Mining the Web for Multimedia Content

Brett R. Gordon
Carnegie Mellon University
Language Technologies Institute

August 19, 2002

Overview

- Problem definition
- Requirements
- Assumptions
- Why this problem is difficult
- Methods/Results
- Suggestions for future work

General Problem Definition

- Large amount of data exists, in non-textual form, distributed over the Web
 - Tables, charts, diagrams, etc.
- Usefulness of this information varies
 - Isolated pieces may have no value
- Aggregating this information can be useful
- Goal: Build Question Answering (QA) system with multimedia content
 - Increase scope of possible questions
 - Increase richness of possible answers

Specific Problem Definition

Find distributed web pages about a certain domain (i.e. agriculture) that contain a specific type of media (i.e. tabular)

Requirements

- Define a domain
 - Distributed data must exist (non-centralized)
 - Data should exist in sufficient quantity
 - Address temporal nature of the data
- Select a media type
 - Current focus is on tabular data
- Establish a relevance decision
 - Given a page → { relevant | non-relevant }

Assumptions

Implicitly assumes that data in target domain of a specific type

- 1. Exists (in a readable format)
- Not isolated
- 3. Not centralized in an unknown source
 - If data exists in a centralized form, then there is no value-added to the system

Why this problem is difficult

- Difficult search space
 - Web is very large
 - Highly noisy
 - |{Relevant Docs}| < |{Non-Relevant Docs}|</p>
- Difficult relevance decision
 - Little or no labeled data
 - Many web pages contain non-relevant tables
 - But this can be difficult to determine

General Approach

- Start from a set of seed pages
- Breadth-first search (a.k.a. spidering)
 - Assumption: Target pages can be reached from set of seed pages
 - Assumption: Target pages are in close proximity to seed pages

Seed Pages

Pros

- May significantly reduce search time
- May improve precision/recall
- Manual effort required to identify seed pages may be minimal

Seed Pages

Pros

- May significantly reduce search time
- May improve precision/recall
- Manual effort required to identify seed pages may be minimal

Cons

- May *not* significantly reduce search time
- May *not* improve precision/recall
- Manual effort required to identify seed pages may be substantial

Approach #1: Bare Bones

- Manually selected 20 seed pages
- Manually selected 30 keywords
- Relevance decision
 - Page contains at least one keyword
- Results
 - Total Pages Crawled: 18,000
 - # Possibly Relevant: 148
 - # Actually Relevant: 7

Approach #2: Added Sub-Tree Threshold

- Updated keywords and seed pages
- Relevance decision (same)
 - Page contains at least one keyword
- Threshold decision
 - Do not follow any more links along a path if X links have been followed without any relevant documents
- Results
 - Total Pages Crawled: 50,000
 - # Possibly Relevant: 447
 - # Actually Relevant: 13

Approach #3: Added table ratios

- Relevance decision
 - Page contains at least one keyword AND
 - Page contains a table with at least 50% numerical tokens
- Results
 - Total Pages Crawled: 1.3 million
 - # Possibly Relevant: 1,672
 - # Actually Relevant: 108

Comments

- No significant change in results across methods
- Exhausted the relevant pages in this search space
 - Within a certain neighborhood of the seed pages
- Must reduce the search space

New Approach

- Focus so far has been at the page level
- More useful to focus at the domain level?
 - Some domains are more/less relevant than others
- How can we build a stop-domain list?
- How do we decide whether a domain should be added to the list?

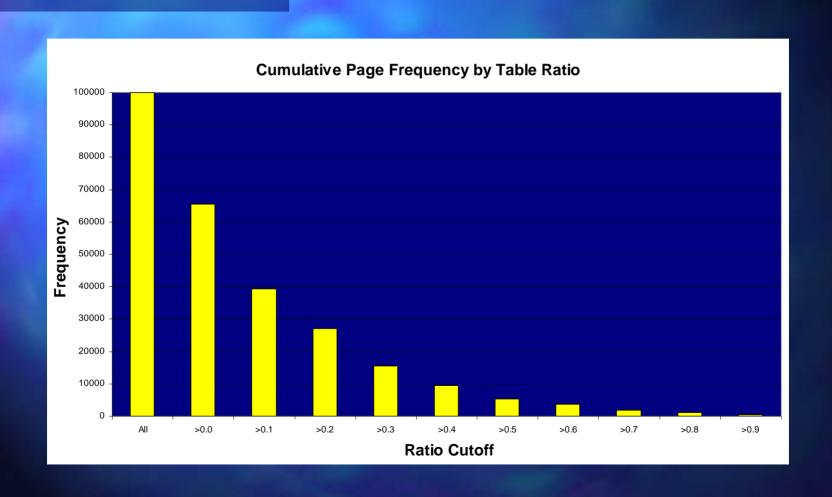
General Crawl

- Step 1
 - Given a media type and some seed pages, what topics can be found?
 - Use seed pages
 - No keyword list
 - More exploratory objective
 - Crawl

General Crawl

■ Step 2

- Estimate the expected # of relevant pages in a domain
 - Use Google to estimate size of a domain
 - Use current sample estimate
- Remove domains
 - That have already been mostly crawled
 - That have had a minimum number of pages visited and a large number remaining
- Keep domains
 - That have a high expected relevant page return
 - That have not been sufficiently crawled to decide


Domain Filtering Results

- Total pages crawled: 100,000
- Unique domains: 7,300
- Filtering removes 955 domains
 - 1 domain was actually useful
 - 954 were not
- Reduced remaining search queue from 917,000 to 175,000

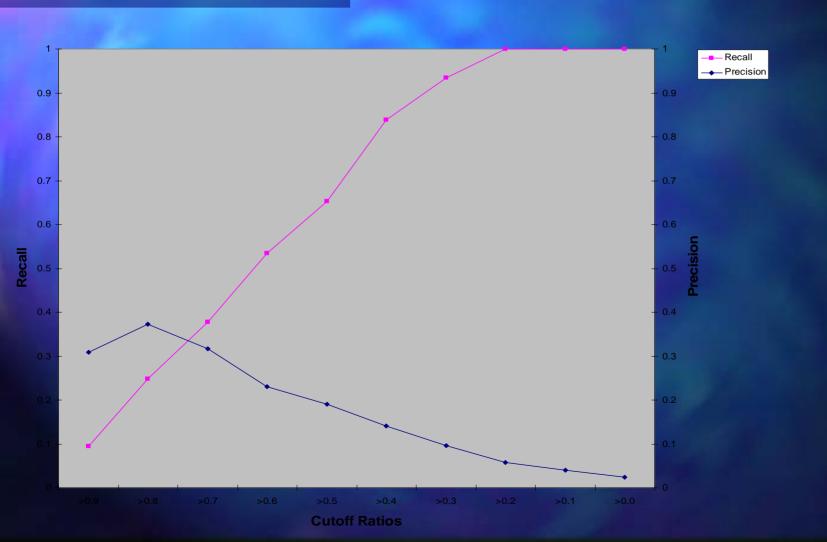
Table Ratio: How Useful?

- Relevant tables will have a high ratio
- Many non-relevant tables may also have a high ratio
 - Especially in small tables
- What is the distribution of table ratios?

Distribution of Table Ratios

Page Evaluation

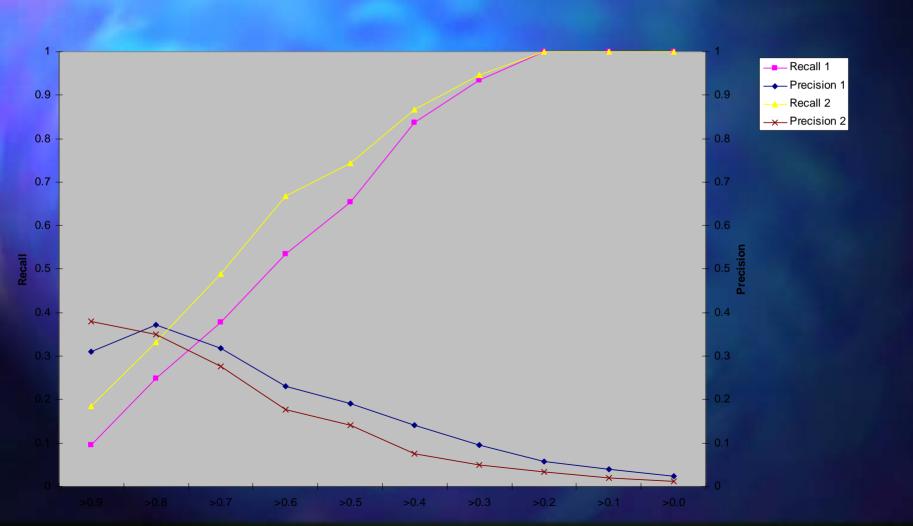
- Divided corpus into 10 bins according to table ratio
- Randomly sampled from each bin
- Manually classified samples


Page Evaluation: Results

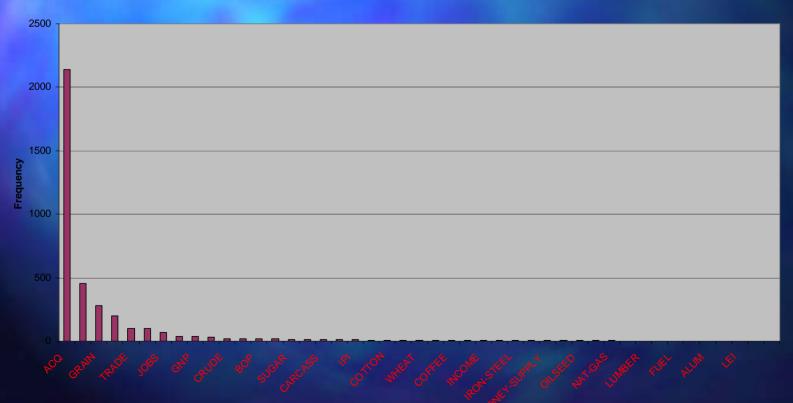
Bin	Frequency	Sample Size	# Relevant (sample)	Expected # Relevant (pop)	% of Bin
[0.0 - 0.1)	27068	200	0	0	0
[0.1 - 0.2)	12955	200	0	0	0
[0.2 - 0.3)	10377	200	2	104	0.010
[0.3 - 0.4)	6099	200	5	152	0.025
[0.4 - 0.5)	3638	100	8	291	0.080
[0.5 - 0.6)	1868	100	10	187	0.100
[0.6 - 0.7)	1651	100	15	248	0.150
[0.7 - 0.8)	860	100	24	206	0.240
[0.8 - 0.9)	535	100	45	241	0.450
[0.9 - 1.0]	485	100	31	150	0.310

Page Evaluation: Cumulative Results

Cutoff	# of Pages	Cumulative Expected # Relevant	Precision	Recall	Absolute Return
>0.0	65598	1579	0.024	1.000	0.016
>0.1	39245	1579	0.040	1.000	0.016
>0.2	27188	1579	0.058	1.000	0.016
>0.3	15460	1475	0.095	0.934	0.015
>0.4	9437	1323	0.140	0.838	0.013
>0.5	5399	1032	0.191	0.654	0.010
>0.6	3675	845	0.230	0.535	0.008
>0.7	1880	597	0.318	0.378	0.006
>0.8	1050	391	0.372	0.248	0.004
>0.9	485	150	0.309	0.095	0.001


Precision/Recall

Second Crawl


- Re-ran crawler using new stop-domains
- Total Pages Crawled: 100,000
- Re-sampled and manually labeled

Precision/Recall: Second Crawl

Classification

- Classified pages above 0.6 cutoff ratio (3200 pages)
- SVM trained on Reuters 21578

Suggestions for Future Work

- Effective filtering is as important as effective identification
 - Need more efficient and effective means to identify non-relevant domains
 - Better page-level relevance judgments
 - Identify/Parse numerical tables more accurately
- Add user feedback into search process
 - Domain and page level feedback
 - Add keywords from newly crawled pages

Suggestions for Future Work

- Other information sources
 - Find 'similar' documents through Google
 - Incorporate external domain information (Google, DMOZ, etc.)
 - Google API
 - http://www.google.com/apis