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Abstract

In this chapter we study a team dynamic problem in which a group of agents

collaborate over time to complete a project. The project progresses at a rate that

depends on the agents’ e↵orts, and it generates a payo↵ upon completion. First, we

show that agents work harder the closer the project is to completion, and members of

a larger team work harder than members of a smaller team - both individually and on

aggregate - if and only if the project is su�ciently far from completion. Second, we

analyze the problem faced by a manager who is the residual claimant of the project

and she chooses the size of the team and the agents’ incentive contracts to maximize

her discounted payo↵. We show that the optimal symmetric contract compensates

the agents only upon completion of the project. Finally, we endogenize the size of

the project, where a bigger project is one that requires greater cumulative e↵ort and

generates a larger upon upon completion. We show that if the manager can commit

to her optimal project size at the outset of the game, then she will choose a smaller

project relative to the case without commitment. An implication of this result is that

without commitment, the manager is better o↵ delegating the decision rights over the

project size to the agents.

1 Introduction

Teamwork and projects are omnipresent. Lawler, Mohrman and Benson (2001) reported

that most large corporations engage a substantial proportion of their workforce in teams.

This is because teamwork has been shown to increase productivity in both manufacturing

and service firms (Ichniowski and Shaw (2003)). Moreover, the use of teams is especially
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common in situations when the task at hand will result in a defined deliverable (Harvard

Business School Press (2004)). A key component of most projects is choosing the features

that must be included before the decision maker deems the product ready to market. When

choosing these features, the decision maker must trade o↵ the added value derived from a

bigger or a more complex project (i.e., one that contains more features) against the additional

cost associated with designing and implementing the additional features.

Motivated by these observations, we analyze a team dynamic problem in which a group of

agents collaborate over time to complete a project, and we address a number of questions

that naturally arise in this environment. In particular, what is the impact of group size

on the agents’ incentives? How should a manager determine the agents’ incentive contracts

to maximize her profit; for example, should they be rewarded for reaching intermediate

milestones? How and by whom should the optimal project size be chosen; for example, can

the manager benefit by delegating the decision rights over the project size to the agents?

Our model can be applied to both within firms (e.g., research teams in new product devel-

opment or consulting projects) and across firms (e.g., R&D joint ventures). More broadly,

the model is applicable to settings in which a group of agents collaborate to complete a

project, which generates a payo↵ upon completion. The expected project completion time

is su�ciently long such that the agents discounting time matters. A natural example is the

Myerlin Repair Foundation (MRF): a collaborative e↵ort among a group of leading scientists

in quest of a treatment for multiple sclerosis (Lakhani and Carlile (2012)). This is a long-

term venture, progress is gradual, each principal investigator incurs an opportunity cost by

allocating resources to MRF activities (which gives rise to incentives to free-ride), and it will

pay o↵ predominantly when an acceptable treatment is discovered.

We use a parsimonious model to analyze a dynamic contribution game in which a group of

agents collaborate to complete a project. The project progresses at a rate that depends on

the agents’ costly e↵ort, and it generates a payo↵ upon completion. Formally, the state of

the project qt starts at 0, and it progresses according to dqt =
Pn

i=1 ai,t dt, where ai,t denotes

the e↵ort level of agent i at time t. The project generates a payo↵ at the first stopping

time ⌧ such that q⌧ = Q, where Q is a one-dimensional parameter that captures the project

requirements, or equivalently, the project size. The manager is the residual claimant of the

project, and she possesses the decision rights over its size, as well as the agents’ contracts.

The model is very tractable, and payo↵s and strategies are derived in closed-form.
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In Section 3, we analyze the agents’ problem given a fixed project size. We characterize

the (essentially) unique Markov Perfect equilibrium, wherein at every moment, each agent’s

strategy depends solely on the current state of the project. A key result is that the agents

exert greater e↵ort the closer the project is to completion. Intuitively, this is because they

discount time and they are compensated upon completion; hence, their incentives become

stronger as the project progresses. An implication of this result is that e↵orts are strategic

complements (across time). This is because by raising his e↵ort, an agent brings the project

closer to completion, thus incentivizing the other agents to raise their future e↵orts.

We also examine the impact of team size on the agents’ incentives. In contrast to static

moral hazard in teams models where an increase in the group size leads to lower e↵ort levels

(Olson (1965)), we obtain a partially opposite result in our dynamic model. In particular,

members of a larger team work harder than members of a smaller team - both individually

and on aggregate - if and only if the project is su�ciently far from completion. Intuitively,

when the project is close to completion, then the game resembles the static one, and the

standard free-riding e↵ect which asserts that smaller teams work harder than larger ones

holds. However, in contrast to the static game and because at every moment each agent

observes the state of the project before choosing his e↵ort, the strategic complementarity is

stronger in a larger team. That is because by raising his e↵ort, each agent induces a greater

number of other agents to raise their future e↵orts, which in turn renders him better o↵.

Noting that this e↵ect is stronger at the early stages of the project, because the benefits from

greater e↵ort have a longer lasting e↵ect, it follows that this encouragement e↵ect dominates

the free-riding e↵ect when the project is far from completion.

In Section 4, we analyze the manager’s problem, and we show that the optimal symmetric

contract compensates the agents only upon completion. The intuition is that by backload-

ing payments (compared to rewarding the agents for reaching intermediate milestones), the

manager can provide the same incentives at the early stages of the project (via continuation

utility), while providing stronger incentives when the project is close to completion. This

result simplifies the manager’s problem to determining the team size and her budget for

compensating the agents.

In Section 5, we endogenize the size of the project, where a larger project requires greater

cumulative e↵ort, and delivers a bigger payo↵ upon completion. We consider the case in

which the manager can commit to her optimal project size at the outset of the game, and

the case in which she cannot and at every moment, she observes the state of the project

3



and decides whether to complete it immediately, or to let the agents continue working and

re-evaluate her decision to complete the project a moment later. To motivate this case,

note that an intrinsic challenge involved in choosing the requirements of a project is that

the manager may not be able to commit to them in advance. This can be due to the fact

that the requirements are di�cult to describe; for example, if the project involves significant

novelty in quality or design. What we have in mind about the incontractibility of the project

requirements was eloquently posed by Tirole (1999):

In practice, the parties are unlikely to be able to describe precisely the specifics of an

innovation in an ex ante contract, given that the research process is precisely concerned

with finding out these specifics, although they are able to describe it ex post.

For example, anecdotal evidence from the development of Apple’s first generation iPod indi-

cates that Steve Jobs kept changing the requirements of the iPod as the project progressed.

In particular, the development team would get orders such as “Steve doesn’t think it is loud

enough”, or “the sharps are not sharp enough”, or “the menu is not coming up fast enough”

(Wired Magazine (2004)). This suggests that committing to a set of features and require-

ments early on was not desirable in the development of an innovative new product such as

the iPod back in 2001.

We show that without commitment, the manager chooses a larger project relative to the case

with commitment. Practically, this result asserts that the manager extends the project; for

example, by introducing additional requirements. The manager chooses the project size by

trading o↵ the marginal benefit of a larger project against the marginal cost associated with

a longer wait until the larger project is completed. However, as the project progresses, the

agents increase their e↵ort, so that this marginal cost decreases, while the respective marginal

benefit does not change. As the project size will be chosen such that the two marginal values

are equal, it follows that if the manager cannot commit to her optimal project size at the

outset, she will end up choosing a bigger project.

Anticipating that if the manager cannot commit, then she will choose a larger project, the

agents decrease their e↵ort, which renders the manager worse o↵. We show that without

commitment and assuming that the agents receive a share of the project’s worth upon com-

pletion (i.e., an equity contract), the manager finds it optimal to delegate the decision rights

over the project size to the agents. In this case, the agents will choose a smaller project

than is optimal for the manager, but their preferences are time-consistent. Intuitively, be-

cause (unlike the manager) they also trade o↵ the cost of e↵ort when choosing the project
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size, their marginal cost associated with a larger project does not decrease as the project

progresses.

Related Literature

First and foremost, this chapter is related to the literature on dynamic contribution games.

The general theme of these games is that a group of agents interact repeatedly, and in every

period (or moment), each agent chooses his contribution (or e↵ort) to a joint project at a

private cost. Contributions accumulate until they reach a certain threshold, at which point

the game ends. Agents receive flow payo↵s while the game is in progress, a lump-sum payo↵

at the end, or a combination thereof. Admati and Perry (1991) and Marx and Matthews

(2000) show that contributing little by little over multiple periods, each conditional on

the previous contributions of the other agents helps mitigate the free-rider problem. More

recently, Yildirim (2006) and Kessing (2007) show that in contrast to the case in which

the project generates flow payments while it is in progress as studied by Fershtman and

Nitzan (1991), e↵orts are strategic complements when the agents receive a payo↵ only upon

completion.

A second strand of related literature is that on incomplete contracting. In particular, our

article is closely related to the articles that study how ex-ante contracting limitations generate

incentives to renegotiate the initial contract ex-post (Grossman and Hart (1986), Aghion and

Tirole (1994), Tirole (1999), and others). A subset of this literature focuses on situations

wherein the involved parties have asymmetric information. Here, ratchet e↵ects have been

shown to arise in principal-agent models in which the principal learns about the agent’s

ability over time, and the agent reduces his e↵ort to manipulate the principal’s beliefs about

his ability (Freixas, Guesnerie and Tirole (1985) and La↵ont and Tirole (1988)). Another

thread of this strand includes articles that consider the case in which the agent is better

informed than the principal, or he has better access to valuable information. A common

result is that delegating the decision rights to the agent is beneficial as long as the he is

su�ciently better informed and the incentive conflict is not too large (Aghion and Tirole

(1997) and Dessein (2002)). In our model however, all parties have full and symmetric

information, so that ratchet e↵ects and the incentives to delegate the decision rights to the

agents arise purely out of moral hazard.

The chapter is organized as follows. We introduce the model in Section 2, and in Section 3 we

analyze the agents’ problem given a fixed project size. In Section 4, we study the manager’s
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problem, and we characterize the optimal contract. In Section 5 we endogenize the project

size, and we conclude in Section 6. This paper unifies results from Georgiadis et al. (2014)

and Georgiadis (2015) and the proofs are provided therein.

2 The Model

A group of n identical agents contracts with a manager to undertake a project. The agents

exert (costly) e↵ort over time to complete the project, they receive a lump-sum compensation

upon completing the project, and they are protected by limited liability.1 The manager is

the residual claimant of the project, and she possesses the decision rights over its size, as

well as the agents’ compensation. A project of size Q � 0 generates a payo↵ equal to Q

upon completion. Time t 2 [0,1) is continuous; all parties are risk neutral, they discount

time at rate r > 0, and have outside option 0. The project starts at state q0 = 0. At every

moment t, each agent observes the state of the project denoted by qt, and exerts costly e↵ort

to influence the progress of the project according to:

dqt =

 

n
X

i=1

ai,t

!

dt ,

where ai,t denotes the (unverifiable) e↵ort level of agent i at time t.2 The project is completed

at the first stopping time ⌧ such that q⌧ = Q.3 Each agent is credit constrained, his e↵ort

choices are not observable to the other agents, and his flow cost of exerting e↵ort level a is a2

2 .

Finally, we assume that (i) strategies are Markovian, so that at every moment, each agent

chooses his e↵ort level as a function of the current state of the project qt, and (ii) incentive

contracts are symmetric.4

1In practice, the relevant employees are rewarded by a combination of flow payments (i.e., periodic
salary) and compensation after completion of the project. The latter can take the form of bonus lump-sum
payments, stock options (that are correlated to the profit generated by the project), and reputational benefits.
In the base model, we assume (for tractability) that the agents are compensated only by a lump-sum upon
completion of the project. Georgiadis (2015a) also considers the case in which, in addition to a lump-sum
payment upon completion, they also receive a per unit of time compensation while the project is ongoing.

2The assumptions that e↵orts are perfect substitutes and the project progresses deterministically are
made for tractability. Georgiadis et. al. (2014) and Georgiadis (2015a) also examine the case in which
e↵orts are complementary and the project progresses stochastically, and they show that all results continue
to hold.

3We implicitly assume that the agents do not face a deadline to complete the project. This assumption
is made (i) for simplicity, and (ii) because deadlines are generally not renegotiation proof. As a result, if the
project has not been completed by the deadline, the agents find it mutually beneficial to extend the deadline.
For a treatment of deadlines, see Georgiadis (2015b).

4When progress is deterministic, as Georgiadis et. al. (2014) show, the game also admits non-Markovian
equilibria where at every moment t, each agent’s strategy is a function of the entire path of the project
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3 Agents’ Problem

In this Section, we study the agents’ problem, and we characterize the unique project-

completing Markov Perfect equilibrium (hereafter MPE) wherein each agent conditions his

strategy at t only on the current state of the project qt. Throughout Sections 3 and 4 we

take the project size Q as given, and we endogenize Q in Section 5.

3.1 Preliminaries

We assume (for now) that each agent receives a lump sum reward V
n upon completion of

the project and no intermediate compensation. We then show in Section 4 that the optimal

symmetric contract rewards the agents only upon completion of the project. Moreover, we

will carry out the analysis in this Section assuming that the project size Q is given, and we

will endogenize it in Section 5.

Given the current state of the project qt, and others’ strategies, agent i’s discounted payo↵

function is given by

⇧i,t (q) = max
{ai,s}s�t



e

�r(⌧�t)
V �

ˆ ⌧

t

e

�r(s�t)a
2
i,s

2
ds | {a�i,s}s�t

�

, (1)

where ⌧ denotes the completion time of the project and it depends on the agents’ strategies.

The first term captures the agent’s net discounted payo↵ upon completion of the project,

while the second term captures his discounted cost of e↵ort for the remaining duration of

the project. Because payo↵s depend solely on the state of the project (i.e., q) and not on

the time t, this problem is stationary, and hence the subscript t can be dropped. Using

standard arguments (Dixit (1999)), one can derive the Hamilton-Jacobi-Bellman equation

for the expected discounted payo↵ function for agent i

r⇧i (q) = max
ai

(

�a

2
i

2
+

 

n
X

j=1

aj

!

⇧0
i (q)

)

(2)

subject to the boundary conditions

⇧i (q) � 0 for all q and ⇧i (Q) = V . (3)

{qs}st. We use the deterministic specification as a reduced form for a stochastic process, in which case as
Georgiadis (2015a) conjectures, the agents’ payo↵s from the best symmetric Public Perfect equilibrium are
equal to the payo↵s corresponding to the MPE.
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The first boundary condition captures the fact that each agent’s discounted payo↵ must

be non-negative as he can guarantee himself a payo↵ of 0 by exerting no e↵ort and hence

incurring no e↵ort cost. The second boundary condition states that upon completing the

project, each agent receives his reward and exerts no further e↵ort.5

3.2 Markov Perfect Equilibrium (MPE)

In a MPE, at every moment, each agent i observes the state of the project q, and chooses his

e↵ort ai to maximize his discounted payo↵ while accounting for the e↵ort strategies of the

other team members. It follows from (2) that the first order condition for agent i’s problem

yields that ai (q) = ⇧0
i (q): at every moment, he chooses his e↵ort such that the marginal

cost of e↵ort is equal to the marginal benefit associated with bringing the project closer to

completion. By noting that the second order condition is satisfied and that the first order

condition is necessary and su�cient, it follows that in any di↵erentiable, project-completing

MPE, the discounted payo↵ for agent i satisfies

r⇧i (q) = �1

2
[⇧0

i (q)]
2 +

"

n
X

j=1

⇧0
j (q)

#

⇧0
i (q) (4)

subject to the boundary conditions (3). The following Proposition characterizes the MPE,

and establishes conditions under which it is unique.

Proposition 1. For any given project size Q, there exists a Markov Perfect equilibrium for

the game defined by (1). This equilibrium is symmetric, each agent’s e↵ort strategy satisfies

a (q) =
r

2n� 1
[q � C]+ , where C = Q�

r

2V

r

2n� 1

n

, (5)

and the project is completed at ⌧ (Q) = 2n�1
rn ln

⇥

1� Q
C

⇤

.6 In equilibrium, each agent’s dis-

counted payo↵ is given by

⇧ (q) =
r

2

�

[q � C]+
�2

2n� 1
. (6)

If Q2
<

2V
r

2n�1
n , then this equilibrium is unique, and the project is completed in finite time.

Otherwise, there also exists an equilibrium in which no agent ever exerts any e↵ort and the

project is never completed.

5Because the agents’ rewards are independent of the completion time, the game is stationary, and so we
can drop the subscript t.

6To simplify notation, because the equilibrium is symmetric and unique, the subscript i is dropped
throughout the remainder of this article. Moreover, [·]+ = max {·, 0}.
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Because the project starts at q0 = 0, notice that if C � 0, or equivalently if Q2 � 2V
r

2n�1
n ,

then there exists no MPE in which the project is completed. This is because the discounted

cost to complete the project exceeds its discounted net payo↵, and hence the agents are

better o↵ not exerting any e↵ort, in which case the project is never completed. On the other

hand, if C < 0, then the project is completed, and each agent’s e↵ort level increases in the

state of the project q. This is due to the facts that agents are impatient and they incur

the cost of e↵ort at the time the e↵ort is exerted, while they are compensated only when

the project is completed. As a result, their incentives are stronger, the closer the project is

to completion. An implication of this observation is that e↵orts are strategic complements

(across time) in this game. That is because by raising his e↵ort, an agent brings the project

closer to completion, which induces the other agents to raise their future e↵orts.

It is worth emphasizing that the MPE is always symmetric, but it need not be unique. In

particular, if C|n=1 � 0, or equivalently if Q2 � 2V
r , then there exists an equilibrium in which

no agent ever exerts any e↵ort and the project is never completed.7 However, it turns out

that when the project size Q is endogenous, the manager will always choose it such that the

equilibrium is unique. As such, we shall restrict attention to the project-completing MPE

characterized in Proposition 1.

Lastly, one can show that in the MPE, each agent exerts less e↵ort and is worse o↵ relative to

the first best outcome; i.e., the case in which at every moment, a social planner chooses each

agent’s e↵ort to maximize their total discounted payo↵. This in a direct implication of the

free-rider problem: in equilibrium, each agent chooses his e↵ort by trading o↵ the marginal

cost of e↵ort and his marginal benefit from bringing the project closer to completion, but he

ignores the positive externality of his e↵ort on the other agents.

3.3 Comparative Statics

In this Section, we examine how each agent’s payo↵ and e↵ort level depends on the param-

eters of the problem. The following result establishes some comparative statics about how

each agent’s e↵ort level depends on the parameters of the problem.

Proposition 2. All other parameters held constant, each agent’s e↵ort level a (q) possesses

the following properties:

(i) a (q) is increasing in V ; and

7So see why such an equilibrium exists, suppose that all agents except for i exert no e↵ort at q0 = 0.
Then agent i finds it optimal to also exert no e↵ort, because he is not willing to undertake the entire project
single-handedly (since C|n=1 � 0).
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(ii) there exists a threshold ⇥r such that a (q) is increasing in r if and only if q � ⇥r.

Statement (i) is intuitive: if the agents receive a larger reward upon completion, then they

have stronger incentives. Statement (ii) asserts that as agents become less patient, they tend

to work harder when the project is close to completion, and less hard when it is far from

completion. To see the intuition, notice that the marginal benefit of bringing the completion

time forward (which occurs if the agents raise their e↵ort) is equal to � d
d⌧

�

e

�r⌧ V
n

�

= rV
n e

�r⌧ ,

and it increases in r if ⌧ is su�ciently small; i.e., if the project is su�ciently close to

completion.

We next consider the e↵ect of the team size on the agents’ incentives. For this analysis, it

is necessary to consider how each agent’s reward depends on the team size. We assume that

upon completion of the project, each agent receives reward Vn = V
n , so that the total rewards

disbursed to the agents is independent of n.

Proposition 3. Consider two teams comprising of n and m > n identical agents. Other

things equal, there exist thresholds ⇥n,m and �n,m such that

(i) am (q) � an (q) if and only if q  ⇥n,m ; and

(ii) mam (q) � nan (q) if and only if q  �n,m.
8

By increasing the size of the team, two opposing forces influence the agents’ incentives: First,

as is well known in the static moral hazard in teams literature starting with Olson (1965),

the agents obtain stronger incentives to free-ride. Moreover, because the agents’ incentives

to free-ride are proportional to the cost of e↵ort they are incurring, e↵ort increases with

progress, and e↵ort costs are convex, the free-riding e↵ect becomes more intense as the

project progresses. Second, because e↵orts are strategic complements in this game, when

agents are part of a larger team, they have incentives to raise their e↵ort, because doing

so will induce a greater number of other agents to raise their future e↵orts, which in turn

makes them better o↵. This encouragement e↵ect is strong at the outset of the game where

a lot of progress remains to complete the project, and it becomes weaker as the project nears

completion.

In summary, the encouragement e↵ect dominates the free-riding e↵ect if and only if the

project is su�ciently far from completion. This implies that by increasing the team size,

the agents obtain stronger incentives when the project is far from completion, while their

incentives become weaker near completion.

8This result follows by noting that C = Q �
q

2V
r

2n�1
n decreases in n, while both a (Q) and na (Q)

decrease in n.
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4 Manager’s Problem

In this section, we analyze the manager’s problem who is the residual claimant of the project,

and his objective is to choose the team size and the agents’ (symmetric) incentive contracts to

maximize her ex-ante discounted profit. As in the previous section, we will keep the project

size fixed. Moreover, we will restrict attention to incentive contracts that specify a set of

milestones q0 < Q1 < .. < QK = 0 (where K 2 N), and for every k 2 {1, .., K}, allocates
non-negative payments {Vk}ni=1 that are payable to the agents upon reaching milestone Qk

for the first time.9

We set out by considering the case in which the manager compensates the agents only upon

completing the project, and we characterize the manager’s discounted profit function. Then

we explain how this result extends to the case in which the manager also rewards the agents

for reaching intermediate milestones.

Given the team size and the agents’ rewards that are due upon completion of the project

(where we can assume without loss of generality that V  Q), the manager’s expected

discounted profit function can be written as

W (qt) = e

�r(⌧�t) (Q� V ) ,

where ⌧ denotes the completion time of the project and it depends on the agents’ strategies

as defined in Proposition 1. By using the first order condition for each agent’s equilibrium

e↵ort as determined in Section 3, the manager’s expected discounted profit at any given state

of the project satisfies

rW (q) = na (q) W 0 (q) (7)

subject to the boundary conditions

W (q) � 0 for all q and W (Q) = (Q� V ) . (8)

To interpret these conditions, note that manager’s discounted profit is non-negative at every

state of the project, because she does not incur any cost or disburse any payments to the

9The manager’s contracting space is restricted. In principle, the optimal contract should condition each
agent’s payo↵ on the path of qt (and hence on the completion time of the project). However, when the
project progresses deterministically, the problem becomes trivial as e↵orts e↵ectively become contractible,
and in the stochastic case the problem is not tractable. For example, the contracting approach developed
in Sannikov (2008) boils down a partial di↵erential equation with at least variables (i.e., the state of the
project q and the continuation value of each agent), which is intractable.
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agents while the project is in progress. On the other hand, she receives her net profit Q�V ,

and the game ends as soon as the state of the project hits Q for the first time. After

substituting (5) and solving the above ODE, it follows that

W (q) = (Q� V )

✓

[q � C]+

Q� C

◆

2n�1
n

, where C = Q�
r

2V

r

2n� 1

n

(9)

We now discuss how each agent’s payo↵ function and the principal’s profit function extend

to the case in which the manager rewards the agents upon reaching intermediate milestones.

Recall that she can designate a set of milestones, and attach rewards to each milestone that

are due as soon as the project reaches the respective milestone for the first time. Let ⇧k (·)
denote each agent’s discounted payo↵ given that the project has reached k � 1 milestones,

which is defined for q  Qk, and note that it satisfies (4) subject to ⇧k (q) � 0 for all q

and ⇧k (Qk) =
Vk
n + ⇧k+1 (Qk), where ⇧K+1 (0) = 0. The second boundary condition states

that upon reaching milestone k, each agent receives the reward attached to that milestone,

plus the continuation value from future rewards. Starting with ⇧K (·) and proceeding by

backward induction, it is straightforward to derive each agent’s discounted payo↵ by solving

(4) subject to the corresponding boundary conditions.

To examine the manager’s problem, let Wk (·) denote her expected discounted profit given

that the project has reached k � 1 milestones, which is defined for q  Qk, and note that it

satisfies (7) subject toWk (q) � 0 for all q andWk (Qk) = Wk+1 (Qk)�Vk, where FK+1 (Qk) =

Q. The second boundary condition states that upon reaching milestone k, the manager

receives the continuation value of the project, less the payments that she disburses to the

agents for reaching this milestone. Again starting with k = K and proceeding backwards, it

is straightforward to derive the principal’s discounted profit.

The following Proposition shows that one can without loss of generality restrict attention to

those that compensate the agents only upon completion of the project.

Proposition 4. The optimal symmetric contract compensates the agents only upon comple-

tion of the project.

To prove this result, Georgiadis (2015a) considers an arbitrary set of milestones and arbitrary

rewards attached to each milestone, and constructs an alternative contract that rewards the

agents only upon completing the project and renders the manager better o↵. Intuitively,

because rewards are sunk in terms of incentivizing the agents after they are disbursed, and

all parties are risk neutral and they discount time at the same rate, by backloading payments,

12



the manager can provide the same incentives at the early stages of the project, while providing

stronger incentives when it is close to completion.

The value of this result lies in that it reduces the infinite-dimensional problem of determining

the team size, the number of milestones, the set of milestones, and the rewards attached

to each milestone into a two-dimensional problem, in which the manager only needs to

determine her budget V for compensating the agents and the team size n to maximize her

ex-ante discounted profit. In other words, the manager solves

max
V, n

(

(Q� V )

✓

�C

Q� C

◆

2n�1
n

s.t. C < 0

)

.

Solving this optimization problem analytically is not tractable. Figure 1 illustrates how the

optimal contract depends on the parameters of the problem: the discount rate r and the

project size Q.
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Figure 1: Optimal contract. The left panel illustrates how the optimal (relative) budget (i.e., V ⇤

Q )

and the optimal team size n⇤ depend on the project size, given r = 0.15. The right panel illustrates how

optimal (relative) budget and the optimal team size depend on the discount rate, given Q = 10.
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By examining the left panel in figure 1, one observes that if the project is larger, then the

manager optimally hires a larger team, and she allocates a larger proportion of her budget

to compensate the agents. From the right panel, notice that if the discount rate r increases,

then the manager show employ a bigger team and allocate more of her budget to compensate

the agents.

5 Project Design with and without Commitment

In this Section, we endogenize the project size Q. To obtain tractable results, we assume

that the manager’s budget V = �Q; i.e., each agent receives a fixed proportion of the payo↵

that the project generates, and this proportion does not depend on Q. We consider the case

in which the manager is able to commit to a particular project size at the outset of the

game, as well as the case in which she cannot, in which case at every moment she observes

the current state of the project q, and she decides whether to stop work and collect the net

profit (1� �) q or to let the agents continue working and re-evaluate her decision to complete

the project a moment later.

To analyze the case in which the project sizeQ is endogenous and the manager cannot commit

to a particularQ at the outset of the game, the agents must form beliefs about the project size

that the manager will choose at a later date and choose their e↵orts accordingly. Following

rational expectations, we assume that in equilibrium, the agents can correctly anticipate the

manager’s choice. Therefore, we write the manager’s discounted profit function as

W

⇣

q; Q, Q̃

⌘

= (1� �)Q

0

B

@

h

q � C

⇣

Q̃

⌘i+

Q� C

⇣

Q̃

⌘

1

C

A

2n�1
n

, where C

⇣

Q̃

⌘

= Q̃�

s

2�Q̃

r

2n� 1

n

(10)

and Q̃ denotes the agents’ (common) belief about the project size that the manager will

choose.

Full Commitment

If the manager can commit to a project size at the outset of the game, then at q0 = 0,

she leads a Stackelberg game in which she chooses the project size that maximizes her

discounted profit and the agents follow by adopting the equilibrium strategy characterized

in Proposition 1. As a result, her optimal project size with full commitment (FC ) satisfies

Q

M
FC 2 argmaxQ W (0 ;Q,Q). Noting from (10) that W (0 ;Q,Q) is concave in Q, taking the
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first order condition with respect to Q yields

Q

M
FC =

�

r

2n� 1

2n

✓

4n

4n� 1

◆2

.

No Commitment

If the manager has no commitment power, then at every moment she observes the current

state of the project q, and she decides whether to stop work and collect the net profit (1� �) q

or to let the agents continue working and re-evaluate her decision to complete the project

a moment later. In this case, the manager and the agents engage in a simultaneous-action

game, where the manager chooses Q to maximize her discounted profit given the agents’

belief Q̃ and the corresponding strategies, and the agents form their beliefs by anticipating

the manager’s choice Q. Therefore, her optimal project size with no commitment (NC )

satisfies QM
NC 2 argmaxQ

n

W

⇣

q ;Q, Q̃

⌘o

, where in equilibrium beliefs must be correct; i.e.,

Q = Q̃. By solving
@W(q ;Q,Q̃)

@Q

�

�

�

�

q=Q̃=Q

= 0, we have

Q

M
NC =

�

r

2n

2n� 1
.

Observe that with no commitment, the manager will choose a strictly larger project relative

to the case in which she commitment power: QM
NC > Q

M
FC .

10,11

The following Proposition summarizes:

Proposition 5. If the manager can commit to her optimal project size at the outset, then

she finds it optimal to choose Q

M
FC = �

r
2n�1
2n

�

4n
4n�1

�2
. In contrast, without commitment, she

completes the project at QM
NC = �

r
2n

2n�1 > Q

M
FC. Moreover, the manager’s ex-ante discounted

profit is higher with commitment than without; i.e., W
�

0;QM
FC , Q

M
FC

�

> W

�

0 ;QM
NC , Q

M
NC

�

.

10This case raises the question of what happens to the agents’ beliefs o↵ the equilibrium path if the
manager does not complete the project at QM

NC . Suppose that the manager did not complete the project at

QM
NC so that q > QM

NC . Clearly, Q and Q̃ > QM
NC , and it is straightforward to verify that

@W(q ;Q,Q̃)
@Q < 0 for

all q, Q and Q̃ > QM
NC , which implies that the manager would be better o↵ had she completed the project

at QM
NC irrespective of the agents’ beliefs.

11Conceptually, this commitment problem could be resolved by allowing � to be contingent on the project
size. In particular, suppose that the manager can fix �, and let �̂ (Q) equal � if Q = QM

FC , and 1 otherwise.
Then, her optimal project size is equal to QM

FC regardless of her commitment power because any other
project size will yield her a net profit of 0. However, this implicitly assumes that QM

FC is contractible at
q = 0, which is clearly not true without commitment. Therefore, we rule out this possibility by assuming
that � is independent of Q.
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Intuitively, the manager chooses the project size by trading o↵ the marginal benefit of a

larger project against the marginal cost associated with a longer wait until the larger project

is completed. However, as the project progresses, the agents increase their e↵ort, so that

this marginal cost decreases, while the respective marginal benefit does not change. As the

project size will be chosen such that the two marginal values are equal, it follows that the

manager’s optimal project size increases as the project progresses.12 As a result, without

commitment, the manager chooses a bigger project relative to the case with commitment.

5.1 Optimal Delegation

The manager’s limited ability to commit, in addition to disincentivizing the agents from

exerting e↵ort, is detrimental to her ex-ante discounted profit; i.e., W
�

0 ;QM
NC , Q

M
NC

�

<

W

�

0;QM
FC , Q

M
FC

�

. Thus, unable to commit, the manager might consider delegating the

decision rights over the project size to the agents.

We begin by examining how the agents would select the project size. LetQA 2 argmaxQ {⇧ (q ;Q)}
denote the agents’ optimal project size given the current state x. Solving this maximization

problem yields

Q

A =
�

r

2n� 1

2n
.

Observe that the agents’ optimal project size is independent of the current state q. Intuitively,

this is because the agents incur the cost of their e↵ort, so that their e↵ort cost increases

together with their e↵ort level as the project progresses. As a result, unlike the manager,

their marginal cost associated with choosing a larger project does not decrease as the project

evolves, and consequently they do not have incentives to extend the project as it progresses.

Second, observe that the agents always prefer a smaller project than the manager; i.e.,

Q

A
< Q

M
FC < Q

M
NC . This is because they incur the cost of their e↵ort, so that their marginal

cost associated with a larger project is greater than that of the manager’s.

The following Proposition shows that without commitment, the manager finds it optimal to

delegate the decision rights over the project size to the agents.

Proposition 6. If the manager can commit to her optimal project size at the outset, then she

find it optimal to retain the decision rights over the project size. In contrast, without commit-

ment, she should delegate the decision rights over Q to the agents; i.e., W
�

0;QM
NC , Q

M
NC

�

<

W

�

0;QA
, Q

A
�

< W

�

0;QM
FC , Q

M
FC

�

.

12Letting QM (q) = argmaxQ�q {W (q ;Q,Q)}, one can show that QM (q) increases in q.
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Since QM
NC maximizes the manager’s ex-ante discounted profit, it is straightforward that she

cannot benefit by delegating the decision rights over the project size to the agents. Without

commitment however, because the agents’ preferences over Q are time-consistent whereas

the manager’s are not, delegation turns out to be always optimal.

6 Concluding Remarks

We use a tractable model to study the interaction between a group of agents who collaborate

over time to complete a project and a manager who chooses its size. First, we analytically

characterize the Markov Perfect equilibrium, and we show that in contrast to the static

moral hazard in teams, larger teams may be more e↵ective in completing the project than

smaller ones. We then study the manager’s problem who chooses the size of the team and

the contracts of the team members to maximize her ex-ante discounted profit. We show that

the optimal symmetric contract compensates the agents only upon completion of the project.

This result reduces the infinite-dimensional contracting problem to a two-dimensional one

where the manager needs to only choose the team size and her budget for compensating the

agents. Lastly, we endogenize the size of the project, and we show that without the ability

to commit to a particular project size at the outset of the game, the manager will end up

choosing a larger project relative to the case in which she can commit. An implication of

this result is that without commitment, she finds it optimal to delegate the decision rights

over the project size to the agents, who will choose a smaller project but their preferences

are time-consistent.

In subsequent work, Cvitanic and Georgiadis (2015) characterize a mechanism that induces

each agent to at every moment exert the e�cient e↵ort level in a MPE. Bowen, Georgiadis

and Lambert (2015) study a dynamic contribution game with two heterogeneous agents

and endogenous project size, and they analyze how di↵erent collective choice institutions

influence the size of the project that is implemented in equilibrium. Georgiadis (2015b)

considers the e↵ect of deadlines and the agents’ ability to monitor the state of the project

on the agents’ incentives and their payo↵s. Finally, Ederer, Georgiadis and Nunnari (2015)

examine how the team size and the monitoring structure a↵ects incentives in a discrete

public good contribution game using laboratory experiments. Preliminary results support

the theoretical predictions.
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