Module 3: Natural Monopolies

Market Organization & Public Policy (Ec 731) · George Georgiadis

Market Entry and Monopoly

- Consider the following two period game:
 - In $t = 1$, a “large” number of identical firms sequentially decide whether to pay an entry fee $F > 0$ to enter the market.
 - In $t = 2$, the firms that entered, engage in Cournot competition.

- Assume that
 - each firm has product cost $c(q) = cq$; and
 - the inverse demand function $P(Q) = \alpha - \beta Q$.

- From the previous section, we know that if n firms have entered, in $t = 1$, each will set quantity
 \[
 q = -\frac{P(Q) - c'(q)}{P'(Q)} = \frac{\alpha - \beta Q - c}{\beta}
 \]
 and using that $Q = nq$ yields that $q = \frac{\alpha - c}{\beta(n+1)}$.

- This corresponds to price $P(Q) = \frac{\alpha + cn}{n+1}$.
 - Observe that it decreases in n, and converges to c as $n \to \infty$.

- Each firm’s profit is then
 \[
 \pi_n = q(\alpha - \beta nq) - cq = \frac{1}{\beta} \left(\frac{\alpha - c}{n+1} \right)^2
 \]
 - Observe that $n\pi_n$ decreases (monotonically) with n.

- Suppose n firms have already entered the market. Will the next firm choose to enter or not?
- Yes, if \(\pi_{n+1} \geq F \)
- No, if \(\pi_{n+1} < F \)

Therefore, the equilibrium number of firms that will enter the market (denote \(n^* \)) is the largest \(n \) such that \(\pi_n \geq F \), or equivalently

\[
n^* = \left[\frac{\alpha - c}{\sqrt{\beta F}} - 1 \right]
\]

- If \(F > \frac{(\alpha - c)^2}{9\beta} \), then \(n^* = 1 \), and we have a monopoly.
- As \(F \to 0 \) (i.e., as entry costs vanish), \(n^* \to \infty \) (perfect competition).

Questions:
- What if firms engage in Bertrand competition?
- What if firms decide whether to enter simultaneously?

Monopoly Regulation

- How can a regulator restore the social optimum?

- Suppose that a regulator taxes monopoly output at rate \(t \).
 - i.e., if the monopolist sets price \(p \), then consumers must pay \(p + t \).

- The monopolist chooses \(p \) by solving

\[
\max_p \{ pD(p + t) - c(D(p + t)) \}
\]

- First order condition:

\[
D(p + t) + D'(p + t) (p - c') = 0
\]

\[
\implies [D(p + t) - tD'(p + t)] + D'(p + t) (p + t - c') = 0
\]

- To restore the social optimum, the price faced by consumers (i.e., \(p + t \)) must equal marginal cost \(c' \).
Therefore, we must set \(t = \frac{D(p+t)}{D'(p+t)} \).

- Denoting the competitive price by \(p_c \), we can re-write \(t = -\frac{p_c}{\epsilon} \), where \(\epsilon = -\frac{p_c D'(p_c)}{D(p_c)} \).

Observe that because \(D' < 0, t < 0 \); i.e., the regulator must subsidize the monopolist. (Somewhat paradoxical!)

Intuition:

- The problem with monopoly pricing is that it induces consumers to consume too little.
- In order to achieve efficiency, we must induce them to consume more, which requires to subsidize the good.

Problems: Determining the proper subsidy requires that the regulator knows (i) the demand elasticity of the monopolist, and (ii) his entire cost curve.

- Demand information can be obtained through sampling, but this is potentially expensive and inaccurate if the monopolist supplies only a few customers.
- Cost information is harder to extract, because the monopolist will be reluctant to release accurate estimates of its cost structure.

Regulating a Monopolist with Unknown Costs

Baron and Myerson (Ecta, 1982)

- Setting where the firm has a privately known cost parameter; i.e., its cost is \(c(q, \vartheta) \), where \(c_q > 0 \) and \(c_\vartheta > 0 \).
- Regulator can choose (i) the price \(p \) that the firm can charge, and (ii) a subsidy \(s \) to be paid to the firm.

 - Solution Approach: the firm is asked to report \(\hat{\vartheta} \), and receives \(p(\hat{\vartheta}) \) and \(s(\hat{\vartheta}) \).

- Application of the revelation principle.

Laffont and Tirole (JPE, 1986)

- Argue that accounting costs are usually observable to the regulator.
- Study a problem with both moral hazard and adverse selection.
Setup

- Natural monopolist has exogenous cost parameter $\theta \in \{\theta_L, \theta_H\}$. (Define $\Delta \theta = \theta_H - \theta_L > 0$.)
 - Assume that θ is private information of the monopolist.
 - The regulator has beliefs over θ: $Pr \{ \theta = \theta_L \} = \beta$.

- Production cost: $c = \theta - e$, where e stands for “effort” (e.g., investment in cost reduction).
 - Effort has cost $\psi(e) = \frac{e^2}{2}$.
 - Assume that c is contractible.

- The objective of the regulator is to choose the smallest payment $P = c + s$ such that the firm produces the good.

- The payoff of the firm is: $P - c - \psi(e) = P - (\theta - e) - \frac{e^2}{2}$ (if it chooses to produce).

First Best

- Suppose that the regulator knows θ.

- The regulator’s problem then is:

\[
\min_{P, e} P \\
\text{s.t.} \quad P - (\theta - e) - \frac{e^2}{2} \geq 0
\]

- This problem has solution: $e^* = 1$ and $P^* = \theta + \frac{1}{2}$.
 - Let $s = P - c = P - \theta + e$ denote the subsidy. Observe that $s^* = \frac{3}{2}$ (independent of θ).
 - $P(\theta = \theta_H) > P(\theta = \theta_L)$: If the regulator does not know θ, then the firm would like “convince” the regulator that $\theta = \theta_H$ to elicit a larger payment.
Adverse Selection

- The regulator would like to design a “menu” of contracts \(\{ s_L, c_L \} \) and \(\{ s_H, c_H \} \) such that a firm with cost parameter \(\theta_i \) will choose contract \(\{ s_i, c_i \} \) and exert effort \(e_i = \theta_i - c_i \).
 - Implemented using a price \(P_i = s_i + c_i \).
 - Then the firm’s payoff is \(P_i - c_i (e_i) - \frac{e_i^2}{2} = s_i - \frac{e_i^2}{2} \).

- The regulator solves the following problem:

\[
\begin{align*}
\min_{s_L, e_L, s_H, e_H} & \quad \beta (s_L - e_L) + (1 - \beta) (s_H - e_H) + [\beta \theta_L + (1 - \beta) \theta_H] \\
\text{s.t.} & \quad s_L - \frac{e_L^2}{2} \geq 0 \quad (IR_L) \\
& \quad s_H - \frac{e_H^2}{2} \geq 0 \quad (IR_H) \\
& \quad s_L - \frac{e_L^2}{2} \geq s_H - \frac{(e_H - \Delta \theta)^2}{2} \quad (IC_L) \\
& \quad s_H - \frac{e_H^2}{2} \geq s_L - \frac{(e_L + \Delta \theta)^2}{2} \quad (IC_H)
\end{align*}
\]

- The first two inequalities are participation constraints.
- The next two are incentive constraints: if a firm with \(\theta_L \) reports \(\theta_H \), then it must exert effort \(e = \theta_H - c_L = \Delta \theta - e_L \).

- First best has the same effort level and the same subsidy for both types (\(\theta_L \) and \(\theta_H \)), but a higher actual cost for \(\theta = \theta_H \).
 - Incentive problem arises, because the efficient type (i.e., \(\tilde{\theta} = \theta_L \)) wants to mimic the inefficient type to collect the same subsidy while expending only effort \(e^* - \Delta \theta \), and achieving actual cost \(c_H \).

- **Claim:** The \((IR_L) \) and \((IC_H) \) are obsolete, while \((IR_H) \) and \((IC_L) \) bind.
 - \(s_H - \frac{e_H^2}{2} \geq 0 \Rightarrow s_H - \frac{(e_H - \Delta \theta)^2}{2} \geq 0 \Rightarrow s_L - \frac{e_L^2}{2} \geq 0 \), so \((IR_L) \) is obsolete.
 - Add \((IC_H) \) and \((IC_L) \) to find \(e_H \leq e_L + \Delta \theta \). So \(s_H - \frac{e_H^2}{2} \geq s_L - \frac{e_L^2}{2} \geq s_L - \frac{(e_L + \Delta \theta)^2}{2} \), so \((IC_H) \) is obsolete.
 - Suppose \((IR_H) \) is slack. Then decrease \(s_H \) to increase the regulator’s payoff until it binds. Note also that this relaxes \((IC_L) \).
– Suppose \((IC_L)\) is slack. Then decrease \(s_L\) to increase the regulator’s payoff until it binds.

○ Therefore:

\[
s_H - \frac{e_H^2}{2} = 0 \quad \text{and} \quad s_L - \frac{e_L^2}{2} = s_H - \frac{(e_H - \Delta \theta)^2}{2}
\]

(1)

○ Re-writing the objective function using these equalities yields

\[
\min \left\{ \beta \left(\frac{e_L^2}{2} - e_L + \frac{e_H^2}{2} - \frac{(e_H - \Delta \theta)^2}{2} \right) + (1 - \beta) \left(\frac{e_H^2}{2} - e_H \right) \right\}
\]

○ First-order conditions:

– \(e_L = 1 = e^*\)

– \(e_H = 1 - \frac{\beta}{1 - \beta} \Delta \theta < e^*\)

– Note: Assume that \(\frac{\beta}{1 - \beta} \Delta \theta < 1\).

○ We can now solve for the subsidies \(s_L\) and \(s_H\) using (1).

○ Intuition:

– The “low” type would like to imitate the “high” type, but not vice verse.

– So for IC, mechanism gives inefficient incentives to the “high” type and lower his payoff to make it undesirable to the “low” type to imitate him.

– Give efficient incentives to the “low” type.

\textbf{References}

