Module 12: Antitrust in Innovative Industries

Market Organization & Public Policy (Ec 731) · George Georgiadis

- Segal and Whinston (AER, 2007)
- Antitrust policy in industries with continual innovation.
- Insofar, we have assumed that patents have a fixed duration and guarantee monopoly rights.

 $\circ\,$ In reality,

- most patents have been superseded by the end of their term, and
- how protective patents are is a decision that needs to be made.

Model

- Time is discrete.
- Two firms who discount time at rate $\delta \in (0, 1)$.
- In each period, one of the firms is the "incumbent" I and the other firm is the "potential entrant" E.
- *E* chooses its R&D rate $\phi \in [0,1]$ at cost $c(\phi)$, where c' > 0 and c'' > 0. With probability ϕ :
 - E innovates,
 - receives a patent,
 - competes with the incumbent in the present period,
 - becomes the incumbent in the next period, and
 - the previous incumbent becomes the potential entrant.

• Notation:

- $-\alpha$: protectionism of the antitrust policy.
- $-\pi_E(\alpha)$: Entrant's profit.
- $-\pi_I(\alpha)$: Incumbent's profit in competition.
- π_m : Incumbent's profit when he faces no competition.
- \circ Assumptions:
 - $-\pi_m \ge \pi_I(\alpha) + \pi_E(\alpha)$ ("efficiency effect")
 - $-\pi'_{E}(\alpha) > 0$ (*i.e.*, higher α represents a policy that is more protective for the entrant).

Analysis

- Stationary Markov Perfect equilibria.
- Expected present discounted profit of an incumbent:

$$V_{I} = (1 - \phi) [\pi_{m} + \delta V_{l}] + \phi [\pi_{I}(\alpha) + \delta V_{E}]$$

= $\pi_{m} + \delta V_{l} + \phi [\pi_{I}(\alpha) - \pi_{m} + \delta (V_{E} - V_{I})]$ (1)

• Expected present discounted profit of an entrant:

$$V_E = (1 - \phi) \,\delta V_E + \phi \left[\pi_E(\alpha) + \delta V_I\right] - c(\phi)$$

= $\delta V_E + \phi \left[\pi_E(\alpha) + \delta \left(V_I - V_E\right)\right] - c(\phi)$ (2)

• Entrant chooses ϕ to maximize the RHS:

$$\Phi(w) = \arg \max_{\phi \in [0,1]} \left\{ \phi w - c(\phi) \right\} ,$$

where $w = \pi_E(\alpha) + \delta (V_I - V_E)$ can be interpreted as the "innovation prize".

- $-\Phi(w)$ is increasing in w.
- $-\Phi(w)$ gives us an "Innovation Supply" (IS) curve.

• Subtracting (2) from (1), solving for $(V_I - V_E)$ and substituting into w, we can express the innovation price as $w = W(\phi, \alpha)$, where

$$W(\phi, \alpha) = \frac{\left[1 - \delta\left(1 - \phi\right)\right] \pi_E(\alpha) + \delta\left[\phi \pi_I(\alpha) + (1 - \phi) \pi_m + c(\phi)\right]}{1 - \delta + 2\delta\phi}$$

 $- W(\phi, \alpha)$ gives us an "Innovation Benefit" (IB) curve.

- Can show that (IS) and (IB) intersect once.
- Intersection point pins down the (unique) equilibrium values (ϕ^*, w^*).

Comparative Statics

- How does ϕ^* (*i.e.*, innovation rate) change with α (*i.e.*, entrant protectionism).
- Observe that (IS) does not depend on α .
- A sufficient condition: If an increase in α shifts (IB) up at every ϕ , then ϕ^* increases in α .
- Differentiate $W(\phi, \alpha)$ w.r.t α . Protectiveness of antitrust policy increases innovation if for all $\phi \in [0, 1]$:

$$\pi'_E(\alpha) + \frac{\delta\phi}{1 - \delta(1 - \phi)}\pi'_I(\alpha) \ge 0$$

- First term: Change in an entrant's profit in the period of entry.
- Second term: Change in the value of a continuing incumbent.

• If $\pi'_m(\alpha) \neq 0$, then the above condition can be re-written as

$$\pi'_{E}(\alpha) + \frac{\delta}{1 - \delta \left(1 - \phi\right)} \left[\left(1 - \phi\right) \pi'_{m}(\alpha) + \phi \pi'_{I}(\alpha) \right] \ge 0$$

 $\circ\,$ Because inequality must hold for all $\phi,$ a more protective antitrust policy raises innovation whenever

$$\pi'_E(\alpha) + \delta \pi'_I(\alpha) \ge 0$$

• The larger δ is, the more likely it is that a more protective policy reduces innovation.

- (Generally,
$$\pi'_I(\alpha) \leq 0$$
)

- A more protective antitrust policy tends to "front-load" an innovative new entrant's profit stream.
- $\circ\,$ Model extends to
 - 1. R&D deterring activities
 - 2. Voluntary deals between the incumbent and a new entrant (e.g., licensing)
 - 3. Market may grow (or shrink)
 - 4. Many potential entrants

Application #1: Long-Term Exclusive Contracts

- Incumbent can sign consumers to a long-term contract.
- 2 firms, and a continuum of consumers of measure 1.
- $\circ~$ Each consumer may consume a good with production cost $k\geq 0.$
- R&D can improve the quality of the good, and consumers value "generation j" of the good at $v_j = v + j\Delta$.
- \circ In period *t*:
 - The incumbent possesses a (infinitely-lived) patent on the latest generation j_t .
 - Likewise, there is a patent holder for each of the previous generations $j_t 1, j_t 2, \dots$

- Only firms other than the incumbent can invest in developing the generation $j_t + 1$ product.
- Long-term contracts:
 - In each period t, the incumbent can offer long-term contracts to a share b_{t+1} of consumers.
 - Contracts specify a sale in period t + 1 at price q_{t+1} to be paid upon delivery.
 - Assume $k > \Delta$, so an entrant cannot "steal" a consumer with a long-term contract.
- Antitrust policy α :
 - Proportion of consumers offered a long-term contract cannot exceed 1α .
 - *Idea:* Long-term contracts prevent the ability of an entrant to capture market share.
 - If $\alpha = 1$, then no long-term contracts can be offered. Then the model reduces to a Bertrand competition model between the leading firm and firms further down the ladder.
- Timing within each period t:
 - Stage t.1: Each potential entrant *i* observes the share of captured consumers B_t and chooses its innovation rate $\phi_{i,t}$. Then innovation is realized.
 - Stage t.2: Firms name prices $p_{i,t}$ to free consumers.
 - Stage t.3: Free consumers accept or reject these offers.
 - Stage t.4: Firm with the leading technology offers to a share $b_{t+1} \leq 1 \alpha$ of consumers a long-term contract that specifies price q_{t+1} .
 - Stage t.5: Consumers accept or reject these offers.
- Focus on Markov Perfect equilibria (MPE).
 - In stage t.1, potential entrants condition their innovation choices only on B_t , and at all other stages, choices are stationary.
 - On the equilibrium path, $B_t = B^*$ in every period.
 - Thus, the value of being an incumbent or an entrant, and the rate of innovation are stationary.

- Suppose that on equilibrium path, the share of consumers signing a long-term contract is B^* .
- $\circ\,$ Prices offered to "free" consumers in period t:
 - Firm with leading technology offers price $k + \Delta$.
 - Firm with technology $j_t 1$ offers price k.
 - Assume leading firm "wins" the sale, so it earns $(1 B^*)\Delta$ from sales to free consumers (in period t).
- Consumers' decision to accept a long-term contract:
 - Probability of entry in the next period is ϕ^* , so a consumer anticipates getting surplus $v + (j_t 1)\Delta k + \phi^*\Delta$.
 - So he will accept a long-term contract only if

$$v + j_t \Delta - q_{t+1} \geq v + (j_t - 1 + \phi^*) \Delta - k$$
$$\implies q_{t+1} \leq k + (1 - \phi^*) \Delta$$

- So the incumbent will charge $q^* = k + (1 \phi^*) \Delta$, and earn $B^*(1 \phi) \Delta$ from consumers who sign long-term contracts.
- Authors show that if the Innovation Supply (IS) function $\Phi(\cdot)$ is increasing, then $B^* = 1 \alpha$.
 - * Increasing (IS) function: ea. potential entrant is better off if the innovation prize w increases.
 - * *i.e.*, the incumbent will offer as many long-term contracts as permitted.
- Now we can fit this model into the basic model we studied earlier:

$$-\pi_m(\alpha,\phi) = \alpha\Delta + (1-\alpha)(1-\phi)\Delta$$
$$-\pi_I(\alpha,\phi) = (1-\alpha)(1-\phi)\Delta$$
$$-\pi_E(\alpha,\phi) = \alpha\Delta$$

• How does a change in the antitrust policy α affect the rate of innovation ϕ ?

• We know that ϕ^* increases in α if for all $\phi \in [0, 1]$:

$$\begin{aligned} \pi'_E(\alpha) &+ \frac{\delta}{1 - \delta \left(1 - \phi\right)} \left[(1 - \phi) \, \pi'_m(\alpha) + \phi \pi'_I(\alpha) \right] &\geq 0 \\ \Leftrightarrow \Delta &+ \frac{\delta}{1 - \delta \left(1 - \phi\right)} \underbrace{\left[(1 - \phi) \, \phi \Delta - \phi \left(1 - \phi\right) \Delta \right]}_{=0} &\geq 0 \end{aligned}$$

- Proposition: In every Markov Perfect equilibrium of this model, the equilibrium rate of innovation ϕ^* increases in α .
- Implication: To maximize incentives for innovation, a regulator should prohibit long-term contracts (*i.e.*, set $\alpha = 1$).
- What about aggregate surplus?
 - Consumers' surplus increases in α .
 - Value of entrant V_E increases in α .
 - Value of incumbent V_I is ambiguous.
- \circ Proposition: In every Markov Perfect equilibrium of this model, aggregate surplus increases in $\alpha.$
- Implication: Aggregate surplus is maximized when long-term contracts are prohibited.
- *Key observation:* Long-term contracts involve an inefficiency, because when entry occurs, the incumbent sells an old technology to captive consumers.

References

Segal I. and Whinston M.D., (2007), "Antitrust in Innovative Industries", American Economic Review, 97 (5), 1703-1730.

Tirole J., (1988), The Theory of Industrial Organization, MIT Press.