SCIENCE

CELEBRATING 30 YEARS
Vol. 30, No. 6, November-December 2011, pp. 1066-1078

1 liorms |

http://dx.doi.org/10.1287 /mksc.1110.0669
©2011 INFORMS

155N 0732-2399 | E15SN 1526-548X | 11 | 3006 | 1066

Competitive Strategy for Open Source Software

Vineet Kumar
Harvard Business School, Harvard University, Boston, Massachusetts 02163, vkumar@hbs.edu

Brett R. Gordon

Columbia Business School, Columbia University, New York, New York 10027, brgordon@columbia.edu

Kannan Srinivasan

Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
kannans@andrew.cmu.edu

C ommercial open source software (COSS) products—privately developed software based on publicly available
source code—represent a rapidly growing, multibillion-dollar market. A unique aspect of competition in the
COSS market is that many open source licenses require firms to make certain enhancements public, creating an
incentive for firms to free ride on the contributions of others. This practice raises a number of puzzling issues.
First, why should a firm further develop a product if competitors can freely appropriate these contributions?
Second, how does a market based on free riding produce high-quality products? Third, from a public policy
perspective, does the mandatory sharing of enhancements raise or lower consumer surplus and industry profits?

We develop a two-sided model of competition between COSS firms to address these issues. Our model
consists of (1) two firms competing in a vertically differentiated market, in which product quality is a mix
of public and private components, and (2) a market for developers that firms hire after observing signals of
their contributions to open source. We demonstrate that free-riding behavior is supported in equilibrium, that a
mandatory sharing setting can result in high-quality products, and that free riding can actually increase profits

and consumer surplus.

Key words: open source software; product strategy; signaling; game theory
History: Received: October 12, 2009; accepted: July 6, 2011; Eric Bradlow served as the editor-in-chief and John

Zhang served as associate editor for this article.

1. Introduction

The $500 billion software market is undergoing a
significant transformation as open source software
continues to alter the competitive landscape of the
industry (Economist 2009). Open source software is
built through public collaboration. The source code is
published openly, and others are permited to enhance
it, in contrast to traditional software where firms
closely guard a product’s source code.! However,
open source no longer serves only as a substitute for
proprietary software—it is increasingly being incor-
porated directly into a wide range of commercial
products (Gartner Group 2008).2

1Open source software should be distinguished from two other
forms of freely available software. Some firms make their soft-
ware available for free (“freeware”) but do not make the source
code available (e.g., Adobe Reader). Another form is voluntary
open source, where a firm releases the source code but with strong
restrictions on its use and redistribution. We do not consider these
cases because the strategic issues involved differ significantly from
those COSS firms face.

2Popular examples of open source software include the Linux
operating system, Firefox browser, OpenOffice, Apache Web
Server, SugarCRM, and MySQL, among others. See http://www
.sourceforge.net for a Web-based repository of open source appli-
cations.

1066

Commercial open source software (COSS) firms
build commercial products based on adding more fea-
tures and enhancing the usability of publicly available
open source software. The terms that govern open
source licenses dictate how modified versions may
be distributed.® Certain licenses require COSS firms
to release feature improvements to the public, where
competing firms can incorporate them into their own
products. Thus, firms are able to free ride on the con-
tributions of other firms, a practice Microsoft CEO
Steve Ballmer referred to as “a cancer that attaches
itself in an intellectual property sense to everything it
touches” (Fuller 2003).

The unique institutional arrangements discussed
above raise a number of puzzling issues. First, why
should a firm develop additional features for its prod-
uct if competitors can freely appropriate these features
for their products? Second, technology experts have
pointed to cases in which COSS products are compa-
rable to or even better than similar products produced

3We focus on the two types of licenses most common and rel-
evant to the COSS industry: the GNU General Public LICENSE
(http://www.gnu.org/licenses/licenses.html#GPL) and the Berke-
ley Software Distribution License (http://www.opensource.org/
licenses/bsd-license.php). See Laurent (2004) for more discussion.

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

1067

by traditional closed source software firms (Dedeke
2009). How does a market in which firms face a strong
incentive to free ride produce high-quality products?
Third, does making sharing mandatory result in the
creation of more features? Fourth, when is the “can-
cer” of free riding, as Ballmer describes it, likely
to hurt firms and consumers? Despite the growing
importance of the COSS industry, little extant research
examines firms’ competitive strategies in this novel
setting. To address these questions, we incorporate
the unique aspects of this industry into a model and
use it to analyze firms’ competitive strategies to shed
light on these empirical puzzles.

We provide a brief overview of the model and then
discuss our key results in more detail. Our model has
two interacting markets: a product market consisting of
COSS firms that sell software products to consumers
and a developer market in which firms hire developers
to create software products.

The product market is a vertically differentiated
duopoly of ex ante identical software firms that
choose product quality and prices. A product’s qual-
ity is a function of two components: features and
usability. We consider two types of product market
interaction that are governed by the terms of the open
source license. In a private features market, a firm can
freely use any open source features and include them
in its software product, without restriction. In con-
trast, under a shared features market, features firms
develop must be contributed to open source, so each
firm also gets access to the publicly available features
the competition develops. A shared features market
enables each firm to free ride on the features con-
tributions of other firms. Usability improvements are
always kept private in both types of product market;
firms do not have access to a competitor’s usability
components, regardless of the license.

In the developer market, firms hire developers to
create more functionality (features) for their products.
However, firms do not know whether a particular
developer has the appropriate skill level to be hired.
Open source provides a mechanism for highly skilled
developers to signal their skill (type) to firms by con-
tributing features to open source. Open source con-
tributions provide a credible signal to firms about
a developer’s skills because potential employers can
review a developer’s contributions (Leppamaki and
Mustonen 2009). Such a motivation to contribute is
consistent with an economic signaling rationale to
explain developers’ open source contributions (Lerner
and Tirole 2002).

The interaction between the product and devel-
oper markets in equilibrium determines developers’
wages, the degree of open source software created
by firms and through developers’ signaling, as well
as product qualities and prices. Developers’” wage

expectations are influenced by the structure of prod-
uct market competition discussed above and effect
developers’ incentives to contribute to open source.
A higher expected wage increases open source fea-
ture contributions. Higher wages affect firms’ deci-
sions to develop more features, which has a feedback
effect on the wage offered. Equilibrium product
quality balances developers’ incentives to contribute
to open source and firms’ willingness to pay for
marginal product improvements. Thus, understand-
ing and modeling the creation of open source soft-
ware is critical to understanding the competitive
product design and pricing strategies of COSS firms.

We demonstrate how the puzzles raised earlier
in this section result from the competitive strate-
gies of COSS firms across the product and developer
markets, and we compare the models’ equilibrium
outcomes in the shared features and private features
markets. Our key results, mirroring the puzzles, are
the following.

First, in the shared features market, we find that
free riding on features is supported in equilibrium:
the (ex post) high-quality firm creates additional
open source features, whereas the low-quality firm
does not. Both firms also develop some degree of
usability. The high-quality firm contributes to open
source because the complementary nature of fea-
tures and usability increases the value of differ-
entiating on usability, and both firms appropriate
the benefits from quality differentiation. The low-
quality firm has less incentive to contribute fea-
tures because it can free ride on the high-quality
firm, and its marginal value of additional features
is lower, consistent with empirical findings that the
high-quality firm Red Hat contributes significantly
more code to Linux than competing vendors (Pal
and Madanmohan 2002, Handy 2008). Second, dimin-
ished competition between firms in the developer
market explains higher quality in the shared features
market, in conjunction with production efficiencies
created by mandatory sharing. Third, open source
contributions can be higher in larger private features
markets because developers expect higher wages
from intense competition between firms for their
skills, which increases developers’ incentives to con-
tribute to open source features. Fourth, both con-
sumers and the low-quality firm are unambiguously
better off in the free-riding shared features market
than in the private features market. Under certain
conditions, the high-quality firm may also earn higher
profits in the shared features market. Consumer sur-
plus is higher with free riding because of increased
price competition, resulting from reduced product dif-
ferentiation through common features.

Although we capture the most salient competitive
factors in the COSS marketplace, we must abstract

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

1068

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

away from several interesting issues, such as the vol-
untary provision of open source and multiproduct
firms. We focus our study on firms’ strategies given
a specific COSS market. We discuss these limitations
and ideas for future research in §6.

Our paper connects two distinct and previously
separate streams of literature, especially in modeling
the interconnection between the product and devel-
oper markets. The product market model is based on
well-known work in marketing and industrial orga-
nization on strategic product development with ver-
tically differentiated firms (Shaked and Sutton 1982,
Moorthy 1988). The novelty in our setting is the com-
bination of public and private goods that is a unique
aspect of COSS products, and thus it contributes to
the nascent literature in cocreation of products by
firms and by a community of individuals working
outside the traditional firm boundaries (Ramaswamy
and Gouillart 2010, Sawhney et al. 2005). Our work
is also closely related to, but quite distinct from, sev-
eral recent studies on open source that have examined
issues such as two-sided pricing of operating systems
and applications (Economides and Katsamakas 2006)
and dynamic competition between open and closed
source products (Casadesus-Masanell and Ghemawat
2006). Neither paper explores product design or the
strategic interaction between open source firms, and
our work complements these two papers because
we examine COSS products that are based on open
source and that compete with each other. Leppamaki
and Mustonen (2009) assume a perfect market for
developers, ignore the multidimensional aspect of
quality, and do not explore strategic interaction
between COSS firms. Casadesus-Masanell and Llanes
(2011) consider how a firm’s decision to release its
software as open source depends on whether a com-
petitor uses an open source or proprietary business
model. This model corresponds to the case of MySQL,
whereas our model fits better with Linux and Red
Hat. One critical difference is that the two-sided
nature of our market endogenizes the creation of
open source. Another is that firms in our model con-
struct software based on existing open source code
contributed by developers. Thus, firms are unable to
dictate the terms of the license. We leave to future
research the possibility that firms could endogenously
choose whether to operate in one or more open source
markets.

The second stream of literature helps in under-
standing why developers contribute to open source
software. The literature distinguishes between intrin-
sic motivation (including altruism, use value, and
similar factors) and extrinsic motivation (driven
by market factors, developer status, and potential
wages), and it finds that extrinsic factors play a major
role in developers’ decisions to contribute (Roberts

et al. 2006). Hars and Ou (2002) use direct surveys
of developers to provide support for signaling, and
Fershtman and Gandal (2007) show that developers
contribute more when the license is more commer-
cially oriented. Lerner and Tirole (2002) argue in a
review article that much of the evidence is consis-
tent with an economic signaling motivation.* Based
on this work, we build on Spence (1973) to formu-
late the developer market as individuals signaling
to demonstrate an unobservable skill (or ability). We
extend Spence’s model to include two types of signal
spillovers: developer—firm and firm—firm spillovers.
We now provide a broad overview of the open source
industry to better understand the context of our study.

2. The Open Source Industry

The open source movement gained prominence in the
1990s as a small community of expert developers who
made the source code (or blueprints) to their pro-
grams freely available for anyone to use and build on.
The growth of open source software has been rapid:
market researcher IDC (2009) estimates that the direct
revenue in this market will grow to $8.1 billion by
2013, with compound annual growth of 22%. In addi-
tion, open source software is increasingly being used
as part of commercial software. Large technology
firms such as IBM, Sun Microsystems, and Hewlett-
Packard have long recognized the importance of open
source and have launched multibillion-dollar open
source initiatives.’

Consumers find that the freely available open
source software lacks usability and requires signif-
icant expertise to use effectively (Lakhani and von
Hippel 2003). COSS firms add value to open source
by increasing the functionality (or features) and the
usability, which are two distinct dimensions of overall
software quality:

1. Features: Provide new or enhanced features that
extend the basic operations of the software. For exam-
ple, Sun’s StarOffice suite has additional features
providing compatibility and support for different doc-
ument formats than the open source OpenOffice.

2. Usability and Support Services: Enhance the user’s
ability to effectively use the product’s available fea-
tures. Usability enhancements often take the form of
nonsoftware services, such as online help, technical
assistance, documentation, packaging, and other sup-
port services.®

*For anecdotal evidence, two apt examples can be found at
http: //www.odesk.com/blog/2008/02/ open-source-work-as-a-portfolio/
and http://blogs.techrepublic.com.com/opensource/?p=821 (ac-
cessed March 11, 2011).

5See InfoWorld (2000).

¢ Usability can also include software code or additional programs
that make the interface more accessible.

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

1069

The distinctions between these dimensions of func-
tionality and usability that contribute to software
quality have been recognized and quantified by stan-
dards organizations such as ISO (Abran et al. 2003,
Jung et al. 2004). An intuitive way to think about the
difference is that expert users are able to effectively
use software with complex functionality and low lev-
els of usability, but the productivity of ordinary users
increases with the usability of the software. For exam-
ple, contrast the ability of expert users of spreadsheet
software to use custom macros to accomplish com-
plex tasks versus ordinary users’ interactions with
the software through the menu-driven interface. The
distinction plays a key role in our model formula-
tion, and we also incorporate the fact that creating
functionality is considered a highly skilled endeavor.
Developers who work on usability, known as usabil-
ity engineers, do not ordinarily work on open source
software unless hired to do so by a firm, which is con-
sistent with the well-known lack of usability in open
source projects (Lakhani and von Hippel 2003).

Numerous firms have adopted the COSS model,
and COSS products now span a wide range of
applications, from productivity suites to business
intelligence to customer relationship management.”
Industry professionals clearly recognize that build-
ing on open source is an important business strategy
(Goldman and Gabriel 2005, Riehle 2007). A prime
example of a COSS firm is Red Hat Inc. The com-
pany’s commercial version of the freely available
Linux open source software is designed to simplify
and extend the management and administration of
the Linux operating system. Red Hat Linux oper-
ates under the GNU General Public License, which
implies that Red Hat must make publicly available
any feature contributions it makes to Linux but can
keep private any usability enhancements. Red Hat
makes significant contributions to the Linux kernel,
the Linux X Windows System, the GNU Compiler
Collection, and others, all of which are made pub-
lic under Linux’s license (Pal and Madanmohan 2002,
Handy 2008). Red Hat provides additional services,
such as extensive documentation, installation and
maintenance, and support programs, to customers
who purchase their commercial product.

Thus firms may build on open source, and the
terms of the license govern whether COSS firms can
keep their features private or must make them pub-
licly available. We address this distinction in our
model below.

7An exhaustive list of commercial applications based on open
source can be found at Wikipedia; http://en.wikipedia.org/wiki/
Commercial_open_source_applications (accessed March 11, 2011).

3. Model—Private and Shared

Features Markets
We model a duopoly of ex ante identical firms com-
peting in two separate but interconnected markets:
the first is a product market in which consumers pur-
chase software produced by the firms, and the sec-
ond is a developer market in which firms compete for
developers.

Figure 1 details the sequence of stages in our
model, which includes both private features and
shared features markets. Stages 0, 1, 3, and 4 are
common to both types of product markets, whereas
Stage 2 is only present in the private features mar-
ket, and Stages 27 and 27 are only present in the
shared features market. In Stage 1, developers choose
whether and how much to contribute to open source
features to signal their skill levels. In the private
features market, firms simultaneously observe devel-
oper signals and make wage offers and all product
development decisions in Stage 2°. In the shared fea-
tures market, firms observe developer signals and
make wage offers and only feature development deci-
sions in Stage 23, and then they choose how much
usability to develop and how many features to copy
from their competitor in Stage 27. In Stage 3, firms
set prices after observing product qualities, and in
Stage 4, consumers make their purchase decisions
after observing all qualities and prices. Table 1 sum-
marizes our model’s notation, distinguishing between
exogenous model primitives and endogenous out-
comes in the model.

3.1. Product Market
Consumers choose to either purchase one unit of soft-
ware from one of the COSS firms or not purchase a

Figure 1 Sequence of Stages in Model

Private features

Firms hire
developers and
determine features
and usability

is exogenously
determined

Firms set prices

I
I
I
I
Market structure |
I
|
|
|
|

Firms determine
features

Consumers
purchase

Developers contribute
to open source to
signal skill level

Firms decide

usability and
degree of copying

Lo o oo oo o o o o o

Shared features

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

1070 Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS
Table 1 Notation for Main Constructs in the Model Figure 2 Product Market: Comparison of Private and Shared Features
Symbol Definition Firm 1 chooses Initial OSS features Firm 2 chooses
sy and f; available to all s, and f,
Market types
. . /\ 0SS /\
P,S Superscripts for private features and 3 f f S
shared features markets, respectively ; : Fo 2 2
Model primitives 8
M Market size, heterogeneity g
CL, Cy Cost of contributing one feature to open source &
for each developer type 2 Fi=Fy+nf Fy=Fy+nf
Cs Cost of developing one unit of usability f:
Ny (=n), 0 Productivity of high-type and low-type / \
developers, respectively
Equilibrium strategies and outcomes Flm; e Flm(‘i L
P, q; Price and quality of firm j’s product, respectively pr; el Pr; (el
f,,s; Number of developers hired and usability O(Fy s1) QFz 5
investment by firm j, respectively
F; Number of features in firm j’s product
Fo Number of open source features as a result of Firm 1 chooses Initial OSS features Firm 2 chooses
developer contributions sy and f; available to all sy and f5
e, ey Contribution to open source by low- and /\
high-type developers respectively 0SS
w(e) Wage in the developer market, with e € {e,, e,} 8 il h Fy
product, in which case they receive a normalized util- E
ity of 0. Consumers are heterogeneous in their pref- 7 Fi=F=
Y & P s Fo+nfi+nf

erences for quality, and a consumer indexed by 6 has
utility for a software product of quality g at price p
given by
u(q; 0) =09 —p.

Consumers’ marginal valuation for quality is dis-
tributed uniformly, 6 ~ U[0, M], and its realized value
determines which product the consumer prefers. M is
the market size or heterogeneity parameter, and a
higher value indicates a higher dispersion in con-
sumer valuation for quality. Note that the mass of
consumers is fixed at 1.

The quality g of a software product depends on its
level of features F and usability s. We follow indus-
try practice and view these dimensions as mutually
exclusive (Boehm 1981, Pressman 2004). Quality is
defined by the production function:

q=Q(F,s).

A software product’s features define the set of tasks
the product can help accomplish, whereas usabil-
ity refers to the ease with which a consumer can
make use of the product’s features. Consumers value
both more features and greater usability. However,
an abundance of features may create an overly com-
plex product, and consumers may not be able to take
advantage of all the features without usability. Con-
versely, a high level of usability is more beneficial
in conjunction with a large number of features.® We

8In general, consumers do not benefit from products with a sig-
nificant imbalance between their level of features and usability.

Firm I’s Firm 2’s
product product
O(Fy, sp) O(F3, 55)

Note. 0SS, open source software.

therefore model these two dimensions of quality as
(imperfect) complements, implying

*Q

dsoF
A simple functional form that captures this com-
plementarity and is concave in both features and
usability is Cobb-Douglas, Q(F, s) = (F - s)"/4, which
we use for convenience. The above formulation of
consumer preferences and product quality are com-
mon to all markets. Figure 2 illustrates the struc-
ture of the product market: the upper panel depicts
the private features market in which both firms ini-
tially have access to F, features from the open
source community, and the lower panel depicts the
shared features market in which firms contribute any
features they develop to open source.’ Firm j € {1, 2}
determines its product quality by hiring f; feature

> 0.

Thompson et al. (2005) show that consumers who purchase overly
complex products face “feature fatigue” and that improving usabil-
ity can help consumers effectively utilize the features.

° F, is determined in equilibrium through developer signaling (dis-
cussed later in this section).

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

1071

developers and choosing a level s; of usability, and we
denote firm 1 as the firm with overall higher quality,
letting g, > g, without loss of generality. Developers
vary in their skill level or productivity, n € {n,, ny},
with a developer producing 7 units of features when
hired. The key difference between the shared features
market and the private features market is the for-
mulation for product quality. In the upper panel,
firms in the private features market incorporate open
source features and only their own privately devel-
oped features into their products. In contrast, the
shared features market in the lower panel shows that
firms must contribute any features they develop back
to open source, which could subsequently become
part of both firms” products.

In the private features market, firm j’s product
has F = (i + nf;) features. In the shared features
market, firms determine how much to copy from
their competitor, denoted by §; € [0, 1] in Stage 2;.
The number of features in the product is thus
E=(E&K+nfi+md;f).

In both markets, each firm j also develops the
usability of the product to level s; to make the prod-
uct’s functionality easier for consumers. The overall
quality of firm j’s product depends on whether fea-
tures are private (P) or shared (S):

7' =Q(F,5) =[(Fy+nf)s]", and

‘7/'5 =Q(F, s) =[(K+nf;+ n8jf—j)sj]1/4'
The production costs in both cases include wages w
paid to developers to create features and to enhance
usability at a cost of ¢, per unit.'’ The total fixed pro-
duction cost C(f,s) is the sum of feature develop-

ment costs and usability creation costs and is given
as C(f,s)=w- f+c,-s.

3.2. Developer Market

Developers are heterogeneously distributed and are
either highly skilled (high type) or lowly skilled (low
type). The cost of contributing to open source differs
according to the developer’s type. To contribute e fea-
tures, high types incur a cost of cy - e and low types
incur a cost of ¢; - e, with ¢y < ¢; indicating that
high types face a lower cost.!! High-type developers
have a reservation option r ~ ¢(-), with cumulative
distribution function ¥(-) and support in the range
[R, R], where 0 < R < R.'> This option represents the

10 We focus on the labor market for feature developers because cre-
ating new functionality is a more specialized and challenging skill,
whereas modeling usability as being exogenous is more realistic.

T Although we consider all features to be equivalent for the sake
of expositional clarity, our results hold even when developers con-
tribute features that are heterogeneous in “quality.” The proof for
this case is available from the authors upon request.

12No further assumptions on the functional form of ¥ are required
for our results. We use the general form in our description because
it helps in presenting and interpreting different effects.

utility a developer derives from her current job, and
she will accept a new wage offer only if it exceeds r
and the cost of signaling. Note that developers are
heterogeneous in two dimensions: their (discrete) skill
levels and their (continuous) reservation wages.

After the signal successfully reveals the developer’s
type or skill level, the developer can choose either
of the COSS firms, or an external market. The exter-
nal market for highly skilled developers is present
because skills required to successfully contribute to
open source can have useful applications across many
markets. For example, a developer who has con-
tributed to a Linux open source project can receive
an offer from a firm such as Oracle that is not a pri-
mary competitor in the Linux market. We capture by
an external demand D(w) the degree of specificity
of software skills the developer can signal by con-
tributing to the open source project. A low external
demand indicates that the skills signaled are very spe-
cific, whereas a high external demand indicates the
opposite. Therefore, the external demand, D(w), is a
function of the market wage and affects market out-
comes only in the sense that it affects the wage by
creating an additional source of demand for highly
skilled developers. Note that the external market has
no demand for developers who have not signaled,
because their skill level is uncertain.

Figure 3 displays the developer market and its link
to the product market. The numbers correspond to

Figure 3 Developer Market

External market
hires D developers

Developers
(high and low)

Developers
expect wage
w(e)

9 High type

ey (r, w(e))

Low type e

er (r, w(e))

N

Firm 1 hires OSS features Firm 2 hires
developers Fo=fey+flte, developers
Initial level of OSS

features available to all

Product market

Note. 0SS, open source software.

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

1072

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

the stages in the game outlined in Figure 1. Devel-
opers form expectations about wages based on the
market and contribute to open source to signal their
skill level to firms (Stage 1). These contributions are
publicly observable, and firms use them to evaluate
developers’ skills and make wage offers to developers
(Stages 2P and 2%)."® Firms simultaneously hire devel-
opers, and in doing so, they choose their product’s
level of features.

Low-type developers may attempt to masquerade
as high-type developers to convince firms to hire
them. Open source projects have gatekeepers who
screen for low-quality code and decide which sub-
missions to accept, implying that high-type develop-
ers have a lower cost of contribution (Bagozzi and
Dholakia 2006). To simplify our exposition, we make
two assumptions: low-type developers have reserva-
tion option R; > 0, and they are not productive to
COSS firms when hired; ie., 7, = 0. These assump-
tions make hiring the low types unprofitable.'*

If firms could observe a developer’s skill level, they
would base the wage on this observation. However,
when the wage is unobservable, it is dependent on
the contribution to open source ¢, denoted as w(e).
A developer of type t € {L, H} contributing e features
receives utility u,(w,) = w(e) — c,e, and her optimal
contribution level is

e, =argmaxw(e) — c.e, (1)

subject to the incentive compatibility (IC) and indi-
vidual rationality (IR) conditions:

(ICy): w(ey) —cyey > w(ey) —cyey,

(IRy): w(ey) —cyey =71,

)

(IC.): w(e) —crep > w(ey) —crey,
(IR,): w(e) — cre. = 0.

To ensure separation, high-type developers must find
exerting a high level of effort (ICy) to be incentive-
compatible and must be sufficiently compensated to
work for the COSS firms compared with her reser-
vation option (IRy). Low-type developers must find
imitating the high-type developers (IC;) to be pro-
hibitively expensive. The IR constraint for the low
type is trivially satisfied. Firms do not find hiring
low-type developers at any positive wage to be opti-
mal after their type is credibly revealed. The condi-
tion in IC; reduces to 0 > w(ey) — ¢, e when low-type

BFirms’ wage offers are consistent with developers’ beliefs in
equilibrium.

“We only require that at the equilibrium wage, the marginal
increase in a firm’s profits from hiring an incremental low-type
developer is sufficiently low. This condition would be met if n; > 0
but still low enough for firms to find that not offering them a pos-
itive wage is profitable.

developers do not contribute. Among high-type
developers, those with reservation values below a
threshold, » < w(ey) — cyey, choose to signal, whereas
others with higher reservation options, r > w(ey) —
cyey, do not signal. Thus the number of high-type
developers who signal is fff = W (w(ey) — cyey).

This condition characterizes the supply of develop-
ers available for hire either by the firms or by the
external market. Given an arbitrary wage w, the ini-
tial level of open source features available in Stage 1,
Fy(w), is a function of the number of developers and
their contributions:

K(w) = foey = V(w(ey) — cyey)ey. 3)

Although the IR and IC conditions are necessary, they
are not sufficient to determine wage, which depends
on the interaction between the product market and
developer market, which govern the demand and
supply of developers, respectively.

3.3. Discussion and Comparison

We compare the current setting with the canonical
model of Spence (1973), in which workers signal
through investments in education to a market of per-
fectly competitive firms and capture all surplus. In
our model, developer contributions to open source
features serve as signals to COSS firms seeking to
hire highly skilled developers. We build on Spence in
two primary areas, thereby making the model appli-
cable to a broader range of settings. First, our model
considers an imperfectly competitive, vertically dif-
ferentiated duopoly in which firms earn positive
profits—developer heterogeneity within types and dif-
ferent marginal productivity of developers imply that
firms only make wage offers based on the marginal
value of the last feature to them. Thus, the dimin-
ishing marginal valuation of consumers for quality
allows both firms and developers to earn a surplus.

Second, the signaling contributions have two
types of spillover effects: developer-to-firm spillovers
and firm-to-firm spillovers. In developer-to-firm
spillovers, contributions developers make in Stage 1
serve as substitutes for firms’ feature contributions.
The more developers contribute to open source as a
result of signaling, the less intensely firms compete
for them, which acts to diminish the wage. In the
shared features market, firm-to-firm spillovers occur
because the feature contributions from each firm are
available to the competitor. As a result, firms com-
pete less intensely for developer talent because the
firms realize that they can fully appropriate the fea-
tures developed by their competitor.

In contrast, Spence’s (1973) model of education sig-
naling does not consider either imperfect competition
or spillover effects of either kind that we have concep-
tualized. In our model, signaling by a developer not

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

1073

only affects that developer’s utility and the COSS firm
that hires him, but it also critically changes the strate-
gic interaction between the COSS firms in the mar-
ket, and we believe the current paper is the first that
examines this important aspect of including strate-
gic spillovers in signaling settings. These conflicting
incentives create a critical and unique link between
the product and developer markets, and we proceed
next to analyze the properties of the interlinked equi-
librium in these markets.

4. Equilibrium Analysis

We analyze the subgame-perfect equilibrium of the
model by backward induction, beginning with the
choices consumers make and the pricing subgame in
Stage 3. We then move to the product development
decisions in Stages 2" or 23/2; and finally to the devel-
oper signaling game in Stage 1. Intermediate results
that are not central to our analysis appear as lem-
mas in the electronic companion (available as part
of the online version that can be found at http://
mktsci.pubs.informs.org/).

4.1. Pricing Equilibrium

The pricing subgame in Stage 3 applies to all cases of
the product market, and it borrows significantly from
Moorthy (1988). We define consumer 6;, as indiffer-
ent between firm 1’s and firm 2’s products, so that all
consumers with higher value for quality, i.e., 6 > 6,,,
would prefer firm 1’s product. 6, is determined by
the indifference condition, 6,, - q; — p1 = 61, - 4 — P»-
Similarly, we define consumer 6,,, who is indifferent
between purchasing firm 2’s product and not pur-
chasing any product, such that 6,4, — p, = 0. Note
that all consumers 6 such that 6,, < 6 < 6,, choose to
purchase firm 2’s product over firm 1’s product or the
no-purchase option. The market shares for the firms
are then determined to be

m——(M 012)_M<M P Pz) and

T~
1
m, = M(Glz b0) = (Zl ZZ %)
142 b

Revenues are determined from the above market
shares and prices, and firms set prices to maximize
revenues, leading to the optimal price levels as a
function of the quality levels of both firms’ products:

pf:argmax(M 20 pz)pl, and
P1 h— %

* Pir—P> P2)
= arg max —_— .
Pr=ais” (ql—qz)

The optimal price for each firm is a best response of
the price the other firm sets and depends on the qual-
ity levels of both products, and the optimal revenues

are a function only of product quality levels chosen
by the firms.

At this stage, we note that firm revenues, prices,
and the consumer surplus are represented solely as
functions of product quality levels and the market
size. Next we characterize the product design choices
concerning features and usability, and we evaluate
how that affects product quality.

4.2. Product Quality Equilibrium

Firms determine their product features by hiring
developers and making usability investments, both
of which contribute to product quality. The product
strategy subgame begins with Stage 2" for the private
features market and at Stage 2] for the shared fea-
tures market. We characterize the partial-equilibrium
behavior by the COSS firms given the wage (w)
and freely available open source features (F,). The
profit functions are derived by substituting the fea-
ture and usability levels into the revenue functions
and accounting for the costs of development.

The solution of the subgame in Stage 2" for the pri-
vate market and in Stages 25 and 2; for the shared
features market requires the firms to strategically
determine the optimal mix of features and usabil-
ity, which in turn determines overall quality. In the
shared features market, the potential for free riding
on features leads to decreased product differentiation
and increased price competition, making it unclear
whether any firm will contribute to features in equi-
librium or whether each firm will find free riding
on the contributions its competitor makes to be more
profitable.

ProrosiTioN 1 (PrRODUCT MARKET EQUILIBRIUM).
The product strategy equilibrium resulting from E, initial
open source features, and with firms j € {1, 2} differenti-
ated on the basis of product quality, is characterized by the
level of features, usability, and overall quality, depending
on the market type:

Private Shared
p_ . sar2 [T s_ Qa2 [T
S]—7T]M CSTZU, S]—l!I]M CST’(,U,
F,] F
P _ F M2 i__ol s—yFp2 [0 _ 5o
f] j C5w3 n fl wl Csw3 n
f25=0,
Q n Q]
1] cw P = cw

In the shared features market, each firm fully copies its
competitor’s features, such that 6, =0, =1.

The constants 7°, wF, and w9 for the private features
market and 5, yF, and th for the shared features market
are defined in the electronic companion.

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

1074

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

There are several points to note here. First, in the
private features market, both firms create features in
addition to the F, features available from open source.
An increase in F, leads firms to reduce the number
of features they develop because the open source fea-
tures are a substitute. We find that firms differentiate
their products more on the less expensive dimension
of quality, implying that if features are less expensive
to produce, the firms will differentiate more on fea-
tures (f; — f, > s; —s,). Intuitively, firms differentiate
their products more on the dimension that yields a
greater return to such differentiation.

Second, the implication in Stage 2; of the shared
features market is that both firms fully copy their
competitor’s features. A partial copying strategy
might seem optimal because it would create more
product differentiation. To understand the intuition
behind this result, consider each firm’s incentives sep-
arately. For the high-quality firm, copying more is
always preferred because doing so increases the firm'’s
own quality and the degree of quality differentiation
(41 — 9,) between the firms. For the low-quality firm,
copying increases its own quality but reduces qual-
ity differentiation. However, the positive effect of an
increase in quality dominates the negative effect of
a reduction in differentiation when the quality levels
are sufficiently far apart. The low-quality firm copies
features fully from the high-quality firm and, conse-
quently, invests less in usability to attain a certain
quality level.

We find that only the high-quality firm develops
features beyond the open source features F, available
as a result of developer contributions. The low-quality
firm completely free rides on the features the high-
quality firm provides. Why does the high-quality
firm develop a positive level of features? The intu-
ition comes from the fact that the quality dimensions
are complements, implying that consumers’” marginal
utility of usability is increasing in the level of features.
Although features do not contribute directly to prod-
uct quality differentiation, they do magnify the effect
of usability differences between the firms. Note that
the low-quality firm invests less in usability than the
high-quality firm, and the high-quality firm develops
features to enhance the degree of product differen-
tiation, which results from having a higher usabil-
ity product. Thus the increase in the differentiation
from usability makes creating features that reduce the
intensity of competition worthwhile.

The product market outcome in the shared features
market above has a critical implication for the devel-
opers’ market, which we examine in the next section:
only the high-type firm hires developers, because
the low-type firm does not develop features (f, =0),
and only the external market offers an alternative to
developers who signal.

4.3. Developer Market Equilibrium

The wage influences firms’ demand for developers,
the number of developers willing to signal, and the
level of their contributions to open source in Stage 1.
The equilibrium wage must balance firms’ demand
for developers with the supply of developers who
are willing to enter the market by signaling. We
focus on separating equilibria where high-type and
low-type developers make different contributions to
open source software.

For a separating equilibrium in the signaling game,
we identify conditions on wages that lead to posi-
tive contributions by some high-type developers and
that ensure low-type developers do not find imitating
them to be profitable. The following result provides
the necessary conditions for a least-cost separating
(LCS) equilibria in terms of the wage and open
source contributions. The contributions and beliefs
that correspond to the least-cost separating equilib-
rium, including the out-of-equilibrium beliefs that sat-
isfy the intuitive criterion (Cho and Kreps 1987), help
determine a unique equilibrium, to which we restrict
further attention.'®

ProrosiTION 2 (DEVELOPER MARKET SEPARATING
EQUILIBRIUM). In the LCS equilibrium, both the number
of high-type developers contributing to open source and the
number of features contributed by each developer increase
with the wage.

Note that this result is independent of the type of
product market. The contribution decisions of both
types of developers determine the minimum amount
of contribution required for separation; e"(w) =
w/c;. The higher the wage, the more incentive there
is for the low-type developers to masquerade as high-
type developers, and therefore the latter must con-
tribute even more features to make it unattractive for
the former to masquerade. Highly skilled develop-
ers with low reservation or outside options, i.e., r <
rtS(w) = w — ¢y e"S(w) = w(1 — ¢y /c;), choose to sig-
nal, implying that the number of high-type develop-
ers who signal is IS = W(rX) = W(w — ¢, e"S(w)).
Thus, as the wage increases, the number of high-type
developers who will find contributing to open source
relatively more attractive compared to their current
reservation option increases as well.

The number of open source features produced in
Stage 1 is the product of the number of develop-
ers who signal and each developer’s contribution,

15 Signaling models often admit a multiplicity of equilibria, and we
use the intuitive criterion to refine “unreasonable” equilibria. In
our context, least cost refers to the minimum separation required at
each prevailing wage. This purification of out-of-equilibrium beliefs
requires that any observed deviation from the equilibrium path will
more likely be from the type that could profit the most from the
deviation.

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

1075

FS(w) = fye"S(w) = (w/c)¥(w(l — cy/cp)). This
result allows us to focus on the (expected) wage level
that determines F,. We restrict further attention to LCS
equilibrium outcomes and drop the LCS superscript.

5. Market Interaction and Comparison
In the previous results, we separately examined the
product market competition involving firms and con-
sumers as well as the developer market involving
firms and developers. We integrate these two sides of
the overall market to understand competitive product
strategy across private features and shared features
markets. The key connection between the markets
is the wage for developers, which determines how
many features are produced for inclusion in the
products.

The equilibrium wage w” or w® equates the overall
demand for developers, formed by the firms’ demand
and the external demand D(w) for developers, with
the aggregate supply of developers who prefer signal-
ing to their reservation option. We denote the excess
demand functions ¢” for the private features market
and £° for the shared features market for developers
at wage w to be

£ (w) =D(w) + M*, | — =D(mi + ;)
w c c
s et G
£w= D)
——

External demand

-2

COSS demand = fi+f,

“f-2)
%)

Developers’ signaling

Equating the excess demand to 0 determines the equi-
librium wage in either case. Below this wage level,
fewer high-type developers will contribute to open
source than firms are willing to hire, and above this
wage level, more developers will be inclined to con-
tribute than firms will want to hire. Thus the equilib-
rium wage serves to balance the signaling incentives
of developers and firms, and we examine its com-
parative statics with respect to the market size, the
cost of signaling, and the cost of producing usability.
The implicit equations &°(w”) =0 or £5(w®) =0 for
private features and shared features markets, respec-

tively, determine the equilibrium wage w” or w*.

ProrosiTiON 3 (WAGES). The
hold for the equilibrium wage.

following properties

(i) The wage in the shared features market is lower than
in the private features market, w® < w’.

(if) In both markets, w satisfies the following properties:
w is increasing in market size (dw/dM > 0), signaling
cost (dw/dcy > 0), and skill level (dw/dn > 0); and it is
decreasing in the cost of usability (dw/dc, < 0).

In (i), we find that the equilibrium wage is lower
in the shared features market because of free riding
between the firms. We find from Proposition 1 that
f» =0 in the shared features market independent of
the wage paid to developers and that firm 2 chooses
to completely free ride and copy firm 1’s features. The
effect of free riding reduces competition between the
firms in the developer market, leading to lower devel-
oper wages, which in turn leads to fewer open source
features produced in Stage 1.

Examining the comparative statics in (ii) we find
that the wage increases with the market size M
because a larger market causes firms to invest more
in creating a higher-quality product, and competi-
tion between firms drives wages higher. The wage
is higher when producing usability is less expensive,
because a low ¢, permits firms to invest more in
usability. A higher level of usability raises the value
of complementary features for consumers, and firms
invest more in features, thereby raising developer
wages. When signaling is costly for the high-type
developers, fewer signal and more choose their reser-
vation options, resulting in fewer open source fea-
tures, and this diminished supply raises wages.

We next examine the provision of open source fea-
tures, which is of interest to expert users as well
as policy makers and initial creators of open source
projects, who may seek to maximize the amount of
publicly available features.

ProrosiTiON 4 (CREATION OF OPEN SOURCE). The
creation of open source features is higher under the
private features market than the shared features market
when the market size is large and signaling costs for
high-type developers are low.

In the shared features market, both firms have
access not only to the contributions to open source
high-type developers make but also to the fea-
tures the high-quality firm develops. In contrast, the
private features market allows firms to keep their fea-
tures private, leaving only the signaling contributions
to features as open source, leading us to expect fewer
open source features. However, when the consumer
market is large, producing a higher-quality product
is of greater value, and firms compete for develop-
ers more intensely in the private features market. This
effect raises the incentive for high-type developers to
separate themselves from low-type developers. When
separation is relatively easy (cy is small compared

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

1076

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

with ¢;), more high-type developers enter the mar-
ket and more developers contribute to open source
features.

The level of open source features, along with firm
decisions, impacts overall product quality, to which
we turn our attention.

ProrosiTiON 5 (PrRODUCT QUALITY). Comparing the
markets we find the following.

(i) The private features market provides the lowest qual-
ity level.

(ii) For small market size and low signaling costs,
the private features market provides the highest quality
product.

(iii) The usability ratio s,/s, is always larger for the
shared features market than for the private features mar-
ket, and the features ratio f,/f, is larger under the
private features market. The quality differentiation ratio
q1/49, captures is higher for the private features market than
for the shared features market.

The low-quality firm’s quality is always higher in
the shared features market because the firm is able
to free ride on the features the high-quality firm pro-
vides. This effect holds even when the low-quality
firm develops a lower level of usability than in the
private features market, and it is independent of the
model parameters, such as market size or signal-
ing costs.

The effect of the product market type on the
high-quality firm’s quality level is more nuanced: it
depends on the market size, signaling cost, and cost
to develop usability. If the wages were the same,
the private features market would offer the high-
est quality product. Recall, however, that w” > w®,
and the difference between the wages is closest
when competition between firms for developers is not
as intense. Lower competition for developers could
result from a smaller market opportunity. When the
market size is large, demand for developers rises, and
the cost of developing a higher-quality product and
the equilibrium wage increases. These wage effects
are stronger for the private features market than for
the shared features market, and the quality level the
high-quality firm chooses can become higher in the
shared features market. When the signaling cost is
higher for the high-type developers, this also leads to
increased competition that amplifies the competition
between the firms for developers in the private fea-
tures market.

The marginal benefit of usability increases with the
level of public contribution of features, which implies
that more signaling by developers increases the firms’
incentives to develop usability. In the shared features
market, firms differentiate more on usability because
it is the only means of differentiation, but this dif-
ferentiation is insufficient to overcome the fact that

both products have the same level of features, and the
quality differentiation in the shared features market is
therefore lower.

Next, we evaluate the level of surplus consumers
and firms obtain in both markets.

ProrosiTION 6 (PROFITS AND CONSUMER SURPLUS).
Examining the creation and distribution of surplus across
firms and consumers, we find that

(i) The high-quality firm can make a higher profit under
the shared features market.

(ii) Consumer surplus is higher in the shared features
market than in the private features market under all market
conditions.

The high-quality firm may make a higher profit
because a larger external demand induces a broad
base of developers contributing to open source, which
increases the developer—firm spillover but reduces the
firm—firm spillover (free riding on features). In such a
situation, the high-quality firm can do better under a
shared features market.

The consumer surplus result in (ii) is surprisingly
general and counterintuitive: a reduction in firm com-
petition for developers increases surplus to consumers.
The reasoning is that both the utility of the signal
(open source features) used in the products the firms
develop and decreased competition in the develop-
ers market as a result of free riding on features by
the low-quality firm serve to benefit consumers. Thus,
contrary to Ballmer’s notion that a mandatory sharing
license is a “cancer that attaches itself,” we find such
a requirement may benefit both consumers and firms.

6. Conclusion, Limitations, and
Further Work

The commercial open source software market is grow-
ing rapidly and has many strategic ramifications for
the regular software market (Economist 2009). The
ability of firms to leverage open source alters prod-
uct design decisions more than the standard settings
in which a product’s components are entirely propri-
etary. We construct a two-sided model of the com-
mercial open source market in which firms compete
in both product and developer markets. Developers
contribute to open source to signal their skill level
to firms, which determines the level of open source
available to firms for their products. Firms hire devel-
opers to build their products, and then they compete
in a vertically differentiated market for consumers.
We compare equilibrium outcomes under two com-
mon types of open source licenses. We believe our
framework can help marketing scholars understand
an area with significant conceptual differences that
have a strong impact on competitive marketing strate-
gies and that determine the amount of the public

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

1077

good created in the first place. Future work could
explore a number of areas, such as a firm’s choice
of which license to adopt and whether to operate in
multiple open source markets at the same time.

Our model helps rationalize several puzzles
observed in the industry, such as why Red Hat con-
tributes significantly more to Linux than any other
firm and why a market with mandatory sharing can
actually produce higher-quality products than a pro-
prietary market. We show that the mandatory sharing
of feature contributions between firms can actually
raise profits and consumer surplus and that firms
in a market that enables free riding may produce
higher-quality products, compared with a market in
which firms may privately appropriate investments.
Our model also extends prior work on modeling sig-
naling on the job market (Spence 1973) by including
two types of spillovers: developer—firm and firm-
firm, and we demonstrate how firms and consumers
benefit from these spillovers.

As usual, conducting such an analysis in the con-
text of a formal model entails making numerous
simplifying assumptions and abstractions, which we
discuss here, and we evaluate several dimensions
along which the current paper may be extended.

First, the market structures we examine in this
paper are not an exhaustive list of all the types of mar-
kets associated with open source, including cases in
which firms develop proprietary software and volun-
tarily release the source code—for example, MySQL,
a database product that released its source code and
permits users to modify it for noncommercial pur-
poses but requires a negotiated licensing agreement
for commercial applications.

Second, firms face a variety of “market entry”-type
decisions, including whether to enter specific mar-
kets, which is likely to depend on firm resources,
experience, and capabilities our model does not cap-
ture but that would be interesting aspects for further
study. A firm may face the choice of entering one of
many open source markets (e.g., private features ver-
sus shared features markets); which market should
it enter? If these markets are distinct and the firm
ignores its competitor’s entry decisions, then the
model in this paper would apply separately to each
market setting.

Third, the incentives for firms to contribute to
open source are more complicated in multiproduct or
forward-looking settings. One reason a multiproduct
firm may contribute to open source is that such con-
tributions could weaken a competitor in another mar-
ket. This theory implies that one motivation behind
IBM’s contributions to Linux, or Sun’s contribution to
OpenOffice, could be a desire to reduce Microsoft’s
market dominance (and revenues) and to enable each
firm to compete more effectively.

Fourth, we abstract away from any horizontal dif-
ferentiation in open source products. Firms may
develop software that is not general-purpose but
instead targeted at a specific niche of users. For exam-
ple, some versions of Linux target the embedded or
mobile device market, where the focus may be on
low-power computation rather than access to high-
power functionality.

In summary, the market for software built on
open source is growing rapidly, and open source
has recently made the leap to mobile computing
platforms with the release of the Google Android
operating system. In the mobile market, hard-
ware manufacturers produce smartphones based on
Android and release the source code in a setting that
closely resembles the shared features market in our
model. Our setting naturally extends to evaluating
and understanding the competition between manu-
facturers in the handset market. Overall, we expect
the open source market to attract significant attention
from researchers in the future who want to examine
the unique aspects of product design, pricing, and
firm strategy in this industry.

7. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mktsci.pubs.informs.org/.

Acknowledgments

The authors thank Anthony Dukes, Oded Koenigsberg,
seminar participants at Stanford University, the University
of Chicago, the University of Michigan, the University of
Texas at Dallas, the 3GTM Conference at HEC Montréal,
and the Marketing Research Forum at Cheung Kong Gradu-
ate School of Business for comments. Any remaining errors
are their own.

References

Abran, A., A. Khelifi, W. Suryn, A. Seffah. 2003. Usability meanings
and interpretations in ISO standards. Software Quality]. 11(4)
325-338.

Bagozzi, R. P,, U. M. Dholakia. 2006. Open source software user
communities: A study of participation in Linux user groups.
Management Sci. 52(7) 1099-1115.

Boehm, B. W. 1981. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ.

Casadesus-Masanell, R., P. Ghemawat. 2006. Dynamic mixed
duopoly: A model motivated by Linux vs. Windows. Manage-
ment Sci. 52(7) 1072-1084.

Casadesus-Masanell, R., G. Llanes. 2011. Mixed source. Management
Sci. 57(7) 1212-1230.

Cho, I. K., D. M. Kreps. 1987. Signaling games and stable equilibria.
Quart. J. Econom. 102(2) 179-221.

Dedeke, A. 2009. Is Linux better than Windows software? IEEE Soft-
ware 26(3) 103-104.

Economides, N., E. Katsamakas. 2006. Two-sided competition of
proprietary vs. open source technology platforms and the
implications for the software industry. Management Sci. 52(7)
1057-1071.

Kumar, Gordon, and Srinivasan: Competitive Strategy for Open Source Software

1078

Marketing Science 30(6), pp. 1066-1078, ©2011 INFORMS

Economist, The. 2009. Open-source software in the recession: Born
free. (May 28) http://www.economist.com/node/13743278.

Fershtman, C., N. Gandal. 2007. Open source software: Motivation
and restrictive licensing. Internat. Econom. Econom. Policy 4(2)
209-225.

Fuller, T. 2003. How Microsoft warded off rival. New York Times
(May 15) http://www.nytimes.com/2003/05/15/technology/
15SOFT.html.

Gartner Group. 2008. Gartner highlights key predictions for It
organisations and users in 2008 and beyond. Press release
(January 31), Egham, UK. http://www.gartner.com/it/page
jsp?id=593207.

Goldman, R., R. P. Gabriel. 2005. Innovation Happens Elsewhere: Open
Source as Business Strategy, 1st ed. Morgan Kaufmann, San
Francisco.

Handy, A. 2008. Red Hat tops list of corporate Linux code contrib-
utors. Software Development Times (September 18) http://www
.sdtimes.com/link/32870.

Hars, A., S. Ou. 2002. Working for free? Motivations for participat-
ing in open-source projects. Internat. |. Electronic Commerce 6(3)
25-39.

IDC. 2009. Worldwide open source services 2009-2013 forecast.
Report, IDC, Framingham, MA.

InfoWorld. 2000. Open-source platforms: IBM invests almost $1 bil-
lion in Linux. (December 18) 16.

Jung, H. W, S. G. Kim, C. S. Chung. 2004. Measuring software
product quality: A survey of ISO/IEC 9126. IEEE Software 21(5)
88-92.

Lakhani, K. R., E. von Hippel. 2003. How open source software
works: “Free” user-to-user assistance. Res. Policy 32(6) 923-943.

Laurent, L. S. 2004. Understand Open Source and Free Software Licenc-
ing. O'Reilly, Cambridge, MA.

Leppamaki, M., M. Mustonen. 2009. Skill signalling with product
market externality. Econom. J. 119(539) 1130-1142.

Lerner, J., J. Tirole. 2002. Some simple economics of open source.
J. Indust. Econom. 50(2) 197-234.

Moorthy, K. S. 1988. Product and price competition in a duopoly.
Marketing Sci. 7(2) 141-168.

Pal, N., T. R. Madanmohan. 2002. Competing on open source:
Strategies and practise. Working paper, Massachusetts Institute
of Technology, Cambridge. http://opensource.mit.edu/online
_papers.php.

Pressman, R. B. 2004. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, New York.

Ramaswamy, V., E. Gouillart. 2010. The Power of Co-Creation: Build It
with Them to Boost Growth, Productivity, and Profits. Free Press,
New York.

Riehle, D. 2007. The economic motivation of open source software:
Stakeholder perspectives. Computer 40(4) 25-32.

Roberts, J. A, I. Hann, S. A. Slaughter. 2006. Understanding the
motivations, participation, and performance of open source
software developers: A longitudinal study of the Apache
projects. Management Sci. 52(7) 984-999.

Sawhney, M., G. Verona, E. Prandelli. 2005. Collaborating to create:
The Internet as a platform for customer engagement in product
innovation. J. Interactive Marketing 19(4) 1-15.

Shaked, A., J. Sutton. 1982. Relaxing price competition through
product differentiation. Rev. Econom. Stud. 49(1) 3-13.

Spence, M. 1973. Job market signaling. Quart. |. Econom. 87(3)
355-374.

Thompson, D. V., R. W. Hamilton, R. T. Rust. 2005. Feature fatigue:
When product capabilities become too much of a good thing.
J. Marketing Res. 42(4) 431-442.

