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Abstract. Consider a canonical problem in choice under uncertainty: choosing from a
convex feasible set consisting of all (Anscombe—Aumann) mixtures of two acts f and g,
{of + (1 - a)g: a€[0,1]}. We propose a preference condition, monotonicity in optimal
mixtures, which says that surely improving the act f (in the sense of weak dominance)
makes the optimal weight(s) on f weakly higher. We use a stylized model of a sales agent
reacting to incentives to illustrate the tight connection between monotonicity in optimal
mixtures and a monotone comparative static of interest in applications. We then explore
more generally the relation between this condition and preferences exhibiting ambiguity-
sensitive behavior as in the classic Ellsberg paradoxes. We find that monotonicity in
optimal mixtures and ambiguity aversion (even only local to an event) are incompatible
for a large and popular class of ambiguity-sensitive preferences (the c-linearly biseparable
class. This implies, for example, that maxmin expected utility preferences are consistent
with monotonicity in optimal mixtures if and only if they are subjective expected utility
preferences. This incompatibility is not between monotonicity in optimal mixtures and
ambiguity aversion per se. For example, we show that smooth ambiguity preferences can
satisfy both properties as long as they are not too ambiguity averse. Our most general result,
applying to an extremely broad universe of preferences, shows a sense in which monotonicity

in optimal mixtures places upper bounds on the intensity of ambiguity-averse behavior.
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1. Introduction

This paper proposes and investigates a preference
condition, monotonicity in optimal mixtures, having
particular relevance for comparative statics of be-
havior under ambiguity-sensitive preferences. The
canonical way to represent the options a decision
maker considers under uncertainty is to use acts,
functions mapping states of the world to outcomes
(which, in the standard Anscombe-Aumann setting
adopted by this paper, may themselves be lotteries
over more basic outcomes). Consider the set of acts
generated from all (Anscombe-Aumann) mixtures of
twoacts f and g: {af + (1 — a)g : a € [0, 1]} and think of
preferences over this set as inducing preferences over
a. As one varies the acts f and g under consideration,
the resulting preferences over a would be expected to
change. A natural monotone comparative static to
consider is that surely improving one of the acts (say, f),
in the sense of state-by-state (weak) dominance, raises
the optimal weight a placed on it. Monotonicity in
optimal mixtures says that improving the act f in the
sense of weak dominance makes the (set of) optimal
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weight(s) on f weakly higher. All subjective expected
utility (SEU) preferences satisfy monotonicity in optimal
mixtures (see Section 5 or Proposition 1).

For preferences as in Ellsberg’s (1961) classic par-
adoxes, there is another force that might influence
preferences over a. Acts corresponding to interme-
diate weights @ may have value as a hedge against
ambiguity when f and g perform well under different
distributions as, for example, when f corresponds to
winning a prize only if a red ball is drawn, g corresponds
to winning only if a blue ball is drawn, the compo-
sition of red versus blue balls is unknown, and 1 f+1¢
corresponds to a sure 50% chance of winning a prize.

What are the implications of monotonicity in op-
timal mixtures for preferences? We address this in the
context of a broad and axiomatically well understood
universe of preferences (the monotonic, Bernoullian,
and Archimedean or MBA preferences of Cerreia-
Vioglio et al. 2011) that contains the vast majority
of extant models of ambiguity-sensitive preferences
(as well as the standard, ambiguity-neutral SEU model).
We first show that the implications are stark for a large
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and popularly applied subclass of these preferences—
the c-linearly biseparable preferences of Ghirardato
and Marinacci (2001), which encompass maxmin ex-
pected utility (MEU) (Gilboa and Schmeidler (1989),
Choquet expected utility (Schmeidler 1989), a-MEU
(Ghirardato et al. 2004) preferences, and more—for
example, monotonicity in optimal mixtures and ambi-
guity aversion (even only local to a particular event) are
shown to be incompatible for all such preferences. We
show they are compatible for some MBA preferences,
which we establish using the smooth ambiguity model
(Klibanoff et al. 2005). For these preferences, mono-
tonicity in optimal mixtures is satisfied when relative
ambiguity aversion is not too large (Theorems 3 and 4).
Finally, our most general result examines all MBA
preferences and shows a sense in which monotonicity
in optimal mixtures places upper bounds on the in-
tensity of ambiguity-averse behavior (Theorem 5).
When utility is unbounded above, these bounds are
violated, for example, by all variational preferences
(Maccheroni et al. 2006) that are not SEU.

Though we view monotonicity in optimal mixtures
as a reasonable property of preferences, the purpose
of the paper isnot to advocate for it as either anormative
or descriptive requirement. Rather, we see it primarily
as an informative comparative static property. Our
theoretical results, thus, give insight into the com-
parative static consequences of different models of
ambiguity-sensitive behavior relevant in a variety of
managerial settings.

As an example of such insight, our compatibility
results for the smooth ambiguity model are closely
related to work on comparative statics of portfolios of
random variables (risky assets) under expected util-
ity, addressing the question of when any first-order
stochastically dominant shift in the (conditional on
any realization of the other assets) distribution of an
asset will result in a risk-averse expected utility in-
vestor increasing that asset’s share in the optimal
portfolio (see Fishburn and Burr Porter 1976, Hadar
and Seo 1990, Meyer and Ormiston 1994, Mitchell and
Douglas 1997, and the discussion following Remark 3
in Section 6.2). Moreover, our results on incompati-
bilities could be applied back to that literature to yield
new results on comparative statics for various non-
expected utility models of choice under risk. For in-
stance, any nonexpected utility model relying on
convex preferences with kinks—for example, rank-
dependent expected utility (Quiggin 1982) with con-
cave utility and probability transformation func-
tion—must sometimes lead a first-order stochastic
improvement to reduce that asset’s share in the op-
timal portfolio. Furthermore, our results imply that, ina
more realistic setting in which asset payoffs depend on
events for which objective probabilities are not given,
even risk-neutral investors cannot be too ambiguity

averse if such reductions in share are never to occur.
Though all of our results are shown independently of
the risk aversion (or lack thereof) of the individual,
in the context of this portfolio application, it is inter-
esting to note that Fox et al. (1996) find evidence of the
combination of risk neutrality with sensitivity to
ambiguity among professional options traders.

Another domain of insight from our results can be
seen in Auster (2014, 2018), concerning bilateral trade
under ambiguity about quality. Optimal offer be-
havior on the part of an ambiguity-averse buyer
derived there involves hedging-motivated mixing
between a pooling price and a price that will be ac-
cepted only by a low-quality seller. One comparative
static Auster examines is what happens to the mixing
weight as the buyer’s valuation of the high-quality
seller’s good increases. This corresponds to an im-
provement in the payoff to the pooling price in the
sense of weak dominance. When the buyer has MEU
preferences that are not SEU, in line with our result
(Proposition 1) on incompatibility with monotonicity
of optimal mixtures, there are many cases in which the
optimal response is to offer the pooling price less
often. Our upper bound result (Theorem 5) and our
results on the smooth ambiguity model (Theorems 3
and 4) explain why such behavior could occur only
with sufficiently strong ambiguity aversion.

As a further illustration of the link between mono-
tonicity in optimal mixtures and behavior in managerial
settings, we present a stylized model of a sales agent
reacting to incentives designed to guide the agent’s
choice of which sales prospect to work on. In Section 2,
we describe the sales agent model and illustrate how
a key comparative static may or may not hold depend-
ing on the ambiguity-averse preferences attributed to
the agent.

After describing the formal setting, notation, and
MBA preferences in Sections 3 and 4, we define and
discuss the monotonicity in optimal mixtures con-
dition in Section 5, in which we also return to the sales
agent application and show there is an equivalence
between the key comparative static previously men-
tioned and monotonicity in optimal mixtures (see
Theorem 1). The main results on the implications of
monotonicity in optimal mixtures are in Section 6. A
brief final section concludes. An appendix contains
the axioms characterizing MBA preferences.

2. A Sales Agent Model:

A Motivating Example
A firm employs a sales agent who can devote effort
toward completing one of two possible sales. The
returns to effort are such that it takes the agent’s full
effort to generate a chance that a sale will be suc-
cessful so thatitis never optimal for the agent to work
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on both sales. Sale 1, if successfully completed, leads
to revenue of v; > 0 for the firm. If unsuccessful, the
revenue for the firm would be zero. Similarly, the firm
makes v, > 0 if sale 2 is successfully completed and
otherwise zero. The model includes four possible
states of the world {sy, s, 53,54} corresponding to the
four possible combinations of success or failure of
the two sales if worked on. If the true state of the
world s is equal to s1, it means sale 1 will be successful
when the sales agent works on sale 1 and sale 2 will
not be successful even if the agent works on it. Sim-
ilarly, s = s, indicates the opposite, s = s3 indicates
each sale would be successful if worked on, and s =s4
correspond to neither sale being successful if worked
on. The firm uses commissions /bonuses to encourage
the agent to pursue those sales prospects that are most
attractive from the firm'’s point of view. Specifically,
the compensation for the agent is as follows: if the
agent completes sale i successfully, the agent receives
a payment w(v;), where w(:) is the nonnegative com-
pensation scheme chosen by the firm. Table 1 sum-
marizes the agent’s payoffs.

A strategy for a sales agent specifies a probability g
of working on sale 1 (and, thus, 1 — g of working on
sale 2). The best strategy for the agent varies with the
compensation levels w(v;) and w(v;) and the prefer-
ences (including beliefs) of the agent. Taking these
preferences as given, let g*(w(v1), w(v,)) denote the
optimal strategy (or, in cases of nonuniqueness, the
set of all optimal strategies) of the sales agent as a
function of w(v;) and w(vy) as they vary across all
nonnegative payment levels. Assuming that the agent
prefers more compensation to less, 4* is nondecreasing
in w(v1) and nonincreasing in w(v,) for any agent with
SEU preferences. Will these comparative statics con-
tinue to hold for an ambiguity-sensitive agent? In
the next two sections, we provide examples that show
the answer depends on aspects of the agent’s pref-
erences beyond simply whether the agent is ambi-
guity averse. Later in the paper, after the relevant
concepts have been formally introduced, we return to
these comparative statics. Assuming more compen-
sation is preferred to less, we show in Theorem 1 in
Section 5 that the sales agent is responsive in this
manner to compensation if and only if the agent’s
preferences satisfy monotonicity in optimal mixtures
on the space of feasible acts for the agent. Thus, these

Table 1. Sales Agent’s Payoff as a Function of the Sales
Prospect Worked on, the Realized State of the World, and
the Compensation Scheme w

S1 Sy S3 Sy
Sale 1 w(vy) 0 w(vy) 0
Sale 2 0 w(vy) w(vy) 0

examples and Theorem 1 further motivate interest in
the monotonicity in optimal mixtures condition.

For the examples in this section, we examine sales
agents whose preferences are given by two of the most
popular models of ambiguity-averse behavior: the
MEU and the smooth ambiguity model, respectively.

2.1. An MEU Agent

Here, we model the sales agent using a seminal model
of ambiguity-averse preferences: the MEU model
(Gilboa and Schmeidler 1989). Each MEU preference
over acts f can be represented by a functional of the
following form:

min 37 u( f)p(s), (1)

where 1 is anonconstant von Neumann-Morgenstern
utility function and C is a nonempty, closed, and
convex set of probability measures over states. Aswas
described, the state space for this example is S =
{s1,2,53,54}. Notice that, when the set C contains only
one probability measure, preferences are SEU. Gilboa
and Schmeidler (1989) show that MEU preferences are
characterized by dropping the Anscombe-Aumann in-
dependence axiom of SEU and replacing it with two
weaker axioms: certainty independence and uncer-
tainty aversion.

For a given probability q of working on sale 1 (and,
thus, 1 — g of working on sale 2), nonnegative com-
pensation function w, strictly increasing utility func-
tion u normalized so that u(0) = 0, and probability
distribution p over states, the expected utility of the
agent is

ql(p(s1) + p(s3))u(w(wr))] + (1 = q)[ (p(s2)
+p(s3))u(w(vy)))-

The optimal strategy (or set of optimal strategies) g%,
therefore, satisfies

7" (w(vr), w(©2))

= arg max | minq[(p(s1) + p(ss))u(@(@1)]

+(1 = q)[(p(s2) + p(s3))u(w(2))] |-

To facilitate an explicit solution while still maintain-
ing a good deal of flexibility, we consider in this ex-
ample sets of probability distributions of the following
parametric form: C = {(r(1 - 6)(1 —x),(1 -r)(1 - 6)(1 — x),
6(1-x),x):x€K,6€D,reR}, where K =[x, %] C [0,1),
D =[5,6] €[0,1),andR =[r,7] € [0,1]. Note that 1 — «
is the probability that at least one of the prospects will
sell if the agent works on it. This probability could be
considered a measure of overall market conditions.
Conditional on at least one of the prospects selling if
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worked on, 0 is the probability that both would sell if
worked on and so is a measure of the positive asso-
ciation between the success of the two prospects.
Finally, conditional on exactly one of the two pros-
pects selling if worked on, r is the probability that it is
the first prospect that will sell if worked on. The set C
is constructed so that ambiguity about each of these
parameters is fixed no matter what value is taken by
the other two parameters. Given MEU preferences
with such a C, observe that, independent of choice of
g, the minimizing measure p has k =x and 6 = 6. Thus,
the optimal 4" satisfies

q*(W(m), w(v7))

= arg ;ggi((l %) nﬁm] gl(r(1 =06)+90)

(1= g1 =)L = 0) + d)u(w(®))]|-

2)
Let g = m €[0,1]. Observe that, for g <4,

the min in (2) is attained only at r = 7. Similarly, for
q > g, it is attained only at 7 = r. For g = g, all r € [r, 7]
are minimizers. Therefore, if (7(1 — )+ O)u(w(v1)) <
(1=7)(1 -0+ du(w(vy)), then g*(w(vy), w(vz)) = 0,
and similarly, if (r(1 — 8)+ d)u(w(vy)) > (1 —r)(1 - o)+
Ou(w(vy)), then q*(w(v1), w(vz)) = 1. If (1 -0)+ 0)
u(w(v1)) = ((1 =7)(1 = 8)+ d)u(w(vy)), then multiplicity
occurs and g*(w(v1), w(vp)) = [0,4], and if (r(1 - 6)+
du(w(w)) = (1 -1 - d)+ Ou(w(vs)), then g*(w(v1),
w(v2)) = (g, 1]." In all other cases,

u(w(v2))

X u(w(v1))] +

7D @) = ey sy )
Observe that (3) defines g* when
1-nd-9+3 uw)) A-nHA-05)+ 8 @
r(1-90)+o M(w(vz)) (1-0)+0
which defines a nonempty range of Zgzglgg valuesifand

onlyifr <7 (i.e., there is some ambiguity about which
prospect will sell if worked on conditional on there
being exactly one such prospect). From (3), we see
that, forany (w(v;), w(v7)) in this range, §* (w(v1), w(v2))
is such that increasing the payment for a given sales
prospect decreases the likelihood that the agent works
on that sales prospect. For example, if r =, 7 =, and

thls is true for any (u(w(v1)), u(w(vz))) such that

2 < ZEZ;EZS; <Y (Figure 1).

From the MEU agent’s point of view, under any
increasing payment scheme w, in the region in which
positive probability is placed on both prospects, the
agent becomes less likely to work toward sale i as its
value v; increases. Similarly, any scheme in which

Figure 1. (Color online) MEU Agent’s Optimal
Probabilities, g*, of Working on Sale 1 as the Payoff from a
Successful Sale 1, u(w(v;)), Varies, Holding the Payoff
from a Successful Sale 2 Fixed at u(w(v,)) = 1 with

_15_7 s5_1
Parameters r = g, 7 =5 6 =3

1.00- —_—

0.75-
q 0.50-

0.25-

0.00- —

0.0 0.5 1.0 1.5 2.0 2.5

u(w(vy))

Note. Parameters x and 6 do not affect g* for an MEU agent.

payment is decreasing in the value of the sale implies
that, in such a region, the agent is more likely to make
an effort toward sale i as its value increases.

2.2. A Smooth Ambiguity Agent

Now, suppose that, instead of MEU, the agent’s
preferences can be described by the smooth ambi-
guity model (Klibanoff et al. 2005). Each smooth
ambiguity preference over acts f can be represented
by a functional of the following form:

Jolz

where 1 is a nonconstant von Neumann-Morgenstern
utility function, ¢ is a continuous and strictly in-
creasing function on the range of #, and u is a
countably additive probability measure over proba-
bility measures over states S. To maintain compara-
bility to the MEU example, we assume that the
support of u is contained in the set C. Thus, u can
be written as a probability measure over [k, ] X
[6,6] X [r,7]. We also continue to assume that the
compensation scheme w(-) isnonnegative and that u is
strictly increasing and normalized so that u(0) = 0.
The curvature of ¢ reflects attitude toward ambiguity
with concavity (respectively, convexity) of ¢ corre-
sponding to ambiguity aversion (love), more concave
corresponding to more ambiguity averse, and an
affine ¢ implying ambiguity neutrality and SEU (see
Klibanoff et al. 2005). For this example, we assume

(f(s) (S)) du(p), )
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ambiguity aversion and specifically that ¢ is twice
continuously differentiable with ¢’ > 0 and ¢” < 0.
The optimal strategies * are the following:

q*(w(vl)/ w(v2))

-8 ;é}?{‘] /[E,f]x[g,é]x[ri]
« o MA@ =)+ Du(w(n)
+(1=g)((1 = 1)(1 = 6) + O)u(w(v2))]
x du(x,0,r).

If (r(1 = 0)+ O)u(w(v1)) < ((1 =7r)(1 = 6)+ O)u(w(vy)) for
all 6,7 €[5,6] X [r,7], then g*(w(v1), w(vy)) = 0. Simi-
larly, if (r(1—06)+ 0)u(w(v1)) = ((1—r)(1 = 8)+ 8)u(w(vy))
for all 6,7 € [5,0] x [r,7], then g*(w(v1), w(v7)) = 1.2
Betyveen these boundary values, one can show that,
if x _ﬁ(g) <1forall x>0, then g* is nondecreasin%”in
w(v1) and nonincreasing in w(v;). Thus, because _q),(i’)c)
is an (Arrow-Pratt) index of ambiguity aversion
(see Klibanoff et al. 2005), we see that, if ambigu-
ity aversion is not too severe, in contrast to the MEU
case, more compensation for a prospect pushes the
agent with smooth ambiguity preferences toward
that prospect.” This monotonicity may be violated at
higher levels of ambiguity aversion. See Figure 2

for an illustration, in which x (P'(x; is parameterized
by 6.

Thus, describing the agent using smooth ambiguity
preferences has enough flexibility to allow for either
monotone (as in the left panel) or nonmonotone be-
havior (as in the right panel), and the intensity of
ambiguity aversion is a key determinant of which of
the two behaviors is exhibited.

2.3. Discussion of the Sales Agent Example

There is evidence that uncertainty/conflict can lead
individuals to have a strict preference for payoffs that
mixed acts generate (Dwenger et al. 2018, Lin and
Reich 2018). Having models that capture such pref-
erences is important if one is to study mechanisms
through which an individual’s behavior under un-
certainty can be tilted toward an organizationally/
socially desired one. Unlike the subjective expected
utility model, models of ambiguity-averse prefer-
ences explicitly allow for preference for hedging as
modeled by preference for mixed acts and are often
evendefined by such a property, most prominently, for
example, in the form of Schmeidler’s uncertainty
aversion axiom (Schmeidler 1989), which says that a
mixture of two indifferent acts is never worse and
may be strictly better than the original acts.* As
demonstrated, however, various ambiguity aversion
models have vastly different implications for how
individuals in an organization respond to incentive
schemes. We believe monotonicity in optimal mix-
tures is a key condition that can help categorize
ambiguity-aversion frameworks related to their im-
plications for such incentive problems.

Our analysis of the sales agent model is not aimed
at drawing normative conclusions about monoto-
nicity in optimal mixtures or the MEU and smooth
ambiguity models. The main purpose is, rather, to
highlight an application in which researchers in eco-
nomics and management science need to be aware of
whether the ambiguity-aversion framework they are
using satisfies monotonicity in optimal mixtures or
not. Indeed, MEU (or other models that do not sat-
isfy monotonicity in optimal mixtures) might be

Figure 2. (Color online) Smooth Ambiguity Agent’s Optimal Probability, 4%, of Working on Sale 1 as the Payoff from a

Successful Sale 1, u(w(vy)), Varies, Holding the Payoff from a Successful Sale 2 Fixed at u(w(v,)) = 1 with Parameters r =

1 -_7
gy =g

0=06=1 u(r,o,x) = uo,%) =1 and ¢(x) = fT; with 6 = 0.9 (Left Panel) or 6 = 15 (Right Panel)

1.00 -

0.75-

q 050~ 0.9

0.25-

0.00-
0.0 05 10 15 20 25
u(w(vq))

Note. Parameter « does not affect q* for such an agent.

1.00 -

0.75-

g 0.50- 15

0.25-

0.00-
0.0 05 10 15 20 25

u(w(vs))
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more suitable than the smooth ambiguity model (or
other frameworks that can accommodate monotonicity
in optimal mixtures) in settings in which its relative
simplicity and a hedging motive strong enough to drive
nonmonotonicity are important and judged reasonable.

We now leave the confines of this example and turn
to describing the general setting of the paper.

3. Setting and Preliminaries

We operate within a standard Fishburn (1970)-style
version of an Anscombe and Aumann (1963) setting.
Let S be the finite set of states. An event E is a subset
of S. Let Z be the set of prizes or outcomes, and X is
the set of all simple lotteries over prizes (i.e., the set
of all finite-support probability distributions on Z).
Observe that X is a convex set with respect to (w.r.t.)
the following mixture operation: for a €[0,1] and
x,y € X, ax+ (1 — a)yis the element of X defined, for all
z € Z, by

(ax + (1 - a)y)(z) = ax(z) + (1 — a)y(2).

Acts are functions from S to X. Let F denote the set of
all acts. Acts are the objects of choice. Preferences are
defined by a binary relation > over acts. The sym-
metric and asymmetric parts of > are denoted by ~
and >, respectively. Mixtures over acts are defined
through statewise mixing of the resulting lotteries: for
a€[0,1]and f,g € F, af + (1 — a)g is the act defined,
forall s €S, by

(af + (1= )g)(s) = af(s) + (1 — a)g(s).

For x,y € X and an event E, let xEy denote the act
f such that (s.t.) Vs € E,f(s) = x and Vs ¢ E,f(s) = v.
Constant acts are those that give the same lottery in all
states (i.e., f(s) = f(s'), Vs,s’ € S). In a standard abuse
of notation, we sometimes use x to denote the constant
act giving x € X in each state. An act f is an interior
act if, for each state s, there exist X(s), x(s) € X such
that x(s) > f(s) > x(s).

A set function p:2° — R is a capacity if p(0) = 0,
p(S) =1, and for all E,F C S with E CF, p(E) < p(F).

4. Preferences

Throughout, we restrict attention to preferences in
the MBA class defined and axiomatized by Cerreia-
Vioglio et al. (2011).° In terms of numerical repre-
sentation, this is equivalent to assuming > can be
represented by

V(4 £65).cs). ©)

where 1 : X — R is a nonconstant, affine utility function
and V : u(X)S — R is normalized, monotonic, and sup-
norm continuous. (Note that u(f(s)) = >, u(z)f (s)(z).)

This is a very general class of preferences and has
the virtue of including most of the models of deci-
sion making under ambiguity in the literature. The
most important restriction imposed by MBA pref-
erences is that nonexpected utility behavior with
respect to lotteries (i.e., constant acts) is ruled out.
Thus, the departures from expected utility that are
allowed by MBA preferences concern aggregation
across states. In this sense, we restrict attention to
preferences that may violate subjective expected
utility but obey expected utility under “objective”
risk. An advantage of doing so is that our analysis
may be carried out in utility space, greatly facilitating
our arguments.

Subjective expected utility preferences are exactly
the MBA preferences that additionally satisfy the
(Anscombe-Aumann) independence axiom:

Axiom 1. (Independence). For all acts f,g,heF and
ae(0,1], f zgifand onlyifaf + (1 —a)h = ag+ (1 — a)h.

5. A Monotonicity Consideration:

Monotonicity in Optimal Mixtures
Before we introduce the main definition of the paper,
we remind the reader of a standard definition of set
order (see, e.g., Milgrom and Shannon 1994).

Definition 1. For any two sets A,B C R, we say A is
smaller in the set order than B and write A <; Bifa € A
and b € B imply min{a, b} € A and max{a, b} € B.

Itis straightforward to verify that, when Aand Bare
singletons, the relationship <, on sets collapses to the
usual ordering < on numbers. Symmetrically, we say
B is larger in the set order than A, denoted B >; A,
if A < B.

The main novel property we introduce is the following:

Definition 2. (Monotonicity in Optimal Mixtures). For
all acts f,f’, g such that f’(s) > f(s) for all s € S, the set
of all & € [0,1] such that a*f + (1 — a™)g is optimal in
{af + (1-a)g:a€[0,1]} is smaller in the set order than
the set of all a’ € [0,1] such that &’f"+ (1 -a’)g is op-
timal in {af'+ (1 —a)g:a €[0,1]}.

Monotonicity in optimal mixtures says that im-
proving the act f via weak dominance at least weakly
enlarges (in the set order) the optimal weight(s)
placed on it when mixing with g. If optima in both
cases are unique, it says that this optimal weight must
at least weakly increase when improving f to the
dominant f’. The definition has a monotone com-
parative static flavor, which gives it a natural con-
nection to comparative statics in applications. It also
lends itself to simple revealed preference tests for any
given triple of acts f,f’,g such that f* weakly domi-
nates f. For example, fixing f,f’, g, one can first have
an individual choose from {af+ (1-a)g:a €[0,1]},
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yielding an a*, and then also choose from {af’ +
(1-a)g:ac[0,1]}, yielding an o’. If a* > a’, then
offer (a) to trade «’f + (1 — a’)g in exchange for a’f +
(1 -a")g and (b) to trade a*f’ + (1 — a¥)g in exchange
for &’/f’+ (1 -a’)g. A violation of monotonicity in
optimal mixtures occurs when the individual is (strictly)
unwilling to make at least one of these trades.
Monotonicity in optimal mixtures can be related
to two well-known preference conditions: indepen-
dence (see Axiom 1 in the previous section) and the
following property satisfied by all MBA preferences:

Axiom 2. (State-by-State Monotonicity). For all acts f’, f,
if f'(s) z f(s) for all s € S, then f" % f.

Monotonicity in optimal mixtures is a strengthen-
ing of state-by-state monotonicity. To see this, sup-
pose f'(s) z f(s) for all s€ S and take g = f in the
statement of monotonicity in optimal mixtures. Because
any mixture of f with itself is optimal, consider a* = 1.
Then, monotonicity in optimal mixtures requires that
a’ = 1lis optimal in {af" + (1 -a)f : a €[0,1]}, implying
f" z f and, thus, state-by-state monotonicity.

Given state-by-state monotonicity, the indepen-
dence axiom is a strengthening of monotonicity in
optimal mixtures. To see this, denote, for any pair of
acts f, g, the set of all optimal a mixtures in {af + (1 -
a)g:a €[0,1]} by a;g. By the independence axiom,

0 f<g
[0,1] f ~g. The analogous
1 f>g
property can be shown for the set “;/,g of optimal
mixtures between f” and g. Now, suppose a € a;,g and

one can show aj’fg =

@ €af, . If a<a’, then, by construction, we have
min{a,la’} € a;_ and max{a,a’} € a}, .. If a > o, then
ithastobethata > 0and &’ < 1. From a > 0, it follows
thatf > ¢g. Froma’ < 1, it follows thatg > f’. But, from
state-by-state monotonicity, we know f’ > f. There-
fore, f ~ f ~ ¢. This implies t?at af,=ap . =0, 1],*ir1
turn implying min{a, o’} € ag, and max{a,a’} € g o
Thus, monotonicity in optimal mixtures is satisfied.
An immediate corollary of this relationship with in-
dependence is that all subjective expected utility
preferences satisfy monotonicity in optimal mixtures.

An analogy with consumer theory can give further
insight into monotonicity in optimal mixtures. Con-
sider the special case in which g yields a fixed, positive
utility level on an event E and zero utility elsewhere; f
yields a fixed, positive utility level on an event F and
zero utility elsewhere; E and F are disjoint; and f’
strictly improves f only on F (and does so by a fixed
amount of utility). One can then view preferences
over mixtures between f and g as preferences over
consumption bundles of two goods—utility in event
E and utility in event F—in which the feasible bun-
dles lie on the line segment in consumption space
connecting the points (0,u(f(F))) and (u(g(E)),0).

Replacing f by f’ rotates this budget set outward as
utility in event F has effectively become cheaper. As
depicted in Figure 3, monotonicity in optimal mix-
tures implies that there are optimal choices such that
consumption of utility in event E does not rise as a
result of this price decrease on utility in event F. In
the language of consumer theory, there are optimal
choices such that the substitution effect on consump-
tion of utility in E of such a price change (nonpositive)
must be at least as large in magnitude as the corre-
sponding income effect (nonnegative): monotonicity
in optimal mixtures implies the existence of opti-
mal choices such that utilities in E and F must be
gross substitutes. Observe that the linear indiffer-
ence curves of subjective expected utility preferences
imply a constant marginal rate of substitution in utility
space and, thus, that utility in E and F are perfect
substitutes and, thus, certainly gross substitutes.

Finally, in our analysis and for applications, it is
sometimes useful to consider monotonicity in optimal
mixtures restricted to particular acts. Formally, for a
set of acts G, when we write monotonicity in optimal
mixtures restricted to G, we mean adding the re-
quirement that f, ', ¢ € G to Definition 2.

Returning to our sales agent model, the following
result shows the tight link between monotonicity in
optimal mixtures and the monotonicity of the sales
agent’s reaction to compensation. In reading it, recall
that g*(-, -) denotes the agent’s optimal probability (or
all optimal probabilities in the case of multiplicity) of
working on sale 1 (with the remainder assigned to

Figure 3. (Color online) Monotonicity in Optimal Mixtures
Implies That, if a* Is an Optimal Mixture of f and g, Then
Some Optimal Mixture of f* and ¢ Must Lie Weakly to the
Left of the Upper Dot (i.e., Outside the Thickened Half-
Open Segment from the Upper Dot to u(g))

u(f)

u(f)

uonkF

a’u(f) + :
(1-aulg) ;

uonkE u(g)
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working on sale 2). The two arguments of g* are the
compensation for closing sales 1 and 2, respectively.
Furthermore, the set of acts H in the theorem are
exactly the acts that have a utility profile that can be
generated by some specification of nonnegative
compensation levels w(v1) and w(v;) and a sales
prospect (i.e., sale 1 or 2) on which the agent works.

Theorem 1. Suppose > are MBA preferences, u is strictly
increasing in payment and normalized so that u(0) = 0, and
the sales agent’s optimal strategy correspondence q*(-,-)
exists. Then, satisfying monotonicity in optimal mixtures
restricted to the set of acts H = {h: u(h(s)) > 0 for all
s,u(h(ss)) = 0 and h is measurable either with respect to
{{s1,83}, {52, sa}} or {{s2,3}, {s1,84}}} is equivalent to g*
weakly increasing (in the set order) in its first arqument and
weakly decreasing (in the set order) in its second argqument.

Proof. Observe that, if act f corresponds to working on
sale 1, ¢ corresponds to working on sale 2, and f’
corresponds to working on sale 1 with an increased
level of compensation w(v1) if successful, these each
belong to the set H, and applying monotonicity in
optimal mixtures to such acts implies g* must be
weakly increasing in the set order sense in its first
argument. Reversing the roles of f and g and increasing
w(v2), monotonicity in optimal mixtures similarly im-
plies that 1—¢" is weakly increasing, and so g* is
weakly decreasing in its second argument in the set
order sense. It remains to show that these properties of
g* imply that monotonicity in optimal mixtures holds
when restricted to acts in H. We proceed by showing
the contrapositive: that any violation of monotonicity
in optimal mixtures on H implies a violation of at least
one of the properties of 4*. Suppose there is a violation
of this restricted monotonicity in optimal mixtures. Fix
some f,f’, ¢ in H that generate the violation. If f and g
are measurable with respect to the same partition as
each other, all three acts can be ordered by weak
dominance, and the conclusion of monotonicity in
optimal mixtures follows because all MBA preferences
satisfy state-by-state monotonicity. Thus, it remains to
consider the cases in which the acts involved have
state-by-state expected utilities of the following form:

S1 S 53 Sy
f u(f(s1)) 0 u(f(s1)) 0
f u(f(s1)) + x 0 u(f(s1)) + x 0
4 0 u(g(s2)) u(g(s2)) 0

with x >0, or

S1 52 S3 S4
f 0 u(f(s2)) u(f(s2)) 0
f 0 u(f(s2)) +y u(f(s2)) +y 0
S u(g(s1)) 0 1u(g(s1)) 0

with y > 0. Violation of monotonicity in optimal mix-
tures implies that there exists an a € arg max,ejo1)
V(u(Af + (1 -A7A)g)) and an a’ € arg max,ejo1) V(u(Af"+
(1-A)g)) suchthata® > o’ and eithera’ ¢ arg max,ejo1]
V(u(Af + (1-A2)g) or o ¢ arg maxeo) V(u(Af'+
(1 = A)g)). In the case in which f is measurable with
respect to {{s1,s3}, {s2,84}}, this implies a* € g*(u~!(u
(Fe0), uu(g(s2)), @ € g u( Flsn)+ ), 1 (u(g
(s2)))), and either a’ ¢ g*(u™! (u(f(51))), ™} (u(g(s2)))) or
@ ¢ q*(wt(u( f(s1)) + x), u (u(g(s2)))). Because u is
strictly increasing and x > 0, it follows that 4* is not
weakly increasing in its first argument in the set order
sense. In the case in which f is measurable with respect
to {{s2, 83}, {51, s4}}, an analogous argument implies ¢*
is not weakly decreasing in its second argument in the
set order sense. Thus, violation of monotonicity in
optimal mixtures restricted to H implies a violation of
at least one of the conditions on 4, and this completes
the proof. O

Given this connection of monotonicity in optimal
mixtures with behavior in such managerially relevant
contexts, we next turn to understanding the relation
between the choice of preference model and mono-
tonicity in optimal mixtures.

6. Implications of Monotonicity in

Optimal Mixtures

How does monotonicity in optimal mixtures re-
late to some popular models of ambiguity-sensitive
preferences as well as to MBA preferences generally?
We first show (Theorem 2) that, for a large and pop-
ular subclass of MBA preferences—the c-linearly bise-
parable preferences of Ghirardato and Marinacci
(2001), which encompass MEU (Gilboa and Schmeidler
1989), Choquet expected utility (Schmeidler 1989),
a-MEU (Ghirardato et al. 2004) preferences, and
more—there is a tight relation between ambiguity
aversion toward bets concerning an event and vio-
lations of monotonicity in optimal mixtures for such
bets. The former implies the latter, and under some
mild additional conditions, they are equivalent. When
specialized to MEU preferences, this allows us to
show that MEU preferences satisfy monotonicity in
optimal mixtures if and only if they are SEU prefer-
ences (Proposition 1). These results illuminate the
behavior we saw under MEU in the sales agent model
and show that the type of nonmonotone behavior
exhibited there is inherent in using MEU to model
ambiguity-averse departures from SEU.

Turning to the other popular subclass of MBA
preferences used in the sales agent example, the
smooth ambiguity model (Klibanoff et al. 2005),
we show that these preferences satisfy monotonicity
in optimal mixtures whenever relative ambiguity
aversion is not too large (Theorems 3 and 4). This,
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again, illuminates and generalizes the behavior exhibited
in the sales agent context.

Finally, our most general result examines all MBA
preferences and shows a sense in which monotonicity
in optimal mixtures places upper bounds on the in-
tensity of ambiguity-averse behavior (Theorem 5). In
addition to being directly applicable in managerial
settings, such as the sales agent model, this result also
allows us to compare the categorization induced by
monotonicity in optimal mixtures with Lang (2017)’s
categorization based on first- versus second-order
ambiguity aversion. It also allows us to provide an
extension of our MEU result to the variational pref-
erences (Maccheroni et al. 2006), a class that has seen
important applications, especially the use of multiplier
preferences (Hansen and Sargent 2001) to model con-
cern for robustness in finance and macroeconomics.

6.1. Implications for c-Linearly
Biseparable Preferences

Ghirardato and Marinacci (2001) define and axiomatize
a broad class of preferences they call c-linearly bise-
parable. This class includes, among others, the well-
known maxmin expected utility with nonunique
prior (MEU) (Gilboa and Schmeidler 1989), Choquet
expected utility (Schmeidler 1989), and a-MEU (in
which preference is represented by a convex combi-
nation of MEU and max-max EU) models. Axiom-
atically, such preferences are those that (1) are non-
trivial preference relations; (2) admit a constant act
equivalent foreachact (i.e., foreachactf, thereissome
lottery x¢ such that f ~ x7); (3) satisfy state-by-state
monotonicity; (4) satisfy a weak form of continuity in
mixing weights; and (5) for binary acts (i.e., acts of the
form xEy for all ECS, x,y € X), satisfy Gilboa and
Schmeidler’s (1989) certainty independence, which
weakens the independence axiom by requiring it to
hold only when the common act / being mixed with
is a constant act. Observe that (1)—(4) are mild con-
ditions that, by themselves, do not impose more than
is already entailed in the MBA preferences. The key
requirement is (5), which applies only to binary acts.
In terms of numerical representation for binary acts,
these properties imply that there is a unique capacity p
and a nonconstant von Neumann-Morgenstern utility
function u such that

W(xEy) = u(x)p(E) + u(y)(1 - p(E)) 7)

represents > over acts of the form xEy forall EC S,
x,y € X with x > y. The quantity p(E) + p(E°) is useful
in classifying ambiguity attitude in regard to bets on
oragainstaneventE (i.e., inregard to acts measurable
with respect to {E, E°}). Specifically, p(E) + p(E°) < 1
corresponds to (strict) ambiguity aversion toward
suchbets, p(E) + p(E°) = 1 to ambiguity neutrality, and

p(E) + p(E®) > 1 to (strict) ambiguity-loving behavior.
Our next result shows that, for any c-linearly bise-
parable preferences, monotonicity in optimal mix-
tures restricted to such bets implies p(E) + p(E°) > 1,
and under a mild additional condition, the converse
holds as well.

Theorem 2. Fix any event E. If p(E) + p(E°) <1, then a
c-linearly biseparable preference violates monotonicity in
optimal mixtures restricted to acts measurable with respect
to {E, E°}. The converse holds as long as either max{p(E),

p(ES)} <1 or min{p(E), p(E°)} = 0.

Proof of Theorem 2. We begin by showing the first
direction. If p(E) + p(E°) < 1, then (7) implies that %
over acts h measurable with respect to {E,E°} are
represented by min{p(E)u(h(E))+(1— p(E))u(h(E)),(1-
p(Eu(h(E))+p(EYu(h(E))} because p(E) <1 - p(EY)
and p(E°) <1-p(E) ensure that p(E)u(h(E))+(1-p(E))
u((E%)) < (1~ p(EDu(h(E)) + p(EYu(h(E)) when h(E) 2
h(E°) and (1 — p(E9))u(h(E)) + p(E9)u(h(E)) < p(E)
u(h(E)) + (1 — p(E))u(h(E)) when h(E®) % h(E). Fix any
acts f = xEy, ¢ = wEz such thatx >y, z > w, x > w, and
z > y.° Consider the choice of an optimal act from
the set {af + (1 —a)g : @ € [0,1]}. Whenever the slope

— M) ot the line connecting (u(f(E)), u(f(E°)) and

u(x)-u(w)
(u(g(E)), u(g(E)) lies strictly between the slope — 1~ (;‘)E)
of the linear indifference curves corresponding to
preferences represented by p(E)u(h(E)) + (1 — p(E))
u(h(E°)) over acts h measurable with respect to {E, E°}
and the slope - 1;&55;) of the linear indifference curves
corresponding to preferences represented by (1 — p(E®))
u(h(E)) + p(E9)u(h(E°)) over those acts, it follows that
min{p(E)u(af (E) + (1 - a)g(E)) + (1 - p(E)u(af (E) + (1-
@g(E), (1~ p(E)u(af (E)+ (1-a)g(E)+ p(Eulaf (E%) +
(1-a)g(E))} is uniquely maximized by the interior «
that equates expected utility across E and E°.” Therefore,

suppose 1;5%0) > ;‘((f))j;‘((g,)) > 16(;,)5). Suchx,y,w,z € X exist
because u is a nonconstant expected utility over lotteries
and p(E) < 1 — p(E°). Calculation shows that the optimal

mixture is a* = 1/(1+ (u(x) — u(y))/(u(z) — u(w))) € (0,1).

Next, consider any f* = x’Ey’ withx’ > xand ' ~ v.
Observe that f” weakly dominates f. If ;l((j))_— L;((yw)) > £ (p%)
(i.e., if x" is not so good as to lead to all weight on f”
being an optimal mixture between f” and g), then the
unique optimal mixture betweenf” and gis again the o
that equates 1 across E and E°. Calculation shows that
thisnow occursata’ =1/(1+u(x") —u(y’))/(u(z) —u(w))) €
(0,1). Because a’ < a”, this is a violation of monoto-
nicity in optimal mixtures restricted to acts measur-
able with respect to {E, E°}.

We next prove the converse direction: for any
event E, given either max{p(E), p(E)} < 1 or min{p(E),
p(ES)} = 0, if p(E) + p(E°) = 1, then monotonicity in
optimal mixtures restricted to acts measurable with
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respect to {E, E°} is satisfied. If p(E) + p(E°) > 1, then
(7) implies that > over acts i measurable with re-
spect to {E, E°} are represented by max{p(E)u(h(E)) +
(1— p(ENu(h(E)), (1 - p(ENu(h(E)) + p(E Yu(h(E)} be-
cause p(E)> 1—-p(E) and p(E°) = 1 — p(E) ensure that
p(EYu(h(E)) + (1 - p(ENu(H(ES)) = (1 — p(E)u(h(E)) +
p(E®)u(h(E®)) whenh(E) > h(E)and (1 — p(E®))u(h(E)) +
p(EYu(h(E)) = p(E)u(h(E)) + (1 — p(E))u(h(E")) when
h(E®) z h(E). By measurability with respect to {E, E},
we can write the acts appearing in the statement of
monotonicity in optimal mixtures as f = xEy, g = wEz,
and " = x’Ey’ for some x,x’,y,y’,w,z € X with x’ > x
andy’ 2z y.Supposef’ > g. Then, max{p(E)u(x’) +(1 —
p(ENu(y’), (1 = p(E))u(x’) + p(E)u(y’)} > max{p(E)
u(w) + (1 - p(ENu(z), (1 - p(E)u(w) + p(E)u(z)}. This
implies that, for all & € [0, 1), max{p(E)u(x") + (1 —
pENU(Y), (1 - pEDu() + p(Euly)} > max{p(E)
u(ax’ +(1-a)w) +(1-p(E))ulay’ + (1 -a)z), (1 - p(E%))
u(ax’ + (1 - a)w) + p(E)u(ay’ + (1 - a)z)}. Therefore,
f'>af’ +(1 -a)g for all a € [0,1), implying o/ = 1€
argmax{af’ + (1 —a)g:a €[0,1]} is the unique such
maximizer &’ and, thus, that monotonicity in optimal
mixtures is satisfied for acts measurable with respect
to {E, E°}. Next, suppose instead that g > f’. Because
f" = f, it follows that g > f. Using, again, the max
representation and the linearity in mixtures of each
component within the max, this implies g > af + (1 —
a)gforalla € (0,1], implying a* =0 e argmax{af + (1 -
@)g:a€[0,1]} is the unique such maximizer a* and,
thus, that monotonicity in optimal mixtures is satis-
fied for acts measurable with respect to {E, E‘}. Fi-
nally, suppose that f* ~ ¢. If f* > f, then g > f, and the
argument proceeds exactly as in the case in which
g > f'. The only remaining possibility is that f* ~ f so
that f ~ f ~ ¢. This is the only place in the argument
where the condition that either max{p(E), p(E°)} <1
or min{p(E), p(E°)} = 0 is needed. First, suppose max
{p(E), p(E°)} <1. Because p(E) + p(E°) > 1, it follows
that p(E), p(E°) € (0,1), and then, f* ~ f implies u(x’) =
u(x)and u(y’) = u(y), and the optimal mixture weights
for f and g are identical to those of f* and g, satisfy-
ing monotonicity in optimal mixtures. Second, sup-
pose min{p(E), p(E°)} = 0. Then, because p(E)+ p(E°)
>1, p(E) + p(E°) = 1 and preferences restricted to
acts measurable with respect to {E, E°} are SEU
and, therefore, satisfy monotonicity in optimal mix-
tures. O

Remark 1. When p(E) + p(E°) <1 so that preferences
are ambiguity averse for acts measurable with respect
to {E, E°}, the proof of Theorem 2 shows more than just
that monotonicity in optimal mixtures restricted to acts
measurable with respect to {E, E°} is violated. It shows
that, starting from any {E, E°}-measurable acts f and g
(without loss of generality, label the acts so that u(f(E)) >
u(g(E))) such that an interior a-mixture is strictly

preferred to both f and g, all f* formed from f by
improving the utility on E generate violations of
monotonicity in optimal mixtures unless the im-
provement is so large as to induce f" > af’” + (1 - a)g
for all « €[0,1]. Thus, not only is monotonicity in
optimal mixtures violated, but starting from any acts
for which an interior a is strictly optimal, all utility
improvements on E that do not push the optimal
weight on the improved act to one lead to reduced
weight being placed on the improved act.

Remark 2. Here is an example showing that the aux-
iliary conditions are needed for the converse to hold.
Specifically, in the example, max{p(E), p(E°)} = 1 and
min{p(E), p(E°)} > 0 (and, thus, p(E) + p(E°) > 1), yet
monotonicity in optimal mixtures for acts measurable
with respect to {E, E°} is violated. Let p(E) = 1, p(E°) =
0.5, u(x’) =u(y’) =ulx) =1, u(y) =0, u(w) = 0.5, u(z) =
1.5, f =xEy, § = wEz, and f" = x’Ey’. Observe that, for
alla € [0,1], af” + (1 — a)g is evaluated as max{a+ (1 -
a)#0.5,05+(a+(1-a)*05)+05=+(a+(1-a)=1.5)} =
05+(a@+(1-a)*05)+05%(a+(1—-a)*1.5) =1, im-
plying that all mixtures between f” and g are optimal.
Next, observe that any mixture af+ (1 — a)g is eval-
uated as max{a+(1—-a)=0.5,05*(a+(1-a)=0.5)+
0.5+ (1—a) * 1.5} = max{1$¢,1 -4}, which is maximized
only at @ = 0 and a = 1. To see that monotonicity in
optimal mixtures is violated, note that 1 € arg max{af+
(1-a)g} and teargmax{af’ +(1-a)g}, but min{}1}¢
argmax{af + (1 — a)g}.

What is the meaning of the extra condition, that either
max{p(E), p(E°)} <1 or min{p(E), p(E°)} = 0, needed
for the converse? A simple preference condition that
implies this extra condition for any c-linearly bise-
parable preferences is a strict version of state-by-state
montonicity, ensuring that every state matters.

Axiom 3. (Strict State-by-State Monotonicity). For all

acts f',f,iff'(s) = f(s) forall s € S and f'(s) > f(s) for some
SE€S, then f > f.

In fact, requiring this only for binary acts is enough
to imply that 0 < p(E) <1 for all nonempty events E
that are strict subsets of S, which is stronger than
the statement that the extra condition holds for all
events E.°

An immediate implication of Theorem 2 is that
ambiguity aversion toward bets about an event is
incompatible with monotonicity in optimal mixtures
for c-linearly biseparable preferences. As we show
next, this leads to a particularly sharp result for MEU
preferences.

6.1.1. Implications for MEU. Recall from Section 2.1
that MEU preferences have a representation as in (1).
Notice that, when the set C contains only one probability
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measure, preferences are SEU. In all other cases, MEU
preferences depart from SEU. Which MEU preferences
satisfy monotonicity in optimal mixtures?

Proposition 1. Fix any event E. An MEU preference
satisfies monotonicity in optimal mixtures restricted to acts
measurable with respect to {E, E°} if and only if all measures
in C assign E the same probability.

Proof of Proposition 1. Ifall p € C assign the same p(E),
MEU preferences restricted to acts measurable with
respect to {E, E°} are SEU preferences and, therefore,
satisfy monotonicity in optimal mixtures restricted to
acts measurable with respect to {E, E°}. Suppose p(E)
varies across measures in C. The conclusion that mono-
tonicity in optimal mixtures restricted to acts mea-
surable with respect to {E,E°} is violated then fol-
lows as a special case of Theorem 2 because MEU
preferences satisfy (7) with capacity p(E) = minyec p(E)
for all ECS, and p(E) varying then implies p(E)+
p(E9)<1. o

Applying Proposition 1 across all events E reveals
that MEU preferences satisfy monotonicity in optimal
mixtures if and only if they are SEU preferences. It fol-
lows that an alternative axiomatic characterization of
SEU preferences in an Anscombe-Aumann setting is
obtained by weakening the independence axiom by
replacing it with the two novel axioms used by Gilboa
and Schmeidler (1989) in axiomatizing MEU, namely
certainty independence and uncertainty aversion, and
then strengthening state-by-state monotonicity by replac-
ing it with the monotonicity in optimal mixtures condition.

6.2. Implications for the Smooth Ambiguity Model
Are there ambiguity-averse preferences that can sat-
isfy monotonicity in optimal mixtures? In this section,
we show that the answer is yes. To do so, we consider
the smooth ambiguity model (Klibanoff et al. 2005).
Recall from Section 2.2 that such preferences have a
representation as in (5). For results in this section, we
further assume that ¢ is twice continuously differ-
entiable on the interior of u(X) =[0, o) with ¢’ > 0and
¢” < 0. Concavity of ¢ implies ambiguity aversion
(see Klibanoff et al. 2005). We provide an upper

" (x
- f;,_((x;,
thatis sufficient and, if i is unrestricted, necessary for
such preferences to satisfy monotonicity in optimal
mixtures (Theorems 3 and 4). Thus, when applied to
smooth ambiguity preferences, monotonicity in op-
timal mixtures is compatible with ambiguity aversion
as long as the aversion is not too strong.

bound on the coefficient of ambiguity aversion,

Theorem 3. Preferences represented by the smooth ambi-
quity model as in (5) with ¢ twice continuously differen-
tiable on the interior of u(X) = [0,0), ¢’ >0, and ¢” <0
satisfy monotonicity in optimal mixtures if ¢ is everywhere
at most as concave as natural log, i.e.,

—(5)’,’((2)) < %, forall a > 0.

Proof of Theorem 3. For o € [0,1], v € u(X)°, and act
g € F, define

W@, o) = [ ¢(gav(g) + (1= au(6)p6) | du(p).
®)

If each of the cross-partial derivatives with respect to
a and the s component of v, Wiv( s)(a, v), are non-
negative for all a € (0,1) and strictly positive v, then
by, for example, theorem 2 from Milgrom and Roberts
(1990), W8 is supermodular with respect to a and any
component s of v. This is sufficient for monotonicity in
optimal mixtures because by, for example, theorem 5
from Milgrom and Roberts (1990), it implies that the
increased state-by-state utility from improving f to a
weakly dominating f” results in argmax,efo,1] Wé(«,
uof) <sargmaxaep1] We(a, u o f’). Wenow show that,
when —?)((Z)) <lforalla >0, these cross-partials are
indeed nonnegative. By differentiating, we obtain

Wila,v) = / (Z(U(ﬁ)—u(g(ﬁ)))l?@))

§

S

x¢ (Z(fw@) +(1- a>u(g(§>))p(e>) dy(p)

and
Wiv(s)(a, )
= / P(S)(?/(Z(“U(é) +(1-a).
X u(g(é)))r’(é))

S

+ap(s) (Z(U@) - u(g(é)))P(ﬁ))

x 9" (Z (a0(3) + (1 - a)u(g(é)))zﬂ(ﬁ))l au(p).
©)
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From —j;','((g; <1 with a= Zs(av() + (1-a)u(g())pE) >0,

we obtain that, for all p,

S

¢’ (Z(av(é) +(1- a)u(g(é)))P(é))

- (2<av<e> - a)u(g@)))p(s))

S

S

X (Z(“v@) +(1- a)u(g(ﬁ)))P(ﬁ))- (10)

Substituting (10) into (9) yields,

p(s)¢” (Z(fw(@) +(1- a)u(g(ﬁ)))l?(ﬁ))

5

WS o (@,0) = /

(— 2 ”(8(§))P(§)) ldy(p) >0

5

as claimed. O

Theorem 4. For ¢ twice continuously differentiable on
the interior of u(X) = [0, 00) with ¢’ >0 and ¢” <0, if

—ﬁ((g)) >1 for some a >0, then there exists a measure y

such that preferences represented by (5) violate monotonicity
in optimal mixtures.

What is the reason for the role of y in Theorem 4?
Intuitively, the extent to which higher ambiguity
aversion manifests itself in behavior depends on
how much ambiguity the individual perceives, with
more ambiguity leading to stronger effects of any
given ambiguity aversion. This suggests that a u
reflecting an extremely ambiguous event should be
a good candidate for generating the required viola-
tion as soon as ambiguity aversion exceeds the tightest
possible bound. The proof uses this strategy, con-
structing the violation using bets on an eventassigned
only probabilities one and zero by measures in the
support of p with at least some measures assign-
ing each.”

Proof of Theorem 4. By assumption, 3a > 0 s.t. —?)((Z)) >1
which, because ¢’(a) > 0, implies ¢’(a)+ a¢”(a) < 0.
We construct a p that generates a violation of mono-
tonicity in optimal mixtures. Let u(p1) = u(p2) =1, where
p1 and p, are probability measures on S such that3E C S
with p1(E) = 1 and p2(E) = 0. Consider the following
acts f and g: f = xEz and g = zEx, where u(x) = 2a
and u(z) = 0. By concavity of ¢, ¢(a)>1¢(a2a)+
3¢((1 - a)2a), which implies that, for all a € [0,1],

%f+%gzaf+(1—a)g. (11)

Define W(a,v) = W (a, vE0), where W*E*(a, vEOQ) is
defined as in (8) in the proof of Theorem 3 with ¢ =zEx
and vEQ is the vector representing the state-by-state
utility of the act yEz, where u(y) = v > 0. Substituting
our constructed u, we get

W(a,v) = %[gb(av) + (1 — a)2a)).

Differentiating w.r.t. a yields

Weala,v) = %[Uqf)’(av) - 2a¢'((1 - @)2a)). (12)

Further differentiating w.r.t. v, we get

Woa9) = 5[0/(@0) + 0”@, (13)
Now, observe that Wy, (a, ) is negative when a = %
and v = 2a:

Way (%,261) = %[qﬁ’(a) +ag”(a)] < 0. (14)

From (12), W,(},24) = 0, and thus, by (14), there
exists a b > 2a such that

W, (%b) <0. (15)

Furthermore, W(a,v) is globally weakly concave in
a because

Waala,v) = %[vqu”(av) +4a*¢" (1 - a)2a)] < 0.

Therefore, there exists an & < % such that, for all o > %,

Wi(a,b) < W(a,b). (16)

Letting f” = yEzand setting v = b, we see that f” weakly
dominates f, and any mixture af’+ (1 — a)g is evalu-
ated according to W(a, b). Although, by (11), 3f +1gis
an optimal mixture of f and g, (16) implies that any
optimal mixture of " and g must place weight strictly
below % on f’, a violation of monotonicity in optimal
mixtures. O

Remark 3. In Remark 1, we observed that, for c-linear
biseparable preferences that are ambiguity averse when
restricted to {E, E‘}-measurable acts, when starting from
any acts for which an interior mixture is strictly optimal,
all utility improvements on E that do not push the
optimal weight on the improved act to one result in
nonmonotonicities. The same property need not hold for
smooth ambiguity preferences even when they violate
monotonicity in optimal mixtures; specifically, one can
have some regions in which, starting from a strictly
optimal interior mixture, small utility improvements on



Ghili and Klibanoff: /f It Is Surely Better, Do It More?
Management Science, 2021, vol. 67, no. 12, pp. 7619-7636, © 2021 INFORMS

7631

E result in nonmonotonicity, and for other regions, the
reaction to such improvements is monotonic without all
weight being pushed to the improved act. The right-
hand graph in Figure 2 from the sales agent example
gives a clear illustration of this. Intuitively, this can
happen because ambiguity aversion (absolute or rel-
ative,i.e., — fh((g)) or —a (q’i)((g)) ) may vary as expected utility
levels change. In contrast, c-linear biseparable pref-
erences, because they satisfy Gilboa and Schmeidler’s
(1989) certainty independence when restricted to {E, E}-
measurable acts, effectively have a constant (both abso-
lute and relative) ambiguity attitude for a given parti-
tion {E, E}. Analogously to risk attitudes in expected
utility, smooth ambiguity preferences have both abso-
lute and relative ambiguity aversion simultaneously
constant only when they are ambiguity neutral (¢ lin-
ear). Axiomatically, they satisfy certainty independence
only when they are ambiguity neutral.

These results on monotonicity in optimal mixtures
in the context of the smooth ambiguity model are
closely related to work on comparative statics of
portfolios of random variables (risky assets) under
expected utility. A strand of that literature addresses
the question of when any first-order stochastic dom-
inant shift in the (conditional on any realization of the
other assets) distribution of an asset results in a risk-
averse expected utility investor increasing that asset’s
share in the optimal portfolio. The answer is when
utility is everywhere at most as concave as natural log
(equivalently, xu’(x) increasing, absolute risk aver-
sion at any x <1 or relative risk aversion everywhere
at most one). Fishburn and Porter (1976) show this for
the special case of one risky and one safe asset. Hadar
and Seo (1990) extend this result to any two assets
with independently distributed returns. Meyer and
Ormiston (1994) extend this to the case in which
returns across assets may be dependent (in which case,
the shift being to the conditional distribution becomes
important). Finally, Mitchell and Douglas (1997) es-
tablish the result for the case of n (possibly depen-
dent) assets.

The condition that utility is at most as concave as
natural log also appears in the literature on general
equilibrium with additively separable utilities, in
which it has been identified as leading demand for
contingent goods to have the gross substitutes prop-
erty and to the existence of a unique equilibrium (see
Dana 2001 for a survey). Returning to the consumer
theory analogy, for additively separable utilities over
consumption goods, natural log utility leads income
and substitution effects to just offset each other,
further suggesting a connection with monotonicity in
optimal mixtures.

It is also interesting to note that this bound on
relative risk aversion (in our case, relative ambiguity

aversion) is stronger than the conditions on relative
risk aversion shown recently in Lanier (2020) to be
sufficient and, with unrestricted beliefs, necessary for
all assets to be ordinary goods (i.e., not Giffen goods).
This is to be expected because, returning to the con-
sumer theory analogy, though Giffen goods are not
gross substitutes, ordinary goods may or may not be
gross substitutes. For example, in Figure 3 used to il-
lustrate monotonicity in optimal mixtures in Section 5,
the condition that utility on event F is an ordinary good
requires that an optimum from the larger budget set not
lie in the part of the thickened segment lying below the
lower dot, and monotonicity in optimal mixtures also
requires that it not be below the upper dot.

Although this section has focused on the smooth
ambiguity model, other specific models in the liter-
ature, for example the confidence preference model
of Chateauneuf and Faro (2009), are also capable of
displaying ambiguity aversion while satisfying mono-
tonicity in optimal mixtures under some conditions. In
the next section, we turn to implications of monoto-
nicity in mixtures that apply to all MBA preferences.

6.3. More General Implications: Bounds on Slopes
in Utility Space at Different Points

Here, we provide a result (Theorem 5) identifying a
relatively simple condition on general MBA prefer-
ences, violation of which implies violation of mono-
tonicity in optimal mixtures. Specifically, we show
that monotonicity in optimal mixtures bounds how
different the slope of a “local” support of the better-
than set (i.e., a line supporting the better-than set
within an appropriate rectangle) at one point in utility
space can be from the slope of such a local support at
another point. Monotonicity in optimal mixtures is
necessarily violated whenever these slopes change
“too fast.” One immediate implication is that pref-
erences with kinked boundaries of convex better-than
sets, which have multiple supporting slopes ata given
point, cannot satisfy monotonicity in optimal mix-
tures. This implication generalizes (by dramatically
expanding the preferences to which the conclusion
applies) our previous finding that c-linearly bise-
parable preferences for which there exists an event E
with p(E) + p(E°) < 1 violate monotonicity in optimal
mixtures. Theorem 5 is not limited to implications about
such “kinked” MBA preferences, however, and also
may be seen as a generalization to MBA preferences of
our Theorem 4 on smooth ambiguity preferences,
which identifies high relative ambiguity aversionasa
source of violations of monotonicity in optimal mixtures.

The specific form of the bound (17) derived in
Theorem 5 delivers useful insights. The bound is on
the ratio of slopes and becomes tighter as the points
are translated up by adding positive constants (i.e.,
moved parallel to the 45° line on the utility graph).
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When utility is unbounded above so that these pos-
itive constants may be taken to infinity, this ratio
bound converges to one. Satisfying this bound, there-
fore, implies that absolute ambiguity aversion even-
tually disappears in the sense that, for any bounded
rectangle of points, translating this rectangle up by
adding large enough positive constants makes any
convexity of indifference curves within the translated
rectangle arbitrarily uniformly small. In particular, if
preferences are convex (i.e., satisfy Schmeidler’s un-
certainty aversion), then the bound implies that pref-
erences eventually approach expected utility (and,
thus, ambiguity neutrality) in any such region of large
enough stakes. Thus, one implication of Theorem 5 is
that, when utility is unbounded above, any varia-
tional preferences (Maccheroni et al. 2006), which are
the constant absolute ambiguity-averse preferences
satisfying uncertainty aversion (Grant and Polak 2013)
that are not SEU, must violate monotonicity in op-
timal mixtures.'” This includes the multiplier pref-
erences introduced by Hansen and Sargent (2001)
to model concern for robustness to misspecification
(see Strzalecki 2011). For experimental evidence sug-
gesting that many subjects display decreasing rather
than constant absolute ambiguity aversion, see, for
example, Baillon and Placido (2019) and Berger and
Bosetti (2020). The sense in which the slope bound is
also a bound on relative ambiguity aversion and the
relation of this bound with Theorem 4 is explained in
the paragraph just before the proof of Theorem 5.

From these and our earlier results, we see that
monotonicity in optimal mixtures provides a differ-
ent categorization of ambiguity-averse preferences
than the first- versus second-order ambiguity aver-
sion (very roughly, kinked versus smooth indiffer-
ence curves) categorization explored in Lang (2017).
An implication of Theorem 5 is that all first-order
ambiguity-averse MBA preferences and some second-
order ambiguity-averse MBA preferences violate mono-
tonicity in optimal mixtures. We also know from,
for example, Theorem 3, that some second-order
ambiguity-averse MBA preferences do satisfy monoto-
nicity in optimal mixtures.

Theorem 5 also directly relates to applications such
as the sales agent model from Section 2. Given a sales
agent with some MBA preferences (and, thus, having
a representation V((1(f(s)))ses)), Theorem 5, when
combined with Theorem 1 from Section 5, tells us that
violations of the slope bounds given in (17) applied
to acts from the sales agent model generate non-
monotonicities in the agent’s reaction to sales com-
pensation (i.e., make the likelihood of the agent
pursuing a given sales prospect sometimes decrease
in the compensation for that prospect).

Our result is presented in terms of the geometry of
preferences restricted to two-dimensional utility spaces.

To state it, we first need to define some sets of acts
generating such spaces.

Definition 3. For nonempty events E,F C S, z € X and
act h, let FEFZ! denote the set of acts f such that f(s) ~
f(t)foralls,t € E\ Fand f(s) ~ f(t) foralls,t € F\ Eand
3f(s)+3z~3f(E\F)+1f(F\E) for all se FNE, and
f(s) ~ h(s) for all s € (EU F)“.

Motivated by our sales agent model, FEF*" may be
viewed as generated from mixtures of acts that, re-
stricted to E U F, either (i) give some arbitrary payoff if
E occurs and a default payoff, denoted by z, otherwise
or (ii) give some arbitrary payoff if F occurs and the
same default payoff z otherwise. Outside of EUF,
outcomes are fixed according to some given act h. For
example, in the sales agent model, E is the event that
sale 1is successful if worked on, and F is the event that
sale 2 is successful if worked on, and both the default
payoff and the payoff if neither sale is successful if
worked on is zero. Formally, in that model, E =
{s1,83}, F = {s2, 53}, and u(z) = 0 = u(h(ss)).

Remark 4. (Convexity of FEF#"). Fixing z,h, observe
that the two-dimensional utility space specifying u(E \ F)
and u(F \ E) allows us to represent all utility profiles
generated by acts in FEFZ". In fact, the set of all such
acts corresponds to the subset of this two-dimensional
space such that u(E\ F) + u(F \ E) —u(z) € u(X). A convex
combination in the two-dimensional space given by
u(E\ F) and u(F \ E) corresponds to the convex com-
bination of the two associated acts in FEF/ with the
same weights.

Remark 5 (Dominance in FEFZ) If f,¢ € FEFZ are
such that Vse (E\F)U(F\E):f(s) = g(s), then the same
is true for all s € S.

We also need to define the associated better-than sets.

Definition 4. Let > be an MBA preference, thus rep-
resented by V((u(f(s)))ses) as in (6). For any events
E,F C S such that E\ F and F \ E are nonempty, z € Z,
he F, and any act k € FEFZ", define G(k) = {(u(f(E\
F)), u(f(F\E))):f € FEF" and f » k}.

Graphically, we can represent acts in FEF# as a
subset of the points in a two-dimensional Cartesian
coordinate system with the vertical coordinate repre-
senting the utility level the act delivers in event F \ E
and the horizontal coordinate representing the utility
level the act delivers in event E \ F. The definition of
FEEZR implies that this subset of points is exactly
H(z)={(a,b) e u(X) xu(X):a+b—u(z) eu(X)}. Monoto-
nicity of V and the definition of 554" imply that all
points (a,b) € H(z) such that a>u(h(E\F)) and b >
u(h(F \ E)) lie in G(h).

The statement of the theorem makes central use
of the following definition, giving conditions for a
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rectangle and two support lines in two-dimensional
utility space to form a support configuration (as illus-
trated in Figure 4).

Definition 5. Let > be represented by V((u(f(s)))ses) as
in (6). Fix any events E,F C S such that E\ Fand F \ E
are nonempty, z € X, and acts I,k interior to FEF!
such that k(E\F) z W(E\F) and W(F\E) = k(F\E).
Given a rectangle R € H(z) X H(z) containing (u(h(E\
F)),u(h(F \ E))) and (u(k(E \ F)), u(k(F \ E))) in its inte-
rior and two distinct lines [, and I in u(X) x u(X),
(R, I, Ix) is a support configuration if

i. I intersects G(h) N Ronly at (u(h(E\ F)), u(h(F \ E)))
and has an intersection with the left edge of rectangle R,
{G(E\ P),q(F\ E)) € R: g(E \ F) = minveg r(E \ F)};

ii. Iy intersects G(k) N R only at ((k(E\F)),u(k(F\E)))
and has an intersection with the bottom edge of
rectangle R, {((E\F),q(F\E)) e R:q(F\ E) = min,er ¥
(F\E)}; and

iii. the line I3, passing through (u(k(E\F)),u(h (F\
E))) and the intersection of I/, with the left edge of
rectangle R, has an intersection with the bottom edge
of rectangle R.

The definition requires that the rectangle R is small
enough so that it lies in H(z) X H(z) and so that the
lines I, and I; intersect the upper sets G(h) and G(k)
only atu(h) and u(k), respectively, and so that the lines
I, (I, and I3) intersect the left (bottom) side of R. The
theorem gives a bound that monotonicity in optimal
mixtures imposes on the ratio of the slopes of the lines
I and [ in any support configuration.

Theorem 5. Let 2 be MBA preferences, thus represented

~

by V((u(f(5))ses) as in (6).
Fix any events E,F C S such that E\ F and F\ E are

nonempty, z € X, and acts h, k interior to FEF2" such that
K(E\ F) > h(E \ F) and h(F \ E) > k(F \ E).

Figure 4. (Color online) Support Configuration

uonF\E

reR

minr(F\E)

I,l%i“? r(E\F)

If % satisfies monotonicity in optimal mixtures re-
stricted to FEEA! then

Slope(ly) _ u(k(E \ F)) — min,er r(E \ F)

Slope(ly) ~ u(h(E \ F)) — minyeg 7(E \ F)
u(h(F \ E)) — minyeg r(F \ E)
u(k(F \ E)) — min,eg "(F \ E)’

(17)

for all support configurations (R, Iy, Ig).
When V is differentiable in the utility values, (17)
may be written entirely in terms of V and u because

V
Slope(ln) = =77 luay (18)
F\E
and
Ve
Slope(ly) = — —— u(k)s 19
pe(ly) Vne lur) (19)

where, for A C S, V4 denotes the derivative of V with
respect to the utility attained on the event A.

It is worth noting that, if preferences satisfy Schmei-
dler’s uncertainty aversion (and, thus, are convex in
utility space, equivalently, V is quasi-concave) when
restricted to acts in FEF#" and u(X) = [0, ), then
support configurations always exist, and the only
rectangles R that need be considered are those with
mineg 7(E \ F) + min,eg #(F \ E) = u(z). When u(z) =0,
as in the sales agent model, this last condition yields
min,er 7(E\ F) = min,eg 7(F \ E) = 0, and thus, the right-
hand side of the bound (17) is unchanged as utilities
are multiplicatively scaled up. In this sense, mono-
tonicity in optimal mixtures requires that such pref-
erences not display too much relative ambiguity
aversion anywhere. Note that the bound is satisfied
with equality at all points for preferences that are
Cobb-Douglas in utility space when restricted to
FEEZR with u(z) = 0 (i.e., preferences representable
on FEFZR by u(f(E\F))u(f(F\E)'™7 or, equiva-
lently, yIn(u(f(E\F)))+(1-y)In(u(f(F\E))) for some
y7€(0,1)). Thus, the bound can be viewed as saying
that preferences (on these two-dimensional slices)
must be everywhere at most as convex as Cobb-
Douglas. This connection of monotonicity in optimal
mixtures with Cobb-Douglas for uncertainty-averse
preferences is a more general manifestation of the
connection with natural log (and the corresponding
connection with the gross substitutes property) we found
for uncertainty-averse smooth ambiguity preferences in
Section 6.2. In particular, with the u used in the proof
of Theorem 4, ¢ = In yields, for u(z) = 0, Cobb-
Douglas restricted to F5E#", and the smooth ambi-
guity preferences restricted to FEE7*! are at most as
convex as Cobb-Douglas if and only if ¢ is at most as
concave as natural log.
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Proof of Theorem 5. Fix V,u,E,F,z,h,k and a sup-
port configuration (R, I, Ix) as in the statement of the
theorem. Monotonicity of V implies that, for any
f e FEEZ all points (a,b) € H(z) X H(z) such that a >
u(f(E\F)) and b > u(f(F\ E)) lie in G(f). Therefore,
because h and k are interior and [}, intersects G(1) N R
only at ((h(E \ F)), u(h(F \ E))) and I intersects G(k) N
R only at (u(k(E \ F)), u(k(F \ E))), it follows that both [},
and [, must have negative and finite slopes as does I3 by
construction. Name the acts in F55#" corresponding to
the intersections of I, I, I3 with the edges of R as
specified in (i), (ii), and (iii) of the definition of support
configuration by 7, j, and m, respectively (Figure 5).

Observe that the slope of I3 is the following:

_u(i(F \ E)) — u(h(F \ E))
u(k(E\ F)) — u(i(E \ F))
_ _u((F\E)) —u(h(F\ E))
u(h(E\ F)) — u(i(E\ F))
o WH(E\F)) —u(i(E\ F))
u(k(E\ F)) — u(i(E \ F))
u(h(E\ F)) — u(i(E \ F))
u(k(E\ F)) = u(i(E\ F))’
Now, let I be the line passing through m and k. The
slope of I is (noting that u(m(F \ E)) = u(j(F \ E)))

_ u(k(F\E)) - u(j(F\ E))
u(m(E \ F)) = u(k(E \ F))
__ u(h(F\ E)) - u(j(F\E))
~ u(m(E\F)) - u(k(E\ F))
 Wk(F\ E)) = u(j(F \ E))
u(h(F \ E)) = u(j(F \ E))
u(k(F \ E)) — u(j(F \ E))
u(h(F \ E)) = u(j(F \ E))’

Slope(l3) =

= Slope(ly) X (20)

Slope(ly) =

= Slope(l3) x (21)

Figure 5. (Color online) Acts i, j, and m

wonF\E

(F\E)

minr
rER

min r(E\F)

uonE\F

Combining (20) and (21) yields

u(h(E\ F)) = ui(E \ F))
u(k(E\ F)) = u(i(E \ F))
o UK(E\E)) — u(j(F\ E))

u(h(F \ E)) = u(j(F \ E))

If > satisfies monotonicity in optimal mixtures re-
stricted to FEFZ", then, because by construction # is
the unique optimum on I, N R, it must be that all
optima on /3 N R have vertical coordinates weakly
below u(h(F \ E)). Applying monotonicity in optimal
mixtures restricted to 5/ a second time yields that,
because all optima on /3 N R have vertical coordinates
weakly below u(h(F \ E)), all optima on 4 N R have
vertical coordinates weakly below u(k(F \ E)). From
this, we now show that, if Slope(l4) < Slope(ly) (equiv-
alently, u(m) is to the left of u(j)), then monotonicity
in optimal mixtures restricted to FEF*" must be vi-
olated (Figure 6). To see this, suppose to the contrary
that Slope(ly) < Slope(lx) and monotonicity in optimal
mixtures restricted to FEFA" is satisfied. Because k
is uniquely optimal on [ N R (by the assumptions of
the theorem), V is monotonic and Slope(ls) < Slope(lx),
k>f for all (u(f(E\F)),u(f(F\E))) €lyNR having
vertical coordinates strictly below u(k(F \ E)) (as each
such (u( f(E \ F)), u( f(F \ E))) is weakly dominated
by some point on Iy N R that is strictly worse than
(u(k(E\F)),u(k(F \ E))). Thus, because we earlier showed
that monotonicity in optimal mixtures restricted to
FEFZM implies that all optima on 4 N R have vertical
coordinates weakly below u(k(F \ E)), it follows that k
is strictly optimal on I NR. We next show that k
being strictly optimal on both [y N R and I4 N R with
Slope(ly) < Slope(ly) implies a violation of monoto-
nicity in optimal mixtures restricted to FEF#, a
contradiction. To this end, fix acts f,g,f’, ¢’ € FEF="
such that g =m, ¢’ =, w(f(E\F)),u(f(F\ E))) is the
point at which I; intersects the left side of R, and
(u(f(E\F)),u(f'(F\E))) is the point at which I4 in-
tersects the left side of R (see Figure 6). Observe that
the points in Iy N R correspond to the acts Af" + (1 — A)
g € FEF2h for A €[0,1], and the points in Ix N R cor-
respond to the acts A¢’ + (1 — A) f € FEFA for
A e€[0,1]. Let A1, A; € (0,1) be the unique numbers
such that Af"+ (1-Aq)g and A2’ + (1 —Ap)f each
correspond to (u(k(E \ F)), u(k(F \ E))). It follows
that Aqu(f"(E\F))+ (1-A)u(g(E\F)) = Au(f(E\F)) +
(- AuEE\F) = Au(@ENF)+ (1-Au(f(E\F)),
and thus,

Slope(ly) = Slope(ly) X

(22)

Az <1- /\1. (23)

Because k is strictly optimal on both [y N Rand 4 N R,

Mff+(1=A)g>Af'+(1=A)g forall A # Ay (24)
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Figure 6. (Color online) Violation of the Slope Bound (17)

uonF\E

minr(F\E)

reR

3
==

ninr(E\F) uon E\F

and
Mg’ + (1= A)f > A + (1= A)f forall A # Ay, (25)

Because f” weakly dominates f, given (24), monoto-
nicity in optimal mixtures restricted to 55" implies

arg max V(u(Af +(1-2)g)) €[0,M].  (26)

Because g’ weakly dominates g, given (25), monoto-
nicity in optimal mixtures restricted to &5/ implies

arg max V(u(Af +(1-21)g) c[1-A21].  (27)
By (23), [0,A1]N[1—A;,1] = 0, a contradiction. There-
fore, monotonicity in optimal mixtures restricted to
FEEZE must be violated (and the violation occurs
when applying the definition to either the actsf’,f, g €
FEEZ or the acts ¢/, g, f € FEEA),

Thus, we have shown that monotonicity in opti-
mal mixtures restricted to FEF2 implies Slope(ls) >
Slope(l), which, because both are negative, is equiv-
alent to

Slope(ly)

Applying (22) yields
Slope(ly) _ Slope(ly,) y u(h(E\ F)) —u(i(E \ F))
Slope(l) ~ Slope(l) " u(k(E \ F)) = u(i(E \ F))

o WKE\E)) —u(j(F\E))
u(h(F\ E)) = u(j(F\ E))’

Therefore, monotonicity in optimal mixtures restricted to
FEFZI implies
Slope(ly) _ w(k(E\ F)) — u(i(E \ F))
Slope(ly) = u(h(E\ F)) = u(i(E \ F))
 WO(F\ E)) — u(f(F \ E))
u(k(F\ E)) = u(j(F \ E))
Because u(i(E \ F)) = minyeg #(E \ F) and u(j(F \ E)) =
min,er 7(F \ E), (29) is the inequality (17). O

(29)

7. Conclusion

Our results demonstrate that moderately ambiguity-
averse behavior is compatible with the monotone
comparative static captured by monotonicity in op-
timal mixtures while also showing that nonmonotone
reactions are a necessary feature when sufficiently
strong ambiguity aversion is present. These are novel
insights into the implications of models of ambiguity-
sensitive behavior that are useful to keep in mind in
managerial and other applications. They also suggest
that investigating the prevalence and/or role of vi-
olations of monotonicity in optimal mixtures may be a
fruitful avenue for future experimental or empiri-
cal analyses.
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Appendix. Axioms for MBA preferences

To aid the reader in understanding the exact scope of MBA
preferences, we recall the result from Cerreia-Vioglio et al.
(2011) that the following four axioms characterize the MBA
preference representation (6):

Axiom A.1. (Weak Order). % are nontrivial, complete, and
transitive.

Axiom A.2. (State-by-State Monotonicity). For all acts f, g, if
f(s) Z g(s) forall s€ S, then f % g.

Axiom A.3. (Risk Independence). For all lotteries x,y,z € X
and a € (0,1), if x >y, then ax + 1 —a)z > ay + (1 - a)z.

Axiom A.4. (Archimedean Continuity). For all acts f,g,h, if
f > g > h, then there exist a,p € (0, 1) such that af + (1 —a)h >

§>pf + (1 =ph.
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As previously mentioned, these axioms are quite weak,
lending our theory a broad scope. The key limitation is Risk
Independence, which implies expected utility treatment of
“objective” risk (i.e., lotteries).

Endnotes

'If r= 7 and both of these equalities hold, then g*(w(vy),
w(vy)) = [0,1].

2If (r(1 = 6) + 0)u(w(vy)) = (1 = r)(1 = 6) + O)u(w(va)) for all 6,7 €
[6,8] x [r, 7], which can happen only if the intervals for the parameters
are degenerate or u(w(v1)) = u(w(vy)) = 0, then the agent is indifferent
among all g, and g*(w(v1), w(vy)) = [0,1].

3 As shown in Theorem 3 in Section 6.2, this bound on ambiguity
aversion in the smooth ambiguity model is sufficient to guarantee
that monotonicity in optimal mixtures is satisfied not only in this
example, but generally.

*Speaking in representational terms, it is uncontroversial that
ambiguity-averse preferences can strictly value (at least some types
of) smoothing of utility across states. There is some debate, however,
about whether and when randomization by an individual over acts is
evaluated as a state-by-state mixture of the utility profiles of the acts
involved (see Ke and Zhang 2020 for discussion, references, and
theory on this issue). The theory in this paper assumes that acts
generating such utility mixtures are available for the individual to
choose by some means. Whether this is via randomization or through
other options available to the decision maker is not important for
our results.

®See the appendix for a statement of the four axioms that they show
characterize these preferences.

®With the convention that we label the acts so that f(E) x g(E), this
describes all pairs of {E, E°}-measurable acts that are not ordered by
weak dominance and are not comonotonic. Given the form of
preferences, these are the only candidates for pairs of {E, E°}-mea-
surable acts for which an interior mixture could be strictly optimal
(see, e.g., Klibanoff 2001).

"Similarly, when the slope is not strictly between these bounds, at
least one of the degenerate mixtures a = 0 or @ = 1 is an optimum.

8 Although it is easy to see the connection between max{p(E), p(E)} <
1 and each event mattering, the role of min{p(E), p(E°)} = 0 is less
immediate. Its role is to admit c-linearly biseparable preferences that,
when restricted to {E, E°} measurable acts, are SEU with either E or E©
being given all weight. For example, when E = S or E = (), preferences
are always of this form. Such preferences both satisfy monotonicity in
optimal mixtures restricted to such acts and have p(E)+ p(E) > 1,
thus satisfying the converse direction of Theorem 2.

® According to Jewitt and Mukerji (2017), no event is more ambiguous.
10 Although some variational preferences have kinks, others do not.
Furthermore, variational preferences need not be either c-linearly

biseparable or smooth ambiguity preferences, so this finding does not
follow from our earlier results.
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