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Abstract 

Getting science policy right is a core objective of government that bears on scientific advance, 

economic growth, health, and longevity. Yet the process of science is changing. As science 

advances and knowledge accumulates, ensuing generations of innovators spend longer in training 

and become more narrowly expert, shifting key innovations (i) later in the life cycle and (ii) from 

solo researchers toward teams.  This paper summarizes the evidence that science has evolved - 

and continues to evolve - on both dimensions.  The paper then considers science policy. The 

ongoing shift away from younger scholars and toward teamwork raises serious policy challenges. 

Central issues involve (a) maintaining incentives for entry into scientific careers as the training 

phase extends, (b) ensuring effective evaluation of ideas (including decisions on patent rights 

and research grants) as evaluator expertise narrows, and (c) providing appropriate effort 

incentives as scientists increasingly work in teams.  Institutions such as government grant 

agencies, the patent office, the science education system, and the Nobel Prize come under a 

unified focus in this paper.  In all cases, the question is how these institutions can change. As 

science evolves, science policy may become increasingly misaligned with science itself – unless 

science policy evolves in tandem. 

                                                            
* I wish to thank Pierre Azoulay, Josh Lerner, Bhaven Sampat, Paula Stephan, and Scott Stern for very helpful 
discussions, comments, and data guidance.  Contact: 2001 Sheridan Road, Room 609, Evanston, IL 60208. Email: 
bjones@kellogg.northwestern.edu. 
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I. Introduction 

The role of the individual in science is rapidly changing.  Recent literature demonstrates 

(i) ubiquitous shifts towards teamwork in science, and (ii) decreasing innovative output by 

younger scholars.  This paper will review these facts, consider their explanation, and then 

consider their implications for science policy.  At root, this paper asks a simple question:  in light 

of these substantial shifts in the scientific process, how might science policy evolve? 

To motivate the basic dynamics in science and frame them in pursuit of rethinking policy, 

consider the following two observations.  First, innovators are not born at the frontier of 

knowledge; rather, innovators first undertake significant education.  Second, if knowledge 

accumulates and fields deepen over time, then ensuing generations of innovators can face an 

increasing educational burden.  Put another way, if one wants to stand on the shoulders of giants 

(taking Newton’s famous aphorism) then one must first climb up the giants’ backs.  As 

knowledge accumulates, the harder this climb can become.   

Empirically, one starting point to motivate this ‘burden of knowledge’ perspective and 

the associated dynamics in science is to consider knowledge stocks and flows.  Figure 1 shows 

the annual number of journal articles published worldwide.1  In 2006, there were 941,000 articles 

published, 90% of which appeared in science and engineering journals. Collectively, these 

articles cited 4,372,000 unique journal articles published in prior years.  It is clear that one 

individual can know only a fraction of this knowledge.  Moreover, assuming that individuals 

devote a particular amount of time to absorbing knowledge, then it is clear that the fraction of 

such knowledge known by any one individual will be decreasing with time.  As indicated in 

Figure 1, the growth rate in publications averages 5.5% per year, which doubles collective 

publication rates every 13 years.  If any particular individual meaningfully engages only a fixed 

                                                            
1 These article counts come from the Institute of Science Information’s Web of Science database. 



2 

 

number of such articles, then the fraction of extant knowledge known by an individual would 

decline at the same rate: -5.5% per year.2 

Figure 1:  Journal Article Publications per Year, Worldwide 
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Notes:  This figure presents the number of publications in each year, worldwide, as recorded by the Institute of 
Scientific Information’s Web of Science database, pooling articles across all fields of science and engineering and 
social sciences. Growth rates in publications are similar looking only at authors with U.S. addresses.  Over 90% of 
the articles are, consistently, in science and engineering fields. See text for further discussion. 

Below we will examine richer and more systematic evidence about the implications of 

such expansions of knowledge.  But it should be clear at this point that innovators face a shifting 

landscape in which they become educated and produce new ideas.  In fact, one may expect two 

natural responses in innovators’ educational decisions as the volume of knowledge expands: 

1. First, innovators may spend longer in education; 

2. Second, innovators may seek narrower expertise.   

                                                            
2 That is, let N be the total number of papers (or other codified ideas) in the world and let this number grow at rate 
gN.  Let Q be the fixed number of papers that an individual has time to learn.  Then the share of extant knowledge 
known by the individual is s = Q/N, and the growth rate of s is then gs = - gN.  
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The first dimension suggests that innovators would spend a greater portion of their early 

life-cycle in education – as opposed to actively innovating – so that innovation becomes less 

likely at young ages.  The second dimension, the narrowing of expertise, is essentially a ‘death of 

the Renaissance man’ effect.  It will tend to reduce the technology-wide capacities of individual 

innovators, who become less able to draw on knowledge in other fields in their creative process 

and less capable of implementing ideas by themselves.  The narrowing of expertise thus suggests 

fundamental changes in the organization of innovative activity, with innovators increasingly 

working in teams.  This reasoning suggests potentially powerful shifts in the process of science.  

In fact, scientists themselves, as will be detailed extensively below, have rapidly and generally 

evolved in how they produce new ideas, with the probability of signature contributions declining 

at younger ages and increasing among teams. 

Now consider science policy. Science policy bears on scientific progress and the effects 

of such progress, including advances in economic prosperity, health and longevity.  Moreover, as 

further discussed below, central features of ideas themselves suggest substantial market failures 

in idea production, so that government policy has explicit roles to play in fostering idea 

production. 

The objective of this paper is to examine how science policy itself might evolve.  Given 

that science is changing, the institutions that are efficient in supporting science at one point in 

time may be less appropriate at a later point of time. On precise dimensions, a failure to 

continually re-tune science policy may therefore impede scientific progress.   

First, science policy critically influences entry into scientific careers.  Research agencies 

like the NIH actively wrestle with why young scientists have become increasingly unlikely to 

win research grants, which are critical to career progress and success. In fact, former NIH 

director Elias Zerhouni identified this age trend as the most important challenge for American 

science and funding agencies (Kaiser 2008).  From the burden of knowledge perspective, this age 

trend follows in part because younger scholars have ever-extending training phases, so that 

substantial innovative contributions become increasingly unlikely at younger ages. The resulting 

bias toward older scholars may thus have a strong foundation. On the other hand, lengthening 

training phases reduce incentives to enter scientific careers. If talented individuals increasingly 
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avoid science in favor of other careers, then scientific progress and economic growth will slow, 

especially to the extent that other careers do not provide the same positive spillovers for 

economic prosperity that come via innovation. This selection issue suggests that various kinds of 

support targeted to the young – though perhaps not major research grants – can provide 

solutions. 

Second, further issues are raised by the increasing narrowness of expertise and the shift 

toward team production in science.  The issues are partly a matter of evaluating innovations.  

The evaluation of ideas is a central role of government that relies on the correct application of 

expertise within government institutions. Evaluation is necessary ex-post of innovations, 

particularly in securing intellectual property rights through the United States Patent and 

Trademark Office (USPTO).  Evaluation is also necessary ex-ante of innovations, particularly in 

allocating limited research grant support through government agencies such as the National 

Institutes of Health (NIH) and National Science Foundation (NSF).  Traditionally, the USPTO 

has used a single examiner to evaluate and adjust the property rights claims in a patent.  The NIH 

has employed a panel evaluation model within particular study sections, which cover narrowly 

delimited areas of science. These evaluation models may be increasingly ineffective for 

assessing broader ideas. While researchers and innovators themselves increasingly use teams 

(and teams of growing size) that can span broad bodies of knowledge, their research ideas may 

be constrained by evaluation systems that bring limited breadth of expertise to bear.  In fact, the 

NIH is actively wrestling with a perceived failure to fund “multi-disciplinary” research, and the 

patent office has experimented with a “Peer-to-Patent” program to better aggregate expertise in 

evaluating patent applications. These efforts are reacting to consequences of narrowness without 

necessarily grounding policy initiatives in an underlying framework for how science itself is 

changing or understanding how general these challenges are. Moreover, as knowledge 

accumulates, the narrowness of individual expert evaluators will only increase.  The basic 

evaluation challenges, if unmet, suggest increasing difficulties in allocating intellectual property 

rights and limited public research funds.3 

                                                            
3 Related challenges for journal article evaluation and tenure case evaluation are also relevant but will be left aside 
here for focus. 
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Further issues surround the effort innovators apply as they respond to the incentives 

science policy imposes. Evaluation methods that privilege narrow ideas or poorly evaluate broad 

ideas will constrain ideas with broad impact and direct effort away from work that crosses 

evaluative boundaries.  Grant-giving agencies and tenure systems that privilege narrowness will 

produce narrowness.  Meanwhile, major research prizes, such as the Nobel Prize and the Fields 

Medal,,remain oriented toward individual accomplishments, which might have been consistent 

with early 20th Century science but appear increasingly inconsistent with 21st Century science.  

Individual-oriented rewards encourage individual work and can foment credit conflicts, acting to 

dissuade teamwork and disrupt team function, even as teamwork has come to dominate science 

and become the typical locus of high impact ideas. 

The rest of this paper is organized as follows. Section II reviews a range of empirical 

evidence, showing that the role of the individual in science has changed dramatically in line with 

the ‘burden of knowledge’ mechanism.  Section III considers core roles of science policy, laying 

the foundation for further analysis. Section IV considers the implications of declining innovative 

outputs by younger scholars for science policy.  Section V considers the implications of the shift 

to teamwork for science policy.  Section VI concludes. 

II. The Evolution of Science 

This section documents two central dynamics in science.  First, innovators have become 

increasingly unlikely to produce key ideas at younger ages.  Second, innovators have become 

more specialized with time and increasingly work in teams. This section summarizes this 

evidence and shows that these dynamics follow naturally if knowledge accumulates as science 

advances.  

A. Life-Cycle Productivity in Science 

As foundational knowledge expands, innovators may naturally extend their training 

phases, resulting in a delayed start to the active innovative career.  Such a delay may be 

particularly consequential if raw innovative potential is greatest when young.  This section 

summarizes evidence of this pattern over the 20th century, demonstrating a major dynamic in 

science: a sharp decline in the innovative output in the early life-cycle.  
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Table 1:  Age Trends 

 Trends in Raw Data Trends with Controls (see notes) 

 
Age at Great 
Achievement 

Age at First 
Patent 

Age at Great 
Achievement 

Age at First 
Patent 

 (1) (2) (3) (4) (5) (6) 

Age Trend 
(Years per 
Century) 

5.83*** 
(1.37) 

4.86** 
(2.31) 

6.57*** 
(0.95) 

7.79*** 
(1.54) 

8.18** 
(3.29) 

6.71*** 
(0.99) 

Data 
Nobel 
Prize 

Winners 

Great 
Inventors 

U.S. Patent 
Holders 

Nobel 
Prize 

Winners 

Great 
Inventors 

U.S. Patent 
Holders 

Number of 
observations 

544 286 6,541 544 248 6,541 

Time span 
1873-
1998 

1900-
1991 

1985-1999 
1873-
1998 

1900-
1988 

1985-1999 

Average age 38.6 39.0 31.0 38.6 38.9 31.0 

R2 0.032 0.016 0.007 0.189 0.173 0.020 

Notes:  All columns present trends in age, measured in years per century.  Age at great 
achievement for Nobelists is the age at which the individual performed their prize-winning work, 
pooling prize-winners in physics, chemistry, medicine, and economics.  For great inventors, age at 
great achievement is drawn from technological almanacs and covers all major fields of science and 
engineering.  These data are described in detail in Jones (2010).  Age at first patent, a different 
construct, comes from patenting histories for individuals in the United States, observing data since 
1975.  These data are described in detail in Jones (2009).  Columns (1)-(3) present trends in the raw 
data, i.e. regressing age on time.  Columns (4)-(5) present age trends while simultaneously 
controlling for field fixed effects and country of birth fixed effects.  Column (6) presents age trends 
while controlling for field and patent assignee type fixed effects (e.g. corporation, government lab, 
et cetera). Robust standard errors for the age trends are given in parentheses.  ** Indicates 
significance at a 95% confidence level.  *** Indicates significance at a 99% confidence level. 

 

 

Table 1 shows basic age trends for three groups.  The first group is Nobel Prize winners 

in physics, chemistry, medicine, and economics. Such individuals have produced their award-

winning achievements at increasingly older ages, with the mean age at great achievement 

increasing by 5.83 years over the 20th century (column 1).   The second group is great 

technological innovators, as listed in technological almanacs documenting major technological 

breakthroughs through history.  The noted breakthroughs have also come at increasingly older 

ages, with the mean age at great achievement increasing by 4.86 years over the 20th century 
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(column 2).  The data and results are described in detail in Jones (2010).  The third group 

consists of more ‘ordinary’ inventors and considers the age at first patent, using U.S. patent data 

since 1975 across all technological fields.  These individuals show a substantial increase in mean 

age at first patent, at an equivalent rate of 6.57 years per century (column 3).  These data and 

methods are described in detail in Jones (2009). 

The similarity in these age trends, and the fact that they prevail both among great 

scientists, among great technological inventors, and among more ordinary inventors, point to a 

general aging phenomenon.  As shown in columns 4-6 of Table 1, these raw age trends also 

persist – and strengthen to 7 or 8 years per century – when controlling for field, country of birth, 

or the institutional environment of the research.  Age trends are also increasing quite generally 

when examine individual subfields separately,4 either for great invention or patenting (see Jones 

2009 and Jones and Weinberg 2010). 

The rise in the mean age of great achievement over the 20th century is dramatic and may 

represent shifts in research productivity at various phases in the life-cycle.  Jones (2010) 

therefore further analyzes the trends in age at great achievement, locating any shifts in life-cycle 

research productivity while also accounting for shifts in the underlying population age 

distribution.5  As shown in Figure 2A, the analysis shows underlying shifts in life-cycle 

productivity, beyond any population aging effect.  In particular, there is a large decline in the 

propensity of Nobel Prize winners and great technological inventors to produce great 

achievements in their 20s and early 30s.  Peak productivity has increased by about 8 years, with 

the effect coming entirely from a collapse in productivity at young ages.   

 

 

                                                            
4 Albeit with some interesting and informative dynamics, as will be discussed below. 

5 The aging trends among Nobel Prize winners and great technological inventors may follow in part from aging of 
the underlying population distribution.  In particular, if there are more scientists alive and active at older ages, then it 
is increasingly likely that great ideas will come from an older scholar.  Jones (2010) shows that about the half of the 
age trend in Table 1 columns 1 and 2 is driven by the aging population of scholars, while the remaining half is 
driven by declining research productivity early in the life-cycle.  See Jones (2010). 
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Figure 2:  The Decline of Innovation in the Early Life Cycle 
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Notes: Fig. 2A presents an individual’s potential to produce great achievements as a function of age, comparing 
estimates for the year 1900 with the year 2000.  The estimates come from analyzing the full set of Nobel Prize 
winners and great technological inventors over the 20th Century (source: Jones 2010).  Fig. 2B presents trends in the 
age at first patent, showing the advance in age at the start of the innovative career, using data on U.S. patent holders 
(source: Jones 2009).   See further discussion in text. 

These estimates, showing a substantial, increasing delay in great achievements, closely 

match the trend in age at first patent among more ordinary inventors.  Age at first patent is a 

more direct measure of early life cycle innovative productivity.  The raw trend, analyzed in 

A 

B 
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Table 1, is further shown in Figure 2B.  Coupling Figures 2A and 2B, we see a remarkable 

consistency across these groups of innovators, suggesting a precise and general phenomenon: a 

sharp decline in early life-cycle innovative output. 

A natural mechanism for declining innovative output in the early life-cycle is a 

corresponding increase in training duration, which may follow naturally if the foundational 

knowledge in various fields expands as science advances.6 This idea can be examined in several 

ways.  First, Table 2 shows that training duration for Nobel Prize winners, measured as mean age 

at Ph.D., increased by over 4 years over the 20th Century.7  The role of training duration can be 

established more causatively by considering exogenous interruptions to young careers. Jones 

(2010) employs World Wars I and II as such career interruptions and shows that these 

interruptions must be “made up” after the war, producing both (a) unusual delays in the 

completion of formal education and (b) unusual delays in the age of great achievement.  

Furthermore, Jones and Weinberg (2010) show that the age dynamics in great 

achievement within Nobel fields closely mirror field-specific dynamics in Ph.D. age.  Generally, 

for Nobel Prize winning work performed prior to 1900, 3 of 4 prize winners had received their 

Ph.D. by age 25.  For Nobel Prize winning work performed since 1980, only 1 of 5 prize winners 

had a Ph.D. by age 25. Jones and Weinberg (2010) further analyze the effect of an exogenous 

shock to the foundational knowledge in a field, studying the age and training patterns around the 

quantum mechanics revolution in physics. The quantum mechanics revolution is typically 

charted between 1900 and 1927 (e.g. Jammer 1966).  Remarkably, we find that (a) age at great 

achievement and (b) age at Ph.D. actually declined in physics during this period, reaching a 

minimum just as quantum mechanics becomes a rigorously established theory in the late 1920s 

and then rising thereafter.  Moreover, these patterns are unique to physics; the age of great 

achievements and Ph.D. age in other fields continued to rise during this period. Viewed as a 

                                                            
6 By contrast, a Kuhnian revolution in science may be associated with a contraction in the knowledge space, 
temporarily reducing training requirements.  See the discussion of the quantum mechanics revolution below.  

7 Age at Ph.D. is a noisy delimiter of the boundary between a focus on training and a focus on active innovation.  
That the Ph.D. age trend is somewhat smaller than the trend in age at first patent (an output-oriented delimiter) or 
age at great achievement suggests that other intermediate institutions, such as the rise of post-doctorates, as well as 
leaning-by-doing in the innovative process or other features, may involve further delays. 
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natural experiment, the analysis of the quantum mechanics revolution further substantiates the 

link between the current depth of knowledge in a field, its training requirements, and the ensuing 

innovative output of young scholars. 

Table 2: Age at Ph.D. Trends 

 
Dependent Variable:  Age at Highest Degree 

 (1) (2) 

Year of Highest 
Degree (in 100’s) 

4.11*** 
(0.61) 

4.39*** 
(0.65) 

Data Nobel Prize Winners Nobel Prize Winners 

Field Fixed Effects No Yes 

Country of Degree 
Fixed Effects 

No Yes 

Number of 
observations 

505 505 

Time span 1858-1990 1858-1990 

Average age 26.5 26.5 

R2 0.084 0.283 

Notes:  Both specifications consider trends in the age at highest degree among 
Nobel Prize winners. The coefficient gives the age trend in years per century.  
Robust standard errors are given in parentheses.  Field fixed effects for Nobel Prizes 
comprise four categories:  Physics, Chemistry, Medicine, and Economics.   Source: 
Jones (2010).  *** Indicates significance at a 99% confidence level. 

 

Collectively, we see a tendency toward broad and dramatic declines in early life-cycle 

productivity among great minds and ordinary inventors, and we see close relationships with 

increased training duration. Policymakers in some fields – especially in life sciences and at the 

NIH – have noticed related increases in training duration and a decline in grant awards to 

younger scholars, and are substantially concerned by these shifts within their field.  As has been 

summarized here, the aging patterns are a much more general phenomenon.  Policy implications 

will be discussed below. 
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B. Teamwork in Science 

Knowledge accumulation further suggests a natural “death of the Renaissance man” 

effect, where the individual scholar is expert in a narrowing share of scientific and technical 

ideas as science advances.  Narrowing expertise will reduce the capacities of individual 

innovators to (i) draw on knowledge in other fields in their creative process and (ii) implement 

broad ideas by themselves. Narrowing expertise thus suggests fundamental changes in the 

organization of innovative activity, with innovators not only being more specialized but 

increasingly working in teams.  This section documents the second major dynamic in science: a 

general shift to team production and associated rise of teamwork as the locus of higher impact 

ideas. 

Figure 3: The Ubiquitous Rise in Teamwork 
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Notes: For papers, the figure plots the mean number of authors per paper across 19 million journal articles indexed 
by the Institute of Scientific Information’s Web of Science database.  The Science and Engineering category pools 
articles from 171 different sub-fields while the Social Sciences category pools articles from 54 sub-fields, as indexed 
by the Web of Science.  For patents, the figure plots the mean number of inventors listed in each patent, using the 
NBER patent database.  For further details see Wuchty, Jones, and Uzzi (2007) and Jones (2009). 
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Figure 3 shows the trend toward teamwork in journal articles and patents.  The mean 

number of authors (papers) or inventors (patents) are plotted over time.  The journal article data 

incorporate 20 million publications since 1955 as indexed by the Web of Science.  The patent 

data consider 2.1 million patents issued by the U.S. Patent and Trademark Office from 1975-

1999. 

We see general increases in teamwork across Science and Engineering journal 

publications, Social Sciences journal publications, and patenting.  Mean team sizes have risen 

quickly, at rates of 15-20% per decade.  The shift toward teamwork also appears in virtually all 

subfields of research and invention, including 170 of 171 science and engineering subfields, 54 

of 54 social science subfields, and 36 of 36 patenting subfields (see Wuchty, Jones, and Uzzi 

2007 and Jones 2009).  In percentage terms, over 80% of Science and Engineering publications, 

over 50% of Social Sciences publications and over 60% of patents had multiple authors or 

inventors by 2005, with the frequency of teamwork rising rapidly in all three areas. As with the 

life-cycle patterns, we see exceptionally general trends.   

Figure 4 presents additional analysis of individual specialization.  Figure 4A considers 

the probability that a solo inventor jumps to a new primary technological field across consecutive 

patents.  A declining tendency to switch fields suggests that individuals are more specialized.  

Figure 4A shows that solo inventors appear more specialized with time when considering all 

patenting fields; this tendency also appears in 34 of 36 technology subfields when analyzed 

separately (see Jones 2009). By contrast, Figure 4B shows that, when operating in teams, 

inventors move across technological fields with the same frequency over time – so that 

teamwork appears to overcome the increasing narrowness of individuals.  

The relationship between teamwork, specialization, and the depth of knowledge is further 

supported when comparing fields at a point in time.  Comparing across fields, Jones (2009) 

shows that deeper areas of knowledge are associated with more specialization and more 

teamwork.  Thus, the time trends and the cross-sectional field differences can be interpreted in a 

consistent and simple manner. 
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Figure 4: Trends in Specialization: Solo Inventors vs. Team Inventors 
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Notes: Fig. 4A presents the evolution of specialization for solo inventors, plotting the tendency for a solo inventor to 
switch technological areas across that inventor’s consecutive patents.  The probability of such field jump declines 
sharply with time, so that individual inventors appear more specialized, i.e. narrower in their technological span.   
Fig. 4B shows, by contrast, that when individuals work in teams, they jump between fields as regularly as before.  
Through teamwork, individuals appear to maintain breadth of technological span. 

A 

B 
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Given that individual scholars and inventors choose whether to work alone or in teams, 

the increase in teamwork suggests that innovators find teamwork increasingly worthwhile.  That 

teams might have some advantage is further shown in Table 3.  First, we see that team-authored 

papers published between 1995 and 2005 have received more than twice as many citations on 

average than solo-authored papers. This large citation advantage appears in both Science and 

Engineering papers and Social Sciences papers.  Moreover, when looking at “home run” papers, 

defined here as those with at least 100 citations, team authored papers are 4.25-4.57 times as 

likely to produce such “home runs”.  In patenting, meanwhile, teams are associated with an 18% 

increase in mean citations received and a 65% increase in the probability of a “home run” patent. 

Table 3: Team versus Solo Impact 

 Mean Citations Received Probability > 100 citations 

 Team Solo Team/Solo Team Solo Team/Solo 

Science and 
Engineering 

11.95 4.55 2.63 1.21% 0.28% 4.25 

Social 
Sciences 

8.74 3.31 2.64 0.59% 0.13% 4.57 

Patents 6.66 5.64 1.18 0.025% 0.015% 1.65 

Notes:  This table considers all papers published in the 1995-2005 period (as indexed by the ISI Web 
of Science and counting citations received through 2007), and all U.S. patents produced in the 1990-
1999 period (and counting citations received from other U.S. patents through 2007). 

  Wuchty, Jones, and Uzzi (2007) further show that the team advantage in citations appears 

in nearly all sub-fields of Science and Engineering papers, Social Sciences papers, and patents.  

Moreover, the citation advantage of teams over solo work, and teams’ relative probability of 

home runs, are increasing with time, so that team production appears increasingly privileged in 

its citation impact.  In a number of fields, the team citation advantage reverses what had been a 

solo-inventor advantage in the 1950s, which emphasizes the changing nature of science and the 

decline of solo researchers as the locus of the most cited ideas. 

In sum, we see general shifts toward teamwork in the production of knowledge, and 

especially in the production of the most highly cited ideas.  
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C. Understanding the Evolution of Science 

If knowledge accumulation is an intrinsic feature of scientific advance, then the two 

dynamics in science, documented above, follow naturally.  As knowledge accumulates, 

innovators both extend their training phases and achieve narrower expertise, changing the life-

cycle of innovation and the value of teamwork.  The empirical value of the knowledge 

accumulation hypothesis is partly in its generality:  it can explain science-wide patterns, 

ubiquitous across fields and research institutions, both in time series and in cross-section, and 

aggregate a diverse range of underlying facts under a simple, unifying framework.  Knowledge 

accumulation can thus provide a foundational reason for shifting norms that have been perceived 

within individual fields, but typically without an appreciation for their generality or an 

underlying theory of change.8 

III.  Core Roles of Science Policy 

Getting science policy right is a key role of government and, arguably, the preeminent 

role of government in terms of fostering increasing economic prosperity. This claim can be 

motivated by three mainstream observations in economics. First, a defining feature of the 

modern age is that certain economies grow and keep growing: the United States has repeatedly 

doubled its income per person since the Industrial Revolution, leading to unprecedented levels of 

income and associated increases in health and longevity.  Second, this growth comes largely 

through technological advance – the collective impact of an enormous array of novel ideas.  

Third, while markets are good at many things, markets face critical failures in the production of 

new ideas. 

The first two observations emphasize the importance of idea creation for economic 

prosperity.  The last observation suggests that government policy can play a critical and even 

necessary role in encouraging ideas.  Indeed, central features of ideas themselves may lead 

                                                            
8 Of course, when looking at any particular trend or pattern, other forces may play substantive roles.  For focus, this 
summary leaves aside alternative specific explanations for specific subsets of the facts.  Jones (2009), Jones (2010), 
Jones and Weinberg (2010), Wuchty et al. (2007), and Jones et al. (2008) discuss alternative explanations, and the 
reader is pointed there for further discussion. 
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inexorably towards market failures – and particularly to idea underproduction in the absence of 

policy intervention.  To frame the analysis of science policy to follow, first consider two core 

features of ideas, the market failures they cause, and the particular government institutions that 

exist – and must be well designed - to combat them. 

First, ideas are typically harder to create than to copy.  More specifically, the production 

of new ideas involves fixed costs to conceive, develop, demonstrate, and market the idea.  If, 

once this hard work is done, entrants can freely adopt the creation, then the resulting competition 

will reduce profits from the new idea.  This ex-post competition can kill the incentive to produce 

the idea in the first place, especially to the extent that the innovator cannot recoup the fixed costs 

of their investment. Intellectual property law, especially patents, serves to limit this ex-post 

dissipation of profits, thus maintaining incentives for the technological advances that drive 

economic growth.  Patent-granting organizations, such as the USPTO, thus play essential roles in 

creating well constructed property rights for new ideas. 

Second, ideas are often cumulative, building one upon another.  To the extent that the 

creator of the initial idea cannot capture the returns to future creativity that the idea unleashes, 

the incentive to create an idea may again be insufficiently strong.  Patent law also plays a role 

here: by forcing disclosure of the idea, other innovators are more able to build upon it.  But this 

market failure may be particularly acute for basic research, where new ideas may have little 

commercial possibility directly but underpin hosts of downstream, commercial innovations.  

Here, direct government support for basic research (through the university system, government 

laboratories, and through institutions like the NIH and NSF) may thus also be critical to 

sustaining idea production and, ultimately, economic growth.  In effect, because basic research 

may provide little direct commercial payoff, the enterprise of basic research – including the 

researchers themselves - rely importantly on subsidies from public sources. 

Given this reasoning, we can consider three key aspects of science policy that the 

changing nature of science bears especially upon. 

1. Entry. Scientific and technical progress ultimately relies on the entry of talented 

individuals into scientific careers.  To the extent that markets alone do not create 
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sufficient incentives for entry, science policy is critical to support such career choices.  

On this dimension, lengthening training phases require special consideration. As 

research grants and patents come later in the life-cycle, compensation for the delayed 

start to the career appears needed.  

2. Evaluation.  Effective science policy – both in granting patent rights and granting 

research support – necessarily relies on the effective evaluation of ideas.  The 

increasing challenge for an individual scientist to span broad research areas, as 

detailed in Section II, suggests the same increasing challenges for government 

agencies and the individual scientists within them who are tasked with evaluation.   

3. Effort. Even conditional on choosing a scientific/technical career, the rate and 

direction of innovator effort responds to the incentives science policy imposes.  

Evaluation methods that privilege narrow ideas, whether in research grants, tenure 

systems, or elsewhere, will chill efforts to produce ideas with broad impact.  Incentive 

mechanisms that privilege individual researchers, including high-status individual 

prizes like the Nobel Prize, can undermine teamwork, even as teamwork is 

increasingly needed for broad impact. 

These challenges and possible responses are detailed below. 

IV. Rethinking Science Policy: Life-Cycle Issues 

The extension of training and decline in early life-cycle innovative output, as detailed in 

Section II, raise the cost of becoming a scientist.  Labor economics provides a useful framework 

for understanding this cost.  In particular, let there be some value V to being a scientist once the 

necessary training is finished.  This value can incorporate the future wage stream, discounted to 

the moment one starts actively innovating.  More generally, the value V could include the 

expected value of research grants, status, or the simple joy of creativity, all viewed from the 

moment one begins the active innovative career. 

The problem with lengthening training is that it delays receipt of this expected value V.  

A standard economic model suggests that the cost of one year’s delay is about 10% of V.  That 
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is, using a discount rate of 10%, it is generally true that a person will value one dollar next year 

at only 90 cents today.  By analogy, a wage stream must rise by 10% to compensate the 

individual for an extra year of schooling.  That this reasoning can apply usefully to labor markets 

is demonstrated by the fact that average wage returns to an extra year of schooling are about 

10%, a relationship that holds in a fairly stable fashion across time and across countries (Mincer 

1958, Psacharopoulos 2004).9,10 

In science, this problem can lead to two straightforward selection effects.  First, there is 

selection across types of scientific careers.  While certain areas of science, such as 

biotechnology, have become increasingly deep, with lengthening Ph.D.’s and the development of 

post-doctoral phases, other areas of innovation have milder training commitments.  Perhaps the 

most spectacular example in recent years surrounds the “dot.com” boom.  In many instances, 

important innovative ideas, including retail concepts (e.g. book seller + internet), internet search, 

and HTML software applications required relatively little technical training at first.  The relative 

ease of entry into such innovative careers, other things equal, will tend to draw entrants away 

from sciences that feature long and extending training phases.  Note, however, that this form of 

selection is not necessarily a concern for scientific and economic progress.  Indeed, diverting 

talent and effort from a harder area of innovation to a less costly but possibly equally fruitful 

area of innovation may well be efficient.11 

The second kind of selection effect occurs when talented individuals avoid science 

entirely.  For example, if careers in finance, management, or law require more static levels of 

training, then scientific careers will be increasingly costly by comparison.  The estimated 6-8 

                                                            
9 The 10% benchmark is true for richer countries.  Returns to education tend to be somewhat higher in poorer 
countries, which is consistent with higher discount rates in poorer countries, as reflected in higher interest rates in 
poor countries. 

10 The 10% discount rate may not apply perfectly to scientists, who may, for example, particularly enjoy learning or 
may be especially attracted to non-pecuniary benefits (see, e.g., Stern 2004).  Nevertheless, standard discounting 
likely applies to wage aspects of the scientist’s career decision and presumably the individual would, other things 
equal, rather not delay other benefits as well – whether social status or the joys of creativity and discovery. 

11 Some evidence for this selection effect appears in Table 1.  When adding field fixed effects, the age trends rise.  
This means that the increasing delay is actually higher within individual fields, but that scholars appear to be shifting 
over time to those fields where great achievements can be had at younger ages. 
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year delay in becoming an active innovator over the 20th century suggests, at a standard 10% 

discount rate, a compound 45-55% decline in the value to becoming a scientist.  This kind of 

selection effect may not only slow scientific progress but also slow economic growth, should the 

positive spillovers that follow from idea creation (see Section III) not feature in other white 

collar careers.  The recent finance boom, drawing talented undergraduates into quickly attained, 

high wage streams, may make this comparison particularly acute. 

A. “Natural” Compensating Mechanisms 

Before considering policy mechanisms that can confront this selection issue and 

encourage entry into science, it is important to evaluate two possible compensating mechanisms 

that are naturally built into the economy’s growth path.  The first mechanism is increasing life 

expectancy.  As lifespan increases, the period over which a scientist can enjoy the fruits of their 

education may extend, raising the value V of being educated.  This effect might seem to 

encourage entry into high-training scientific careers.  However, discounting suggests such 

compensation may be small. In particular, when making career choices in the early life-cycle, an 

extra year of earnings, prizes, or status 50 years in the future may have little value in comparison 

to what is immediately foregone.  For example, at a discount rate of 10%, an additional year of 

schooling requires a 10% increase in V to compensate.  But an additional year of life 50 years in 

the future would increase V only incidentally from today’s perspective – in fact, by only one half 

of one percent.  Moreover, the increase in life-expectancy is presumably common across types of 

careers, so this “natural” life-expectancy mechanism has little if any inherent capacity to solve 

the selection issues above and especially the issue that talented individuals avoid science 

entirely. 

The second compensating mechanism follows naturally as markets expand in size.  The 

value of a patent will tend to increase linearly in the number of people around to use it, and 

increase similarly as per-capita income rises nationally and globally, raising consumers’ 

willingness to pay.  From this perspective, one can assume that, fixing the size of the 

technological jump embedded in ideas, the market value of a new idea is greater today than in 

the past.  This market size compensation can be substantial and may help explain why we 
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continue to see growing patenting efforts and commercial innovation in equilibrium even as 

education duration rises and credit is diffused through teamwork.12 

The “natural” compensation of market size is, however, much less clear for basic 

research. Unlike patents, the commercial value of a basic research idea (which may typically be 

zero) does not obviously scale with world GDP, even though the potential value from the idea’s 

downstream spillovers does scale with world GDP.  Hence, while the motive to encourage basic 

research remains extremely strong – and grows -- patent law does not easily transmit this 

commercial value into basic science.  It remains for other institutional forms of support, through 

agencies like the NIH, NSF, government labs and public universities, to confront the life-cycle 

challenges and encourage entry into basic science.  

B. Policy Mechanisms 

To encourage entry into science, one may either (i) increase the value, V, of the scientific 

career, or (ii) speed up training, to bring V earlier in the life-cycle. This section will consider 

policy mechanisms that can influence both dimensions. 

The value V to being a scientist likely has several important components, including 

wages, status, and creative freedoms (see, e.g., Stern 2004).  To increase V, one could therefore 

consider several targets. Wages can be increased most obviously through public support of 

researchers, either in public universities, government labs, or the salary components of research 

                                                            
12 In practice, productivity growth, resulting in per-capita income growth, will enhance the market size for ideas but 
also increase wages in other careers, conveying no innate bias toward innovative careers.  However, population 
growth expands the market size for ideas without affecting wages in other careers directly (according to standard 
neoclassical growth theory where the aggregate production function is constant returns to scale). So population 
growth, unlike per-capita income growth, will tend to asymmetrically advantage commercial innovative careers over 
other careers.  We can therefore consider the following back-of-the-envelope calculation.  World population growth 
has averaged approximately 1.5% per year since 1975.  Meanwhile, average team size in patenting has risen by 
1.1% per year since 1975, suggesting that the individual share of the patents’ commercial value falls by about 1.1% 
per year.  The rise in training, at about .08 years annually and with a 10% discount rate, reduces the relative value of 
an innovative career by 0.8% per year.  Thus, assuming that the rate and size of ideas is fixed once the individual is 
educated, the personal value of the innovative career would be increasing by 1.5% - 1.1% - 0.8% = -0.4% per year.  
Thus population growth may compensate substantially for the educational challenges in commercially-oriented 
innovative careers. If we consider a weighted population growth measure, which incorporates rapid increases in 
relevant technology buyers in China, India, etc, then the compensation will be higher. 
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grants.  To maintain neutrality with other careers, a simple rule of thumb is as follows.  If 

training duration rises by Y years per decade, then with an R% discount rate, V would need to 

increase RY% per decade relative to the value of alternative careers that do not feature extending 

training phases.  For example, the evidence surveyed in Section II suggests that Y averages about 

0.8 years per decade.  With a 10% discount rate, V would need to increase by 8% per decade 

beyond the value increases of other careers.  A simple way to achieve this would be to increase 

salary support by 8% per decade or 0.8% annually above real wage growth in those careers with 

static training.  A closely related alternative would be to increase wage support during the 

training phase, through graduate student and post-doctoral stipends.13 

One might also increase V through other dimensions.  For example, longer, larger, and/or 

less restrictive research grants at the height of the scientist’s career may be attractive in 

expectation and help offset the automatic disincentives that emerge as training duration 

increases.  At the same time, forcing grant dollars (not wage support) earlier in the life-cycle 

looks sub-optimal, in the sense that early-life cycle researchers are less likely to produce 

important ideas, as shown in Section II. 

An additional alternative is to accelerate training. This approach may be especially 

attractive and of increasing importance if an individual’s raw innovation potential is greatest 

when young.  Historically, Figure 2A suggests high innate innovation potential among young 

scholars (i.e. were training not occupying the individual’s time), which is consistent with the 

broader literature on life-cycle creativity.14 This finding further amplifies the opportunity costs in 

the early life-cycle and especially the costs of “busy work” professional apprenticeships, where 

future innovators are saddled with rote, relatively low skill tasks that have little training value. 

As one response, science policy might increasingly emphasize a separate track of professionals 

who focus on rote analytical tasks, requiring less training and without anticipation of being 

                                                            
13 This discussion emphasizes keeping entry incentives “neutral” with respect to other careers.  Of course, one may 
imagine that research support levels are too low or high in general, and neutrality is meant only as one benchmark. 

14 The capacity for great ideas from young scholars is shown historically in Figure 2A when considering the 1900 
estimate. See also Stephan and Levin (1993), Simonton (1998), Weinberg and Galenson (2008), Jones (2010) and 
Jones and Weinberg (2010) for further discussion. 
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research leaders. Such training and labor market segmentation could free graduate students and 

post-doctoral scholars who appear to have strong research potential to migrate more quickly 

through higher-value training tasks and into active innovation and creative leadership. 

More generally, increasing the quality, intensity, and/or focus of training throughout the 

early life cycle may all bring young scientists more quickly to the knowledge frontier, offsetting 

the expansion of foundational knowledge and allowing individuals to substitute toward active, 

high quality innovation at younger ages.  The training duration problem thus bears on education 

policy from childhood and suggests that a central goal of educational policy -- and one of 

increasing importance -- is to ensure that future innovators are being trained efficiently from very 

young ages. Achieving such acceleration is a complex matter that requires careful balancing and 

substantial additional study.15  

C.  The National Institutes of Health Example 

 An instructive example is the current debates and policy actions at the NIH with regard to 

early life-cycle research.  It has been noticed for years that NIH grants are increasingly given to 

older researchers as opposed to younger scholars.  Between 1970 and 2007, the average age of 

new investigators (winning R01 equivalent awards) rose from 35 to 42, and the average age 

among all investigators rose from 41 to 50 (Moore et al., 2008).  Elias Zerhouni, the previous 

NIH director, described this aging trend as the single most important issue for U.S. science; a 

presumed cause is often claimed to be an increasing bias (for unclear reasons) by older 

evaluators against younger entrants (Kaiser 2008).16  The primary response of the NIH has been 

                                                            
15 The policy issues bear on everything from “free play” formats in early schooling to the “liberal arts” emphasis on 
knowledge diversity in undergraduate education, both of which may delay the development of expertise.  However, 
because education systems are trying to achieve more than creating narrow expertise, education policy must be 
careful about what is given up in pursuit of acceleration.  For example, students may need time and experience to 
identify talents and passions, which can make early specialization risky. Educational systems are also trying to instill 
creativity itself, enhance socialization, build leadership skills, and develop other forms of human capital that may 
enhance innovative capacity in addition to other life and work skills.  At the same time, improving the quality of 
instruction (including math and science instruction from young ages) creates fewer tradeoffs if such improvements 
can be had with similar out-of-pocket costs and without taking time from other types of learning. 

16 Whether or not there is a bias of existing scholars against entrants, which is not clear, it is further unclear why 
such a bias would be increasing with time. 
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to create quotas, forcing research grants to be given to younger scholars, even when their 

proposals receive lower evaluation scores. 

The smooth trends in NIH grantee age, however, can be understood through increased 

training duration and demographic shifts.  In fact, there is little that is unique about the recent 

NIH grant age patterns.  For example, Nobel Prize winning achievements in physics and 

chemistry show similarly sized, smooth age dynamics over the late 20th century (Jones and 

Weinberg 2010).  With regard to the biosciences, many observers have noted that doctoral and 

post-doctoral phases are extending.  For example, the duration of the Ph.D. in biosciences rose 

by 0.9 years per decade between 1970 and 1996.17  This rate is very similar to the broader delay 

in innovative careers that was reviewed across many types of research in Section II. Thus part of 

the decline in early life-cycle innovation can be seen not as an NIH phenomenon or biosciences 

phenomenon, but as a much more general feature.  As shown in Figure 5A, the declining 

percentage of NIH grants given to scholars age 35 or below follows a broader decline in the 

share of young medical school faculty members, so that a large part of the trend appears not to be 

selection within academic scholars but rather the increasing absence of younger academic 

scholars.18 

 These age shifts are also partly a function of demographics.  As Jones (2010) emphasizes, 

the 20th century aging phenomenon in Table 1 is due partly to a decline in early life-cycle 

productivity (Figure 2) and partly to the increasing age of the background population.19  This 

demographic effect is straightforward:  when there are more older scholars around, more ideas 

will tend to come from older scholars.  The baby-boom generation in particular has created a 

mass of aging scientists in recent decades. In fact, Figure 5B shows that while the percentage of 

NIH grant recipients age 50 or above has increased dramatically, this trend closely tracks the 

percentage of medical school faculty age 50 or above, so that we would expect the apparent 

                                                            
17 Author’s calculations, using data from Tilghman et al. (1998). 

18 Figure 5 presents the author’s calculations using the NIH dataset, “Age Distribution of NIH RPG Principal 
Investigators Compared to Medical School Faculty, 1980-2006”, which is available publicly from 
http://report.nih.gov/investigators_and_trainees/index.aspx (Access date: 16 March 2010). 

19 See also footnote 5. 
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“bias” toward scholars over age 50 simply because of demographics.  A careful decomposition 

of these aging patterns requires further detailed analysis, but it should be clear that extending 

training phases and aging of the innovator population are important contributors, just as they are 

in understanding broader patterns in invention age over the last century. 

 

Figure 5: Age Shifts for Medical School Faculty and NIH Principle Investigators 
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 The NIH policy response to the aging pattern has been quotas for younger grantees.  

While the motive for this policy - encouraging entry into scientific entry careers - may be well 

founded, the quota response itself raises serious questions.  To the extent that it is increasingly 

difficult to produce key ideas in the early life-cycle (as suggested by expansions of foundational 

knowledge, increased training duration, and by observing Nobel Prize winners, great 

technological inventors, and ordinary patent holders through time), such quotas divert resources 

to projects with less innovative potential.  Increasing wage support for students, post-doctorates, 

or researchers, or accelerating training, as discussed above, may all act to attract talented 

individuals to basic research careers without redistributing scarce grant dollars away from top 

quality proposals. 

V.   Rethinking Science Policy: Collaboration 

Science is shifting universally from an individual to a team production model.  This shift, 

and the associated mechanism by which teamwork can aggregate expertise, raises challenges for 

how ideas are evaluated by government institutions and, more broadly, how scientists are 

rewarded for their work. 

A. Individual Rewards 

There is a storied tradition in science of rewarding particular individuals for remarkable 

contributions.  This tendency is evident in the nomenclature of science, where celebrated 

achievements historically often carry the scientist’s name – Euclidean geometry, Newton’s laws 

of motion, Mendelian inheritance, and the Heisenberg uncertainty principle, to name a few.  

Furthermore, there are numerous prizes, often with financial and status rewards, that typically if 

not exclusively tend to emphasize individual contributions, including Nobel Prizes, the Fields 

Medal, and the A.M. Turing Award, among many others. 

To the extent that individual scholars produce great ideas, incentive mechanisms that 

reward individuals appear to mirror the inventive process.  However, as documented in Section 

II, there has been a ubiquitous shift toward teamwork in science, both as the common format for 

research and as the organizational locus of the most highly cited work.  It does not appear that 

the reward system of science has caught up with this shift.  While individual contributions may 
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still be noteworthy, and individual leadership can be critical to effective team function, 

rewarding individuals at the expense of teams appears increasingly in tension with the nature of 

science itself.  First, privileging individual rewards creates disincentives to engage in teamwork 

in the first place, giving individuals reason to horde ideas and avoid partnerships that would 

enhance the research but dilute credit.  Second, in choosing partners, individuals are encouraged 

to select partners partly based on ex-post credit considerations rather than effectiveness of the 

research team.20  Third, researchers end up battling over credit ex-post if the project turns out 

well, as team members jockey for individual rewards. From this perspective, shifting toward high 

status and/or financial reward “team prizes” for particular innovations could help undo the 

incentive challenges that individual rewards impose. 

B. Idea Evaluation 

The evaluation of ideas matters on two levels.  First, given some set of ideas, evaluation 

matters directly for creating well-defined intellectual property rights and for selecting research 

lines with high expected payoffs.  Second, evaluation expectations affect innovative effort itself.  

Innovators may choose and/or shape projects that appeal to biases in the evaluative mechanism 

(affecting the direction of creative activity) and may be dissuaded from innovative effort 

generally (affecting the rate of creative activity) if the evaluation mechanism is seen as especially 

noisy. 

Because expertise is necessarily limited, evaluation is necessarily challenging. Indeed, 

how can a single individual evaluate aspects of a patent application or research proposal that sit 

outside that individual’s own expertise?  Relying on guesswork will result in error-prone 

decisions.  Relying on a bias against the unknown will privilege narrow ideas.  An intuitive 

response to the increasing teamwork in idea production is to increase teamwork in idea 

evaluation, engaging multiple individuals that aggregate the necessary expertise.  Bringing the 

relevant evaluative team to bear can increase evaluative accuracy. 

                                                            
20 This point is an application of the Matthew Effect in science (Merton 1968), which becomes increasingly salient 
as teamwork becomes increasingly important. 



27 

 

This ‘teamwork solution’ is not necessarily straightforward, however, and such team-

oriented strategies suggest particular features for effective evaluation. First, teams constructed 

within a narrow field will, by definition, be poorly suited to evaluate ideas that cross the field’s 

boundaries.  Thus team evaluation will be most relevant if team structures can be flexibly 

constituted to evaluate multi-disciplinary ideas. Second, locating appropriate experts is itself 

challenging, especially when the required expertise is not well understood by the initial 

evaluator(s).  This search problem may create demand for generalists, as opposed to specialists, 

with broader if shallower expertise and broader social networks.21  This search problem can also 

create incentives for ‘open science’ style evaluation, where the public at large is given incentives 

to evaluate ideas.  However, public evaluation raises a third challenge around disclosure.  

Especially for early stage evaluation, disclosing a great research idea publicly, thereby allowing 

others to steal aspects of the idea, may dissuade innovative effort. 

C. The United States Patent and Trademark Office 

The USPTO has long emphasized a single examiner model.  While there are explicit 

systems of mentoring between senior and junior patent examiners, and some informal teamwork 

in certain art units (Cockburn et al. 2003), a formal teamwork procedure to aggregate expertise in 

evaluating and shaping patent claims appears largely absent.  Meanwhile, there are ongoing 

concerns that the patent examiner system misses substantial prior art in its evaluations (see, e.g., 

Jaffe and Lerner 2004).  The recent “Peer-to-Patent” pilot program, which seeks to open prior art 

searches to the public, is an interesting open-science style approach to tapping aggregate public 

knowledge.  At the same time, it is not clear that the public at large has the incentives (or 

training) to help much in evaluating patent applications, and those parties who do have strong 

incentives, such as commercial competitors, may act strategically here.  The Peer-to-Patent 

program also requires earlier public disclosure of the technology, which can run against the 

patent applicant’s private interests and therefore incentives to invent. 

                                                            
21 The need for generalists, who can span areas of knowledge to improve team member selection and team function 
(including overcoming communication challenges between team members with distant areas of expertise), is likely 
growing as specialization narrows.  Educational institutions and training systems may need to further adjust to create 
such generalists. The role of generalists in teams, and its policy implications, awaits further empirical and theoretical 
study. 
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An alternative mechanism would continue to rely on internal, professional patent 

examiners at the USPTO but flexibly form examiner teams for evaluation.  In such a model, 

narrow patent applications might still be assigned to single examiners, while broader patent 

applications receive scrutiny from examiners in multiple art units.  Such a system requires 

additional coordination, which may be costly.  At the same time, by deploying human capital 

resources so that examiners emphasize only those areas of an application that match their own 

expertise, this evaluation format may involve less an increase in total examiner time per patent 

and more a reallocation of time across examiners, leading to potentially mild cost effects but 

large gains in evaluative accuracy.  

D. The National Institutes of Health 

The NIH is already team-oriented in evaluations.  The standard grant evaluation model 

employs panels of experts who meet to discuss promising applications collectively.  The panel 

evaluation is traditionally performed within narrowly defined study sections, which aggregate 

experts within particular knowledge boundaries.22  This system is presumably effective at 

evaluating proposals that fall within the panel’s expertise. By contrast, it is inherently difficult 

for any standing panel to effectively evaluate cross-field work, an issue of increasing concern to 

the NIH.  The NIH is now actively working to promote cross-field research, seen as necessary to 

tackle certain major health challenges and to require a cultural shift within the institute. 23 In 

addition, the NIH’s “Transformative R01 Program” is experimenting in part with a new panel 

review format that draws on experts in very different fields.  Such an evaluative mechanism may 

be increasingly important as knowledge continues to advance and field expertise narrows. This 

program is thus consistent with the evolution of science detailed in this paper, which provides a 

framework for understanding why narrowness has increased, why “multi” or “inter-disciplinary” 

research may be increasingly important, and how evaluative formats can change in pursuit of 

funding high impact science.   

                                                            
22 Currently, there are 178 distinct, regular standing study sections (see http://www.csr.nih.gov/Roster_proto/ 
sectionI.asp). 

23 See, especially, the “Research Teams of the Future” initiative within the NIH’s Roadmap for Medical Research 
(http://nihroadmap.nih.gov/researchteams/). 
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VI.  Conclusions 

This paper shows that the role of the individual in science is rapidly evolving. Teamwork 

is increasingly dominant in science, while the contributions of young scholars are increasingly 

rare.  These patterns are remarkably general across fields and research institutions, and can be 

understood as intrinsic to scientific advance, where the accumulation of knowledge naturally 

results in increasing training duration and narrower expertise.   

By perceiving and understanding these patterns, isolated policy reactions to various 

symptoms can be more carefully founded in the evolution of science itself.  This paper has 

sought to clarify central policy issues, focusing on (a) maintaining incentives for entry into 

scientific careers as the training phase extends, (b) maintaining effective evaluation of both 

research proposals and commercial inventions as evaluator expertise narrows, and (c) re-tailoring 

the reward systems that direct scientific effort as individual accomplishments become rare and 

team production becomes dominant.  

More generally, the analysis suggests an inherent challenge to “status quo” science policy 

institutions.  Because science itself evolves, the appropriate form of science policy at one time 

will be less appropriate at another.  The inertial tendency of institutions makes the 

implementation of explicitly dynamic science policies challenging, but the stakes are high. This 

paper has sought to clarify the drag on scientific productivity that static policy institutions may 

impose and elucidate types of policy adjustments that may accelerate scientific and technological 

advance. 
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