Report

The Increasing Dominance of Teams in Production of Knowledge

Stefan Wuchty, 1* Benjamin F. Jones, 2* and Brian Uzzi 3*†

¹Northwestern Institute on Complexity (NICO), Northwestern University, Evanston, IL 60208, USA. ²Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA. ³Kellogg School of Management, Northwestern University and the Northwestern Institute on Complexity (NICO), Evanston, IL 60208, USA (Corresponding author).

*Authors contributed equally to this work.

†To whom correspondence should be addressed. E-mail: uzzi@northwestern.edu

We have used 19.9 million papers over 5 decades and 2.1 million patents to demonstrate that teams increasingly dominate solo authors in the production of knowledge. Research is increasingly done in teams across virtually all fields. Teams typically produce more highly cited research than individuals do, and this advantage is increasing over time. Teams now also produce the exceptionally high impact research, even where that distinction was once the domain of solo authors. These results are detailed for the sciences and engineering, social sciences, arts and humanities, and patents, suggesting that the process of knowledge creation has fundamentally changed.

An acclaimed tradition in the history and sociology of science emphasizes the role of the individual genius in scientific discovery (1, 2). This tradition focuses on guiding contributions of solitary authors, such as Newton and Einstein, and can be seen broadly in the tendency to equate great ideas with particular names, such as the Heisenberg uncertainty principle, Euclidean geometry, Nash equilibrium, and Kantian ethics. The role of individual contributions is also celebrated through science's award-granting institutions, like the Nobel Prize Foundation (3).

Several studies, however, have explored an apparent shift in science from this individual-based model of scientific advance to a teamwork model. Building on classic work by Zuckerman and Merton, many authors have established a rising propensity for teamwork in samples of research fields, with some studies going back a century (4-7). For example, de Solla Price examined the change in team size in chemistry from 1910 to 1960, forecasting that in 1980 zero percent of the papers would be written by solo authors (8). Recently, Adams et al. established that teamwork had increased across broader sets of fields among elite U.S. research universities (9). Nevertheless, the breadth and depth of this projected shift in manpower remains indefinite particularly in fields where the size of experiments and capital investments remain small, raising the question as to whether the projected growth in teams is universal or cloistered in specialized fields.

A shift towards teams also raises new questions of whether teams produce better science. Teams may bring greater collective knowledge and effort, but they are known to experience social network and coordination losses that make them under-perform individuals even in highly complex tasks (10–12), as F. Scott Fitzgerald concisely observed when he stated that "no grand idea was ever born in a conference" (13). From this viewpoint, a shift to teamwork may be a costly phenomenon or one that promotes low-impact science, while the highest impact ideas remain the domain of great minds working alone.

We studied 19.9 million research articles in the Institute for Scientific Information (ISI) Web of Science database and an additional 2.1 million patent records. The Web of Science data covers research publications in science and engineering since 1955, the social sciences since 1956, and arts and the humanities since 1975. The patent data covers all U.S. registered patents since 1975 (14). A team was defined as having more than one listed author (publications) or inventor (patents). Following the ISI classification system, the universe of scientific publications is divided into three main branches and their constituent subfields: science and engineering (with 171 subfields), social sciences (with 54 subfields) and the arts and humanities (with 27 subfields). The universe of U.S. patents was treated as a separate category (with 36 subfields). See the Supplementary Material for details on these classifications.

For science and engineering, social sciences, and patents, there has been a substantial shift towards collective research. In the sciences, team size has grown steadily each year and nearly doubled from 1.9 to 3.5 authors per paper over 45 years.

Shifts toward teamwork in science and engineering have been suggested to follow from the increasing scale, complexity, and costs of big science. Surprisingly then, we find an equally strong trend towards teamwork in the social sciences, where these drivers are much less significant. Although social scientists in 1955 wrote 17.5% of their

papers in teams, by 2000 they wrote 51.5% of their papers in teams, an increase similar to that in sciences and engineering. Mean team size has also grown each year. On average, today's social sciences papers are written in pairs with a continuing, positive trend towards larger teams. Unlike the other areas of research, single authors still produce over 90% of the papers in the arts and humanities. Nevertheless, there is a positive trend toward teams in the arts and humanities (p <.001). Finally, patents also show a rising dominance of teams. Although this data is on a shorter time scale (1975-2000), there was a similar annualized increase in the propensity for teamwork. Average team size has risen from 1.7 to 2.3 inventors per patent, with the positive trend towards larger teams continuing.

The generality of the shift to teamwork is captured in Table 1. In sciences and engineering, 99.4% of the 171 subfields have seen increased teamwork. Meanwhile, 100% of the 54 subfields in the social sciences, 85.2% of the 27 subfields in the humanities, and 100% of the 36 subfields in patenting have seen increased teamwork.

Supplementary table S1 presents trends for individual fields. In the sciences, areas like medicine, biology, and physics have seen at least a doubling in mean team size over the 45 year period. Surprisingly, even mathematics, long thought the domain of the loner scientist and least dependent of the hard sciences on lab scale and capital-intensive equipment, showed a marked increase in the fraction of work done in teams, from 19% to 57%, with mean team size rising from 1.22 to 1.84. In the social sciences, psychology, economics, and political science show enormous shifts toward teamwork, sometimes doubling or tripling the propensity for teamwork. With regard to average team size, psychology, the closest of the social sciences to a lab science, has the highest growth (75.1%) while political science has the lowest (16.6%). All areas of patents showed a positive change in both the fraction of papers done by teams and team size with only small variations across the areas of patenting, suggesting that the conditions favoring teamwork in patenting are largely similar across subfields. As reflected in Figure 1A, the humanities show lower growth rates in the fraction of publications done in teams, yet a tendency towards increased teamwork is still observed.

Our measure of impact was the number of citations each paper and patent receives, which has been shown to correlate with research quality (15-17) and is frequently used in promotion and funding reviews (18). Highly cited work was defined as receiving more than the mean number of citations for a given field and year (19). Teams produce more highly cited work in each broad area of research and at each point in time.

To explore the relationship between teamwork and impact in more detail, we define the *relative team impact* (RTI) for a given time period and field. RTI is the mean number of citations received by team-authored work divided by the mean number of citations received by solo-authored work. A RTI greater than 1 indicates that teams produce more highly cited papers than solo authors and vice versa for RTI less than 1. When the RTI is equal to 1, there is no difference in citation rates for team and solo authored papers. In our dataset the average RTI was greater than 1 at all points in time and in all broad research areas -- sciences and engineering, social sciences, humanities, and patents. In other words, there is a broad tendency for teams to produce more highly cited work than individual authors. Further, the RTI is rising with time. For example, in sciences and engineering, team-authored papers received 1.7 times as many citations as solo-authored papers in 1955, but 2.1 times the citations by 2000. Similar upward trends in relative team impact appear in sciences and engineering, social science, and arts and humanities, and more weakly in patents, although the trend is still upward there (20). Note especially that, during the early periods, solo authors received substantially more citations on average than teams in many subfields, especially within sciences and engineering (Fig. 2E) and social sciences (Fig. 2F). By the end of the period, however, there are virtually no subfields in sciences and engineering and social sciences where solo authors typically receive more citations than teams. Table S1 details the RTI for major individual research areas, indicating that teams currently have a nearly universal impact advantage. In a minority of cases the RTI declined with time (e.g. -34.4% in mathematics and -25.7% in education), although even here teams currently have a large advantage in citations received (e.g. 67% more average citations in mathematics and 105% in education).

The citation advantage of teams is also increasing with time when teams of fixed size are compared to solo authors. In Science and Engineering, for example, papers with two authors received 1.30 times more citations than solo authors in the 1950s but 1.74 times more citations in the 1990s. In general, this pattern prevails for comparisons between teams of any fixed size versus solo authors (table S4).

A possible challenge to the validity of these observations is the presence of self-citations given that teams have the opportunity to self-cite their work more frequently than a single author. To address this, we reran the analysis with all self-citations removed from the dataset (21). We found that removing self-citations can produce modest decreases in the RTI measure in some fields; for example, the RTI fell from 3.10 to 2.87 in Medicine and 2.30 to 2.13 in biology (table S1). Thus, removing self-citations can reduce the RTI by 5-10%, but the relative citation advantage of teams remains essentially intact.

Because the progress of knowledge may be driven by a small number of key insights (22), we further test whether the

most extraordinary concepts, results, or technologies are the province of solitary scientists or teams. Pooling all papers and patents within the four research areas, we calculated the frequency distribution of citations to solo-authored and team-authored work, comparing the first five years and last five years of our data. If these distributions overlap in their right hand tails, then a solo-authored paper or patent is just as likely as a team-authored paper or patent to be extraordinarily highly cited.

Our results show that teams now dominate the top of the citation distribution in all four research domains (Fig 3, A-D). In the early years, a solo author in science and engineering or the social sciences was more likely than a team to receive no citations, but a solo author was also *more* likely to garner the highest number of citations – to be a paper that was singularly influential. However, by the most recent period, a *team-authored paper* has a higher probability of being extremely highly cited. For example, a team-authored paper in science and engineering is currently 6.3 times more likely than a solo-authored paper to receive at least 1,000 citations. Finally, in the arts and humanities and patents, individuals were never more likely than teams to produce the more influential work. These patterns also hold when self-citations are removed (fig. S5).

Taken together, these results suggest two important facts about preeminent work in our observational periods. One, it never appeared to be the domain of solo authors in the arts and humanities and patents. Second, solo authors did produce the papers of singular distinction in science and engineering and social science in the 1950s, but the mantel of extraordinarily cited work has passed to teams by 2000.

Over our 5 decade sample period, the increasing capital intensity of research may have been a key force in laboratory sciences where the growth in teamwork has been intensive (8), but it is unlikely to explain similar patterns in mathematics, economics, and sociology where we found that growth rates in team size have been nearly as large. Since the 1950's the number of researchers has grown as well, which could promote finer divisions of labor and more collaboration. Similarly, steady growth in knowledge may have driven scholars toward more specialization, prompting larger and more diverse teams (7, 10). However, we found that teamwork is growing nearly as fast in fields where the number of researchers has grown relatively slowly (see Supplementary Material). Declines in communication costs could make teamwork less costly as well (9, 25). Shifting authorship norms may have influenced coauthorship trends in fields with extremely large teams, such as biomedicine and high-energy physics (26, 27), and yet our results hold across diverse fields where norms for order of authorship, existence of post doctorates, and prevalence of grant-based research differ substantially.

References and Notes

- 1. R. K. Merton, Science 159, 56 (1968).
- 2. P. J. Bowler, I. R. Morus, *Making Modern Science: A Historical Survey* (University of Chicago, Chicago, 2005).
- 3. J. F. English, *The Economy of Prestige: Prizes, Awards, and the Circulation of Cultural Value* (Harvard, Cambridge, MA, 2005).
- R. Collins, The Sociology of Philosophies: A Global Theory of Intellectual Change (Harvard University Press, Cambridge, MA, 1998).
- D. Cronin, D. Shaw, K. La Barre, Journal of the American Society for Information Science and Technology, 54, 855 (2003).
- H. Zuckerman, R. K. Merton in *The Sociology of Science*,
 R. K. Merton, N. Storer Eds. (Univ. of Chicago Press, Chicago, 1973), pp. 545-550.
- 7. B. F. Jones, *National Bureau of Economic Research Working Paper* #11360 (2005).
- 8. D. J. de Solla Price, *Little Science*, *Big Science* (Columbia, New York, 1963).
- 9. J.J. Adams, G. Black, R. Clemmons, P. E. Stephan, *Research Policy* **34**, 259 (2005).
- 10. R. Guimerà, B. Uzzi, J. Spiro, L. Amaral, *Science* **308**, 697 (2005).
- 11. N. Babchuk, K. Bruce, P. George, *The American Sociologist* **30**, 5 (1999).
- 12. K. Y. Williams, C. A. O'Reilly in *Research in Organizational Behavior*, B. Staw and Robert Sutton, Eds. (JAI Press, Greenwich, CT, 1998), vol. 20, pp. 77-140.
- 13. F. S. Fitzgerald, in *The Crack Up*, E. Wilson, Ed. (New Directions, New York, 1993) 122.
- 14. B.H. Hall, A.B. Jaffe, M. Trajtenberg, *National Bureau of Economic Research* Working Paper #8498 (2001).
- 15. M. Trajtenberg, *RAND Journal of Economics*, **21**, 172 (1990).
- 16. B.H. Hall, A.B. Jaffe, M. Trajtenberg, *RAND Journal of Economics*, **36**, 16 (2005).
- 17. D. W. Aksnes, *Journal of the American Society for Information Science and Technology* **57**, 169 (2006).
- 18. N. S. Ali, H. C. Young, N. M. Ali, *Library Review* **45**, 39 (1996).
- 19. Citations received were counted from publication year to 2006. Recent publications have smaller citation counts because they have had less time to be cited, but this effect is standardized when comparing team versus solo publications within a given year.
- 20. In patenting, we may observe weaker trends because citing earlier work can limit a patent's scope, so that applicants may avoid citations and (b) patent examiners typically add the majority of citations, which makes patent citations different from paper citations (23, 24).

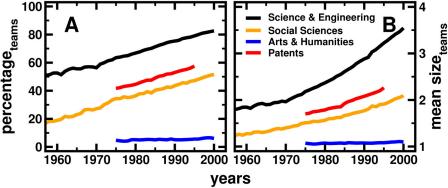
- 21. A self-citation is defined as any citation where a common name exists in the authorship of both the cited and citing papers. All citations were removed in which a citing and cited author's first initial and last name matched. Note that this method can also eliminate citations where the authors are different people but share the same name. However, performing Monte Carlo simulations on the data, we find that such errors occur in less than 1 of every 2,000 citations. Thus, any errors introduced by this method appear negligible. We did not remove self-citations from patents because citations to previous work in the patent literature are primarily assigned by the patent examiner (24), who independently assigns citations to earlier work based on the relevance of previous patents' content.
- 22. T. S. Kuhn, *The Structure of Scientific Revolutions* (University of Chicago, Chicago, 1970).
- 23. B. Sampat, "Determinants of Patent Quality: An Empirical Analysis", mimeo, Columbia University, 2005.
- 24. J. Alcacer, M. Gittelman, *Review of Economics and Statistics* **88**, 774 (2006).
- 25. G. Becker, K. Murphy, *Quarterly Journal of Economics* **107**, 1137 (1992).
- 26. J. Drenth, *Journal of the American Medical Association* **280**, 219 (1998).
- 27. B. Cronin, *Journal of the American Society for Information Science and Technology* **52**, 558 (2001).
- 28. We thank R. Guimera, S. Stern, K. Murnighan, and K. Williams Phillips, and two anonymous referees for their helpful comments. The Northwestern Institute on Complex Systems provided financial support.

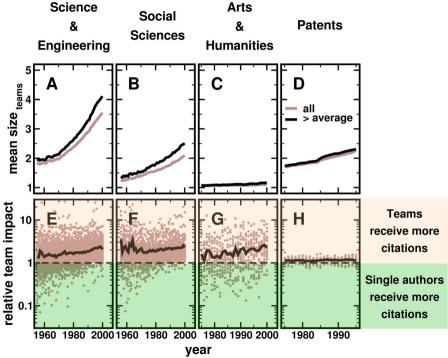
Supporting Online Material

 $\underline{www.sciencemag.org/cgi/content/full/1136099/DC1}$

SOM Text Figs S1 to S5 Tables S1 to S5 References

10 October 2006; accepted 3 April 2007 Published online 12 April 2007; 10.1126/science.1136099 Include this information when citing this paper.


- **Fig. 1.** The growth of teams. These plots present changes over time in the fraction of papers and patents written in teams (panel A) and in mean team size (panel B). Each line represents the arithmetic average taken over all subfields in each year.
- **Fig. 2.** The relative impact of teams. Panels A-D present mean team size comparing all papers and patents with those that received more citations than average in the relevant subfield. Panels E-H plot the "relative team impact" (RTI), which is the mean number of citations received by team-


authored work divided by the mean number of citations received by solo-authored work. A ratio of 1 indicates that team and solo-authored work have equivalent impact on average. Each point in the plots represents the RTI for a given subfield and year, while the black lines present the arithmetic average in a given year.

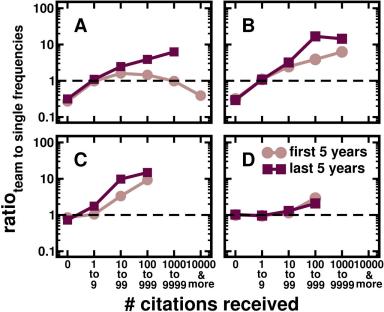

Fig. 3. Exceptional research. Pooling all publications and patents within the four research categories, we calculated frequency distributions of citations received. Separate distributions are calculated for single authors and teams, and the ratio is plotted. A ratio greater than 1 indicates that a team-authored paper had a higher probability of producing the given range of citations than a solo-authored paper. Ratios are compared for the early period (first 5 years of available data) and late period (last 5 years of available data) for each research category, sciences and engineering (A), social sciences (B), arts and humanities (C), and patents (D).

Table 1. Patterns by subfield. For the three broad ISI categories and for patents, we count the number (N) and percentage (%) of subfields that show (1) larger team sizes in the last five years compared to the first five years and (2) relative team impact measures (RTI) larger than 1 in the last five years. We show the RTI measures both with and without self-citations removed in calculating the citations received.

fields	N fields	increa team	_	RTI > 1 (with self citati	ons)	RTI > 1 (no self cita	tions)
		N fields	%	N fields	%	N fields	%
Science & Engineering	171	170	99.4	167	97.7	159	92.4
Social Sciences	54	54	100.0	54	100.0	51	94.4
Arts & Humanities	27	24	88.9	23	85.2	18	66.7
Patents	36	36	100.0	32	88.9		

Supporting Online Material for

The Increasing Dominance of Teams in Production of Knowledge

Stefan Wuchty, Benjamin F. Jones, Brian Uzzi*

*To whom correspondence should be addressed. E-mail: uzzi@northwestern.edu

Published 12 April 2006 on *Science* Express DOI: 10.1126/science.1136099

This PDF file includes:

SOM Text Figs. S1 to S5 Tables S1 to S4 References

The Increasing Dominance of Teams in the Production of Knowledge – Supplementary Material

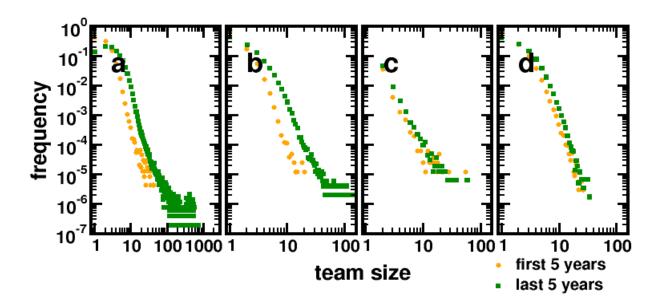
Stefan Wuchty¹, Benjamin F. Jones² and Brian Uzzi³

- $1\ Northwestern\ Institute$ on Complexity (NICO), Northwestern University, Evanston, IL 60208, USA
- 2 Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA
- 3 Kellogg School of Management, Northwestern University and the Northwestern Institute on Complexity (NICO), Evanston, IL 60208, USA (Corresponding author).

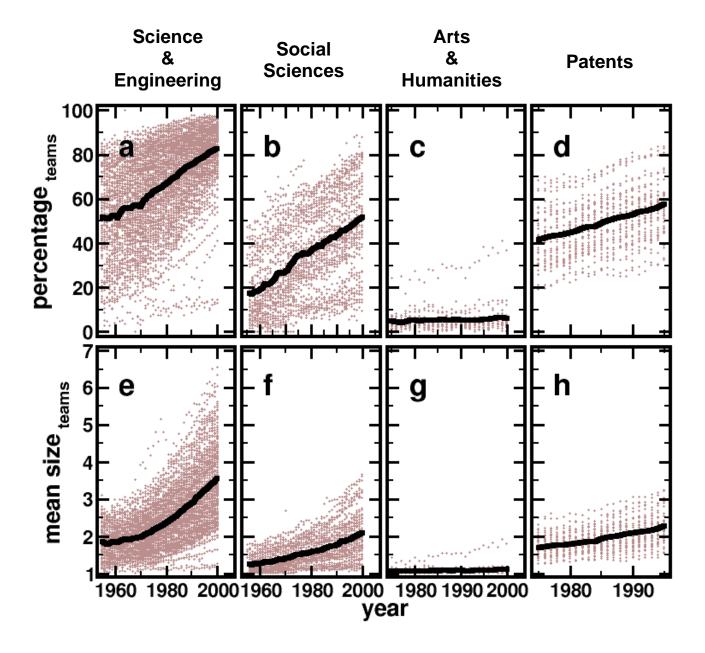
Overview

These supplementary materials provide detailed assessment of individual subfields and other analyses as cited in the paper.

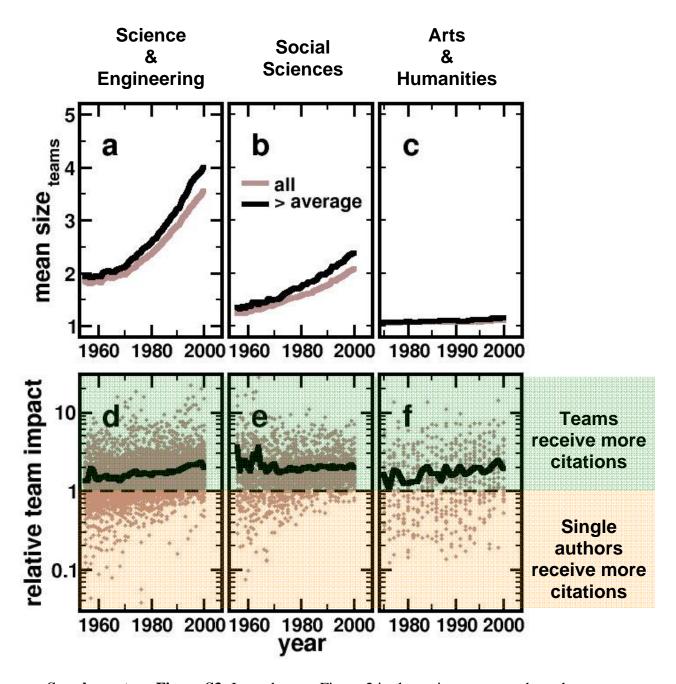
Further Notes: Data

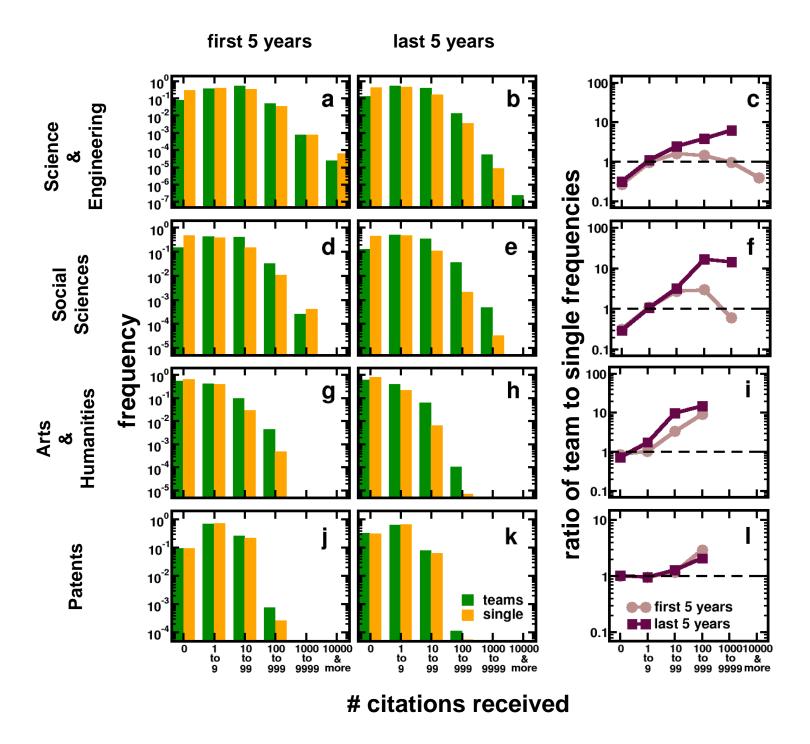

Data from the ISI database Web of Science (http://wwwisiknowledge.com) were downloaded using software from Thomson Scientific. The data includes all full length research articles and shorter research pieces (letters) as classified by the ISI. This excludes books, book reviews, editorial material, meeting abstracts, and several other types of media. See the ISI website for further information on types of documents.

Data for patents were drawn from the United States Patent and Trademark Office, covering all utility patents issued from 1975-1999, as compiled by (*S1*).

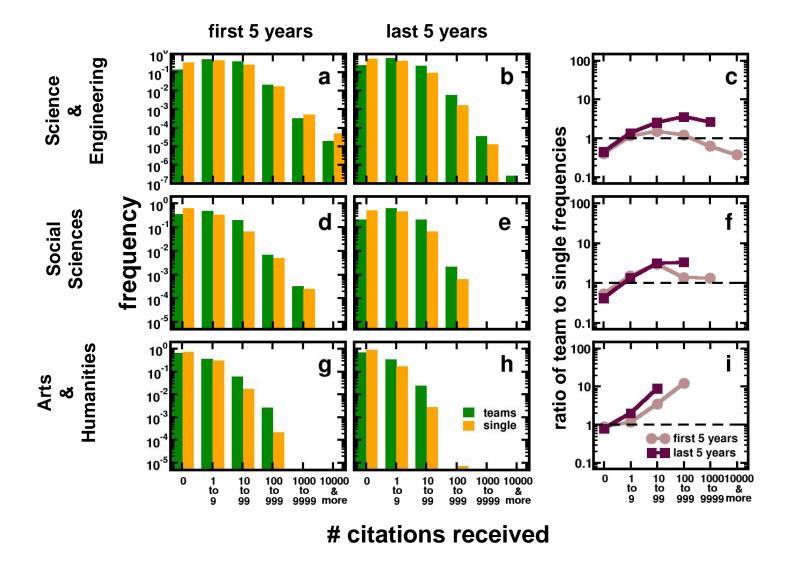

The ISI subfield classifications include 171 subfields in the sciences and engineering, 54 subfields in the social sciences, and 27 subfields in the arts and humanities. The US Patent and Trademark data is divided into 36 subfields following (*S1*). These subfields are listed in Supplementary Table S2.

Further Notes: Analysis


One may test whether the rise in the number of researchers in a field predicts the rise in average team size by running the following regression: $\log(\text{team size})_{it} = a + b*\log(\text{field size})_{it} + v_i + m_t + u_{it}$, where i indexes the subfield, t indexes the year, v_i and m_t are fixed effects for subfield and year respectively, and u_{it} is an error term. The results show a statistically significant but small association between the number of researchers and average team size in Science and Engineering and Social Sciences, but no effect in Arts and Humanities. In Sciences and Engineering, for example, the effect implied that a 100% increase in the subfield size is associated with only a 2% increase in average team size. Given that average field size has increased by 2.6 log points over the time span of the data, while team size has increased by 0.6 log points, expansions of field size can explain only $.02 \times 2.6 / 0.6 = 9\%$ of the increase in team size. This suggests that rises in manpower may be important to the rise in team size yet, at most, a limited part of a richer, multivariate set of explanations.


Supplementary Figure S1: Frequency distributions of team sizes in **(a)** Science & Engineering, **(b)** Social Sciences, **(c)** Arts & Humanities and **(d)** Patents. In particular, we obtain these curves in the first and last 5 years that are covered by our data (Science & Engineering, from 1955-1959 to 1996-2000; Social Sciences from 1956-1960 to 1996-2000; Arts & Humanities 1975-1979 to 1996-2000 and Patents, from 1975-1979 to 1991-1995).

Supplementary Figure S2: The growth of teams as an extended version of Figure 1 in the main paper. These plots present changes over time in the fraction of papers and patents written in teams (panels a-d) and in mean team size (panels e-h). Each point represents a specific subfield in a specific year. Black lines present the arithmetic mean over all subfields in each year. Subfields for publications are defined by the ISI classification system, with 171 different subfields in Science and Engineering, 54 subfields in Social Sciences, and 27 subfields in Arts & Humanities. Patents are categorized in 36 subfields as suggested by (*S1*).



Supplementary Figure S3: In analogy to Figure 2 in the main paper, we show the same results *without* self-citations.

Supplementary Figure S4: The decline of the exceptional gifted solo scientist (as an extended version of Figure 3 in the main paper). Pooling all publications and patents within the four research categories, we calculated frequency distributions of citations received in the early period (first 5 years of available data, leftmost column) and late period (last 5 years of available data, center column). We distinguished between

publications and patents that have been written by single authors (orange bars) and teams (green bars) and calculated separate frequency distributions for each group. The ratio of team and solo frequencies (rightmost panels) is also plotted. A ratio greater than 1 indicates that a team-authored paper had a higher probability of producing the given range of citations than a solo-authored paper. In the early period, solo-authors had a substantial advantage in producing the most highly cited work in both sciences and engineering (c) and social sciences (f). In the contemporary period, this advantage reversed; the percentage of team-authored papers that are highly ranked is now substantially greater than the percentage of solo-authored papers that are highly ranked. For example, in science and engineering in the recent period, the fraction of teamauthored papers that receive 1,000+ citations is 6.3 times higher than the fraction of soloauthored papers that achieve such success (see c). The patterns in arts and humanities and patents (panels i and l) are more consistent over time, with teams consistently more likely to produce the highest impact work. Panels: Sciences and Engineering (a 1955-1959, b 1996-2000, c ratio); Social Sciences (d 1956-1960, e 1996-2000, f ratio); Arts and Humanities (g 1975-1979, h 1996-2000, i ratio); Patents (j 1975-1979, k 1991-1995, l ratio).

Supplementary Figure S5: In analogy to Figure 3 in the main paper and Supplementary Figure S4, we show the same results *without* self-citations.

Supplementary Table S1: Major subfields. Description of number of papers, mean team size, fraction of teams, and relative team impact score (RTI) with and without self-citations for the beginning and end periods of our analysis.

Science &	N _{papers}	mean s	size _{team}	%	fractio	n _{teams}	%		v self ions	%		/o self tions	%
Engineering		1955-59	1996-00	change	1955-59	1996-00	change	1955-59	1996-00	change	1955-59	1996-00	change
Medicine	4,203,383	2.02	4.39	117.9	0.57	0.87	52.2	2.05	3.10	50.9	2.00	2.87	43.4
Biology	1,877,587	1.84	4.00	117.3	0.55	0.90	63.2	0.83	2.30	175.9	0.70	2.13	203.2
Physics	1,804,970	1.72	4.05	135.1	0.49	0.85	72.7	1.05	1.67	59.7	0.97	1.57	62.3
Chemistry	1,691,801	2.20	3.69	67.6	0.76	0.92	21.1	1.33	1.86	39.9	1.30	1.67	28.4
Engineering	1,388,696	1.80	2.94	63.6	0.55	0.78	41.3	1.03	2.43	136.4	0.93	2.25	141.6
Mathematics	474,203	1.22	1.84	50.4	0.19	0.57	197.4	2.54	1.67	-34.3	2.79	1.58	-43.2
Environmental	442,310	1.32	2.98	124.9	0.25	0.82	226.7	1.05	1.51	44.8	1.04	1.40	34.7
Material Science	434,651	1.88	3.46	84.1	0.62	0.88	42.3	0.84	1.91	126.4	0.81	1.73	113.4
Geo Sciences	312,241	1.54	2.99	95.0	0.39	0.82	111.1	1.09	1.59	45.6	1.03	1.44	39.1
Agriculture	278,162	2.58	3.29	27.2	0.80	0.89	11.4	1.60	1.50	-6.4	1.57	1.36	-13.9
Computer Science	249,603	1.32	2.39	81.2	0.23	0.74	216.5	0.96	1.48	54.3	0.93	1.40	51.4
					C			RTI v	v self		RTI w	o self	
Social Sciences	N _{papers}	mean s	size _{team}	%	tractio	n _{teams}	%	citat	ions	%	citat	ions	%
		1956-60	1996-00	change	1956-60	1996-00	change	1956-60	1996-00	change	1956-60	1996-00	change
Psychology	384,176	1.47	2.57	75.1	0.33	0.72	115.2	0.99	1.99	102.3	0.95	1.89	99.7
Economics	130,236	1.10	1.71	54.6	0.09	0.52	455.5	1.37	1.62	17.9	1.35	1.60	18.2
Political Science	124,276	1.06	1.23	16.6	0.05	0.17	267.9	4.34	3.54	-18.5	4.23	3.55	-16.1
Education	100,008	1.20	1.97	65.1	0.15	0.51	234.7	2.76	2.05	-25.7	2.86	1.89	-33.9
Law	82,742	1.11	1.35	22.2	0.09	0.20	123.0	0.97	1.90	96.1	0.89	2.18	144.6
Sociology	61,645	1.21	1.50	24.2	0.18	0.34	91.3	1.95	2.13	9.4	1.92	2.10	9.5
Anthropology	36,204	1.27	1.93	52.2	0.18	0.40	121.8	1.88	1.93	2.6	1.87	1.69	-9.8
		moan	size _{team}	0/	fractic	n _{teams}	0/	RTI v	v self	0/	RTI w	o self	0/
Arts & Humanities	N _{papers}	illean s	size _{team}	%	Hactic	teams	%	citat	ions	%	citat	ions	%
		1975-79	1996-00	change	1975-79	1996-00	change	1975-79	1996-00	change	1975-79	1996-00	change
Literature	184,512	1.05	1.07	2.2	0.03	0.05	43.9	4.61	5.04	9.2	5.16	4.62	-10.5
History	95,263	1.06	1.08	1.8	0.05	0.07	24.2	2.04	2.28	11.8	1.98	2.19	10.6
Art & Architecture	71,773	1.06	1.09	2.7	0.05	0.06	31.0	1.02	3.87	279.9	0.89	3.52	293.3
Philosophy	52,053	1.05	1.06	0.3	0.05	0.05	-4.8	0.88	2.31	161.8	0.82	2.17	165.9
Dance & Music	39,914	1.07	1.10	2.5	0.04	0.06	52.5	2.90	6.76	132.9	3.13	5.87	87.5
Religion	36,306	1.06	1.09	3.0	0.04	0.06	35.5	4.38	4.99	13.9	4.35	4.75	9.2
Theater, Film, TV & Radio	22,800	1.07	1.07	-0.4	0.04	0.04	1.1	0.38	2.16	472.8	0.19	1.81	826.4
Archaeology	13,750	1.32	1.79	35.9	0.22	0.37	70.2	2.01	2.72	35.5	1.93	2.60	34.7
		mean s	size _{team}	%	fractio	n _{teams}	%		v self	%			
Patents	$N_{patents}$		team			teams		citat	ions				
		1975-79	1991-95	change	1975-79	1991-95	change	1975-79	1991-95	change			
Mechanical	373,671	1.58	1.96	24.2	0.36		36.5						
Chemical	352,194		1.74	19.0	0.30		34.4		1.19				
Electrical & Electronics Computers & Comm.	345,561 273,941		2.53 2.09	25.3 27.5	0.57 0.41		23.0 33.8		1.04 1.19				
Drugs & Medical	151,438		2.23	30.5	0.44	0.58	31.1	1.20	1.25				

Supplementary Table S2: For each subfield in Science & Engineering, Social Sciences, Arts & Humanities and Patents we present the total number of papers/patents, years covered by the data, as well as mean team sizes, mean fraction of work done in teams and relative impact factors (RTI) in the first and last five years of available data. In addition we provide changing rates of these measures.

Science & Engineering	N	woars		mea	an team s	size	fra	action _{team}	ıs		RTI	
fields	N _{papers}	years _{cov}	ered	first 5 y.	last 5 y.	% _{change}	first 5 y.	last 5 y.	% _{change}	first 5 y.	last 5 y.	% _{change}
Biochemistry	669,227	1955	2000	1.95	4.46	129	0.63	0.96	52	0.63	1.72	172
General Medicine	529,398	1955	2000	1.80	3.33	85	0.43	0.68	59	4.40	6.66	51
Surgery	391,028	1955	2000	2.06	4.38	113	0.62	0.87	41	1.35	3.18	136
Pharmacology	386,311	1955	2000	2.30	4.31	87	0.70	0.91	30	1.41	1.79	27
Chemistry, Multidisciplinary	385,191	1955	2000	2.26	3.53	56	0.79	0.87	10	1.13	3.00	165
Engineering, Electrical	356,453	1960	2000	1.57	3.12	98	0.41	0.82	100	1.19	1.88	58
Physics, Applied	353,213	1955	2000	1.82	4.08	124	0.55	0.92	67	1.01	1.74	72
Multidisciplinary Sciences	328,914	1955	2000	1.73	3.48	101	0.47	0.67	41	1.59	13.74	765
Neurosciences	322,472	1955	2000	1.95	4.05	108	0.62	0.92	48	1.03	1.89	83
Physics Condensed Matter	316,711	1955	2000	1.75	3.92	125	0.52	0.91	75	0.78	1.28	64
Physics, Multidisciplinary	308,681	1955	2000	1.73	5.56	221	0.43	0.77	78	0.99	2.10	112
Chemistry, Physical	293,108	1955	2000	1.82	3.55	95	0.62	0.92	49	1.20	1.36	13
Material Science, Multidisciplinary	286,226	1955	2000	1.78	3.60	102	0.53	0.90	69	0.83	1.45	75
Immunology	275,875	1955	2000	2.40	5.38	124	0.75	0.94	26	1.28	2.42	89
Chemistry, Organic	269,096	1955	2000	2.34	3.85	65	0.85	0.97	14	1.06	1.24	16
Cell biology	267,217	1955	2000	1.68	4.55	171	0.47	0.95	101	1.91	1.71	-11
Oncology	258,726	1955	2000	2.19	5.80	165	0.68	0.94	37	1.34	2.70	102
Plant Sciences	257,592	1955	2000	1.62	3.41	110	0.46	0.90	95	1.36	1.74	28
Mathematics	256,161	1955	2000	1.16	1.61	39	0.15	0.45	203	1.68	1.51	-10
Physics, Atomic	237,499	1955	2000	1.83	3.47	89	0.61	0.90	47	0.97	1.29	34
Clinical Neurology	203,258	1955	2000	1.89	4.37	131	0.56	0.86	53	1.48	2.85	93
Engineering, Chemical	197,532	1955	2000	1.92	2.74	42	0.66	0.77	16	1.25	3.65	193
Cardiac	192,860	1955	2000	2.54	5.18	104	0.76	0.90	18	1.50	3.75	151
Radiology	188,236	1955	2000	1.98	4.46	125	0.60	0.89	50	1.21	2.94	144
Environmental Sciences	185,899	1960	2000	1.88	3.23	72	0.46	0.86	86	2.75	1.71	-38
Chemistry, Analytical	184,614	1955	2000	2.00	3.52	76	0.71	0.92	29	1.48	1.73	17
Biophysics	183,981	1955	2000	2.27	4.23	87	0.77	0.95	24	0.57	1.16	105
Endocrinology	178,031	1955	2000	2.46	4.95	102	0.76	0.93	23	1.19	2.05	72
Veterinery Sciences	169,855	1955	2000	2.47	3.39	38	0.78	0.77	0	1.11	3.20	187
Research Medicine	168,628	1955	2000	2.48	4.85	95	0.77	0.90	16	1.33	3.74	181
Microbiology	165,910	1955	2000	2.31	4.28	86	0.76	0.93	23	1.20	1.86	55
Astronomy	162,302	1955	2000	1.41	3.71	163	0.31	0.80	161	1.12	2.07	85
Physiology	153,489	1955	2000	2.04	3.90	91	0.65	0.93	43	1.30	1.58	22
Genetics and Heredity	152,534	1955	2000	1.54	4.90	217	0.38	0.92	143	0.99	1.83	84
Pediatrics	151,866	1955	2000	2.03	4.15	104	0.59	0.86	46	1.82	2.60	43
Psychiatry	149,911	1955	2000	1.71	3.86	125	0.42	0.82	94	2.04	2.46	20

Mathematics, Applied	146,518	1955	2000	1.15	1.90	65	0.14	0.61	338	2.29	1.44	-37
Chemistry, Inorganic	145,316	1955	2000	1.98	3.96	100	0.78	0.96	23	1.21	1.63	35
Food Science	141,988	1955	2000	2.43	3.35	38	0.75	0.88	17	1.87	2.07	11
Instruments	140,518	1955	2000	1.98	4.27	116	0.62	0.81	30	1.40	2.06	47
Geosciences, Multidisciplinary	138,673	1955	2000	1.50	3.13	108	0.34	0.81	134	1.29	1.59	23
Biotechnology	138,443	1955	2000	2.53	4.07	61	0.71	0.90	27	1.16	3.08	165
Public Health	137,784	1955	2000	1.84	3.98	116	0.46	0.83	79	3.68	2.53	-31
Optics	137,755	1962	2000	1.71	3.37	97	0.48	0.85	76	1.53	1.90	25
Mechanics	135,914	1955	2000	1.64	2.34	42	0.45	0.79	76	0.86	1.47	71
Nuclear Science	135,627	1956	2000	1.92	4.84	153	0.57	0.85	50	0.92	1.61	75
Polymer Science	135,522	1960	2000	2.09	3.41	63	0.64	0.92	44	0.91	2.02	123
Hematology	133,935	1955	2000	2.59	5.85	126	0.81	0.93	16	1.21	3.05	152
Pathology	133,910	1955	2000	1.88	4.48	139	0.57	0.89	57	1.61	2.87	78
Zoology	130,050	1955	2000	1.53	2.80	83	0.39	0.81	104	1.20	1.38	15
Ecology	119,271	1955	2000	1.33	2.62	97	0.25	0.77	206	1.03	1.37	33
Obstretics	115,727	1955	2000	1.91	4.10	115	0.56	0.86	53	1.40	2.53	80
Gastroenterology	112,025	1955	2000	2.40	5.14	114	0.72	0.90	25	1.66	2.44	47
Vascular Diseaese	108,906	1955	2000	2.65	5.23	97	0.82	0.92	13	1.15	3.19	178
Engineering, Mechanical	104,557	1964	2000	1.57	2.34	49	0.40	0.73	82	1.97	2.42	22
Ophtalmology	103,907	1955	2000	1.78	3.82	115	0.51	0.88	72	1.51	2.41	60
Dentistry	97,298	1959	2000	1.63	3.22	97	0.40	0.80	97	1.95	3.10	58
Toxiocology	96,234	1959	2000	2.74	3.93	43	0.82	0.91	11	0.95	1.38	44
Biology	95,543	1955	2000	1.65	3.11	88	0.41	0.78	90	0.62	1.45	132
Metallurgy	95,161	1955	2000	1.76	3.04	73	0.55	0.82	49	1.02	2.65	158
Urology	93,746	1955	2000	1.95	4.52	132	0.59	0.88	48	1.27	2.44	92
Marine	93,589	1955	2000	1.34	2.89	115	0.28	0.84	203	1.46	1.42	-2
Physics, Nuclear	92,642	1960	2000	2.52	5.36	113	0.64	0.81	25	0.97	1.57	62
Chemistry, Applied	90,638	1955	2000	1.95	3.58	83	0.53	0.90	70	2.80	1.76	-37
Entomology	90,251	1955	2000	1.91	2.71	42	0.61	0.78	28	1.00	2.14	115
Infectious Diseases	88,794	1955	2000	2.34	5.09	118	0.77	0.90	17	0.49	2.07	320
Geochemistry	88,099	1955	2000	1.67	3.06	83	0.49	0.85	73	0.87	1.48	70
Engineering, Multidisciplinary	88,011	1955	2000	1.99	2.41	21	0.65	0.71	10	1.01	2.31	129
Dermatology	87,469	1955	2000	1.94	3.82	97	0.59	0.86	45	1.48	2.30	56
Physics, Mathematical	85,883	1960	2000	1.39	2.33	68	0.32	0.72	123	1.09	1.57	44
Spectroscopy	85,780	1957	2000	1.81	4.70	160	0.59	0.89	49	0.85	1.47	74
Chemistry Medicinal	84,825	1955	2000	1.88	5.28	181	0.59	0.97	63	1.24	1.43	15
Energy	84,272	1955	2000	1.84	2.64	43	0.57	0.71	23	1.57	3.24	106
Nutrition	83,437	1955	2000	1.91	3.84	101	0.43	0.84	95	4.85	1.63	-66
Agriculture, Dairy and Animal Science	83,372	1955	2000	2.63	3.53	34	0.81	0.91	11	1.52	1.18	-22
Respiratory System	82,141	1959	2000	2.93	4.77	63	0.86	0.89	4	1.05	3.23	207
Agronomy	78,550	1960	2000	1.96	3.34	70	0.62	0.89	43	1.00	1.63	63
Chrystallography	78,471	1964	2000	1.86	3.98	114	0.62	0.94	52	0.48	0.72	51
Biochemical Research Methods	78,203	1955	2000	1.28	3.81	197	0.25	0.93	268	0.84	1.23	47
Anesthesiology	77,965	1955	2000	1.92	3.42	78	0.50	0.80	60	2.36	5.04	114
 	,											

Computer Science, Theory	76,246	1955	2000	1.42	2.38	67	0.32	0.73	132	0.97	1.29	34
Statistics	75,602	1955	2000	1.24	1.96	58	0.20	0.64	218	3.22	1.70	-47
Orthopedics	71,889	1955	2000	1.68	3.34	99	0.48	0.83	75	1.16	3.13	169
Coating	67,880	1955	2000	1.99	3.92	97	0.70	0.92	32	1.01	1.75	75
Water Resources	67,494	1965	2000	1.82	2.84	56	0.54	0.83	54	1.36	1.71	26
Mathematics, Interdisciplinary	67,216	1955	2000	1.31	2.27	73	0.26	0.73	187	0.64	1.40	120
Virology	65,893	1955	2000	1.87	5.24	180	0.62	0.97	57	0.85	1.94	129
Engineering, Civil	65,692	1966	2000	1.30	2.27	75	0.22	0.69	212	5.82	2.30	-60
Behavioral Sciences	65,542	1958	2000	1.68	3.01	79	0.48	0.86	78	1.01	1.16	15
Meterology	64,715	1955	2000	1.29	3.22	149	0.24	0.82	236	1.14	1.54	35
Physics, Particle	62,941	1967	2000	3.58	5.30	48	0.63	0.71	14	1.85	1.68	-9
Agricultural, Multidisciplinary	62,478	1955	2000	2.37	3.30	39	0.72	0.90	25	1.88	2.03	8
Physics, Fluid	60,984	1956	2000	1.42	3.34	135	0.31	0.83	166	1.00	1.32	32
Computer Science, Interdisciplinary Applications	59,844	1968	2000	1.61	2.52	56	0.41	0.78	91	1.57	1.48	-5
Transplantation	59,003	1963	2000	2.20	6.07	175	0.65	0.93	41	0.79	1.95	148
Otorhinolaryngology	58,848	1961	2000	1.83	3.62	98	0.53	0.88	67	1.77	1.81	2
Psychology	58,830	1955	2000	1.40	3.21	129	0.27	0.85	213	1.42	1.43	1
Telecommunications	58,611	1964	2000	1.55	2.33	50	0.41	0.67	61	0.62	2.83	355
Electrochemistry	57,846	1955	2000	1.99	3.52	77	0.70	0.93	33	1.01	1.68	67
Accoustics	57,279	1955	2000	1.53	2.80	83	0.39	0.81	104	1.32	1.78	35
Sports Sciences	56,315	1955	2000	2.53	3.35	33	0.80	0.81	2	1.75	2.82	61
Theromodynamics	54,885	1957	2000	1.82	2.64	45	0.60	0.83	38	0.83	1.56	89
Medical Technology	54,457	1955	2000	2.43	4.19	73	0.77	0.87	14	1.09	1.52	39
Management Science	54,448	1956	2000	1.37	2.14	57	0.26	0.74	179	2.22	1.22	-45
Engineering, Software	53,644	1955	2000	1.36	2.15	57	0.28	0.62	120	1.01	2.11	108
Automation	50,755	1961	2000	1.38	2.21	60	0.32	0.72	124	1.77	1.85	4
Agricultural, Soil	48,603	1965	2000	1.91	2.99	57	0.65	0.87	35	1.25	1.45	16
Reproductive Biology	46,639	1955	2000	1.81	4.20	132	0.54	0.91	69	1.26	1.85	47
Engineering, Aerospace	45,618	1963	2000	1.71	2.70	58	0.51	0.68	34	1.10	2.13	93
Engineering, Environmental	44,841	1967	2000	1.79	3.04	69	0.49	0.84	72	2.98	3.14	5
Oceanography	44,399	1955	2000	1.54	2.89	88	0.42	0.82	94	0.96	1.72	78
Engineering, Biomedical	44,283	1956	2000	1.74	4.04	132	0.50	0.90	79	0.30	1.83	517
Information Systems	43,075	1955	2000	1.25	2.49	100	0.21	0.77	275	1.57	1.31	-17
Ceramics	42,752	1955	2000	1.88	3.23	71	0.65	0.84	29	0.94	2.26	141
Hardware	42,582	1955	2000	1.40	2.48	78	0.29	0.76	162	0.73	1.54	110
Developmental Biology	42,187	1959	2000	1.81	4.09	126	0.54	0.96	77	0.91	2.20	142
Education	40,841	1956	2000	1.15	2.28	99	0.12	0.57	373	1.08	1.88	74
Fisheries	39,231	1965	2000	1.63	3.06	89	0.47	0.86	83	1.07	1.44	35
Parasitology	37,829	1955	2000	1.47	3.92	166	0.35	0.91	159	1.23	1.19	-4
Industrial Engineering	37,244	1956	2000	1.31	2.24	71	0.21	0.70	225	1.74	1.79	3
Critical Care	36,282	1972	2000	2.42	4.45	84	0.72	0.88	23	2.73	4.10	50
Artificial Intelligence	36,065	1968	2000	1.61	2.40	49	0.44	0.78	78	2.02	1.21	-40
Llautiaultura	00,000	.000	_000	1.01	2.40	70	0.44	0.70	, ,			
Horticulture	35,899	1961	2000	1.38	3.42	148	0.29	0.91	212	0.54	1.90	254

Forestry	34,245	1961	2000	1.48	2.65	79	0.41	0.77	90	1.18	1.67	42
Nursing	32,315	1956	2000	1.17	2.12	81	0.14	0.53	275	3.82	1.66	-56
Engineering, Petroleum	30,644	1966	2000	1.59	2.23	40	0.36	0.56	52	1.90	3.32	75
Nanoscience	30,103	1966	2000	1.70	3.80	124	0.43	0.92	111	1.00	1.11	11
Geriatrics	29,908	1956	2000	1.64	3.81	132	0.39	0.81	106	1.57	2.04	30
Evolutionary Biology	29,686	1955	2000	1.46	2.81	92	0.33	0.80	142	0.90	1.20	33
Paper and Wood	28,723	1965	2000	1.60	2.51	57	0.42	0.71	68	1.61	3.24	101
Tropical Medicine	28,529	1955	2000	2.33	4.49	92	0.68	0.87	28	2.20	2.68	21
Rheumatology	28,505	1955	2000	2.11	4.28	103	0.65	0.85	31	1.61	1.98	23
Mining	28,088	1959	2000	2.05	3.25	59	0.68	0.76	13	1.04	3.01	188
Mineralogy	26,727	1955	2000	1.65	3.01	83	0.49	0.86	77	1.00	1.12	12
Biodiversity	22,374	1955	2000	1.33	2.30	74	0.25	0.66	161	0.76	1.79	136
Allergy	22,359	1971	2000	2.97	4.26	44	0.81	0.84	4	2.67	2.36	-11
Construction	21,992	1966	2000	1.22	2.41	97	0.18	0.74	314	1.90	1.85	-3
Geography, Physical	21,566	1965	2000	1.45	2.61	80	0.35	0.72	107	1.63	1.44	-12
Geology	21,299	1955	2000	1.23	2.75	124	0.21	0.78	266	1.18	1.57	33
Manufacturing	21,086	1973	2000	1.34	2.53	89	0.27	0.81	204	7.18	1.86	-74
Mycology	19,601	1955	2000	1.44	3.24	126	0.34	0.86	153	1.22	1.90	56
Limnology	19,002	1956	2000	1.58	2.80	77	0.45	0.84	90	0.71	1.67	136
Anatomy	17,407	1955	2000	1.42	3.46	143	0.36	0.87	143	1.24	1.32	7
Emergency Medicine	17,363	1972	2000	1.71	3.31	94	0.45	0.82	82	1.74	2.93	68
Paleontology	17,197	1955	2000	1.29	2.41	87	0.26	0.69	172	1.06	1.43	35
Remote Sensing	15,863	1964	2000	1.59	2.80	76	0.46	0.81	77	0.97	1.48	53
Material Science, Characterization and Testing	15,675	1964	2000	1.37	2.38	73	0.32	0.66	108	0.85	3.82	349
History and Philosophy of Science	14,778	1956	2000	1.05	1.16	10	0.05	0.13	158	0.70	1.71	146
Rehabilitation	14,509	1972	2000	2.37	3.16	33	0.65	0.77	17	2.07	3.18	54
Ornithology	13,733	1965	2000	1.44	2.43	69	0.28	0.74	167	1.12	1.35	20
Microscopy	13,607	1955	2000	2.26	3.51	55	0.67	0.87	29	0.68	1.24	81
Neuroimaging	13,232	1971	2000	2.73	4.67	71	0.82	0.90	10	1.67	2.97	77
Medical Informatics	13,045	1964	2000	1.74	3.30	89	0.33	0.82	147	1.62	1.21	-26
Engineering, Agricultural	12,769	1971	2000	2.31	3.05	32	0.82	0.89	9	1.10	1.30	18
Substance Abuse	12,421	1975	2000	2.34	3.69	57	0.69	0.85	23	1.54	1.68	9
Imaging Science	12,309	1969	2000	2.13	2.86	34	0.67	0.81	21	1.61	1.67	4
Legal, Medicine	11,805	1966	2000	1.32	3.03	130	0.25	0.73	190	2.01	2.35	17
Composites	11,759	1968	2000	1.76	2.67	52	0.59	0.88	47	0.90	1.26	40
Textiles	11,446	1965	2000	2.12	2.68	26	0.70	0.75	8	1.53	3.37	120
Transportation	10,938	1967	2000	1.65	2.37	43	0.45	0.77	71	0.82	1.24	50
Cybernetics	9,541	1975	2000	1.67	2.20	31	0.46	0.69	50	1.56	1.96	26
Engineering, Geological	8,967	1965	2000	1.54	2.45	59	0.42	0.82	93	1.56	1.21	-23
Engineering, Ocean	8,936	1969	2000	1.47	2.50	69	0.33	0.72	120	4.01	2.33	-42
Engineering, Marine	8,154	1968	2000	1.25	1.22	-2	0.21	0.13	-39	2.01	24.72	1127
Agricultural Economics and Policy	7,550	1966	2000	1.32	2.09	58	0.29	0.68	136	2.16	1.33	-38
Biomaterials	7,327	1980	2000	3.01	4.07	35	0.81	0.96	19	1.06	0.95	-10
Andrology	6,025	1975	2000	2.93	4.17	43	0.83	0.90	8	1.18	2.41	105

Robotics	5,061	1983	2000	1.68	2.38	42	0.45	0.75	67	2.52	1.66	-34
Integrative Medicine	4,766	1974	2000	1.79	3.32	86	0.46	0.74	62	1.27	3.59	183
Medical Ethics	4,192	1975	2000	1.17	2.06	76	0.12	0.37	213	1.55	1.57	1

Social Sciences	N	voare		mea	an team s	size	fr	action _{tean}	ns	relat	. team im	pact
fields	N _{papers}	years _{cov}	ered	first 5 y.	last 5 y.	% _{change}	first 5 y.	last 5 y.	% _{change}	first 5y.	last 5 y.	% _{change}
Economics	130,248	1956	2000	1.10	1.71	55	0.09	0.52	456	1.37	1.62	18
Psychiatry	117,485	1956	2000	1.73	3.44	99	0.41	0.76	83	1.60	2.80	75
Political Science	100,290	1956	2000	1.06	1.22	15	0.05	0.16	226	4.55	4.24	-7
Multidisciplinary Psychology	93,363	1956	2000	1.52	2.27	50	0.36	0.61	73	0.87	2.22	154
Law	82,748	1956	2000	1.11	1.35	22	0.09	0.20	123	0.97	1.90	96
Education and Educational Research	78,956	1956	2000	1.16	1.86	61	0.13	0.47	262	2.14	2.00	-7
Experimental Psychology	67,729	1956	2000	1.35	2.56	90	0.26	0.78	198	2.02	1.66	-18
Psychology, Clinical	65,616	1956	2000	1.51	3.05	102	0.35	0.77	119	1.62	1.79	10
Business	63,226	1956	2000	1.17	1.66	43	0.13	0.44	238	1.46	3.36	130
Sociology	61,719	1956	2000	1.21	1.50	24	0.18	0.34	91	1.95	2.14	9
Public Health	49,099	1956	2000	1.56	3.14	101	0.33	0.77	131	3.30	1.96	-41
Management	46,744	1956	2000	1.25	1.91	53	0.18	0.61	228	2.38	1.62	-32
Psychology, Developmental	43,788	1956	2000	1.65	2.96	79	0.43	0.79	86	1.74	1.90	9
Psychology, Social	42,090	1956	2000	1.53	2.44	59	0.39	0.77	95	1.61	1.64	2
Social Sciences, Interdisciplinary	38,889	1956	2000	1.19	1.71	44	0.14	0.39	185	2.47	2.53	2
Information Science	37,069	1956	2000	1.07	1.69	58	0.06	0.35	483	1.99	3.10	55
Anthropology	36,204	1956	2000	1.27	1.93	52	0.18	0.40	122	1.88	1.93	3
Educational Psychology	35,985	1956	2000	1.46	2.28	56	0.34	0.67	100	0.80	1.86	132
Social Issues	35,714	1956	2000	1.06	1.34	26	0.04	0.20	363	6.58	3.37	-49
International Relations	34,278	1956	2000	1.04	1.24	20	0.03	0.19	563	2.59	2.49	-4
Psychology, Applied	33,590	1956	2000	1.50	2.37	58	0.37	0.74	98	1.02	1.52	49
Rehabilitation	33,021	1956	2000	1.29	2.48	92	0.21	0.69	227	2.76	1.90	-31
Business, Finance	31,148	1956	2000	1.13	1.39	23	0.09	0.27	208	2.68	6.48	142
Nursing	30,174	1956	2000	1.17	2.08	79	0.14	0.52	267	3.82	1.68	-56
Environmental Studies	28,605	1956	2000	1.17	1.76	51	0.16	0.49	218	3.24	1.35	-58
Psychology, Biological	27,182	1958	2000	1.71	3.06	78	0.51	0.85	67	0.92	1.51	64
Geography	26,612	1956	2000	1.10	1.63	48	0.09	0.41	354	2.15	1.12	-48
Planning	25,426	1956	2000	1.15	1.62	41	0.12	0.43	249	6.01	1.51	-75
Applied Linguistics	23,507	1956	2000	1.13	2.01	78	0.10	0.55	461	2.18	2.33	7
Area Studies	22,173	1956	2000	1.06	1.19	12	0.05	0.14	160	6.33	2.00	-68
Mathematical Social Sciences	21,374	1956	2000	1.20	1.85	54	0.17	0.57	243	1.53	1.61	5
Education, Special	21,067	1956	2000	1.31	2.54	95	0.22	0.73	230	2.72	1.66	-39
Gerontology	20,710	1956	2000	1.60	3.22	101	0.36	0.76	109	1.34	2.78	107
Health Policy	20,203	1956	2000	1.56	2.63	69	0.32	0.62	96	1.26	2.46	95
Social Work	19,578	1956	2000	1.11	2.08	87	0.09	0.56	506	2.76	1.92	-30
Industrial Relations	18,818	1956	2000	1.12	1.81	62	0.09	0.47	450	3.40	1.57	-54
Social Sciences, Biomedical	17,137	1967	2000	1.53	2.18	42	0.37	0.51	38	1.69	2.23	32

Family Studies	16,598	1956	2000	1.07	2.35	120	0.06	0.66	1033	3.04	1.72	-43
Public Administration	16,284	1956	2000	1.09	1.51	39	0.07	0.39	468	0.29	1.19	308
Criminology and Penology	16,245	1956	2000	1.13	1.77	57	0.10	0.45	369	3.09	2.27	-26
Communication	15,478	1956	2000	1.16	1.75	51	0.14	0.46	227	1.63	1.88	16
UrbanStudies	13,483	1964	2000	1.21	1.65	37	0.19	0.43	124	0.95	1.25	32
History and Philosophy of Science	13,321	1956	2000	1.05	1.15	9	0.05	0.12	149	0.70	1.90	172
Ethics	12,423	1956	2000	1.00	1.42	42	0.00	0.25 -	-		1.87 -	
Psychology, Psychoanalysis	11,889	1956	2000	1.11	1.59	43	0.09	0.26	198	1.19	2.22	87
Ergonomics	11,740	1956	2000	1.37	2.65	94	0.26	0.79	204	1.59	1.31	-17
Demography	11,063	1956	2000	1.15	1.93	68	0.12	0.52	321	2.01	1.82	-9
Substance Abuse	10,964	1971	2000	1.78	3.09	73	0.45	0.79	77	2.94	1.92	-35
Psychology, Mathematical	10,320	1956	2000	1.41	2.03	44	0.31	0.67	112	0.54	1.08	100
History	9,707	1956	2000	1.01	1.10	8	0.01	80.0	477	0.87	1.20	38
Womens Studies	9,620	1975	2000	1.55	1.80	16	0.38	0.41	6	1.16	2.78	140
History of Social Sciences	7,887	1956	2000	1.05	1.20	14	0.05	0.17	255	1.24	1.50	21
Transportation	5,893	1967	2000	1.21	2.30	89	0.17	0.72	310	1.42	1.27	-11
Ethnic Studies	2,903	1969	2000	1.16	1.20	3	0.11	0.15	36	0.71	2.35	233

Arts & Humanities	N	years _{covered}		mea	an team s	size	fr	action _{tean}	าร	relat	. team im	pact
fields	N _{papers}	year s _{co}	vered	first 5 y.	last 5 y.	% _{change}	first 5 y.	last 5 y.	% _{change}	first 5y.	last 5 y.	% _{change}
History	84,832	1975	2000	1.06	1.07	1	0.05	0.06	15	1.83	1.75	-4
Multidsciplinary Humanities	62,209	1975	2000	1.06	1.08	2	0.03	0.05	56	1.75	2.37	35
Literature	60,561	1975	2000	1.03	1.05	2	0.03	0.03	30	1.23	2.56	108
Philosophy	52,053	1975	2000	1.05	1.06	0	0.05	0.05	-5	0.88	2.31	162
Art	42,716	1975	2000	1.06	1.10	3	0.05	0.06	24	0.99	4.64	369
Literary Reviews	38,238	1975	2000	1.07	1.07	0	0.04	0.04	7	0.78	1.12	43
Religion	36,306	1975	2000	1.06	1.09	3	0.04	0.06	35	4.38	4.99	14
Music	34,788	1975	2000	1.07	1.10	3	0.04	0.06	59	2.75	6.12	122
Theory of Language and Linguistics	31,021	1975	2000	1.11	1.18	7	0.09	0.13	54	4.92	3.62	-27
Architecture	29,057	1975	2000	1.07	1.09	2	0.05	0.07	40	1.82	1.89	4
Literature, Romance	28,489	1975	2000	1.05	1.04	-1	0.03	0.03	11	1.07	1.78	67
Archaeology	13,750	1975	2000	1.32	1.79	36	0.22	0.37	70	2.01	2.72	35
Classics	12,997	1975	2000	1.02	1.05	3	0.02	0.03	14	0.95	1.20	26
Film, Radio and TV	12,768	1975	2000	1.10	1.06	-4	0.05	0.04	-21	0.73	2.72	272
Asian Studies	11,855	1975	2000	1.04	1.06	1	0.04	0.05	14	1.15	1.39	20
History and Philosophy of Science	10,431	1975	2000	1.10	1.16	6	0.08	0.13	66	1.97	1.84	-6
Theater	10,032	1975	2000	1.03	1.08	4	0.03	0.04	70	0.18	1.72	851
Literature, German	9,378	1975	2000	1.02	1.05	3	0.02	0.04	173	0.82	1.20	47
Medieval Studies	8,647	1975	2000	1.03	1.04	1	0.02	0.04	87	0.85	1.24	45
Literary Theory	7,841	1975	2000	1.02	1.04	2	0.02	0.03	19	0.55	0.41	-25
Literature, british	6,777	1975	2000	1.02	1.03	0	0.02	0.02	19	0.64	1.66	160
Dance	5,126	1975	2000	1.02	1.04	2	0.02	0.02	-3	1.61	0.00	-100
Poetry	4,945	1975	2000	1.02	1.02	0	0.02	0.02	-21	0.52	3.07	495

Literature, Slavic	4,843	1975	2000	1.05	1.06	0	0.04	0.04	10	1.85	0.64	-66
Literature, American	4,514	1975	2000	1.04	1.05	1	0.03	0.02	-43	0.78	0.56	-28
Folklore	4,392	1975	2000	1.09	1.10	1	0.06	0.08	23	1.72	1.03	-40
Literature, African, Australian and Canadian	3,429	1975	2000	1.02	1.04	3	0.02	0.04	117	0.91	1.24	36

Patents	N	veare		mea	an team s	size	fra	action _{team}	ıs	relat	. team im	pact
fields	N _{patents}	years _{cov}	/ered	first 5 y.	last 5 y.	% _{change}	first 5 y.	last 5 y.	% _{change}	first 5y.	last 5 y.	% _{change}
Miscellaneous, Chemical	214,854	1975	1995	1.93	2.49	29	0.52	0.67	27		1.10	3
Miscellaneous, Others	179,925	1975	1995	1.48	1.92	30	0.31	0.46	49	1.22	1.18	-3
Materials Processing & Handling	108,873	1975	1995	1.59	1.98	24	0.36	0.50	40	1.12	1.12	0
Miscellaneous, Mechanical	103,854	1975	1995	1.45	1.79	23	0.31	0.43	37	1.19	1.16	-2
Communications	98,046	1975	1995	1.65	2.17	32	0.42	0.57	36	1.16	1.17	1
Computer Hardware & Software	83,094	1975	1995	1.96	2.37	21	0.52	0.62	18	1.19	1.22	3
Motors, Engines & Parts	78,584	1975	1995	1.59	2.06	30	0.36	0.52	44	1.20	1.29	8
Organic Compounds	78,188	1975	1995	2.22	3.03	36	0.64	0.81	26	1.16	0.80	-31
Drugs	77,210	1975	1995	2.48	3.15	27	0.67	0.80	18	1.07	0.86	-20
Resins	74,993	1975	1995	2.19	2.84	30	0.65	0.80	25	1.04	0.98	-6
Power Systems	73,849	1975	1995	1.66	2.16	30	0.41	0.57	38	1.07	1.11	4
Electrical Devices	65,500	1975	1995	1.55	1.93	24	0.38	0.52	36	1.12	1.13	1
Metal Working	63,669	1975	1995	1.89	2.36	25	0.47	0.61	30	1.18	1.18	0
Surgery & Medical Instruments	62,192	1975	1995	1.49	2.03	36	0.33	0.52	60	1.19	1.17	-2
Measuring & Testing	62,021	1975	1995	1.68	2.13	27	0.42	0.58	37	1.10	1.18	8
Transportation	61,501	1975	1995	1.44	1.81	26	0.30	0.43	46	1.18	1.25	6
Miscellaneous, Electrical	52,206	1975	1995	1.73	2.11	22	0.43	0.54	25	1.13	1.25	10
Optics	51,102	1975	1995	1.84	2.35	27	0.46	0.58	27	1.19	1.14	-4
Semiconductor Devices	47,123	1975	1995	1.93	2.36	23	0.55	0.61	12	1.04	1.11	8
Agriculture, Husbandry, Food	44,718	1975	1995	1.65	1.86	13	0.37	0.44	18	1.22	1.16	-5
Furniture, House Fixtures	43,499	1975	1995	1.29	1.51	17	0.22	0.31	41	1.12	1.12	0
Receptacles	43,353	1975	1995	1.37	1.62	18	0.27	0.37	34	1.07	1.07	1
Information Storage	43,182	1975	1995	1.79	2.37	33	0.46	0.60	28	1.28	1.19	-6
Apparel & Textiles	35,001	1975	1995	1.52	1.64	8	0.32	0.38	21	1.06	1.02	-4
Electrical Lighting	33,769	1975	1995	1.72	2.10	22	0.44	0.54	22	1.04	1.14	10
Coating	32,820	1975	1995	1.92	2.46	28	0.52	0.67	28	1.12	1.22	9
Nuclear & X-ray	32,402	1975	1995	1.82	2.28	26	0.48	0.61	27	1.07	1.17	10
Earth Working & Wells	29,645	1975	1995	1.54	1.80	17	0.34	0.46	35	1.11	1.35	22
Biotechnology	29,638	1975	1995	2.48	2.90	17	0.69	0.80	17	1.02	0.92	-9
Heating	28,267	1975	1995	1.55	1.95	26	0.33	0.48	47	1.10	1.06	-4
Computer Peripherals	22,809	1975	1995	1.96	2.55	30	0.54	0.62	15	1.16	1.17	1
Amusement Devices	22,227	1975	1995	1.30	1.44	11	0.21	0.30	40	1.23	1.27	3
Pipes & Joints	18,444	1975	1995	1.43	1.74	21	0.29	0.42	44	1.09	1.01	-7
Agriculture, Food, Textiles	18,351	1975	1995	2.03	2.83	39	0.56	0.71	28	1.02	1.25	23
Miscellaneous, Drugs & Medical	14,356	1975	1995	1.46	1.77	22	0.32	0.44	37	1.38	1.09	-22
Gas	10,047	1975	1995	1.77	2.15	21	0.44	0.56	29	1.16	1.25	8

Supplementary Table S3: In the paper we merge subfields into larger branches of Science & Engineering, Social Sciences, Arts & Humanities, and Patents. Here, we show these fields with the subfields they contain.

	Science & Engineering				
fields	sub-fields (according to ISI)				
Medicine	ALLERGY				
Medicine	ANATOMY & MORPHOLOGY				
Medicine	ANDROLOGY				
Medicine	ANESTHESIOLOGY				
Medicine	BEHAVIORAL SCIENCES				
Medicine	CARDIAC & CARDIOVASCULAR SYSTEMS				
Medicine	CLINICAL NEUROLOGY				
Medicine	CRITICAL CARE MEDICINE				
Medicine	DENTISTRY, ORAL SURGERY & MEDICINE				
Medicine	DERMATOLOGY				
Medicine	EMERGENCY MEDICINE				
Medicine	ENDOCRINOLOGY & METABOLISM				
Medicine	GASTROENTEROLOGY & HEPATOLOGY				
Medicine	GERIATRICS & GERONTOLOGY				
Medicine	HEALTH CARE SCIENCES & SERVICES				
Medicine	HEMATOLOGY				
Medicine	IMMUNOLOGY				
Medicine	INFECTIOUS DISEASES				
Medicine	INTEGRATIVE & COMPLEMENTARY MEDICINE				
Medicine	MEDICAL ETHICS				
Medicine	MEDICAL INFORMATICS				
Medicine	MEDICAL LABORATORY TECHNOLOGY				
Medicine	MEDICINE, GENERAL & INTERNAL				
Medicine	MEDICINE, LEGAL				
Medicine	MEDICINE, RESEARCH & EXPERIMENTAL				
Medicine	NEUROIMAGING				
Medicine	NEUROSCIENCES				
Medicine	OBSTETRICS & GYNECOLOGY				
Medicine	ONCOLOGY				
Medicine	OPHTHALMOLOGY				
Medicine	ORTHOPEDICS				
Medicine	OTORHINOLARYNGOLOGY				
Medicine	PATHOLOGY				
Medicine	PEDIATRICS				
Medicine	PERIPHERAL VASCULAR DISEASE				
Medicine	PHARMACOLOGY & PHARMACY				
Medicine	PHYSIOLOGY				
Medicine	RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING				
Medicine	RESPIRATORY SYSTEM				
Medicine	RHEUMATOLOGY				
Medicine	SURGERY				
Medicine	TOXICOLOGY				
Medicine	TRANSPLANTATION				
Medicine	TROPICAL MEDICINE				
Medicine	UROLOGY & NEPHROLOGY				
Biology	BIOCHEMICAL RESEARCH METHODS				
Biology	BIOCHEMISTRY & MOLECULAR BIOLOGY				
Biology	BIODIVERSITY CONSERVATION				
Biology	BIOLOGY				
Biology	BIOPHYSICS				
Biology	BIOTECHNOLOGY & APPLIED MICROBIOLOGY				
Biology	CELL BIOLOGY				
Biology	DEVELOPMENTAL BIOLOGY				

Biology ENTOMOLOGY

Biology EVOLUTIONARY BIOLOGY Biology GENETICS & HEREDITY

Biology MARINE & FRESHWATER BIOLOGY

Biology MICROBIOLOGY
Biology MICROSCOPY
Biology MYCOLOGY
Biology ORNITHOLOGY
Biology PALEONTOLOGY
Biology PARASITOLOGY
Biology PLANT SCIENCES

Biology REPRODUCTIVE BIOLOGY

Biology VIROLOGY Biology ZOOLOGY

Chemistry CHEMISTRY, ANALYTICAL Chemistry CHEMISTRY, APPLIED

Chemistry CHEMISTRY, INORGANIC & NUCLEAR

Chemistry CHEMISTRY, MEDICINAL

Chemistry CHEMISTRY, MULTIDISCIPLINARY

Chemistry CHEMISTRY, ORGANIC
Chemistry CHEMISTRY, PHYSICAL
Chemistry CRYSTALLOGRAPHY
Chemistry ELECTROCHEMISTRY

Chemistry FOOD SCIENCE & TECHNOLOGY

Chemistry POLYMER SCIENCE
Chemistry SPECTROSCOPY

Physics ACOUSTICS

Physics ASTRONOMY & ASTROPHYSICS
Physics NUCLEAR SCIENCE & TECHNOLOGY

Physics OPTICS

Physics PHYSICS, APPLIED

Physics PHYSICS, ATOMIC, MOLECULAR & CHEMICAL

Physics PHYSICS, CONDENSED MATTER
Physics PHYSICS, FLUIDS & PLASMAS
Physics PHYSICS, MATHEMATICAL
Physics PHYSICS, MULTIDISCIPLINARY

Physics PHYSICS, NUCLEAR

Physics PHYSICS, PARTICLES & FIELDS

Physics THERMODYNAMICS

Engineering AUTOMATION & CONTROL SYSTEMS
Engineering CONSTRUCTION & BUILDING TECHNOLOGY

Engineering ENERGY & FUELS

Engineering ENGINEERING, AEROSPACE
Engineering ENGINEERING, BIOMEDICAL
Engineering ENGINEERING, CHEMICAL
Engineering ENGINEERING, CIVIL

Engineering ENGINEERING, ELECTRICAL & ELECTRONIC

Engineering ENGINEERING, ENVIRONMENTAL
Engineering ENGINEERING, GEOLOGICAL
Engineering ENGINEERING, INDUSTRIAL
Engineering ENGINEERING, MANUFACTURING

Engineering ENGINEERING, MARINE
Engineering ENGINEERING, MECHANICAL
Engineering ENGINEERING, MULTIDISCIPLINARY

Engineering ENGINEERING, OCEAN Engineering ENGINEERING, PETROLEUM

Engineering HORTICULTURE

Engineering IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY

Engineering INSTRUMENTS & INSTRUMENTATION

Engineering MECHANICS

Engineering METALLURGY & METALLURGICAL ENGINEERING

Engineering MINING & MINERAL PROCESSING
Engineering NANOSCIENCE & NANOTECHNOLOGY

Engineering REMOTE SENSING

Engineering ROBOTICS

Engineering TELECOMMUNICATIONS

Engineering TRANSPORTATION SCIENCE & TECHNOLOGY

Environmental ECOLOGY

Environmental ENVIRONMENTAL SCIENCES

Environmental FISHERIES Environmental FORESTRY

Environmental METEOROLOGY & ATMOSPHERIC SCIENCES

Environmental WATER RESOURCES Mathematics MATHEMATICS

Mathematics MATHEMATICS, APPLIED

Mathematics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS

Mathematics STATISTICS & PROBABILITY
Geosciences GEOCHEMISTRY & GEOPHYSICS
Geosciences GEOGRAPHY, PHYSICAL

Geosciences GEOLOGY

Geosciences GEOSCIENCES, MULTIDISCIPLINARY

Geosciences LIMNOLOGY
Geosciences MINERALOGY
Geosciences OCEANOGRAPHY

Computer COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

Computer COMPUTER SCIENCE, CYBERNETICS

Computer COMPUTER SCIENCE, HARDWARE & ARCHITECTURE COMPUTER SCIENCE, INFORMATION SYSTEMS

Computer COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS

Computer COMPUTER SCIENCE, SOFTWARE ENGINEERING
Computer COMPUTER SCIENCE, THEORY & METHODS
Agriculture AGRICULTURAL ECONOMICS & POLICY

Agriculture AGRICULTURAL ENGINEERING

Agriculture AGRICULTURE, DAIRY & ANIMAL SCIENCE AGRICULTURE, MULTIDISCIPLINARY

Agriculture AGRICULTURE, SOIL SCIENCE

Agriculture AGRONOMY

Social Sciences			
fields	sub-fields (according to ISI)		
Psychology	PSYCHOLOGY, APPLIED		
Psychology	PSYCHOLOGY, BIOLOGICAL		
Psychology	PSYCHOLOGY, CLINICAL		
Psychology	PSYCHOLOGY, DEVELOPMENTAL		
Psychology	PSYCHOLOGY, EDUCATIONAL		
Psychology	PSYCHOLOGY, EXPERIMENTAL		
Psychology	PSYCHOLOGY, MATHEMATICAL		
Psychology	PSYCHOLOGY, MULTIDISCIPLINARY		
Psychology	PSYCHOLOGY, PSYCHOANALYSIS		
Psychology	PSYCHOLOGY, SOCIAL		
Economics	ECONOMICS		
Political	INTERNATIONAL RELATIONS		
Political	POLITICAL SCIENCE		
Education	EDUCATION & EDUCATIONAL RESEARCH		
Education	EDUCATION, SPECIAL		
Law	LAW		
Sociology	SOCIOLOGY		
Anthropology	ANTHROPOLOGY		

Arts & Humanities				
fields	sub-fields (according to ISI)			
Literature	LANGUAGE & LINGUISTICS THEORY			
Literature	LITERARY REVIEWS			
Literature	LITERARY THEORY			
Literature	LITERATURE, african, australian & canadian			
Literature	LITERATURE, american			
Literature	LITERATURE, british			
Literature	LITERATURE, german			
Literature	LITERATURE			
Literature	LITERATURE, romance			
Literature	LITERATURE, slavic			
Literature	POETRY			
History	HISTORY			
History	HISTOR & PHIOLOSOPGY OF SCIENCE			
Art & Architecture	ART			
Art & Architecture	ARCHITECTURE			
Philosophy	PHILOSOPHY			
Music & Dance	DANCE			
Music & Dance	MUSIC			
Religion	RELIGION			
Theater, Film, TV & Radio	FILM, RADIO, TV			
Theater, Film, TV & Radio	THEATER			
Theater, Film, TV & Radio	FILM, RADIO, TV			

ARCHAEOLOGY

Archaeology

Patents				
fields	sub-fields			
Chemical	AGRICULTURE, FOOD, TEXTILES			
Chemical	COATING			
Chemical	GAS			
Chemical	ORGANIC COMPOUNDS			
Chemical	RESINS			
Chemical	MISCELLANEOUS CHEMICAL			
Computers & Communication	COMMUNICATIONS			
Computers & Communication	COMPUTER HARDWARE & SOFTWARE			
Computers & Communication	COMPUTER PERIPHERALS			
Computers & Communication	INFORMATION STORAGE			
Drugs & Medical	DRUGS			
Drugs & Medical	SURGERY & MEDICAL INSTRUMENTS			
Drugs & Medical	BIOTECHNOLOGY			
Drugs & Medical	MISCELLANEOUS DRUGS & MEDICAL			
Electrical & Electronics	ELECTRICAL DEVICES			
Electrical & Electronics	ELECTRICAL LIGHTING			
Electrical & Electronics	MEASURING & TESTING			
Electrical & Electronics	NUCLEAR & X-RAY			
Electrical & Electronics	POWER SYSTEMS			
Electrical & Electronics	SEMICONDUCTOR DEVICES			
Electrical & Electronics	MISCELLANEOUS ELECTRICAL			
Mechanical	MATERIALS PROCESS & HANDLING			
Mechanical	METAL WORKING			
Mechanical	MOTORS, ENGINES & PARTS			
Mechanical	OPTICS			
Mechanical	TRANSPORTATION			
Mechanical	MISCELLANEOUS MECHANICAL			

Supplementary Table S4: The citation advantage of teams is increasing when we compare teams of any particular size versus solo authors. Each cell reports a ratio, where the numerator is the average number of citations received in that year by a team of size k, and the denominator is the average citations received by teams of size l. The size of teams used in the numerator is indicated at the top of each column. For example, in Science and Engineering, papers with two authors received l.30 times more citations than solo authors in 1960 but l.74 times more citations in the 2000, indicating a large increase in the advantage of teamwork.

	ratios of mean number of received citations								
	year	solo	team size 2 / solo	team size 3 / solo	team size 4 / solo	team size 5 / solo	team size >5 / solo		
	1960	1.00	1.30	1.22	1.49	1.46	1.34		
Science &	1970	1.00	1.57	1.64	1.83	2.08	2.34		
Engineering	1980	1.00	1.59	1.75	1.91	2.09	2.58		
	1990	1.00	1.67	1.88	2.15	2.55	3.12		
	2000	1.00	1.74	2.00	2.28	2.62	3.72		
	1960	1.00	1.88	2.25	2.99	2.43	4.88		
Social	1970	1.00	1.89	2.32	3.15	3.25	4.10		
	1980	1.00	2.36	2.99	4.18	7.23	8.57		
Sciences	1990	1.00	2.80	4.06	6.29	8.88	12.91		
	2000	1.00	2.50	3.42	5.04	6.77	13.01		
Arts &	1980	1.00	2.60	2.97	2.40	1.31	4.07		
	1990	1.00	3.19	5.41	5.89	4.63	4.74		
Humanities	2000	1.00	3.22	5.99	8.79	8.04	5.93		
Patents	1975	1.00	1.09	1.12	1.11	1.03	1.05		
	1985	1.00	1.11	1.20	1.25	1.28	1.30		
	1995	1.00	1.04	1.07	1.06	1.13	1.13		

${\bf References-Supplementary\ Material}$

S1. B.H. Hall, A.B. Jaffe, M. Trajtenberg, *National Bureau of Economic Research* Working Paper #8498 (2001).