
, 2

24
), ( 3

12
, 3

12
, 4

12
, 2

12
)} (note that arg minq∈C

∑
s∈S bsqs = C). Then we

compute min{qE |q∈R̄}
∑

s∈E bs (qE)s = 1.5 and qg = ( 3
12
, 3

12
, 4

12
, 2

12
). Since sign(2− o∗) = 1, we

intersect co(C̄) with q(E) ≥ qg(E), resulting in {( 8
24
, 10

24
, 4

24
, 2

24
), ( 6

24
, 6

24
, 8

24
, 10

24
)}, and compute

the Bayesian conditionals to find ŪE. Thus the updated ambiguous beliefs are represented by

CE,g,B = co{(4
9
, 5

9
, 0, 0), (1

2
, 1

2
, 0, 0)}.

For completeness, in Appendix A we provide a modification of Step 3.3.D that we show

allows computation of the updated beliefs under UDC∩RAmax for the general case. To compute

the extreme points of the updated beliefs, this modification considers pairs of extreme points

of C and selects zero, one or two points from their convex hull to update.

4 Summary

This paper develops algorithms for updating ambiguous beliefs in the MEU model of decision

making under ambiguity. The update rules all satisfy the desirable property of dynamic con-

sistency as was shown in Hanany and Klibanoff 2007. Some of the rules also satisfy stronger

and more robust consistency requirements as well. The algorithms are formulated concisely

and are easy to implement, thus making dynamically consistent updating operational in the

presence of ambiguity.

We close by mentioning two possible directions for future research. First, the algorithms

in this paper deal only with finitely generated sets of beliefs and feasible acts. The question
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of whether these algorithms can be used to approximate dynamically consistent updating

for arbitrary convex sets of beliefs or feasible acts is left open.

Second, although MEU is a popular theory of decision making with ambiguity aversion,

it is far from the only one (see, among many, Hazen 1989, Klibanoff, Marinacci, Mukerji

2005, Maccheroni, Marinacci, Rustichini 2006, Nau 2006, Schmeidler 1989, Tversky and

Kahneman 1992). In Hanany and Klibanoff 2009 we expand the approach in Hanany and

Klibanoff 2007 to characterize dynamically consistent update rules for a very broad class of

ambiguity averse preferences. Algorithmic implementation in these more general settings is

left open as well.
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A Appendix: proofs and auxiliary lemmata

To conserve space in this Appendix, whenever we reference Hanany and Klibanoff 2007, we

use the abbreviation HK.

Proof of Proposition 2.1. Let q∗ ∈ C̄ satisfy
∑

s∈S bsq
∗
s = o∗. For every a ∈ B̄,

there exists f ∈ B such that a = u ◦ f , so g exists by convexity of u ◦ B. Moreover, g is
optimal, otherwise there exists ḡ ∈ B and λ̄ ∈ [0, 1]|B̄| such that u ◦ ḡ =

∑
a∈B̄ λ̄aas and

ō ≡ minq∈C̄
∑

s∈S u [ḡ (s)] qs > minq∈C̄
∑

s∈S u [g (s)] qs, thus ō >
∑

s∈S
∑

a∈B̄ λ
∗
aasq

∗
s = o∗ in

contradiction to the maximality of o∗.

Proof of Proposition 3.1. HK showed (p.270, Corollary 1) that UDC max is defined

by CE,g,B = {qE | q ∈ C and
∫

(u ◦ g) dqE ≥ minp∈QE,g,BE

∫
(u ◦ g) dp}, where QE,g,B

E is the

set of Bayesian conditionals on E of QE,g,B, the measures in C supporting the conditional

optimality of g, defined by QE,g,B ≡ {q ∈ C |
∫

(u ◦ g) dqE ≥
∫

(u ◦ f) dqE for all f ∈ B

with f = g on Ec}. Since the hyperplanes used in step 3.1.B are
{
c ∈ R|S| | cs = bs

}
,

co(L̄) = u ◦ {f ∈ B | f = g on Ec}. By definition, QE,g,B
E is the intersection of CE and all

sets of the form
{
q ∈ CE |

∑
s∈S (bs − as) qs ≥ 0

}
where a ∈ u ◦ {f ∈ B | f = g on Ec}, thus

QE,g,B
E = co(Q̄E). The fact that it suffi ces to apply a finite number of intersections (∀a ∈ L̄

and not ∀a ∈ u ◦ {f ∈ B | f = g on Ec}) follows from Proposition A.1 below. Finally, by

definition of UDCmax, CE,g,B is the set
{
q ∈ CE |

∑
s∈S (bs − β1) qs ≥ 0

}
.

The following proposition shows that algorithms for computing the intersection of a

compact, convex set with a finite number of half-spaces or hyperplanes (see e.g. Algorithm
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B.2 in Appendix B) can also be used to compute the intersection of such a set with an

infinite number of half-spaces/hyperplanes, when the latter are defined by normals taken

from a compact, convex set having a finite number of extreme points.

Proposition A.1 Fix ξ ∈ R. Let A,D ⊂ R|S| be convex, compact sets, each with a finite
number of extreme points. Denote ext(D) by

{
ak
}r
k=1
. Then

ext

(
A

r⋂
k=1

W ξ
ak

)
= ext

(
A
⋂
a∈D

W ξ
a

)
.

The same is true when substituting W ξ
a with H

ξ
a.

Proof. Let Dξ(a) = {c ∈ A | c · a ≥ ξ}. By definition, A
⋂
a∈DW

ξ
a =

⋂
a∈DD

ξ(a) and

A
⋂r
k=1 W

ξ
a =

⋂r
k=1D

ξ(ak), so it remains to show that
⋂
a∈DD

ξ(a) =
⋂r
k=1D

ξ(ak). Since{
ak
}r
k=1
⊆ D,

⋂
a∈DD

ξ(a) ⊆
⋂r
k=1D

ξ(ak). On the other hand, let c ∈
⋂r
k=1D

ξ(ak). Then

∀k = 1, ..., r, c · ak ≥ ξ. Let a ∈ D, so a =
∑r

k=1 λka
k where λk ∈ [0, 1],

∑r
k=1 λr = 1.

Then c · a = c ·
∑r

k=1 λka
k =

∑r
k=1 λk

(
c · ak

)
≥
∑r

k=1 λkξ = ξ, hence c ∈
⋂
a∈DD

ξ(a), i.e.⋂r
k=1D

ξ(ak) ⊆
⋂
a∈DD

ξ(a). The same arguments hold when substituting W ξ
a with H

ξ
a and

≥ with =.

To show that Algorithm 3.2 provides the desired updated beliefs, the following notation

is useful.

Notation A.1 Given E and h ∈ B, define the set of feasible acts comparable and indifferent
to h to be

JhB = {f ∈ B | f ∼ h and f = h on Ec} .

Proof of Proposition 3.2. HK showed (p.276, Proposition 5) that UDC∩PFI max is

defined by CE,g,B = {qE | q ∈ C and
∫

(u ◦ f) dqE ≥ minp∈KE,g,B
E

∫
(u ◦ g) dp for all f ∈ JgB},

where KE,g,B
E is the set of Bayesian conditionals on E of KE,g,B, the measures supporting

the conditional optimality of all acts initially optimal and comparable to g, defined by

KE,g,B ≡ {q ∈ C |
∫

(u ◦ g) dqE ≥
∫

(u ◦ f) dqE for all f ∈ B with f = g on Ec and∫
(u ◦ g) dqE =

∫
(u ◦ f) dqE if, in addition, f ∼ g}. We first show that u◦JgB = {a ∈ u◦B |

a = b on Ec, minq∈C
∑

s∈S asqs = o∗ =
∑

s∈S asq
g
s , where q

g ∈ QE,g,B∩arg minq∈C
∑

s∈S bsqs}
(see the proof of Proposition 3.1 for the definition of QE,g,B). To see this, note that if

a is an element of the r.h.s then a ∈ u ◦ JgB, because a ∈ u ◦ {f ∈ B | f = g on Ec} and
minq∈C

∑
s∈S asqs = minq∈C

∑
s∈S bsqs. For the other direction, suppose a ∈ u◦J

g
B. Existence

of qg ∈ QE,g,B ∩ arg minq∈C
∑

s∈S bsqs is guaranteed by Lemma A.1 of HK stated below.

Since a ∈ u ◦ JgB,
∑

s∈S bsq
g
s ≥

∑
s∈S asq

g
s by definition of Q

E,g,B. Thus minq∈C
∑

s∈S asqs =
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o∗ =
∑

s∈S bsq
g
s =

∑
s∈S asq

g
s and so a is an element of the r.h.s. In step 3.2.C, the first

intersection produces the measures in arg minq∈C
∑

s∈S bsqs, and the remaining intersections

ensure membership in QE,g,B. Given qg ∈ QE,g,B∩arg minq∈C
∑

s∈S bsqs, the first intersection

in step 3.2.D results in the set Ĵ ≡ ext({a ∈ u ◦ B | f = g on Ec and
∑

s∈S asq
g
s = o∗}).

The remaining intersections in step 3.2.D result in the set J̄ = ext[co(Ĵ ∩ {a ∈ R|S| |
∀q ∈ C,

∑
s∈S as (qs − qgs) ≥ 0})] = ext (u ◦ JgB). The fact that in step 3.2.D, it suffi ces to

apply a finite number of intersections (∀q ∈ C̄ and not ∀q ∈ C) follows from Proposition

A.1. Next observe that since KE,g,B
E = QE,g,B

E ∩ {q ∈ CE |
∑

s∈S (as − bs) qs = 0, ∀a ∈
u ◦ JgB}, K̄E = ext

(
KE,g,B
E

)
. Again, by Proposition A.1, it is suffi cient in step 3.2.E

to compute a finite number of intersections (∀a ∈ J̄ and not ∀a ∈ u ◦ JgB). Finally, by
definition of UDC∩PFI max and Proposition A.1, CE,g,B is the intersection of CE and the sets{
q ∈ CE |

∑
s∈S (as − β2) q (s) ≥ 0

}
for all a ∈ J̄ .

Lemma A.1 (HK, p.288, Lemma 3) For (%, E, g, B) ∈ T , QE,g,B∩arg minq∈C
∫

(u ◦ g) dq 6=
∅.

The following proposition is needed for the proof of Proposition 3.3.

Definition A.1 Let
RE,g,B = QE,g,B ∩ arg min

q∈C

∫
(u ◦ g)dq,

and RE,g,B
E be the set of Bayesian conditionals on E of measures in RE,g,B (see the proof of

Proposition 3.1 for the definition of QE,g,B).

Notation A.2 Given E and h ∈ A, define the set of acts comparable and indifferent to h
to be

Jh = {f ∈ A | f ∼ h and f = h on Ec} .

Proposition A.2 UDC∩RAmax is the update rule in UBayes such that5

CE,g,B = {qE | q ∈ C and
∫

(u ◦ f)dqE ≥ min
p∈RE,g,BE

∫
(u ◦ g)dp for all f ∈ Jg}.

Moreover, if u(X) = R,

CE,g,B = co

{
qE | q ∈ arg minp∈C

∫
(u ◦ h) dp for some h ∈ Jg

and, for that h,
∫

(u ◦ h)dqE ≥ minp∈RE,g,BE

∫
(u ◦ g)dp

}
.

5Without the assumption u(X) = R, the set argminp∈C
∫
(u ◦ g)dp should be replaced everywhere with

its superset
{
q ∈ C |

∫
(u ◦ f)dq ≥

∫
(u ◦ g)dq for all f ∈ Jg

}
. As can be shown (proof available from the

authors upon request), under the assumption u(X) = R, the Bayesian conditionals formed from the two sets
are the same. Notice that the latter set depends on E while the former does not.
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Definition A.2 An act f ′ is convexly related to an act f on E if ∃x ∈ X, λ ∈ [0, 1] such

that f ′ = λf + (1− λ)x or f = λf ′ + (1− λ)x on E.

Proof of Proposition A.2. The proof for the first characterization follows an argument
similar to the one in the proof of Proposition 5 in HK (p. 291) with RE,g,B playing the role of

KE,g,B. To prove the second characterization, let D0
E,g,B = {qE | q ∈ arg minp∈C

∫
(u ◦ f) dp

for some f ∈ Jg and, for that f ,
∫

(u ◦ f)dqE ≥ minp∈RE,g,BE

∫
(u ◦ g)dp}. Let C0

E,g,B =

co(D0
E,g,B). For any r ∈ RE,g,B, rE ∈ D0

E,g,B. Consider qE ∈ D0
E,g,B and associated act

f ∈ Jg and q ∈ arg minp∈C
∫

(u ◦ f) dp such that
∫

(u ◦ f)dqE ≥ minp∈RE,g,BE

∫
(u ◦ g)dp. For

such q and f and any h ∈ Jg,∫
(u ◦ h)dq ≥ min

p∈C

∫
(u ◦ h)dp = min

p∈C

∫
(u ◦ f) dp =

∫
(u ◦ f) dq,

thus
∫

(u ◦ h)dqE ≥
∫

(u ◦ f) dqE ≥ minp∈RE,g,BE

∫
(u ◦ g)dp. Since these inequalities are

preserved under convex combinations and closure, C0
E,g,B ⊆ CE,g,B and minp∈C0

E,g,B

∫
(u ◦

g)dp = minp∈CE,g,B
∫

(u ◦ g)dp. Moreover, we show that CE,g,B ⊆ C0
E,g,B. Suppose that

C0
E,g,B 6= CE,g,B. Since both sets are convex, there exists q̂ ∈ CE,g,B \C0

E,g,B on the boundary

of CE,g,B. Thus there exists f̂ ∈ Jg such that q̂ ∈ arg minp∈CE,g,B
∫

(u◦f̂)dp. Since q̂ /∈ C0
E,g,B,

there exists such f̂ for which
∫

(u ◦ f̂)dq̂ < minp∈C0
E,g,B

∫
(u ◦ f̂)dp. If there exists h ∈ Jg

convexly related to f̂ on E such that minp∈C0
E,g,B

∫
(u ◦ h)dp = minp∈CE,g,B

∫
(u ◦ g)dp then∫

(u ◦h)dq̂ < minp∈C0
E,g,B

∫
(u ◦h)dp = minp∈CE,g,B

∫
(u ◦ g)dp, contradicting q̂ ∈ CE,g,B. Thus

for any h ∈ Jg convexly related to f̂ on E, minp∈C0
E,g,B

∫
(u ◦ h)dp > minp∈CE,g,B

∫
(u ◦ g)dp.

Therefore for any such h and q∗ ∈ arg minp∈C
∫

(u◦h)dp,
∫

(u◦h)dq∗E > minp∈CE,g,B
∫

(u◦g)dp.

Thus q∗E ∈ D0
E,g,B. It follows that minp∈C0

E,g,B

∫
(u ◦ h)dp = minp∈C

∫
(u ◦ h)dpE by Lemma

A.2. But then, minp∈C
∫

(u ◦ h)dpE > minp∈CE,g,B
∫

(u ◦ g)dp, a contradiction. Therefore

C0
E,g,B = CE,g,B, as required.

Lemma A.2 Fix any f ∈ Jg and let Cf = {q ∈ arg minp∈C
∫

(u ◦ h)dp | h ∈ Jg convexly
related to f on E}. If u(X) = R, then infp∈Cf

∫
(u ◦ f)dpE = minp∈C

∫
(u ◦ f)dpE.

Proof. If u ◦ f is constant on E, then C = arg minp∈C
∫

(u ◦ f)dpE and the lemma

is trivially true. For the rest of the proof, we assume u ◦ f non-constant on E. For

such an act f ∈ Jg, define the function β : (0,∞) → R at each α > 0 by the so-

lution to minp∈C
∫

(α(u ◦ f) + β (α))E (u ◦ g)dp = minp∈C
∫

(u ◦ g)dp. Such a function

is well-defined because p (E) > 0 for all p ∈ C, and thus the left-hand side is strictly

monotonic in β (α). Now define the function q : (0,∞) → C such that, for α > 0,

q (α) ∈ arg minp∈C
∫

(α(u ◦ f) + β (α))E (u ◦ g)dp. We denote q (α) by qα. First we show
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that
∫

(u ◦ f)dqαE is non-increasing with α. Let α1 > α2 > 0. Then∫
(α1(u ◦ f) + β(α1))E (u ◦ g)dqα1 =

∫
(α2(u ◦ f) + β(α2))E (u ◦ g)dqα2

≤
∫

(α2(u ◦ f) + β(α2))E (u ◦ g)dqα1 ,

so (α1 − α2)
∫
E

(u ◦ f)dqα1 ≤ [β(α2) − β(α1)]qα1(E). Similarly, (α2 − α1)
∫
E

(u ◦ f)dqα2 ≤
[β(α1) − β(α2)]qα2(E). Thus

∫
(u ◦ f)dqα2

E ≥
β(α2)−β(α1)

α1−α2
≥
∫

(u ◦ f)dqα1
E , establishing that∫

(u ◦ f)dqαE is non-increasing with α. By observing that it is bounded, it follows that

infα>0{
∫

(u ◦ f)dqαE} exists and equals limα→∞{
∫

(u ◦ f)dqαE}.
By definition of β(α) and qα, for α > 0,

0 =
1

αqα(E)

[
min
p∈C

∫
(α(u ◦ f) + β(α))E (u ◦ g)dp−min

p∈C

∫
(u ◦ g)dp

]
=

∫
(u ◦ f)dqαE +

β(α)

α
+

1

αqα(E)
[

∫
Ec

(u ◦ g)dqα −min
p∈C

∫
(u ◦ g)dp].

From this, limα→∞{
∫

(u◦f)dqαE} = limα→∞{−β(α)
α
− 1
αqα(E)

[
∫
Ec

(u◦g)dqα−minp∈C
∫

(u◦g)dp]}.
Since

∫
Ec

(u ◦ g)dqα is bounded, limα→∞{ 1
αqα(E)

[
∫
Ec

(u ◦ g)dqα−minp∈C
∫

(u ◦ g)dp]} = 0, and

therefore, limα→∞{
∫

(u ◦ f)dqαE} = limα→∞{−β(α)
α
}. From minp∈C

∫
(α(u ◦ f) + β(α))E (u ◦

g)dp = minp∈C
∫

(u ◦ g)dp, subtracting β(α) from each state and dividing by α gives

min
p∈C

∫
(u ◦ f)E

(
(u ◦ g)− β(α)

α

)
dp =

1

α
[min
p∈C

∫
(u ◦ g)dp− β(α)]. (A.1)

Taking the limit as α→∞ on both sides of (A.1),

min
p∈C

∫
(u ◦ f)E( lim

α→∞
{−β(α)

α
})dp = lim

α→∞
{−β(α)

α
},

so

lim
α→∞
{−β(α)

α
} = min

p∈C

∫
(u ◦ f)dpE.

Hence infα>0{
∫

(u ◦ f)dqαE} = minp∈C
∫

(u ◦ f)dpE. If u(X) = R, then acts hα such that
u ◦ hα = (α(u ◦ f) + β(α))E (u ◦ g) exist for all α > 0 and each such hα is convexly related

to f on E and hα ∈ Jg. Therefore, in this case, infp∈Cf
∫

(u ◦ f)dpE = infα>0{
∫

(u ◦ f)dqαE}
and the lemma is proved.

Proof of Proposition 3.3. If q(E) = 1 for all q ∈ C, then Step 3.3.D produces

co(C̄E) = co(C̄), which by inspection of DC and RA, are the updated beliefs produced by
UDC∩RAmax in this case. From here on, suppose q(E) < 1 for some q̄ ∈ C. Let xE

c ∈ X
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be a constant act for which u(xE
c
) =

∫
Ec

(u ◦ g) dq̄Ec . We need to prove that CE,g,B has as

members the Bayesian updates qE of all q ∈ C satisfying (1) q(E) ≤ qg(E) if g � xE
c
,

(2) q(E) ≥ qg(E) if xE
c � g, or (3) no further restrictions if g ∼ xE

c
. We use the second

description of CE,g,B presented in Proposition A.2. We first show that measures q that

violate (1)-(3) are not updated. Let f ∈ Jg and let q ∈ arg minp∈C
∫

(u ◦ f) dp. Also let

β3 ≡ minp∈RE,g,BE

∫
(u ◦ g) dp, i.e. β3 =

∫
(u ◦ g) dqgE. Observe that since q

g ∈ RE,g,B, qg ∈
arg minp∈C

∫
(u ◦ g) dp. Also note that xE

c % g implies that β3 ≤ u(xE
c
), which is immediate

if qg(E) = 1, and follows also when qg(E) < 1 because 0 ≥
∫

(u ◦ g) dqg −
∫
Ec

(u ◦ g) dqgEc =∫
E

(u ◦ g) dqg − qg(E)
qg(Ec)

∫
Ec

(u ◦ g) dqg = qg(E)
(∫

E
(u ◦ g) dqgE − u(xE

c
)
)
. Adding f ∈ Jg, we

have

0 = min
p∈C

∫
(u ◦ f) dp−min

p∈C

∫
(u ◦ g) dp

=

(∫
E

(u ◦ f) dq +

∫
Ec

(u ◦ g) dq

)
−
(∫

E

(u ◦ g) dqg +

∫
Ec

(u ◦ g) dqg
)

=

[
q(E)

(∫
E

(u ◦ f) dqE − u(xE
c

)

)
+ u(xE

c

)

]
−
[
qg(E)

(
β3 − u(xE

c

)
)

+ u(xE
c

)
]

= q(E)

(∫
E

(u ◦ f) dqE − u(xE
c

)

)
− qg(E)

(
β3 − u(xE

c

)
)

by hypothesis. So q(E)
(∫

E
(u ◦ f) dqE − u

(
xE

c))
= qg(E)

(
β3 − u

(
xE

c)) ≤ 0. Thus, if

g ∼ xE
c
, then

∫
E

(u ◦ f) dqE = u
(
xE

c)
= β3 = minp∈RE,g,BE

∫
(u ◦ g) dp. If xE

c � g, all

inequalities are strict and thus
∫
E

(u ◦ f) dqE ≥ minp∈RE,g,BE

∫
(u ◦ g) dp⇔ q(E) ≥ qg(E). A

similar argument implies that if g � xE
c
,
∫
E

(u ◦ f) dqE ≥ minp∈RE,g,BE

∫
(u ◦ g) dp⇔ q(E) ≤

qg(E). We now show that measures q that satisfy (1)-(3) are updated. First note that for

any f ∈ A such that f = g on Ec and q ∈ C,∫
(u ◦ f) dq =

∫
E

(u ◦ f) dq + q(Ec)u(xE
c

) =

∫
u ◦
(
fEx

Ec
)
dq. (A.2)

If g ∼ xE
c
, then by taking f = xE

c

Eg and using equality (A.2) above we get f ∼ g and so

f ∈ Jg, and moreover ∀q ∈ C, q ∈ arg minp∈C
∫

(u ◦ f) dp. So ∀q ∈ C, qE ∈ CE,g,B, thus

establishing (3). To prove (2), Suppose that xE
c � g. Note that for any q ∈ C, if there

exist q̃ ∈ C, λ > 1 : q̃(F ) = λq(F ),∀F ⊆ E, then q and q̃ have the same update, so it is

suffi cient to consider q such that @q̃ ∈ C, λ > 1 : q̃(F ) = λq(F ), ∀F ⊆ E. By Lemma A.3

which is proven below, for such q, if q(E) ≥ qg(E), then there exists f ∈ A constant on Ec,

such that q ∈ arg minq′∈co(C∪∆(Ec))

∫
(u ◦ f) dq′. So

∫
(u ◦ f) dq ≤ u (f(Ec)) since ∆(Ec) ⊆

co (C ∪∆(Ec)). By closure of CE,g,B it is suffi cient to consider the case of strict inequality,

so 0 >
∫

((u ◦ f)− u(f(Ec))) dq = b
(
I[u ◦ g]− u

(
xE

c))
for some b > 0. Let fExE

c ∈ A be
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such that u ◦ fExE
c

= 1
b

((u ◦ f − f(Ec)) + u(xE
c
). Thus q ∈ arg minq′∈C

∫
u ◦ (fEx

Ec)dq′

and
∫
u ◦ (fEx

Ec)dq = I[u ◦ g], so fExE
c ∼ g, which by equality (A.2) implies that fEg ∼ g.

Denoting f ′ = fEg, we get f ′ ∈ Jg. Then
∫
E

(u ◦ f ′) dqE ≥ minp∈RE,g,BE

∫
(u ◦ g) dp by

q(E) ≥ qg(E) and the property initially proved, so qE ∈ CE,g,B.
The proof of case (1), where g � xE

c
, is similar with the change (in Lemma A.3 and in the

rest of the proof) that q satisfies q(E) ≤ qg(E) and @q̃ ∈ C, λ ∈ [0, 1) : q̃(F ) = λq(F ), ∀F ⊆
E, and co (C ∪∆(Ec)) is replaced by C ′ ≡ {λq′′ + (1− λ)η : q′′ ∈ C, η ∈ ∆(Ec), λ ≥ 1}.
Thus ∃f ′ ∈ A constant on Ec such that q ∈ arg minq′∈C′

∫
(u ◦ f ′) dq′, so

∫
(u ◦ f) dq >

u (f(Ec)) since f ′ separates C ′ from ∆(Ec) and then 0 <
∫

((u ◦ f)− u(f(Ec))) dq =

b
(
I[u ◦ g]− u

(
xE

c))
for some b > 0.

Lemma A.3 Let q ∈ C such that @q̃ ∈ C, λ > 1 : q̃(F ) = λq(F ),∀F ⊆ E. Then there exists

an act f ∈ A which is constant on Ec, such that q ∈ arg minq′∈co(C∪∆(Ec))

∫
(u ◦ f) dq′.

Proof of Lemma A.3. If q(E) = 1, then any f ∈ A such that u ◦ f = 0E1 suffi ces,

because
∫

(u ◦ f) dq′ ≥ 0 for all q′ ∈ co(C ∪ ∆(Ec)) and
∫

(u ◦ f) dq = 0. From here

on, suppose q(E) < 1. Consider the set Ψ(q) ≡ {q′ : q′(F ) = q(F ),∀F ⊆ E} (note that
C ∩ Ψ(q) 6= ∅). First assume Int(co (C ∪∆(Ec))) ∩ Ψ(q) 6= ∅, i.e. there exists an interior
point of co (C ∪∆(Ec)), q′′, which satisfies q′′(F ) = q(F ),∀F ⊆ E. Then ∃ε > 0 : q̃ ≡

(1+ε)q′′−ε

0, ..., 0︸ ︷︷ ︸
E

,
1

|Ec| , ...,
1

|Ec|︸ ︷︷ ︸
Ec

 ∈ co (C ∪∆(Ec)). Setting λ = 1+ε > 1, we get q̃(F ) =

λq(F ),∀F ⊆ E, which contradicts the initial condition. So Int(co (C ∪∆(Ec))) ∩Ψ(q) = ∅.
Thus there exists a hyperplane H which contains Ψ(q) and supports co(C ∪∆(Ec)) at any

point in co (C ∪∆(Ec)) ∩ Ψ(q). Let us now take a normal u ◦ f to H. Since H contains

Ψ(q), it must be true that
∫

(u ◦ f) d (q − q′) = 0 for all q′ ∈ Ψ(q). So

0 =

∫
(u ◦ f) dq −

∫
(u ◦ f) dq′ =

∫
Ec

(u ◦ f) dq −
∫
Ec

(u ◦ f) dq′,

since q and q′ are identical on E. Thus
∫
Ec

(u ◦ f) dq′ is constant regardless of the choice

of q′. Let s ∈ Ec, and let q′s be such that q
′
s(F ) =

{
q(F ), F ⊆ E

q(Ec), s ∈ F ⊆ Ec
, so q′s ∈ Ψ(q),

∀s ∈ Ec. Thus ∀s, ŝ ∈ Ec, we have
∫
Ec

(u ◦ f) dq′s =
∫
Ec

(u ◦ f) dq′ŝ =⇒ u ◦ f(s) = u ◦ f(ŝ)

, i.e. u ◦ f is constant on Ec and therefore f can be chosen to be constant on Ec.

Algorithm A.1 (Step 3.3.D’) Fix some ξ ∈ (0, 1). Let Ā = ∅. For each pair q1, q2 ∈ C̄,
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solve the linear program,

maxa∈R|E| K
0 ·
∑

s∈E(as − β3)q2
s

s.t.∑
s∈S(aEb)sqs ≥ o∗ ∀q ∈ C̄∑
s∈S(aEb)s [ξq1

s + (1− ξ)q2
s ] = o∗∑

s∈E(as − β3)q1
s ≥ 0,

(P*)

where β3 ≡
∑

s∈E bs (qgE)s and K0 = 1 if K ≥ 0 and K0 = −1 if K < 0, for K ≡
o∗ −

∑
s∈S[(β31)Eb]s (ξq1

s + (1− ξ)q2
s).

Consider only pairs (q1, q2) for which (P*) is feasible. If (P*) is unbounded, then add ξq1 +

(1− ξ) q2 to Ā. Otherwise, let a∗ ∈ arg max(P*). If
∑

s∈E(a∗s − β3)q2
s ≥ 0, then add q1, q2

to Ā. Otherwise, add α∗(q1,q2)q
1 +

(
1− α∗(q1,q2)

)
q2 to Ā, where α∗(q1,q2) =

∑
s∈E(a∗s−β3)q2

s∑
s∈E(a∗s−β3)(q2

s−q1
s)
.

Compute ŪE ≡ ext({qE | q ∈ Ā). Return co(ŪE).

Proposition A.3 If u(X) = R, Algorithm 3.3 with Step 3.3.D’replacing Step 3.3.D re-

sults in the updated set of measures, CE,g,B, produced by the update rule UDC∩RAmax.

The following proposition is needed for the proof of Proposition A.3. In Proposition A.2,

the condition [q ∈ arg minp∈C
∑

s∈S asps for some a ∈ u ◦ Jg] will be referred to as condition
1. For q which satisfy condition 1 with the vector a, the condition [

∑
s∈E as (qE)s ≥ β3 ≡

minp∈RE,g,BE

∑
s∈E bsps] will be referred to as condition 2. The following proposition elucidates

the geometric properties of the updated beliefs.

Proposition A.4 If u(X) = R, CE,g,B for UDC∩RAmax equals the convex hull of Bayesian

conditionals of

(a) Extreme points of C satisfying conditions 1 and 2.

(b) Non-extreme Boundary points of C which are convex combinations of two extreme points

satisfying condition 1 with the same vector a, and for which condition 2 is satisfied with an

equality.

Proof of Proposition A.4. Denote by D the set of measures satisfying (a) or (b). Let

CE = {q | q ∈ arg minp∈C
∑

s∈S asps for some a ∈ u ◦ Jg and
∑

s∈E (as − β3) qs ≥ 0}. Since
condition 2 is equivalent to

∑
s∈E (as − β3) qs ≥ 0, D ⊆ CE, thus co(D) ⊆ co(CE). We will

show that co(D) = co(CE). We first show that an updated boundary point must be a proper

(positive weight) convex combination of extreme points of C satisfying condition 1 with the

same a. Any such boundary point q can be expressed as a proper convex combination of a

set A of extreme points of C, i.e. q =
∑

i∈A λiq
i. Suppose that q satisfies condition 1 using

25



the vector a and assume by contradiction that
∑

s∈S asq
j
s > minp∈C

∑
s∈S asps =

∑
s∈S asqs

for some j ∈ A. Then
∑

s∈S asq
′
s <

∑
s∈S asqs for q

′ ≡ 1
1−λj

∑
i∈A\{j} λiq

i, contradicting

q ∈ arg minp∈C
∑

s∈S asps. Thus q
i ∈ arg minp∈C

∑
s∈S asps for all i ∈ A. Next we show that

for each edge (convex hull of two extreme points entirely on the boundary) of C, the subset of

updated points in this edge is convex. By the arguments above, it is suffi cient to consider the

case where both the edge’s vertices satisfy condition 1. Let R be an edge of C, such that one

of its vertices, q1, satisfies conditions 1 and 2, and the other, q2, satisfies only condition 1. If

no point in R other than q1, q2 satisfies condition 1, then only q1 gets updated, so this forms a

convex set. Now suppose that there exists a point in R other than q1, q2 satisfying condition

1. Let P (R) denote the set {a ∈ u ◦ {f ∈ A with f = g on Ec} | q′ ∈ arg minp∈C
∑

s∈S asps

for all q′ in R}. By the arguments above, P (R) is non-empty. For each a ∈ P (R), there

exists a half-space
∑

s∈E (as − β3) qs ≥ 0 corresponding to condition 2. This half-space

does not contain the entire edge R, for if it did, every point in R would get updated,

contrary to our assumption. So the intersection between the half-space and R must be a

set of the form {αq1 + (1− α)q2 | αaR ≤ α ≤ 1} (the weak inequality follows from closure

of CE,g,B), where αaR > 0 is the weight satisfying
∑

s∈E (as − β3) (αaRq
1
s + (1− αaR)q2

s) = 0.

Each vector a ∈ P (R) has a unique corresponding weight αaR. Thus the set of points in R

which are updated is {αq1 + (1− α)q2 | α∗R ≤ α ≤ 1}, where α∗R ≡ infa∈P (R) α
a
R. This set is

convex. Now consider a facet Q (convex hull of at least three extreme points entirely on the

boundary) of C such that all of its vertices satisfy condition 1, and some vertices, but not all,

satisfy condition 2. Let D1(Q) denote the set of updated extreme points of Q, and let D2(Q)

denote the set of points of the form α∗Rq
1 + (1− α∗R)q2 in Q. We show that the set of points

of Q which are updated is exactly co (D2(Q) ∪D1(Q)), implying that co (D) = co(CE).

As we have seen above, it is impossible for a point to be updated, which is of the form

αq1 + (1 − α)q2, where q1 and q2 are the vertices of an edge R of Q, q2 does not satisfy

condition 2, and α < α∗R, so assume int [Q \ co (D2(Q) ∪D1(Q))] is non-empty. Consider

a point q ∈ int [Q \ co (D2(Q) ∪D1(Q))], and assume by contradiction that q is updated.

Then there exists a vector a ∈ u◦{f ∈ B | f = g on Ec} such that q ∈ arg minp∈C
∑

s∈S asps

and
∑

s∈E (as − β3) qs ≥ 0. It follows from the same argument used earlier, that any q′ ∈ Q
also belongs to arg minp∈C

∑
s∈S asps. Moreover, the half-space corresponding to condition

2 intersects any edge R of Q in co (D2(Q) ∪D1(Q)), so the half-space intersects the whole

facet Q in co (D2(Q) ∪D1(Q)). But this contradicts the assumption on q, completing the

proof.

Proof of Proposition A.3. By construction of qgE, β3 = minp∈RE,g,BE

∫
(u ◦ g) dp. De-

note
∑

s∈E(as−β3)q1
s by θ1 (a) and

∑
s∈E(as−β3)q2

s by θ2 (a). The following is proved based

on Proposition A.4.
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(1) If q1 = q2, we show that (P*) is bounded and moreover q1 = q2 is updated if and

only if (P*) is feasible with non-negative value. Since the second constraint in (P*) im-

plies that K = θ2 (a), θ2 (a) is fixed, so the program is bounded. Assume it is feasible.

The first and second constraints mean that there exists a vector aEb such that q1 = q2 ∈
arg minp∈C

∑
s∈S (aEb)s ps. The second constraint means that minq∈C

∑
s∈S (aEb)s qs = o∗,

hence aEb ∈ u◦Jg and condition 1 holds. The third constraint means that condition 2 holds
for q1 = q2, thus q1 = q2 is updated. On the other hand, if q1 = q2 is updated, it follows

immediately from conditions 1 and 2 that (P*) is feasible.

(2) If q1 6= q2, there are several mutually exclusive and exhaustive cases:

a. If q1, q2 fail to satisfy condition 1 with the same a (whether or not they are updated), we

show that (P*) is infeasible. Assume by contradiction that (P*) is feasible. Then verity of

the first and second constraints means that there exists a vector aEb ∈ u◦{f ∈ A with f = g

on Ec} such that ξq1 +(1−ξ)q2 ∈ arg minp∈C
∑

s∈S (aEb)s ps, and so due to arguments shown

in the proof of Proposition A.4, both q1, q2 belong to arg minp∈C
∑

s∈S (aEb)s ps. Verity of

the second constraint means that minp∈C
∑

s∈S (aEb)s ps = o∗, so q1, q2 satisfy condition 1

with the same a - a contradiction.

b. If only q2 is updated and q1 satisfies condition 1 with equal a but violates condition 2,

then (P*) is infeasible. This follows again from contradiction of the third constraint.

c. If only q1 is updated and q2 satisfies condition 1 with equal a but violates condition 2,

observe the following. First, by the same arguments as above, (P*) is feasible. We minimize

αaR for R = co{q1, q2} (see the proof of Proposition A.4). Since K = ξθ1 (a) + (1− ξ) θ2 (a),

we have θ1 (a) = 1
ξ

(K − (1− ξ) θ2 (a)). Thus
∑

s∈E (as − β3) (αaRq
1
s +(1−αaR)q2

s) = 0 implies

αaR =

∑
s∈E(as − β3)q2

s∑
s∈E(as − β3)(q2

s − q1
s)

=
θ2 (a)

θ2 (a)− θ1 (a)
=

θ2 (a)

θ2 (a)− K
ξ

+ 1−ξ
ξ
θ2 (a)

=
ξθ2 (a)

θ2 (a)−K .

By the assumption on q1 and q2, for all feasible a, θ1 (a) ≥ 0 and θ2 (a) < 0. Consequently K

could be of any sign, depending on the choice of ξ, so the behavior of the above expression as

a function of θ2 (a) depends on the sign of K. If K ≥ 0 (and so K0 = 1), then the function is

non-increasing, so minimization of αaR is equivalent to maximization of K
0 · θ2 (a). If K < 0

(thus K0 = −1), the function is increasing, so minimization of αaR is equivalent to minimiza-

tion of θ2 (a), or, again, maximization of K0 · θ2 (a). Observe that αaR ∈ (0, ξ] for all feasible

a iffK ≥ 0, in which case the problem is bounded from above by 0, otherwise there would

exist a′ for which θ2 (a′) ≥ 0, contradicting the assumption on q2. Similarly, αaR ∈ (ξ, 1] for

all feasible a iffK < 0. If the problem is not bounded, θ1 (a) tends to∞ and θ2 (a) tends to

−∞. Then ξθ2(a)
θ2(a)−K tends to ξ (from above), which means that α

∗
(q1,q2) ≡ infa∈P (q1,q2) α

a
R = ξ.

d. If q1, q2 are updated with equal a, we show that K ≥ 0, and (P*) is feasible and
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bounded with non-negative value. To see that, first observe that K = ξθ1 (a)+(1− ξ) θ2 (a),

and θ1 (a) , θ2 (a) ≥ 0, so K ≥ 0. Since q1 and q2 satisfy condition 1 with the same

a, and since aEb ∈ u ◦ Jg, the second constraint holds. The fact that both q1, q2 be-

long to arg minp∈C
∑

s∈S (aEb)s ps implies
∑

s∈S (aEb)s q
1
s ≤

∑
s∈S (aEb)s q

i
s, ∀qi ∈ C̄ and∑

s∈S (aEb)s q
2
s ≤

∑
s∈S (aEb)s q

i
s, ∀qi, so

∑
s∈S (aEb)s (ξq1 + (1− ξ)q2)s ≤

∑
s∈S (aEb)s q

i
s, ∀qi,

i.e. the first constraint holds. The third constraint holds because q1 is updated. Thus a is

feasible and so (P*) is feasible. Since the second constraint holds,K = ξθ1 (a)+(1− ξ) θ2 (a),

and since θ1 (a) ≥ 0, θ2 (a) is bounded from above, and so the program is bounded. Note

that since K ≥ 0, K0 = 1 and the program results in a∗ such that
∑

s∈E(a∗s − β3)q2
s ≥ 0.

B Appendix: algorithms from polyhedral theory

This appendix includes several algorithms, known from polyhedral theory (Goodman and

O’Rourke 2004), that can be used within the algorithms for computing updated beliefs.

B.1 The irredundancy problem; or, extracting a set’s extreme

points

Given a finite set H ⊆ R|S|, the following algorithm can be used to compute the set

ext[co(H)].

Algorithm B.1 If |H| ≤ 2, return H. Otherwise, for each h ∈ H, apply the linear feasibil-
ity program, with variable α ∈ [0, 1]|H|,

∑
h̄∈H\h αh̄h̄s = hs , ∀s ∈ S∑
h̄∈H\h αh̄ = 1,

(P (h))

and return {h ∈ H | P (h) is infeasible}.

B.2 A general algorithm for computing an intersection

Let A ⊆ R|S| be a convex, compact set such that ext(A) is finite. The following algo-

rithm finds the set of extreme points of the intersection of A with a finite collection of half

spaces {W ξk

ak
}rk=1.

Algorithm B.2 Set k = 1, D̄k = ext(A). Apply the following subroutine:

(i) LetDk
1 =

{
c ∈ D̄k | ak · c ≥ ξk

}
, Dk

2 = {c = ξk−ak·c2
ak·(c1−c2)

(c1−c2)+c2 | (c1, c2) ∈ (D̄k)2,
(
ak · c1 − ξk

)
·(

ak · c2 − ξk
)
< 0}.
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(ii) Find Ēk ≡ ext[co
(
Dk

1 ∪Dk
2

)
] using Algorithm B.1.

(iii) If k = r stop and return Ē = Ēr. Otherwise let D̄k+1 = Ēk, k = k + 1. Return to (i).

Lemma B.1 Let A and D be convex sets such that A ∩ D is compact. Then any extreme

point of A ∩D is either an extreme point of A or D, or it belongs to the boundaries of both

A and D.

Proof. Let c be an extreme point of A ∩ D for which this is false. Since c does not

belong to the boundary of one of the sets (say D), there exists a neighborhood Bε (c) of c

such that Bε (c) ⊂ D. Since c is not an extreme point of A, there exist c1, c2 ∈ A ∩ Bε (c)

such that c is a convex combination of c1 and c2. But A∩Bε (c) ⊂ A∩D, so c cannot be an
extreme point of A ∩D - a contradiction.

Proposition B.1 Algorithm B.2 finds the set of extreme points of A ∩rk=1 W
ξk

ak
.

Proof. It is suffi cient to show that iteration k results in the set of extreme points of
A ∩kj=1 W

ξj

aj
. Consider D̄k, the set of extreme points of A ∩k−1

j=1 W
ξj

aj
, and consider the half-

space W ξk

ak
. For all c ∈ Dk

2 , a
k · c = ξk−ak·c2

ak·(c1−c2)
ak · (c1 − c2) + ak · c2 = ξk. Thus members of

Dk
2 lie on the boundary of A ∩kj=1 W

ξj

aj
. In addition, any q ∈ Dk

1 is clearly in A ∩kj=1 W
ξj

aj
, so

Ēk ⊆ A ∩kj=1 W
ξj

aj
. Since A ∩kj=1 W

ξj

aj
is a convex set, it follows that co(Ēk) ⊆ A ∩kj=1 W

ξj

aj
.

Assume by contradiction that A ∩kj=1 W
ξj

aj
* co(Ēk). Since both A ∩kj=1 W

ξj

aj
and co(Ēk) are

compact, there exists an extreme point c′ of A ∩kj=1 W
ξj

aj
such that c′ /∈ co(Ēk). c′ cannot

be an extreme point of A ∩k−1
j=1 W

ξj

aj
, since then it would have belonged to Dk

1 ⊆ Ēk. Thus,

by Lemma B.1, c′ belongs to the intersection of the boundaries of A ∩k−1
j=1 W

ξj

aj
and W ξk

ak
,

so it must belong to the hyperplane Hξk

ak
≡
{
c ∈ R|S| | ak · c = ξk

}
. c′ cannot be a convex

combination of two points in D̄k, because then it would have belonged to Dk
2 . Moreover,

c′ /∈ co(D̄k), because then Hξk

ak
would include other such combinations which are therefore

in A ∩kj=1 W
ξj

aj
, c′ being their convex combination - a contradiction. Thus c′ /∈ A ∩k−1

j=1 W
ξj

aj
,

a contradiction. It follows that A ∩kj=1 W
ξj

aj
⊆ co(Ēk), thus co(Ēk) = A ∩kj=1 W

ξj

aj
. Since

Ēk = ext[co(Ēk)], Ēk = ext
(
A ∩kj=1 W

ξj

aj

)
. Note that it is possible that the intersection

sought is empty, in which case Dk
1 and D

k
2 are empty for all iteration starting from some

iteration k′.

Corollary B.1 To find the set of extreme points of A ∩rk=1 H
ξk

ak
, Algorithm B.2 can be used

with the change that Dk
1 =

{
c ∈ D̄k | ak · c = ξk

}
. Alternatively, one can use Algorithm B.2

to find the set of extreme points of A ∩rk=1 W
ξk

ak
∩rk=1 W

ξk

−ak .
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