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Abstract

Consider a canonical problem in choice under uncertainty: choosing from a con-

vex feasible set consisting of all (Anscombe-Aumann) mixtures of two acts f and g,

{αf + (1− α)g : α ∈ [0, 1]}. We propose a preference condition, Monotonicity in Mix-

tures, which says that clearly improving the act f (in the sense of weak dominance)

makes putting more weight on f more desirable. We show that this property has strong

implications for preferences exhibiting behavior as in the classic Ellsberg (1961) para-

doxes. For example, we show that maxmin expected utility (MEU) preferences (Gilboa

and Schmeidler 1989) satisfy Monotonicity in Mixtures if and only if they are expected

utility preferences. Thus, for MEU, Monotonicity in Mixtures and Ellsberg behavior are

incompatible. We extend this stark finding in several directions. Moreover, we demon-

strate that the incompatibility is not between Monotonicity in Mixtures and Ellsberg

behavior (or even global ambiguity aversion) per se. For example, in addition to deriv-

ing general implications of Monotonicity in Mixtures, we show that smooth ambiguity

preferences (Klibanoff, Marinacci and Mukerji 2005) can satisfy both properties as long

as they are not too ambiguity averse.
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1 Introduction

This paper explores the tension between two aspects of preferences. Consider the set of acts

generated from all (Anscombe-Aumann) mixtures of two acts f and g: {αf + (1− α)g : α ∈ [0, 1]}

and think of preferences over this set as inducing preferences over α. As one varies the acts

f and g under consideration, the resulting preferences over α would be expected to change.

One force we might expect to influence this change is the idea that making one of the acts

(say, f) more attractive makes higher weights on f more desirable. A conservative notion

of “more attractive” is the notion of state-by-state (weak) dominance. We propose a pref-

erence condition, Monotonicity in Mixtures, which says that clearly improving the act f (in

the sense of weak dominance) makes putting more weight on f more desirable.

For preferences as in Ellsberg’s (1961) classic paradoxes, there is another force that

might influence preferences over α. Acts corresponding to intermediate weights α may have

value as a hedge against ambiguity when f and g perform well under different distributions,

as, for example, where f corresponds to winning a prize only if a red ball is drawn, g

corresponds to winning only if a blue ball is drawn, the composition of red vs. blue balls

is unknown, and 1
2f + 1

2g corresponds to a sure 50% chance of winning a prize. We define

Ellsberg Behavior as preferences that, at least for some event, some prizes and some α,

strictly value this hedging.

Is this hedging influence on preferences over α compatible with its role in responding

to improvements? What are the implications of Monotonicity in Mixtures for preferences

displaying Ellsberg behavior? We will show that the implications are stark under conditions

applying to a broad class of models – in many cases (including MEU (Gilboa and Schmei-

dler, 1989), Choquet Expected Utility (Schmeidler, 1989), α-MEU (Ghirardato, Maccheroni

and Marinacci, 2004), Variational (Maccheroni, Marinacci and Rustichini, 2006) and more)

Monotonicity in Mixtures and Ellsberg behavior are incompatible. They are not always

incompatible, however, and we also provide some informative positive results on compat-

ibility using the smooth ambiguity model (Klibanoff, Marinacci and Mukerji, 2005). For

these preferences, Monotonicity in Mixtures is satisfied when relative ambiguity aversion is

not too large. The idea that Monotonicity in Mixtures places upper bounds on the intensity
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of ambiguity averse behavior is shown to hold more generally (Theorem 5).

Our positive results are closely related to work on comparative statics of portfolios of

random variables (risky assets) under expected utility addressing the question of when any

first-order stochastically dominant shift in the (conditional on any realization of the other

assets) distribution of an asset will result in a risk-averse expected utility investor increas-

ing that asset’s share in the optimal portfolio (see Mitchell and Douglas (1997), Meyer and

Ormiston (1994), Hadar and Seo (1990), Fishburn and Porter (1976)). Moreover, our results

on incompatibilities could be applied back to that literature to yield results on compara-

tive statics for various non-expected utility models of choice under risk. For example, any

non-expected utility model relying on convex preferences with kinks (e.g., rank-dependent

expected utility (Quiggin, 1982) with concave utility and probability transformation func-

tion) must sometimes lead a first-order stochastic improvement to reduce that asset’s share

in the optimal portfolio. Furthermore, our results imply that, in a more realistic setting

where asset payoffs depend on events for which objective probabilities are not given, even

risk neutral investors cannot be too ambiguity averse if such reductions in share are never

to occur. Though all of our results are shown independently of the risk aversion (or lack

thereof) of the individual, in the context of this portfolio application it is interesting to note

that Fox, Rogers and Tversky (1996) find evidence of the combination of risk neutrality with

sensitivity to ambiguity among professional options traders.

Another domain of insight from our results can be seen in Auster (2014, 2018), concern-

ing bilateral trade under ambiguity about quality. Optimal offer behavior on the part of an

ambiguity averse buyer derived there involves hedging-motivated mixing between a pooling

price and a price that will be accepted only by a low quality seller. One comparative static

Auster examines is what happens to the mixing weight as the buyer’s valuation of the high

quality seller’s good increases. This corresponds to an improvement in the payoff to the

pooling price in the sense of weak dominance. When the buyer has MEU preferences, in line

with our result (Theorem 2) on incompatibility with Monotonicity of Mixtures, there are

many cases where the optimal response is to offer the pooling price less often. Our results

on the smooth ambiguity model (Theorems 3 and 4) explain why such a result could occur

only with sufficiently strong ambiguity aversion.
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This paper is organized as follows. In section 2, we describe the formal setting and

notation. In section 3, we introduce the basic axioms on preferences that we maintain

throughout. In section 4, we define Ellsberg Behavior. In section 5, we define Monotonicity

in Mixtures. The main results of the paper, describing implications of Ellsberg Behavior

and Monotonicity in Mixtures, are in Section 6. The final section briefly discusses some

extensions, including an alternative to Monotonicity in Mixtures and some topics for further

investigation.

2 Setting and Preliminaries

We operate within a standard Fishburn (1970)-style version of an Anscombe-Aumann (1963)

setting. Let S be the finite set of states. An event E is a subset of S. Let Z be the set

of prizes or outcomes. X is the set of all simple lotteries over prizes (i.e., the set of all

finite-support probability distributions on Z). Observe that X is a convex set with respect

to the following mixture operation: for α ∈ [0, 1], and x, y ∈ X, αx+(1−α)y is the element

of X defined, for all z ∈ Z, by

(αx+ (1− α)y)(z) ≡ αx(z) + (1− α)y(z).

Acts are functions from S to X. Let F denote the set of all acts. Acts are the objects

of choice. Preferences will be defined by a binary relation % over acts. The symmetric and

asymmetric parts of � are denoted by ∼ and �, respectively. Mixtures over acts are defined

through statewise mixing of the resulting lotteries: for α ∈ [0, 1], and f, g ∈ F , αf+(1−α)g

is the act defined, for all s ∈ S, by

(αf + (1− α)g)(s) ≡ αf(s) + (1− α)g(s).

For x, y ∈ X and an event E, let xEy denote the act f s.t. ∀s ∈ E, f(s) = x and ∀s /∈

E, f(s) = y. Constant acts are those that give the same lottery in all states (i.e., f(s) =

f(s′),∀s, s′ ∈ S). In a standard abuse of notation, we sometimes use x to denote the

constant act giving x ∈ X in each state. An act f is an interior act if, for each state s,
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there exist x(s), x(s) ∈ X such that x(s) � f(s) � x(s).

A set-function ρ : 2S → R is a capacity if ρ(∅) = 0, ρ(S) = 1, and, for all A,B ⊆ S with

A ⊆ B, ρ(A) ≤ ρ(B).

3 Preferences

Throughout, we will restrict attention to % satisfying a few standard axioms: Weak Or-

der, State-by-state Monotonicity, Risk Independence and Archimedean Continuity. In our

setting, these axioms define the MBA preferences of Cerreia-Vioglio et al. (2011) and are

equivalent to assuming % can be represented by

V
(
(u(f(s)))s∈S

)
(3.1)

where u : X → R is a non-constant, affine utility function and V : u(X)S → R is normalized,

monotonic and sup-norm continuous. (Note: u(f(s)) ≡
∑

z u(z)f(s)(z))

Axiom 1. Weak Order: % are non-trivial, complete and transitive.

Axiom 2. State-by-state Monotonicity: For all acts f, g, if f(s) % g(s) for all s ∈ S,

then f % g.

Axiom 3. Risk Independence: For all lotteries x, y, z ∈ X and α ∈ (0, 1], if x � y then

αx+ (1− α)z � αy + (1− α)z.

Axiom 4. Archimedean Continuity: For all acts f, g, h, if f � g � h then there exist

α, β ∈ (0, 1) such that αf + (1− α)h � g � βf + (1− β)h.

Although all are standard, of these axioms Risk Independence is probably the most

controversial. It rules out non-expected utility behavior over lotteries, and thus the de-

partures from expected utility that are allowed by MBA preferences concern aggregation

across states. In this sense, we restrict attention to preferences that may violate subjective

expected utility but obey expected utility under “objective” risk. An advantage of doing so

is that our analysis may be carried out in utility space, greatly facilitating our arguments.
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4 Ellsberg Behavior

Motivated by Ellsberg’s two-color experiment we formalize “Ellsberg behavior” as follows:

Axiom 5. Ellsberg Behavior: There exists an event E ⊆ S, w, x, y ∈ X with w � x % y

and an α ∈ (0, 1) such that

αwEy + (1− α)xEw � wEy ∼ xEw (4.1)

In the two-color experiment, for example, if red and black balls are treated symmetri-

cally, taking E as the event a red ball is drawn from the unknown urn, w as $100 for sure,

x = y as $0 for sure, and α = 1
2 so that αwEy + (1 − α)xEw gives a 50% chance of $100

and a 50% chance of $0 no matter what color is drawn turns (4.1) into the typical Ellsberg

pattern of preferring a 50-50 bet to a bet on either color from the unknown urn. Allowing

x 6= y, α 6= 1/2, and flexibility in the choice of the event E is designed to accommodate

possibilities including that not all events may be perceived as ambiguous, asymmetries in

the perception of E versus Ec, and stake- and event-dependence in ambiguity attitudes.1

Subjective expected utility (SEU) preferences cannot satisfy Ellsberg Behavior. One

way to see this is to observe that (4.1) is a direct violation of the Anscombe-Aumann

Independence axiom: letting f ≡ wEy and g ≡ xEw, if f ∼ g, then Independence implies

αf + (1− α)g ∼ f ∼ g.

Ellsberg Behavior is meant to be a fairly minimal and “local” condition. Under the

assumption that Independence is violated somewhere, it is much weaker than common

“global” properties appearing in the ambiguity literature such as Uncertainty Aversion

(Schmeidler, 1989), Ambiguity Aversion (Epstein 1999, Ghirardato and Marinacci 2002) or

Sure Expected Utility Diversification (Chateauneuf and Tallon, 2002). Its weakness makes

our results showing that for a broad class of preferences there is a conflict between it and

Monotonicity in Mixtures more powerful.

1See e.g., Baillon and Placido (2017) and Abdellaoui et al. (2011) for experimental evidence of such
dependence.
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5 A Monotonicity Consideration: Monotonicity in Mixtures

The main novel property we introduce is the following:

Axiom 6. Monotonicity in Mixtures: For all acts f, f ′, g such that f ′(s) % f(s) for

all s ∈ S, and all numbers α′, α ∈ [0, 1] such that α′ ≥ α,

α′f + (1− α′)g %
(�)

αf + (1− α)g =⇒ α′f ′ + (1− α′)g %
(�)

αf ′ + (1− α)g

Monotonicity in Mixtures says that if increasing the weight on f from α to α′ is (strictly)

good, then doing so for a dominating act f ′ is also (strictly) good. In other words, improving

the act f via weak dominance makes putting more weight on it more desirable. Moving from

α to α′ is a shift away from g towards f (or f ′). In these terms, Monotonicity in Mixtures

says that replacing f by a weakly dominating f ′ can only expand the shifts away from

g that are desirable. Notice that both the weak and strict versions are needed to express

these properties – without the strict version, one could have the increased weight on f being

strictly valued but the same increase with f ′ being only indifferent. All subjective expected

utility preferences satisfy Monotonicity in Mixtures.

An analogy with consumer theory can give further insight into Monotonicity in Mixtures.

Consider the special case where g yields a fixed, positive utility level on an event A and

zero utility elsewhere, f yields a fixed, positive utility level on an event B and zero utility

elsewhere, A and B are disjoint, and f ′ strictly improves f only on B (and does so by a

fixed amount of utility). One can then view preferences over mixtures between f and g as

preferences over consumption bundles of two goods – utility in event A, and utility in event

B – where the feasible bundles lie on the line segment in consumption space connecting the

points (0, u(f(B))) and (u(g(A)), 0). Replacing f by f ′ rotates this budget set outward, as

utility in event B has effectively become cheaper. As depicted in Figure 5.1, Monotonicity in

Mixtures implies that the optimal consumption of utility in event A cannot rise as a result of

this price decrease on utility in eventB. In the language of consumer theory, the substitution

effect on consumption of utility in A of such a price change (non-positive) must be at least
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Figure 5.1: Monotonicity in Mixtures implies that if α∗ is the optimal mixture of f and g
then the optimal mixture of f ′ and g cannot lie in the highlighted region.

as large in magnitude as the corresponding income effect (non-negative): Monotonicity in

Mixtures implies that utilities in A and B must be gross substitutes. Observe that the linear

indifference curves of subjective expected utility preferences imply a constant marginal rate

of substitution in utility space and thus that utility in A and B are perfect substitutes.

6 Implications of Monotonicity in Mixtures

There is a potential conflict between Monotonicity in Mixtures and Ellsberg Behavior. For

preferences exhibiting Ellsberg Behavior, intermediate weights α may have value as a hedge

against ambiguity when f and g perform well under different distributions over states. On

the other hand, Monotonicity in Mixtures says that improving f (in the sense of weak

dominance) makes putting more weight on f more desirable. Is the hedging role of α under

Ellsberg Behavior compatible with its role in responding to improvements? What are the

implications of Monotonicity in Mixtures for some leading models of preferences displaying

Ellsberg Behavior? These are questions to which we now turn.
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6.1 Implications for MEU

We begin by considering a seminal model of ambiguity averse preferences: the Maxmin

Expected Utility with Non-Unique Prior (MEU) model (Gilboa and Schmeidler, 1989).

Each MEU preference can be represented by a functional of the following form:

min
p∈C

∑
s

u(f(s))p(s), (6.1)

where u is a non-constant von Neumann-Morgenstern utility function and C is a non-empty,

closed and convex set of probability measures over states.

Notice that when the set C contains only one probability measure, preferences are SEU.

In all other cases, MEU preferences display Ellsberg Behavior. Formally:

Proposition 1. An MEU preference displays Ellsberg Behavior if and only if the set of

measures C is not a singleton.

Proof of Proposition 1. Since Ellsberg Behavior is incompatible with SEU, it implies

C is non-singleton. For the other direction, suppose C is non-singleton. Then there exists

an event A s.t. minp∈Cp(A) 6= maxp∈Cp(A). Let p1 ≡ minp∈Cp(A) and p2 ≡ maxp∈Cp(A)

and note that 0 ≤ p1 < p2 ≤ 1. By non-constancy of u, there are outcomes (i.e., degenerate

lotteries) x, x such that u(x) > u(x). If x � x % x, then (6.1) evaluates xAx as p1u(x) +

(1− p1)u(x) and xAx as p2u(x) + (1− p2)u(x). There are two cases to consider:

Case 1: p1 + p2 ≥ 1. To show Ellsberg Behavior, let E = A, w = x, y = x, x =

p1+p2−1
p2

w+ 1−p1
p2

y and α = 1−p1
1−p1+p2 . Then w � x % y, and (6.1) yields αwEy+(1−α)xEw �

wEy ∼ xEw since

1− p1
1− p1 + p2

u(x) +
p2

1− p1 + p2
(
p1 + p2 − 1

p2
u(x) +

1− p1
p2

u(x))

=
p2

1− p1 + p2
u(x) +

1− p1
1− p1 + p2

u(x) > p1u(x) + (1− p1)u(x)

=p2(
p1 + p2 − 1

p2
u(x) +

1− p1
p2

u(x)) + (1− p2)u(x)

=p2u(x) + (1− p2)u(x).
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Case 2: p1 + p2 ≤ 1. To show Ellsberg Behavior, let E = Ac, w = x, y = x, x =

1−p1−p2
1−p1 w+ p2

1−p1 y and α = p2
1−p1+p2 . Then w � x % y, and (6.1) yields αwEy+(1−α)xEw �

wEy ∼ xEw since

p2
1− p1 + p2

u(x) +
1− p1

1− p1 + p2
(
1− p1 − p2

1− p1
u(x) +

p2
1− p1

u(x))

=
1− p1

1− p1 + p2
u(x) +

p2
1− p1 + p2

u(x) > (1− p2)u(x) + p2u(x)

=(1− p1)(
1− p1 − p2

1− p1
u(x) +

p2
1− p1

u(x)) + p1u(x)

=(1− p1)u(x) + p1u(x).

This completes the proof. �

Which MEU preferences satisfy Monotonicity in Mixtures?

Proposition 2. An MEU preference satisfies Monotonicity in Mixtures if and only if the

set of measures C is a singleton.

Proof of Proposition 2. If C is a singleton, MEU preferences are SEU preferences, and

therefore satisfy Monotonicity in Mixtures. Suppose C is non-singleton. By Proposition 1,

these preferences display Ellsberg Behavior. The conclusion that Monotonicity in Mixtures

is violated then follows as a special case of Theorem 2 in Section 6.3, since MEU preferences

satisfy (6.7) with capacity ρ(A) ≡ minp∈Cp(A) for all A ⊆ S. �

These results reveal that for the MEU model, Monotonicity in Mixtures and Ellsberg

Behavior are incompatible. In particular, MEU preferences satisfy Monotonicity in Mixtures

if and only if they are SEU preferences.

Next we present a result (Theorem 1) showing that this incompatibility extends well

beyond MEU. The proof of this result provides a constructive argument (with associated

graphical intuition) showing how Monotonicity in Mixtures is violated in the presence of

Ellsberg Behavior generated by kinks in preferences. As a further application (Theorem 2),

we will see that the same stark incompatibility found under MEU applies to all c-linearly

biseparable (Ghirardato and Marinacci, 2001) preferences, a large class that includes not

only MEU, but Choquet Expected Utility (Schmeidler, 1989), α-Maxmin Expected Utility

and more.
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6.2 Implications for Ellsberg Behavior generated by kinks

Our result will be presented in terms of the geometry of preferences restricted to two-

dimensional utility spaces. To state it, we first need to define sets of acts generating such

spaces (Definition 1) and associated better-than sets (Definition 2).

Definition 1. For disjoint, non-empty events A,B ⊆ S and act h, let FA,B,h denote the set

of acts f such that f(s) ∼ f(t) for all s, t ∈ A, f(s) ∼ f(t) for all s, t ∈ B and f(s) = h(s)

for all s /∈ A ∪B.

Definition 2. Let % be represented by V
(
(u(f(s)))s∈S

)
as in (3.1). For any disjoint, non-

empty events A,B ⊆ S and any act k ∈ FA,B,h, define G(k) ≡ {(u(f(A)), u(f(B))) : f ∈

FA,B,h and f % k}.

The theorem says that the existence of distinct lines “locally” supporting (i.e., support-

ing within a rectangle) the better-than set at any given point in such a two-dimensional

utility space generates a violation of Monotonicity in Mixtures.

Theorem 1. Let % be represented by V
(
(u(f(s)))s∈S

)
as in (3.1).

Fix disjoint, non-empty events A,B ⊆ S and interior act h ∈ FA,B,h.

If there exist a rectangle R ⊆ u(X)×u(X) containing (u(h(A)), u(h(B))) in its interior

and two distinct lines in u(X)× u(X) that intersect G(h) ∩ R only at (u(h(A)), u(h(B))),

then % violates Monotonicity in Mixtures.

Theorem 1 implies that any MBA preferences that use kinks (in at least some indifference

curve in utility space) as their method of generating Ellsberg Behavior necessarily conflict

with Monotonicity in Mixtures. This follows because such kinks allow there to exist the

distinct lines on which the kink point is a “local” optimum (i.e., optimal among points on

the line within the rectangular neighborhood) that the theorem relies on. The consumer

theory analogy mentioned when discussing Monotonicity in Mixtures in Section 5 offers

useful insight. Recall that Monotonicity in Mixtures implies that utility on A and B must

be gross substitutes. The fact that budget lines with multiple slopes can locally support

an indifference curve at a kink implies the absence of substitution effects there, implying a

violation of gross substitutes.
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Proof of Theorem 1. Fix V, u,A,B and h as in the statement of the theorem. Suppose

that R is a rectangle in u(X) × u(X) containing (u(h(A)), u(h(B))) in its interior, and l1

and l2 are distinct lines in u(X)×u(X) that intersect G(h)∩R only at (u(h(A)), u(h(B))).

Graphically, we can represent acts in FA,B,h as points in a two-dimensional Cartesian

coordinate system with the vertical coordinate representing the utility level the act delivers

in event B, and the horizontal coordinate representing the utility level the act delivers

in event A. Monotonicity of V implies that all points (a, b) ∈ u(X) × u(X) such that

a ≥ u(h(A)) and b ≥ u(h(B)) lie in G(h). Therefore, since l1 and l2 intersect G(h)∩R only

at (u(h(A)), u(h(B))), it follows that both l1 and l2 must have negative and finite slopes.

The main part of our argument constructing a violation of Monotonicity in Mixtures

will assume that l1 and l2 intersect both the left and bottom sides of the rectangle R.

However, for a given R as above, this need not hold (see Figure 6.1 for an illustration).

Therefore, before turning to the main construction, we show that the existence of an R as

in the theorem implies the existence of a (possibly smaller) rectangle R′ ⊆ R containing

(u(h(A)), u(h(B))) in its interior and such that l1 and l2 intersect both the left and bottom

sides of R′ and intersect G(h) ∩ R′ only at (u(h(A)), u(h(B))). Observe that, starting

from the given R, by moving the bottom side upwards (but not all the way to u(h(B)))

and/or the left side rightwards (but not all the way to u(h(A))), we can ensure that l1

and l2 intersect both these left and bottom sides. The resulting rectangle, R′, still contains

(u(h(A)), u(h(B))) in its interior, and, since G(h) ∩ R′⊆ G(h) ∩ R, l1 and l2 intersect

G(h)∩R′ only at (u(h(A)), u(h(B))). Thus, it is without loss of generality to assume, as we

do for the remainder of this proof, that l1 and l2 intersect both the left and bottom sides

of the rectangle R.

We now construct a violation of Monotonicity in Mixtures. Since l1 and l2 are distinct

and contain a common point, their slopes must differ. Without loss of generality, let l1

have the steeper slope. Therefore, for points with horizontal coordinate below u(h(A)), l1

lies above l2, while for points with horizontal coordinate above u(h(A)), l2 lies above l1.

Fix acts f, g, f ′, g′ ∈ FA,B,h such that (u(f(A)), u(f(B))) is the point where l2 intersects

the left side of R, (u(g(A)), u(g(B))) is the point where l1 intersects the bottom side of R,

(u(f ′(A)), u(f ′(B))) is the point where l1 intersects the left side ofR and (u(g′(A)), u(g′(B)))
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Figure 6.1: Shrinking rectangle R to get a smaller R′ that lines l1 and l2 intersect on the
left and bottom.
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Figure 6.2: Choosing the acts f, g, f ′, g′

is the point where l2 intersects the bottom side of R (See Figure 6.2). Observe that f ′ weakly

dominates f (with strict dominance only on B), and g′ weakly dominates g (with strict

dominance only on A). Further observe that the points on l1 contained in R correspond

to the acts λf ′ + (1 − λ)g, λ ∈ [0, 1] and the points on l2 contained in R correspond to

the acts λg′ + (1 − λ)f , λ ∈ [0, 1]. Let λ1, λ2 ∈ (0, 1) be the unique numbers such that

λ1f
′+ (1−λ1)g and λ2g

′+ (1−λ2)f each correspond to (u(h(A)), u(h(B))). It follows that

λ1u(f ′(A))+(1−λ1)u(g(A)) = λ1u(f(A))+(1−λ1)u(g(A)) = λ2u(g′(A))+(1−λ2)u(f(A)),

and thus

λ2 < 1− λ1. (6.2)
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Since l1 and l2 intersect G(h) ∩R only at (u(h(A)), u(h(B))),

λ1f
′ + (1− λ1)g � λf ′ + (1− λ)g for all λ 6= λ1 (6.3)

and

λ2g
′ + (1− λ2)f � λg′ + (1− λ)f for all λ 6= λ2. (6.4)

Because f ′ weakly dominates f , given (6.3), Monotonicity in Mixtures implies

λ1f + (1− λ1)g � λf + (1− λ)g for all λ > λ1. (6.5)

Because g′ weakly dominates g, given (6.5), Monotonicity in Mixtures implies

(1− λ1)g′ + λ1f � λg′ + (1− λ)f for all λ < 1− λ1. (6.6)

By (6.2), (6.6) contradicts (6.4). Therefore Monotonicity in Mixtures must be violated (and

the violation occurs when applying the axiom to either the acts f ′, f, g or the acts g′, g, f ).

(See also Figure 6.3, which illustrates this contradiction graphically. The yellow highlighted

segments correspond to the acts on the right-hand sides of (6.5) and (6.6) respectively,

which are strictly worse than the left-hand side acts corresponding to the lower endpoints

of the highlighted segments). �

6.3 Implications for c-linearly biseparable preferences

Ghirardato and Marinacci (2001) define and axiomatize a broad class of preferences they

call c-linearly biseparable. This class includes, among others, the well-known MEU, Cho-

quet Expected Utility (Schmeidler, 1989), and α-MEU (where preference is represented by

a convex combination of MEU and max-max EU) models. In terms of numerical represen-

tation, a key property satisfied by any c-linearly biseparable preference is that there is a

unique capacity ρ such that

W (xEy) ≡ u(x)ρ(E) + u(y)(1− ρ(E)) (6.7)
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Figure 6.3: Violation of Monotonicity in Mixtures.
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represents % over acts of the form xEy for all E ⊆ S, x, y ∈ X with x % y. The next result

shows that Ellsberg Behavior and Monotonicity in Mixtures are incompatible for any such

preferences. The proof works by showing that (6.7) together with Ellsberg Behavior imply

the existence of a kinked configuration that can be used to apply Theorem 1 to show that

Monotonicity in Mixtures is violated.

Theorem 2. All c-linearly biseparable preferences displaying Ellsberg Behavior must violate

Monotonicity in Mixtures.

Proof of Theorem 2: By Ellsberg Behavior, there exists an E ⊆ S, w, x, y ∈ X with

w � x % y and an α ∈ (0, 1) such that αwEy + (1 − α)xEw � wEy ∼ xEw. By applying

(6.7), we now show that, for this event E, ρ(E) + ρ(Ec) < 1. Since wEy ∼ xEw, (6.7)

implies

u(w)ρ(E) + u(y)(1− ρ(E)) = u(w)ρ(Ec) + u(x)(1− ρ(Ec)).

Thus,

ρ(E) + ρ(Ec) =
2u(w)− u(x)− u(y)

u(w)− u(x)
ρ(E)− u(x)− u(y)

u(w)− u(x)
, (6.8)

and, equivalently,

ρ(E) + ρ(Ec) =
2u(w)− u(x)− u(y)

u(w)− u(y)
ρ(Ec) +

u(x)− u(y)

u(w)− u(y)
. (6.9)

There are two cases to consider:

Case 1: αw+ (1−α)x % αy+ (1−α)w. By Ellsberg Behavior and (6.7), (αu(w) + (1−

α)u(x))ρ(E) + (αu(y) + (1− α)u(w))(1− ρ(E)) > u(w)ρ(E) + u(y)(1− ρ(E)). Thus,

ρ(E) <
u(w)− u(y)

2u(w)− u(x)− u(y)
.

Together with (6.8), this implies

ρ(E) + ρ(Ec) <
u(w)− u(y)

u(w)− u(x)
− u(x)− u(y)

u(w)− u(x)
= 1,

as desired.

Case 2: αy+ (1−α)w � αw+ (1−α)x. By Ellsberg Behavior and (6.7), (αu(w) + (1−
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α)u(x))(1− ρ(Ec)) + (αu(y) + (1− α)u(w))(ρ(Ec)) > u(w)ρ(Ec) + u(x)(1− ρ(Ec)). Thus,

ρ(Ec) <
u(w)− u(x)

2u(w)− u(x)− u(y)
.

Together with (6.9), this again implies

ρ(E) + ρ(Ec) <
u(w)− u(x)

u(w)− u(y)
+
u(x)− u(y)

u(w)− u(y)
= 1,

as desired.

Since for this E, ρ(E) + ρ(Ec) < 1, we can now use Theorem 1: Apply Theorem 1,

with A = E, B = Ec, R = u(X) × u(X), h an interior constant act, and lines through

(u(h(E)), u(h(Ec))) with slopes 1
4(−1−ρ(E)

ρ(E) ) + 3
4(− ρ(Ec)

1−ρ(Ec)) and 3
4(−1−ρ(E)

ρ(E) ) + 1
4(− ρ(Ec)

1−ρ(Ec))

respectively (if ρ(E) = 0, replace −1−ρ(E)
ρ(E) by any finite number n such that n < − ρ(Ec)

1−ρ(Ec))

to conclude that Monotonicity in Mixtures is violated. �

6.4 Implications for the smooth ambiguity model

Are there preferences that can both satisfy Monotonicity in Mixtures and exhibit Ellsberg

Behavior? In this section, we show that the answer is yes. To do so, we consider the

smooth ambiguity model (Klibanoff, Marinacci and Mukerji, 2005). In our setting, each

smooth ambiguity preference can be represented by a functional of the following form:

∫
φ

(∑
s

u(f(s))p(s)

)
dµ(p), (6.10)

where u is a non-constant von Neumann-Morgenstern utility function, φ is a continuous and

strictly increasing function and µ is a countably additive probability measure over probabil-

ity measures over states. For some results in this section we further assume that φ is twice

continuously differentiable on the interior of u(X) = [0,∞) with φ′ > 0 and φ′′ < 0. Such

preferences exhibit Ellsberg Behavior if and only if µ has a non-singleton support (Proposi-

tion 3). We provide an upper bound on the coefficient of ambiguity aversion, −φ
′′(x)

φ′(x)
, that

is sufficient and, if µ is unrestricted, necessary for such preferences to satisfy Monotonicity

in Mixtures (Theorems 3 and 4). Thus, when applied to smooth ambiguity preferences,
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Monotonicity in Mixtures is compatible with ambiguity aversion as long as the aversion

isn’t too strong. From these results we also see that Monotonicity in Mixtures provides a

different categorization of ambiguity averse preferences than the first-order versus second-

order ambiguity aversion (very roughly, kinked versus smooth) categorization explored in

Lang (2017). While our Theorem 1 implies that no first-order ambiguity averse preferences

satisfy Monotonicity in Mixtures, Theorems 3 and 4 in this section show that some second-

order ambiguity averse preferences satisfy Monotonicity in Mixtures while others do not.

Proposition 3. Preferences represented by the smooth ambiguity model as in (6.10) with

φ strictly increasing and strictly concave exhibit Ellsberg Behavior if and only if µ has a

non-singleton support.

Proof of Proposition 3: If µ has only one measure in its support, then (6.10) reduces

to a strictly increasing transformation of an SEU preference and thus cannot exhibit Ellsberg

Behavior. For the other direction, suppose that µ has a non-singleton support. Then there

exists an event A s.t. minp∈supp(µ)p(A) <
∫
p(A)dµ(p) < maxp∈supp(µ)p(A). By non-

constancy of u, there are outcomes (i.e., degenerate lotteries) x, x such that u(x) > u(x).

There are two cases to consider:

Case 1: xAx% xAx. To show Ellsberg Behavior, let E = A, w = x, y = x, α = 1
2 , and

x be the lottery λx + (1 − λ)x such that xAx∼ xAx. Then w � x % y, and (6.10) yields

αwEy + (1− α)xEw � wEy ∼ xEw since strict concavity of φ implies

∫
φ

(
1

2
u(x)p(A) +

1

2
u(x)(1− p(A)) +

1

2
u(x)p(A) +

1

2
u(x)(1− p(A))

)
dµ(p)

>

∫ (
1

2
φ (u(x)p(A) + u(x)(1− p(A))) +

1

2
φ (u(x)p(A) + u(x)(1− p(A)))

)
dµ(p).

Case 2: xAcx% xAcx. To show Ellsberg Behavior, let E = Ac, w = x, y = x, α = 1
2 ,

and x be the lottery λx + (1 − λ)x such that xAcx∼ xAcx. Then w � x % y, and (6.10)
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yields αwEy + (1− α)xEw � wEy ∼ xEw since strict concavity of φ implies

∫
φ

(
1

2
u(x)p(A) +

1

2
u(x)(1− p(A)) +

1

2
u(x)p(A) +

1

2
u(x)(1− p(A))

)
dµ(p)

>

∫ (
1

2
φ (u(x)p(A) + u(x)(1− p(A))) +

1

2
φ (u(x)p(A) + u(x)(1− p(A)))

)
dµ(p).

�

Theorem 3. Preferences represented by the smooth ambiguity model as in (6.10) with φ

twice continuously differentiable on the interior of u(X) = [0,∞), φ′ > 0 and φ′′ < 0 satisfy

Monotonicity in Mixtures if φ is everywhere at most as concave as natural log:

−φ
′′(a)

φ′(a)
≤ 1

a
, for all a > 0.

Proof of Theorem 3: For α ∈ [0, 1], v ∈ u(X)S and act g ∈ F , define

W g(α, v) ≡
∫
φ

(∑
ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ)

)
dµ(p). (6.11)

If each of the cross-partial derivatives with respect to α and the sth component of v,

W g
αv(s)(α, v), are non-negative for all α ∈ (0, 1) and strictly positive v, then by e.g., Theo-

rem 2 from Milgrom and Roberts (1990), W g is supermodular with respect to α and any

component s of v. This is sufficient for Monotonicity in Mixtures, since it implies that the

increased state-by-state utility from improving f to a weakly dominating f ′ can only in-

crease the desirability of increasing the mixing weight from α to α′. We now show that when

−φ′′(a)
φ′(a) ≤

1
a , for all a > 0 these cross-partials are indeed non-negative. By differentiating,

we obtain

W g
α(α, v) =

∫ (∑
ŝ

(v(ŝ)− u(g(ŝ)))p(ŝ)

)
φ′

(∑
ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ))

)
dµ(p)
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and

W g
αv(s)(α, v) (6.12)

=

∫ [
p(s)φ′

(∑
ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ))

)

+ αp(s)

(∑
ŝ

(v(ŝ)− u(g(ŝ)))p(ŝ)

)
φ′′

(∑
ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ))

)]
dµ(p).

From −φ′′(a)
φ′(a) ≤

1
a with a =

∑
ŝ(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ)) > 0, we obtain that, for all p,

φ′

(∑
ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ))

)
(6.13)

≥− φ′′
(∑

ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ))

)(∑
ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ))

)
.

Substituting (6.13) into (6.12) yields,

W g
αv(s)(α, v) ≥

∫ [
p(s)φ′′

(∑
ŝ

(αv(ŝ) + (1− α)u(g(ŝ)))p(ŝ))

)(
−
∑
ŝ

u(g(ŝ))p(ŝ)

)]
dµ(p) ≥ 0

as claimed. �

Theorem 4. For φ twice continuously differentiable on the interior of u(X) = [0,∞) with

φ′ > 0 and φ′′ ≤ 0 , if −φ′′(a)
φ′(a) >

1
a , for some a > 0, then there exists a measure µ such that

preferences represented by (6.10) violate Monotonicity in Mixtures.

What is the reason for the role of µ in Theorem 4? Intuitively, the extent to which

higher ambiguity aversion manifests itself in behavior depends on how much ambiguity the

individual perceives herself as facing, with more ambiguity leading to stronger effects of

any given ambiguity aversion. This suggests that a µ reflecting an extremely ambiguous

event should be a good candidate for generating the required violation as soon as ambiguity

aversion exceeds the tightest possible bound. The proof uses this strategy, constructing

the violation using bets on an event assigned only probabilities 1 and 0 by measures in the

support of µ, with at least some measures assigning each.2

2According to Jewitt and Mukerji (2017), no event is more ambiguous.
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Proof of Theorem 4: By assumption, ∃a > 0 s.t −φ′′(a)
φ′(a) >

1

a
which, since φ′(a) > 0,

implies φ′(a) + aφ′′(a) < 0.

We construct a µ that will generate a violation of Monotonicity in Mixtures. Let µ(p1) =

µ(p2) =
1

2
, where p1 and p2 are probability measures on S such that ∃E ⊂ S with p1(E) = 1

and p2(E) = 0.

Consider the following acts f and g: f = xEz and g = zEx where u(x) = 2a and u(z) = 0.

By concavity of φ, φ(a) ≥ 1

2
φ(α2a)+

1

2
φ((1−α)2a), which implies that for all α ∈ [0, 1],

1

2
f +

1

2
g % αf + (1− α)g (6.14)

Define W (α, v) ≡W zEx(α, vE0) where W zEx(α, vE0) is defined as in (6.11) in the proof

of Theorem 3 with g = zEx and vE0 is the vector representing the state-by-state utility of

the act yEz where u(y) = v. Substituting our constructed µ, we get

W (α, v) =
1

2
[φ(αv) + φ((1− α)2a)].

Differentiating w.r.t. α yields

Wα(α, v) =
1

2
[vφ′(αv)− 2aφ′((1− α)2a)] (6.15)

Further differentiating w.r.t. v, we get

Wαv(α, v) =
1

2
[φ′(αv) + αvφ′′(αv)] (6.16)

Now, observe that Wαv(α, v) is negative when α =
1

2
and v = 2a:

Wαv(
1

2
, 2a) =

1

2
[φ′(a) + aφ′′(a)] < 0. (6.17)

From (6.15), Wα(12 , 2a) = 0, and thus, by (6.17), there exists a b > 2a such that

Wα(
1

2
, b) < 0. (6.18)
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Therefore, there exists an α̂ < 1
2 such that

W (
1

2
, b) < W (α̂, b). (6.19)

Letting f ′ = yEz and setting v = b, we see that f ′ weakly dominates f . However, while

from (6.14)
1

2
f +

1

2
g % α̂f + (1− α̂)g, (6.19) implies α̂f ′ + (1− α̂)g � 1

2
f ′ +

1

2
g, violating

Monotonicity in Mixtures. �

These results on Monotonicity in Mixtures in the context of the smooth ambiguity model

are closely related to work on comparative statics of portfolios of random variables (risky

assets) under expected utility. A strand of that literature addresses the question of when

any first-order stochastic dominant shift in the (conditional on any realization of the other

assets) distribution of an asset will result in a risk-averse expected utility investor increasing

that asset’s share in the optimal portfolio. The answer is when utility is everywhere at most

as concave as natural log (equivalently, xu′(x) increasing, absoute risk aversion at any x

≤ 1
x , or relative risk aversion everywhere at most 1). Fishburn and Porter (1976) showed

this for the special case of one risky and one safe asset. Hadar and Seo (1990) extended

this result to any two assets with independently distributed returns. Meyer and Ormiston

(1994) extended this to the case where returns across assets may be dependent (in which

case the shift being to the conditional distribution becomes important). Finally, Mitchell

and Douglas (1997) established the result for the case of n (possibly dependent) assets.

The condition that utility is at most as concave as natural log also appears in the litera-

ture on general equilibrium with additively separable utilities, where it has been identified as

leading demand for contingent goods to have the gross substitutes property and to existence

of a unique equilibrium (see Dana (2001) for a survey). Returning to the consumer theory

analogy, for additively separable utilities over consumption goods, natural log utility leads

income and substitution effects to just offset each other, further suggesting a connection

with Monotonicity in Mixtures.
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6.5 More general implications: Bounds on slopes in utility space at dif-

ferent points

Our result (Theorem 1) ruling out Ellsberg Behavior-generating kinks shows how multiple

slopes “locally” supporting (i.e., supporting within an appropriate rectangle) the better-

than set at the same point in two-dimensional utility space generates a violation of Mono-

tonicity in Mixtures. One lesson from Theorem 4, however, is that such kinks are not nec-

essary to generate conflict with Monotonicity in Mixtures. Here we show that arguments

similar to those in Theorem 1 can be used, even under smoothness, to provide implications

of Monotonicity in Mixtures for how slopes of the “local” supports at distinct points relate.

Specifically, our next result (Theorem 5) shows that Monotonicity in Mixtures bounds how

different the slope of a “local” support of the better-than set at one point in utility space

can be from the slope of such a support at another point. Monotonicity in Mixtures is

necessarily violated whenever these slopes change “too fast”.

The specific form of the bound derived in Theorem 5 delivers useful insights. The bound

is on the ratio of these slopes and becomes tighter as the points are translated up by adding

positive constants (i.e., moved parallel to the 45 degree line). When utility is unbounded

above, so that these positive constants may be taken to infinity, this ratio bound converges

to one. Satisfying this bound therefore implies that absolute ambiguity aversion eventually

disappears in the sense that for any bounded rectangle of points, translating this rectangle

up by adding large enough positive constants makes any convexity of indifference curves

within the translated rectangle arbitrarily uniformly small. In particular, if preferences

are convex (i.e., satisfy Schmeidler’s Uncertainty Aversion), then the bound implies that

preferences eventually approach expected utility (and thus ambiguity neutrality) in any such

region of large enough stakes. Thus one implication of Theorem 5 is that any Variational

preferences (Maccheroni, Marinacci and Rustichini, 2006) (which are the constant absolute

ambiguity averse preferences satisfying Uncertainty Aversion (Grant and Polak, 2013)) that

display Ellsberg Behavior must violate Monotonicity in Mixtures.3

The statement of the theorem makes use of the following definition, giving conditions

3As some Variational preferences have no kinks, this could not have been established using our earlier
result, Theorem 1.
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for a rectangle and two support lines in two-dimensional utility space to form a support

configuration (as illustrated in Figure 6.4).

Definition 3. Let % be represented by V
(
(u(f(s)))s∈S

)
as in (3.1). Fix any disjoint,

non-empty events A,B ⊆ S and interior acts h, k ∈ FA,B,h such that k(A) % h(A) and

h(B) % k(B). Given a rectangle R ⊆ u(X) × u(X) containing (u(h(A)), u(h(B))) and

(u(k(A)), u(k(B))) in its interior and two distinct lines lh and lk in u(X)× u(X), (R, lh, lk)

is a support configuration if

(i) lh intersects G(h)∩R only at (u(h(A)), u(h(B))) and has an intersection with the left

edge of rectangle R,{(q(A), q(B)) ∈ R : q(A) = minr∈R r(A)},

(ii) lk intersects G(k) ∩ R only at (u(k(A)), u(k(B))) and has an intersection with the

bottom edge of rectangle R, {(q(A), q(B)) ∈ R : q(B) = minr∈R r(B)},

(iii) the line, l3, passing through (u(k(A)), u(h(B))) and the intersection of lh with the left

edge of rectangle R, has an intersection with the bottom edge of rectangle R.

The definition requires that the rectangle R is small enough so that, within R, the lines lh

and lk intersect the upper sets G(h) and G(k) only at u(h) and u(k), respectively, and large

enough so that the lines lh (respectively, lk and l3) intersect the left (respectively, bottom)

side of R. The theorem gives a bound that Monotonicity in Mixtures imposes on the ratio

of the slopes of the lines lh and lk in any support configuration.

Theorem 5. Let % be represented by V
(
(u(f(s)))s∈S

)
as in (3.1).

Fix any disjoint, non-empty events A,B ⊆ S and interior acts h, k ∈ FA,B,h such that

k(A) % h(A) and h(B) % k(B).

If % satisfies Monotonicity in Mixtures, then

Slope(lh)

Slope(lk)
≤ u(k(A))−minr∈R r(A)

u(h(A))−minr∈R r(A)
× u(h(B))−minr∈R r(B)

u(k(B))−minr∈R r(B)
, (6.20)

for all support configurations (R, lh, lk).

When V is differentiable in the utility values, (6.20) may be written entirely in terms
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Figure 6.4: A support configuration.

of V and u, since

Slope(lh) = −VA
VB
|u(h)

and

Slope(lk) = −VA
VB
|u(k)

where for E ⊆ S, VE denotes the derivative of V with respect to the utility attained on the

event E.

It is worth noting that if preferences are uncertainty averse (i.e., convex) when restricted

to acts in FA,B,h and u(X) = [0,∞), then support configurations will always exist and the

only rectangles R that need be considered are those with minr∈R r(A) = minr∈R r(B) = 0.

In this case, the right-hand side of the bound (6.20) is unchanged as utilities are multi-

plicatively scaled up. In this sense, Monotonicity in Mixtures requires that such preferences

not display too much relative ambiguity aversion anywhere. Note that the bound will be

satisfied with equality at all points for preferences that are Cobb-Douglas in utility space

when restricted to FA,B,h (i.e., preferences representable on FA,B,h by u(f(A))γu(f(B))1−γ

or, equivalently, γ ln(u(f(A))) + (1 − γ) ln(u(f(B))) for some γ ∈ (0, 1)). Thus the bound

can be viewed as saying that preferences (on these two-dimensional slices) must be every-
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where at most as convex as Cobb-Douglas. This connection of Monotonicity in Mixtures

with Cobb-Douglas for uncertainty averse preferences is a more general manifestation of the

connection with natural log (and the corresponding connection with the gross substitutes

property) we found for uncertainty averse smooth ambiguity preferences in Section 6.4. In

particular, with the µ used in the proof of Theorem 4, φ = ln yields Cobb-Douglas re-

stricted to FE,Ec,h and the smooth ambiguity preferences restricted to FE,Ec,h are at most

as convex as Cobb-Douglas if and only if φ is at most as concave as natural log.

Proof of Theorem 5: Fix V, u,A,B, h, k and a support configuration (R, lh, lk) as

in the statement of the theorem. Monotonicity of V implies that, for any f ∈ FA,B,h all

points (a, b) ∈ u(X)×u(X) such that a ≥ u(f(A)) and b ≥ u(f(B)) lie in G(f). Therefore,

since lh intersects G(h) ∩ R only at (u(h(A)), u(h(B))) and lk intersects G(k) ∩ R only

at (u(k(A)), u(k(B))), it follows that both lh and lk must have negative and finite slopes,

as does l3 by construction. Name the acts in FA,B,h corresponding to the intersections

of lh, lk, l3 with the edges of R as specified in (i),(ii) and (iii) of the definition of support

configuration by i, j and m respectively. (See Figure 6.5)

Observe that the slope of l3 is the following:

Slope(l3) = −u(i(B))− u(h(B))

u(k(A))− u(i(A))
= −u(i(B))− u(h(B))

u(h(A))− u(i(A))
× u(h(A))− u(i(A))

u(k(A))− u(i(A))
(6.21)

= Slope(lh)× u(h(A))− u(i(A))

u(k(A))− u(i(A))
.

Now let l4 be the line passing through m and k. The slope of l4 is:

Slope(l4) = − u(k(B))− u(j(B))

u(m(A))− u(k(A))
= − u(h(B))− u(j(B))

u(m(A))− u(k(A))
× u(k(B))− u(j(B))

u(h(B))− u(j(B))
(6.22)

= Slope(l3)×
u(k(B))− u(j(B))

u(h(B))− u(j(B))
.

Combining (6.21) and (6.22) yields,

Slope(l4) = Slope(lh)× u(h(A))− u(i(A))

u(k(A))− u(i(A))
× u(k(B))− u(j(B))

u(h(B))− u(j(B))
. (6.23)

If % satisfies Monotonicity in Mixtures, then, since by construction h is the unique
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Figure 6.5: i, j and m

optimum on lh ∩ R, it must be that all optima on l3 ∩ R have vertical coordinates weakly

below u(h(B)). Applying Monotonicity in Mixtures a second time yields that, since all

optima on l3 ∩R have vertical coordinates weakly below u(h(B)), all optima on l4 ∩R have

vertical coordinates weakly below u(k(B)). From this, we will now show that if Slope(l4) <

Slope(lk) (equivalently, u(m) is to the left of u(j)) then Monotonicity in Mixtures must be

violated (Figure 6.6). To see this, suppose to the contrary that Slope(l4) < Slope(lk)

and Monotonicity in Mixtures is satisfied. Since k is uniquely optimal on lk ∩ R (by the

assumptions of the theorem), V is monotonic and Slope(l4) < Slope(lk), k � f for all

(u(f(A)), u(f(B))) ∈ l4 ∩R having vertical coordinate strictly below u(k(B)) (as each such

(u(f(A)), u(f(B))) is weakly dominated by some point on lk ∩R that is strictly worse than

(u(k(A)), u(k(B))). Thus, since we showed above that Monotonicity in Mixtures implies

that all optima on l4 ∩R have vertical coordinates weakly below u(k(B)), it follows that k

is strictly optimal on l4∩R. However, k,R, lk and l4 now satisfy the conditions of Theorem

28



Figure 6.6: Violation of the slope bound (6.20)

1 and therefore imply Monotonicity in Mixtures is violated, a contradiction. Thus, we have

shown that Monotonicity in Mixtures implies

Slope(l4)

Slope(lk)
≤ 1. (6.24)

Applying (6.23) yields

Slope(l4)

Slope(lk)
=
Slope(lh)

Slope(lk)
× u(h(A))− u(i(A))

u(k(A))− u(i(A))
× u(k(B))− u(j(B))

u(h(B))− u(j(B))
.

Therefore, Monotonicity in Mixtures implies

Slope(lh)

Slope(lk)
≤ u(k(A))− u(i(A))

u(h(A))− u(i(A))
× u(h(B))− u(j(B))

u(k(B))− u(j(B))
. (6.25)

Since u(i(A)) = minr∈R r(A) and u(j(B)) = minr∈R r(B), (6.25) is the inequality (6.20).�
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7 Extensions

7.1 Monotonicity in Optimal Mixtures

The following is a weakening of Monotonicity in Mixtures to have a more directly compar-

ative static flavor:

Axiom 7. Monotonicity in Optimal Mixtures: For all acts f, f ′, g such that f ′(s) %

f(s) for all s ∈ S, α∗f + (1 − α∗)g optimal in {αf + (1− α)g : α ∈ [0, 1]} implies there

exists an α′ ≥ α∗ such that α′f ′ + (1− α′)g is optimal in {αf ′ + (1− α)g : α ∈ [0, 1]}.

It is immediate that Monotonicity in Mixtures implies Monotonicity in Optimal Mix-

tures, so this is potentially a weakening of Monotonicity in Mixtures. However, by inspection

of our earlier proofs, one can verify that all of our results providing conditions under which

Monotonicity in Mixtures is violated also show violations of Monotonicity in Optimal Mix-

tures. Thus, this is an alternative condition we could have used in our analysis. Note also

that the analogy with the gross substitutes property from consumer theory made in several

places in the paper relied only on Monotonicity in Optimal Mixtures.

7.2 Further directions

In addition to the smooth ambiguity model, there are other models of preferences capable of

displaying Ellsberg Behavior in the literature while sometimes also satisfying Monotonicity

in Mixtures. For example, the Confidence preference model of Chateauneuf and Faro (2009),

which imposes constant relative ambiguity aversion, can do so in some instances. As of yet,

we have not been able to find nice conditions under which this occurs, but we think it would

be interesting to do so.

Ellsberg Behavior is, as was mentioned, much weaker than typical global ambiguity

aversion/uncertainty aversion conditions in the literature. Mukerji and Tallon (2003) (see

also Higashi et al., 2008) have an axiom A1 that is also meant to be a weak/local condition,

and it may be interesting to explore the relationship between A1 and Ellsberg Behavior.

In applications using specific preferences that our results show violate Monotonicity in
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Mixtures, it may be interesting to explore exactly which types of improvements do or do not

generate such violations. For instance, the violation of Monotonicity in Mixtures used in the

proof of Theorem 4 involves an improvement in act f that makes f ′ in a natural sense more

ambiguous than f . One can verify that one would not obtain a violation of Monotonicity

in Mixture if f ′ were constucted by improving the payoff of f on event Ec which would

make f ′ less ambiguous. Future research might try to build this intuition into a formal

characterization (possibly tailored to specific preference models) of which improvements of

f would generate violations of Monotonicity in Mixtures. This would link to, for example,

comparative statics of portfolio choice under risk and ambiguity.
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