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Abstract

It is often argued that additional constraints on redistribution such as granting veto power to more
players in the society makes property better protected from expropriation. We use a legislative bargaining-
type model to demonstrate that this intuition may be flawed. Increasing the number of veto players or raising
the supermajority requirement for redistribution may reduce protection on the equilibrium path. The reason
is the existence of two distinct mechanisms of property rights protection. One is formal constraints that allow
individuals or groups to block any redistribution that is not in their favor. The other occurs in equilibrium
where players without such powers protect each other from redistribution. Players without formal veto power
anticipate that the expropriation of other similar players will ultimately hurt them and thus combine their
influence to prevent redistributions. In a stable allocation, the society exhibits a “class”structure with class
members having equal wealth, and strategically protecting each other from redistribution.
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1 Introduction

Economists have long viewed protection of property rights as a cornerstone of effi ciency and eco-

nomic development (e.g., Coase, 1937, Alchian, 1965, Hart and Moore, 1990). Yet whether property

rights are effectively protected depends on the political economy of the respective society and its

institutions. The idea that granting veto power to different actors in the society enhances pro-

tection dates back at least to the Roman republic (Polybius [2010], Machiavelli 1515[1984]) and,

in modern times, to Montesquieu’s Spirit of the Laws (1748[1989]) and the Federalist papers, the

intellectual foundation of the United States Constitution. In essay No. 51, James Madison argued

for the need to contrive the government “as that its several constituent parts may, by their mutual

relations, be the means of keeping each other in their proper places.”Riker (1987) concurs: “For

those who believe, with Madison, that freedom depends on countering ambition with ambition, this

constancy of federal conflict is a fundamental protection of freedom.”

In modern political economy, an increased number of veto players has been associated with

beneficial consequences. North and Weingast (1989) argued that the British parliament, empowered

at the expense of the crown by the Glorious Revolution in 1688, provided “the credible commitment

by the government to honour its financial agreement [that] was part of a larger commitment to

secure private rights”. Root (1989) demonstrated that this allowed British monarchs to have

lower borrowing costs compared to the French kings. In Persson, Roland, and Tabellini (1997,

2000), separation of taxing and spending decisions within budgetary decision-makings improves

the accountability of elected offi cials and limits rent-seeking by politicians. Keefer (2004) argues

that “The absence of multiple veto players in countries often means that some groups in society

are less represented than they otherwise would be.”

We study political mechanisms that ensure protection of property against expropriation by a

majority. In practice, institutions come in different forms such as the separation of powers between

the legislative, executive, and judicial branches of government, multi-cameralism, federalism, super-

majority requirements and other constitutional arrangements that effectively provide some players

with veto power. Examples include a president with veto powers, a supreme court that can strike

down a law as unconstitutional, or the Spartan Gerousia, the Council of Elders, that could veto

motions passed by the Apella, the citizens’assembly (Plutarch [2010]). In a certain polity, it might

be just individuals with guns who have effective veto power. Essentially, all these institutions allow

individuals or collective actors to block any redistribution without their consent. If we interpret

property rights as institutions that sustain allocations unless changed by the legislature, we can

formally investigate the effect of veto power on the allocation of property.

In addition to property rights, formalized in constitutions or codes of law, i.e., game forms in

a theoretical model, property rights might be protected as equilibrium outcomes of interaction of
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strategic economic agents. The property rights of an individual may be respected not because he

is powerful enough to protect them on his own, i.e., has veto power, but because others find it

in their respective interest to protect such rights. Specifically, members of a coalition, formed in

equilibrium, have an incentive to oppose the expropriation of each other because they know that

once a member of the group is expropriated, others will be next in the line for expropriation. As a

result, property rights might be secure even in the absence of explicit veto power.

If property rights may emerge from strategic behavior of rational economic agents, such rights

are necessarily dynamic in nature. A status quo allocation of assets stays in place for the next

period, unless it is changed by the political decision mechanism in which case the newly chosen

allocation becomes the status quo for the next period. This makes the legislative bargaining model,

developed initially to study outcomes of parliament procedures (Baron and Ferejohn, 1989a, 1989b),

the natural foundation of our analysis. Specifically, we use legislative bargaining with endogenous

status quo, the literature that started in Baron (1996) and Kalandrakis (2004, 2007), and was

developed further in Anesi and Seidmann (2014, 2015), Anesi and Duggan (2015, 2016), Baron

and Bowen (2013), Bowen and Zahran (2012), Diermeier and Fong (2011, 2012), Duggan and

Kalandrakis (2012), Kalandrakis (2010), Richter (2013), Vartiainen (2014), and Nunnari (2016).

These papers differ in fine details of the setups– e.g., Baron and Bowen (2013) argue that it

is important to assume that players vote against a proposal when indifferent, while Diermeier

and Fong (2011) maintain the opposite assumption– yet the legislative-bargaining literature with

endogenous quo provides us with the approach and instruments to study the political economy of

redistribution and protection of property from expropriation.

We discuss the legislative bargaining literature in Section 5, after we describe our model and

formulate and discuss the results. Though some of our results have clear parallels in the existing

literature (e.g., the characterization of stable allocations as a von Neumann-Morgenstern stable set

for a certain dominance relation between alternatives), most of our results are, to the best of our

knowledge, novel. Our starting point is the results of Diermeier and Fong (2011) who discovered

that with a sole agenda-setter, two other players could form a coalition to protect each other from

expropriation by this agenda-setter, and characterized the stable allocation in a variant of this

game. Example 1 demonstrates that more generally, this logic allows for formation of coalitions of

more than two players.

Example 1 Consider five players who decide how to split 10 indivisible units of wealth, with the

status quo being (1, 2, 3, 4; 0). Player #5 is the sole veto player and proposer, any reallocation

requires a majority of votes, and we assume that when players are indifferent, they support the

proposer. In a standard legislative bargaining model, the game ends when a proposal is accepted.

Then, player #5 would simply build a coalition to expropriate two players, say #3 and #4, and
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capture the surplus resulting in (1, 2, 0, 0; 7). However, this logic does not hold in a dynamic model

where the agreed upon allocation can be redistributed in the subsequent periods. That is, with the

new status quo (1, 2, 0, 0; 7), player #5 might propose to expropriate players #1 and #2 by moving

to (0, 0, 0, 0; 10), which is accepted in equilibrium. Anticipating this, players #1 and #2 should not

agree to the first expropriation, thus becoming the effective guarantors of property rights of players

#3 and #4. Starting with (1, 2, 3, 4; 0), the ultimate equilibrium allocation will be (3, 3, 3, 0; 1). In

general, an allocation is stable if and only if there is a group of three non-veto players of equal

wealth, and the remaining player has zero.

Critically, there is a single proposer in the Diermeier and Fong’s model, so there is no possibility

to isolate the impact of veto power from the impact of agenda-setting power; non-veto players

have no chance to be agenda-setters, and their action space is very limited. With multiple veto

players and multiple agenda-setters, not necessarily the veto players, we demonstrate that the

endogenous veto groups have a certain “class structure”: in a stable allocation, the non-veto players

are subdivided into groups of equal size, with each of which individual players have the same amount

of wealth, whereas the rest of the society is fully expropriated.

Example 2 Consider the economy as in Example 1, yet 4 votes, rather than 3, are required to

change the status quo. Now, if the initial status quo is (1, 2, 3, 4; 0), which is unstable, the ultimate

stable allocation will be (1, 1, 3, 3; 2), i.e. two endogenous veto groups will be formed. In general,

with 5 players, 1 veto player and 4 votes required to change the status quo, all stable sets are of

the form (x1, x2, x3, x4;x5) with x1 = x2 and x3 = x4 - the simplest example of a society exhibiting

the “class”structure.

The number and size of these classes vary as a function of the number of veto players and the

supermajority requirements. Perhaps paradoxically, adding additional exogenous protection (e.g.,

by increasing the number of veto players) may lead to the break-down of an equilibrium with stable

property rights, as the newly empowered player (the one that was granted or has acquired veto

power) now no longer has an incentive to protect the others. Thus, by adding additional hurdles

to expropriation in the form of veto players or super-majority requirements (see Example 4 below),

the protection of property rights may in fact be eroded. In other words, players’property may be

well-protected in the absences of formal constraints, while strengthening formal constraints may

result in expropriation. Our next example demonstrates this effect more formally.

Example 3 As in Example 1, there are 5 players and 3 votes are required to make a change, but

now there are two veto players instead of one, #4 and #5. Allocations (x1, x2, x3;x4, x5), in which

at least one of players #1, #2, #3 has zero wealth and at least one has a positive amount, are

unstable as the two veto players will get the vote of one player with zero and redistribute the assets
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of the remaining two players. One can prove that an allocation is stable if and only if x1 = x2 = x3.

This means that if we start with (3, 3, 3, 0; 1) , which was stable with one veto player, becomes

unstable if one more player, e.g., #1, becomes a veto player. The society will transition to another

state, in which all 10 units are going to be split between the two veto players.

We see here an interesting phenomenon. The naive intuition would suggest that giving one

extra player (player #1 in this example) veto power would make it more diffi cult for player #5 to

expropriate the rest of the group. However, the introduction of a new veto player breaks the stable

coalition of non-veto players, and makes #5 more powerful. Before the change, non-veto players

sustained an equal allocation, precisely because they were more vulnerable individually. With only

one veto player and an equal allocation for players #1, #2, and #3, the three non-veto players form

an endogenous veto group, which block any transition that hurts the group as a whole (or even

one of them). Here, an additional veto player makes expropriation more, not less, likely. Note that

both the amount of wealth being redistributed and the number of players affected by expropriation

are significant. The number of players who stand to lose is two, close to half the total number of

players, and more than a half of the total wealth is redistributed through voting.

In addition to granting veto rights, changes to the decision-making rule (e.g., the degree of

supermajority) can also have a profound, yet somewhat unexpected effect on protection of property.

Higher supermajority rules are usually considered safeguards that make expropriation more diffi cult,

as one would need to build a larger coalition. The next example shows that this intuition is flawed

as well: in a dynamic environment, increasing the supermajority requirements may trigger further

redistribution.

Example 4 As above, there are 5 players that make redistributive decisions by majority, and one

of which (#5) has veto power. Allocation (3, 3, 3, 0; 1) is stable. Now, instead of a change in the

number of veto players, consider a change in the supermajority requirements. If a new rule requires

4 votes, rather than 3, the status quo allocation becomes unstable. Instead, (3, 3, 0, 0; 4) becomes

stable, and this move is supported by coalition of four players out of five. (The veto-player, #5,

benefits from the move, #4 is indifferent as he gets 0 in both allocations, and #1-2 support this

move as they realize that with the new supermajority requirement they form a group which is

suffi cient to protect its members against any expropriation.) Thus, an increase in supermajority

may result in expropriation and redistribution.

As Example 4 demonstrates, raising the supermajority requirement does not necessarily

strengthen property rights as some players are expropriated as a result. Proposition 6 below

establishes that this phenomenon, as well the one discussed in Example 3, is generic: adding a veto

player or raising the supermajority requirement almost always leads to a wave of redistribution. To
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provide a general characterization of politically stable allocations of wealth, we use the advances

of legislative bargaining models with endogenous status quo. We characterize the Markov perfect

equilibrium and the stable allocations as outcomes of a non-cooperative legislative bargaining game.

Then, we use the characterization to obtain the comparative statics results described in Examples

3 and 4.

Technically, our model follows the literature on legislative bargaining started by Baron and

Ferejohn (1989a), especially models focused on legislative bargaining with endogenous status quo.

We review this literature in Section 5, in which we compare our assumptions and conclusions with

those in the literature. Specifically, we discuss the following modeling choices that were made:

continuous vs. discrete choice space, the degree of farsightedness, organization (agenda-setters,

veto players, protocols, recognition, etc), voting, and the possibility of ineffi cient allocations and

waste on the equilibrium path. In addition to the legislative bargaining approach to the role of

veto players on policy stability that we discuss in Section 5, another approach has conceptualized

veto players as constraints on majority rule in a social choice-theoretic environment, leading to the

following stark prediction: “As the number of veto players of a political system increase, policy

stability increases”(Tsebelis, 2002). In Diermeier and Myerson (1999), bicameralism increases the

respective chambers’willingness to exercise veto power. In a rare departure, Gehlbach and Malesky

(2010) provide a formal model where more numerous veto players might help a policy reform.

Generally, political economists identified three major sources of risks to private property. First,

it is the expropriation by the powerful executive (the king in the times of Adam Smith or modern

dictators). Second, expropriation by private agents who undermine property rights of each other

(Hobbes, 1651[1991], Braguinsky and Myerson, 2007). Finally, redistribution through over-taxation

(Persson and Tabellini, 2000) or an outright expropriation by the poor majority (e.g., Grossman,

1994, Acemoglu and Robinson, 2006). A large number of works explored the relationship between

a strong executive and his subjects (see, e.g., Machiavelli, 1515[1984], ch. VII, on Alexander VI

against the Orsini and Colonna clans in Rome; Greif, 2006, on the institute of podesteria in medieval

Italian cities; Haber et al., 2003, on the 19th century Mexican presidents; or Guriev and Sonin, 2009,

on Russian oligarchs). Acemoglu, Robinson, and Verdier (2004) and Padro i Miquel (2006) build

formal divide-and-rule theories of expropriation, in each of which a powerful executive exploited

the existing cleavages for personal gain. In addition to the legislative bargaining literature, policy

evolution with endogenous quo is studied, among others, in Dixit, Grossman, and Gul (2000),

Hassler, Storesletten, Mora, and Zilibotti (2003), Dekel, Jackson, and Wolinsky (2009), Battaglini

and Coate (2007, 2008), and Battaglini and Palfrey (2012).

The remainder of the paper is organized as follows. Section 2 introduces our general model.

In Section 3, we establish the existence of (pure-strategy Markov perfect) equilibrium in a non-
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cooperative game and provide full characterization of stable wealth allocations. Section 4 focuses on

the impact of changes in the number of veto players or supermajority requirements. In Section 5 we

compare our modeling assumptions and results with those in the literature on legislative bargaining

with endogenous status quo, while Section 6 concludes. The Online Appendix contains technical

proofs and some additional examples and counterexamples.

2 Setup

Consider a set N of n = |N | political agents who allocate a set of indivisible identical objects
between themselves. In the beginning, there are b objects, and the set of feasible allocations is

therefore

A =
{
x ∈ (N ∪ {0})n :

∑n

i=1
xi ≤ b

}
.

We use lower index xi to denote the amount player i gets in allocation x ∈ A throughout the paper,

and we denote the total number of objects in allocation x by ‖x‖ =
∑

i∈N xi.

Time is discrete and indexed by t > 0, and the players have a common discount factor β. In

each period t, the society inherits xt−1 from the previous period (x0 is given exogenously) and

determines xt through an agenda-setting and voting procedure. A transition from xt−1 to some

alternative y ∈ A is feasible if ‖y‖ ≤
∥∥xt−1

∥∥; in other words we allow for the objects to be wasted,
but not for the creation of new objects.1 For a feasible alternative y to defeat the status quo xt−1

and become xt, it needs to gain the support of a suffi ciently large coalition of agents.

To define which coalitions are powerful enough to redistribute, we use the language of winning

coalitions. Let V ⊂ N be a non-empty set of veto players (denote v = |V |; without loss of generality,
let us assume that V corresponds to the last v agents n−v+1, . . . n), and let k ∈ [v, n] be a positive

integer. A coalition X is winning if and only if (a) V ⊂ X and (b) |X| ≥ k. The set of winning

coalitions is denoted by W:2

W =
{
X ∈ 2N \ {∅} : |X| ≥ k and V ⊂ X

}
.

In this case, we say that the society is governed by a k-rule with veto players V , meaning that a

transition is successful if it is supported by at least k players and no veto player opposes it. We will

compare the results for different k and v. We maintain the assumption that there is at least one

veto player– that V is non-empty– throughout the paper; this helps us capture various political

1An earlier version of the model required that there is no waste, so
∥∥xt∥∥ =

∥∥x0∥∥ = b throughout the game, and the
results were identical. It should be emphasized, however, that the possibility of waste can alter the set of outcomes
in a legislative bargaining model (e.g., Richter, 2013). We are grateful to an anonymous referee for suggestion to
explore the possibility of waste.

2Acemoglu, Egorov and Sonin (2012) consider an environment where political power may depend on the state,
which in this model would correspond to the current allocation. In a legislative bargaining context, it is natural to
assume that the set of all possible winning coalitions is the same in each state.
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institutions, e.g., a supreme court, and it is also helpful in ruling out cycles. We do not require

that k > n/2, so we allow for minority rules. For example, 1-rule with the set of veto players {i}
is a dictatorship of player i.

Our goal is to focus on redistribution from politically weak players to politically powerful ones,

and especially on the limits to such redistribution. To avoid equilibria where non-veto players

shuffl e the units between themselves, we assume that there is a small transition cost δ > 0, borne

by all players. At the same time, we want veto players to retain the ability to transfer units to their

group. We thus assume that for each unit transferred in period t to a veto player, there is a small

transferable budget ε available to distribute among the agents; our interpretation of this budget

is that politically powerful players are able to give minor gifts in order to break indifferences and

overcome the (even smaller) transition costs.3 A feasible proposal in period t is therefore a pair

(y, ξ) such that y ∈ A that satisfies ‖y‖ ≤
∥∥xt−1

∥∥ and ξi ∈ Rn satisfies ξi ≥ δ for all i ∈ N and

‖ξi‖ ≤ max
(∑

i∈V yi −
∑

i∈V x
t−1
i , 0

)
. Throughout the paper, we assume δ < ε

n <
1−β
nb . (We will

show that as ε, δ → 0, the equilibria converge to some equilibria of the game where ε = δ = 0; thus,

focusing on equilibria that may be approximated in this way may be thought of as equilibrium

refinement that rules out uninteresting equilibria, specifically the ones that feature cycles.)

The timing of the game below uses the notion of a protocol (e.g., Acemoglu, Egorov, and Sonin,

2012, Ray and Vohra, 2015). By a protocol we mean any finite sequence of players (possibly with

repetition); for existence results, however, we require it to end with a veto player.4 We denote the

set of protocols by Π, so

Π =
∞⋃
η=1

{π ∈ Nη : πη ∈ V } .

The protocol to be used is realized in the beginning of each period, taken from a distribution D that
has full support on Π (to save on notation, we assume that each veto player is equally likely to be

last one, but this assumption does not affect our results). If the players fail to reach an agreement,

the status quo prevails in the next period. Thus, in each period t, each agent i gets instantaneous

utility uti = xti +
(
ξti − δ

)
Ixt 6=xt−1 and acts as to maximize his continuation utility

U ti = uti + E
∞∑
j=1

βjut+ji ,

where the expectation is taken over the realizations of the protocols in the subsequent periods.

We focus on the case where the players are suffi ciently forward looking; specifically, we assume

3 In most models of legislative bargaining, it is standard to assume that whenever an agent is indifferent, she
agrees to the proposal (see Section 5). Naturally, otherwise the proposer would offer an arbitrarily small amount to
an indifferent player. In our model, we assume indivisible units, but allow for these infinitesimal transfers to get the
same natural property.

4Allowing non-veto players to propose may in some cases lead to non-existence of protocol-free equilibria as
Example A2 in Appendix demonstrates.
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β > 1− 1
b+2 .

5 More precisely, the timing of the game in period t ≥ 1 is the following.6

1. Protocol πt is drawn from the set of possible protocols Π.

2. For j = 1, player πtj is recognized as an agenda-setter and proposes a feasible pair
(
zj , χj

)
,

or passes.

3. If πtj passed, the game proceeds to step 5; otherwise, all players vote, sequentially, in the

order given by protocol πt, yes or no.

4. If the set of those who voted yes, Y j , is a winning coalition, i.e. Y j ∈ W, then the new
allocation is xt = zj , the transfers are ξt = χj , and the game proceeds to stage 6. Otherwise,

the game proceeds to the next stage.

5. If j <
∣∣πt∣∣, then the game moves to stage 2 with j increased by 1. Otherwise, the society

keeps the status allocation xt = xt−1, and the game proceeds to the next stage.

6. Each player i receives an instantaneous payoff uti.

The equilibrium concept we use is Markov Perfect equilibrium (MPE). In any such equilibrium

σ, the transition mapping φ = φσ : A × Π → A, which maps the previous period’s allocation

and the protocol realization for the current period into the current period’s allocation, is well-

defined. In what follows, we focus on protocol-free equilibria (protocol-free MPE7), namely, σ

such that φσ (x, π) = φσ (x, π′) for all x ∈ A and π, π′ ∈ Π. We thus abuse notation and write

φ = φσ : A→ A to denote the transition mapping of such equilibria.

3 Analysis

Our strategy is as follows. We start by proving some basic results about equilibria of the non-

cooperative game described above. Then, we characterize stable allocations, i.e. allocations with

no redistribution, and demonstrate that the stable allocations correspond to equilibria of the non-

cooperative game. We then proceed to studying comparative statics with respect to the number of

veto players, different voting rules (majority requirements), and equilibrium paths that follow an

exogenous shock to some players’wealth.
5This condition means that a player prefers x + 1 units tomorrow to x units today, for any x ≤ b + 1. This

assumption is relatively weak compared to some models of legislative bargaining that require β to approach 1 (see
discussion in Section 5).

6There are many game forms that would yield identical results. For example, we could have each agenda-setter
nominate an alternative and then proceed to choosing one that will be put for a vote against the status-quo. To
simplify the exposition and proofs, we opted for a simpler game. An earlier version of the paper had a particular case
of this setup with ε = δ = 0, but made particular assumptions on breaking indifferences.

7See Examples A4 and A5 in the Appendix, where allowing for non-Markov strategies or dropping the requirement
that transitions be the same for every protocol can lead to counterintuitive equilibria. Arguably, those equilibria are
less robust, because they do not survive our refinements.
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3.1 Non-cooperative Characterization

Consider a protocol-free MPE σ, and let φ = φσ be the transition mapping that is generated by

σ and is defined in the end of Section 2. (Using transition mappings, rather than individuals’

agenda-setting and voting strategies, allows us to capture equilibrium paths in terms of allocations

and transitions, i.e., in a more concise way). Iterating the mapping φ gives a sequence of mappings

φ, φ2, φ3, . . . : A → A, which must converge if φ is acyclic. (Mapping φ is acyclic if x 6= φ (x)

implies x 6= φτ (x) for any τ > 1; we will show that every MPE satisfies this property.) Denote

this limit by φ∞, which is simply φτ for some τ as the set A is finite. We say that mapping φ is

one-step if φ = φ∞ (this is equivalent to φ = φ2), and we call an MPE σ simple if φσ is one-step.

Given an MPE σ, we call allocation x stable if φσ (x) = x. Naturally, φ∞σ maps any allocation into

a stable allocation.

Our first result deals with existence of an equilibrium and its basic properties.

Proposition 1 Suppose β > 1− 1
b+2 , ε <

1−β
b , and δ <

ε
n . Then:

1. There exists a protocol-free Markov Perfect Equilibrium σ.

2. Every protocol-free MPE is acyclic.

3. Every protocol-free MPE is simple.

4. Every protocol-free MPE is effi cient, in that it involves no waste (for any x ∈ A, ‖φ (x)‖ =

‖x‖).

These results are quite strong, and are made possible by the requirement that the equilibrium

be protocol-free. For a fixed protocol, equilibria might involve multiple iterations before reaching

a stable allocations (see Example A3 in the Appendix). However, these other equilibria critically

depend on the protocol and are therefore fragile; in contrast, transition mappings supported by

protocol-free MPE are robust (e.g., they would remain the protocols are taken from a different

distribution, for example).

The proof of Proposition 1 is technically cumbersome and is relegated to the Appendix. How-

ever, the idea is quite simple. We construct a candidate transition mapping φσ that we want to

be implemented in the equilibrium. If the society starts the period in state x = xt−1 such that

φ (x) = x, we verify that it is a best response for the veto players to block any transitions except

for those that are harmful to too many non-veto players, and thus x remains intact. If the soci-

ety starts the period in state x such that φ (x) 6= x, we verify that there is a feasible vector of

transfers that may be redistributed from those who strictly benefit from such transition to those

who are indifferent, and that the society would be able to agree on such vector over the course
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of the protocol. The second result, the acyclicity of MPE, relies on the presence of transaction

costs, which rules out the possibility of non-veto players shuffl ing the objects around (example A1

in the Appendix illustrates cyclic equilibria that would exist in the absence of this assumption).

To show that every protocol-free MPE is simple, we show that if there were an allocation from

where the society would expect to reach a stable allocation in exactly two steps, then for a suitable

protocol it would instead decide to skip the intermediate step and transit to the stable allocation

immediately. Finally, given that every MPE is simple, the society may always allocate the objects

that would otherwise be wasted to some veto player (e.g., the proposer) without facing adverse

dynamic consequences (“the slippery slope”), which ensures that each transitions involves no waste

and the allocations are effi cient.

The following corollary highlights that the possibility of transfers may be viewed as an equilib-

rium refinement.

Corollary 1 Suppose that for game Γ with parameter values β, ε, δ as in Proposition 1, φ = φσ

is the transition mapping that corresponds to a protocol-free MPE σ. Then consider game Γ′ with

the same β′ = β, but ε′ = δ′ = 0. Then there exists protocol-free MPE σ′ with the same transition

mapping φσ′ = φ.

Despite these characterization results stated in Proposition 1, the equilibrium transitions are

not necessarily unique. The following Example 5 demonstrates this. Notice, however, that the set

of stable allocations that may be reached with these equilibria is the same.

Example 5 Suppose there are b = 3 units of wealth, 4 agents, the required number of votes is

k = 3, and the set of veto players is V = {#4}. In this case, there is a simple equilibrium with

transition mapping φ, under which allocations (0, 0, 0; 3), (1, 1, 0; 1), (1, 0, 1; 1) and (0, 1, 1; 1) are

stable. Specifically, we have the following transitions: φ (2, 1, 0; 0) = φ (1, 2, 0; 0) = (1, 1, 0; 1);

φ (0, 2, 1; 0) = φ (0, 1, 2; 0) = (0, 1, 1; 1); φ (2, 0, 1; 0) = φ (1, 0, 2; 0) = φ (1, 1, 1; 0) = (1, 0, 1; 1); and

any allocation with x4 = 2 has φ (x) = (0, 0, 0; 3). However, another mapping φ′ coinciding with φ

except that φ′ (1, 1, 1; 0) = (1, 1, 0; 1) may also be supported in equilibrium.

3.2 Stable Allocations

Our next goal is to get a more precise characterization of equilibrium mappings and stable alloca-

tions. Let us define a binary relation B (interpreted as a dominance relation) on A as follows:

y B x⇐⇒ ‖y‖ ≤ ‖x‖ and {i ∈ N : yi ≥ xi} ∈ W and yj > xj for some j ∈ V .

Intuitively, allocation y dominates allocation x if transition from x to y is feasible and some powerful

player prefers y to x strictly so as to be willing to make this motion, and also there is a winning

10



coalition that (weakly) prefers x to y. Note that this does not imply that y will be proposed or

supported in an actual voting against x because of further changes this move may lead to. Following

the standard definition (von Neumann and Morgenstern, 1947; Greenberg, 1990), we call a set of

states S ⊂ A von Neumann-Morgenstern- (vNM-)stable if the following two conditions hold: (i)

For no two states x, y ∈ S it holds that y B x (internal stability); and (ii) For each x 6∈ S there
exists y ∈ S such that y B x (external stability).

The significance of this notion of vNM-stability is demonstrated by the following proposition.

Proposition 2 For any protocol-free MPE σ, the set of stable allocations Sσ =

{x ∈ A : φσ (x) = x} is a von Neumann-Morgenstern stable set for the dominance relation B.

This characterization is made possible by the requirement that the equilibrium be protocol-free.

For a fixed protocol, there may exist other equilibria, where non-veto players propose alternatives

that hurt themselves, but hurt other non-veto players even more, only to avoid other non-veto

players do the opposite (see Example A3). However, these other equilibria critically depend on

the protocol and are therefore fragile. In contrast, transition mappings supported by protocol-free

MPE are robust (e.g., they would remain if the protocols are taken from a different distribution,

for example).

Proposition 2 implies that the fixed points of transition mappings of non-cooperative equilibria

described in Proposition 1 correspond to a von Neumann-Morgenstern stable set. Our next result

states that such stable set is also unique; this implies, in particular, that for any two protocol-free

MPE σ and σ′, the set of stable allocations is identical. Consequently, even though equilibrium is

not unique, we are able to study stable allocations irrespective of a particular equilibrium of the

bargaining game.

Proposition 3 also gives a precise characterization of stable allocations. To formulate it, let us

denote m = n− v, the number of non-veto players; q = k− v, the number of non-veto players that
is required in any winning coalition; d = m − q + 1 = n − k + 1, the size of a minimal blocking

coalition of non-veto players; and, finally, r = bm/dc, the maximum number of pairwise disjoint

blocking coalition that non-veto players may be split into.

Proposition 3 1. For the binary relation B, a vNM-stable set exists and is unique.

2. Each element x of this set S has the following structure: the set of non-veto playersM = N\V
may be split into a disjoint union of r groups G1, . . . , Gr of size d and one (perhaps empty)

group G0 of size m − rd, such that inside each group, the distribution of wealth is equal:

xi = xj = xGk whenever i, j ∈ Gk for some k ≥ 1, and xi = 0 for any i ∈ G0. In other words,

11



x ∈ S if and only if the non-veto players can be permuted in such a way that

x =

λ1, . . . , λ1︸ ︷︷ ︸
d times

, λ2, . . . , λ2︸ ︷︷ ︸
d times

, . . . , λr, . . . , λr︸ ︷︷ ︸
d times

, 0, . . . , 0︸ ︷︷ ︸
m−rd times

;xm+1, . . . , xn︸ ︷︷ ︸
veto players

 .
for some λ1 ≥ · · · ≥ λr ≥ 0 such that d

∑r
j=1 λj +

∑n−m
l=1 xm+l ≤ b.

The proof of this result is important for understanding the structure of endogenous veto groups,

and we prove it in the text. We show that starting from any wealth allocation x ∈ S, it is impossible
to redistribute the units between agents without making at least d agents worse off, and thus no

redistribution would gain support from a winning coalition. In contrast, starting from any allocation

x /∈ S, such redistribution is possible. Furthermore, our proof will show that there is an equilibrium
where in any transition, the set of individuals who are worse off is limited to the d− 1 richest non-

veto players.

Proof of Proposition 3. We will prove that set S, as defined in Part 2, is vNM-stable, thus

ensuring existence. To show internal stability, suppose that x, y ∈ S and y B x, and let the r

groups be G1, . . . , Gr and H1, . . . ,Hr, respectively. Without loss of generality, we can assume that

each set of groups is ordered so that xGj and yHj are non-increasing in j for 1 ≤ j ≤ r. Let us

prove, by induction, that xGj ≤ yHj for all j.
The induction base is as follows. Suppose that the statement is false and xG1 > yH1 ; then

xG1 > ys for all s ∈ M . This yields that for all agents i ∈ G1, we have xi > yi. Since the total

number of agents in G1 is d, G1 is a blocking coalition, and therefore it cannot be true that yj ≥ xj
for a winning coalition, contradicting that y B x.

For the induction step, suppose that xGl ≤ yHl for 1 ≤ l < j, and also assume, to obtain a

contradiction, that xGj > yHj . Given the ordering of groups, this means that for any l, s such that

1 ≤ l ≤ j and j ≤ s ≤ r, xGl > yHs . Consequently, for agent i ∈
⋃j
l=1Gl to have yi ≥ xi, he

must belong to
⋃j−1
s=1Hs. This implies that for at least jd− (j − 1) d = d agents in

⋃j
l=1Gl ⊂ M ,

it cannot be the case that yi ≥ xi, which contradicts the assumption that y B x. This establishes

that xGj ≤ yHj for all j, and therefore
∑

i∈M xi ≤
∑

i∈M yi. But y B x would require that xi ≤ yi
for all i ∈ V with at least one inequality strict, which implies

∑
i∈N xi <

∑
i∈N yi, a contradiction

to ‖y‖ ≤ ‖x‖. This proves internal stability of set S.
Let us now show that the external stability condition holds. To do this, we take any x 6∈ S and

will show that there is y ∈ S such that y B x. Without loss of generality, we can assume that xi

is non-increasing for 1 ≤ i ≤ m (i.e., non-veto players are ordered from richest to poorest). Let us

denote Gj = {(j − 1) d+ 1, . . . , jd} for 1 ≤ j ≤ r and G0 = M \
(⋃r

j=1Gj

)
. Since x 6∈ S, it must

be that either for some Gj , 1 ≤ j ≤ r, the agents in Gj do not get the same allocation, or they do,
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but some individual i ∈ G0 has xi > 0. In the latter case, we define y by

yi =


xi if i ≤ dr or i > m+ 1;
0 if dr < i ≤ m;

xi +
∑

j∈G0 xj if i = m+ 1

(In other words, we take everything possessed by individuals in G0 and distribute it among veto

players, for example, by giving everything to one of them). Obviously, y ∈ S and y B x.
If there exists a group Gj such that not all of its members have the same amount of wealth, let j

be the smallest such number. For i ∈ Gl with l < j, we let yi = xi. Take the first d− 1 members of

group Gj , Z = {(j − 1) d+ 1, . . . , jd− 1}. Together, they possess z =
∑jd−1

i=(j−1)d+1 xi > (d− 1)xjd

(the inequality is strict precisely because not all xi in Gj are equal). Let us now take these z units

and redistribute it among all the agents (perhaps including those in Z) in the following way. For

each s : j < s < r, we let y(s−1)d = y(s−1)d+1 = · · · = ysd−1 = x(s−1)d; this makes these d agents

having the same amount of wealth and being weakly better off as the agent with number (s− 1) d

was the richest among them.

Now, observe that in each group s, we spent at most (d− 1)
(
x(s−1)d − xsd−1

)
≤

(d− 1)
(
x(s−1)d − xsd

)
. For s = r, we take d agents as follows: D = {(r − 1) d, . . . ,m} ∪ Z ′,

where Z ′ ⊂ Z is a subset of the first d− (m− (r − 1) d+ 1) = rd−m− 1 agents needed to make

D a collection of exactly d agents (notice that Z ′ = ∅ if |G0| = d− 1 and Z ′ = Z if G0 = ∅). For
all i ∈ D, we let yi = x(r−1)d (making all members of G0 weakly better off and spending at most

(d− 1)x(r−1)d units) and we let yi = 0 for each i ∈ Z \ Z ′. We have thus defined yi for all i ∈ M
and distributed

c ≤ (d− 1)
(
xjd − x(j+1)d + · · ·+ x(r−2)d − x(r−1)d + x(r−1)d

)
= (d− 1)xjd,

having z − c > 0 remaining in our disposal. As before, we let ym+1 = xm+1 + z − c and yi = xi for

i > m+ 1. We have constructed y ∈ S such that ‖y‖ = ‖x‖, ym+1 > xm+1 and {i ∈ N : yi < xi} ⊂
Z. The latter, given |Z| ≤ d−1, implies {i ∈ N : yi ≥ xi} ∈ W, which means y B x. This completes
the proof of external stability, and thus S is vNM-stable.

Let us now show that S is a unique stable set defined by B.8 Suppose not, so there is S′ that is
also vNM-stable. Let us prove that x ∈ S⇔ x ∈ S′ by induction on

∑
i∈M xi. The induction base

is trivial: if xi = 0 for all i ∈M , then x ∈ S by definition of S. If x /∈ S′, then there must be some
y such that y B x. But for such y,∑

i∈N
yi ≥

∑
i∈V

yi >
∑

i∈V
xi =

∑
i∈N

xi,

which contradicts ‖y‖ ≤ ‖x‖.
8An alternative (non-constructive) way to prove uniqueness would be to use a theorem by von Neumann and

Morgenstern (1947) that states that if a dominance relation allows for no finite or infinite cycles, the stable set is
unique.
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The induction step is as follows. Suppose that for some x with
∑

i∈M xi = j > 0, x ∈ S but
x /∈ S′ (the vice-versa case is treated similarly). By external stability of S′, x /∈ S′ implies that for
some y ∈ S′, y B x, which in turn yields that

∑
i∈V yi >

∑
i∈V xi and ‖y‖ ≤ ‖x‖. We have∑

i∈M
yi = ‖y‖ −

∑
i∈V

yi < ‖x‖ −
∑

i∈V
xi =

∑
i∈M

xi = j.

For y such that
∑

i∈M yi < j induction yields that y ∈ S⇔ y ∈ S′, and thus y ∈ S. Consequently,
there exists some y ∈ S such that y B x, but this contradicts x ∈ S. This contradiction establishes
uniqueness of the stable set.�

Proposition 3 enables us to study the set of stable allocations S without reference to a particular

equilibrium σ. The characterization obtained in this Proposition gives several important insights.

First, the set of stable allocations (fixed points of any transition mapping under any equilibrium)

does not depend on the mapping; it maps into itself when either the veto players V or the non-veto

players N \ V are reshuffl ed in any way. Second, the allocation of wealth among veto players does

not have any effect on stability of allocations. Third, each stable allocation has a well-defined

“class”structure: every non-veto player with a positive allocation is part of a group of size d (or a

multiple of d) of equally-endowed individuals who have incentives to protect each other’s interests.9

To demonstrate how this protection works, consider the following example.

Example 6 There are b = 12 units, n = 5 individuals with one veto player (#5), and the su-

permajority of 4 is needed for a transition (k = 4). By Proposition 3, stable allocations have two

groups of size two. Let φ be a transition mapping for some simple MPE σ, and let us start with

stable allocation x = (4, 4, 2, 2; 0) . Suppose that we exogenously remove a unit from player #2 and

give it to the veto player; i.e., consider y = (4, 3, 2, 2; 1). Allocation y is unstable, and player #1

will necessarily be expropriated. However, the way redistribution may take place is not unique; for

example, φ (y) = (3, 3, 2, 2; 2) is possible, but so is φ (y) = (2, 3, 3, 2; 2) or φ (y) = (2, 3, 2, 3; 2). Now

suppose that one of the players possessing two units, say player #3, was expropriated, i.e., take

z = (4, 4, 1, 2; 1). Then it is possible that the other member, player #4, would be expropriated as

well: φ (z) = (4, 4, 1, 1; 2). But it is also possible that one of the richer players may be expropriated

instead: e.g., a transition to φ (z) = (4, 1, 1, 4; 2) would be supported by all players except #2.

Example 6 demonstrates that equilibrium protection that agents provide to each other extends

beyond members of the same economic class. In the latter case, player #2 would oppose a move

from (4, 4, 2, 2; 0) to (4, 4, 1, 2; 1) if in the subgame the next move is to (4, 1, 1, 4; 2) . This corresponds

to a coalition among economic classes.
9 It is permissible that two groups have equal allocations, xGj = xGk , or that members of some or all groups get

zero. In particular, any allocation x where xi = 0 for all i ∈M is in S. Notice that if non-veto players get the same
under two allocations x and y, so x|M = y|M , then x ∈ S ⇔ y ∈ S; moreover, this is true if xi = yπ(i) for all i ∈ M
and some permutation π on M .
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We see that in general, an exogenous shock may lead to expropriation, on the subsequent equi-

librium path, of players belonging to different wealth groups; the particular path depends on the

equilibrium mapping, which is not unique. However, if we apply the refinement that only equilibria

with a “minimal”(in terms of the number of units that need to be transferred) redistribution along

the equilibrium path are allowed, then only the players with exactly the same wealth endowment

would suffer from the redistribution that follows a shock. More importantly, Example 6 demon-

strates the mechanism of mutual protection among players with the same wealth. If a non-veto

player becomes poorer, at least d − 1 other players would suffer in the subsequent redistribution.

This makes them willing to oppose any redistribution from any of their members. Their number,

if we include the initial expropriation target himself, is d, which is suffi cient to block a transi-

tion. Thus, members of the same economic class have an incentive to act as a politically cohesive

coalition, in which its members mutually protect each others’economic interests.

Proposition 3 also allows for the following simple corollary.

Corollary 2 Suppose that in game Γ defined above, the set of stable allocations (in any protocol-free

MPE) is S. Take any integer h > 1, and consider the set of allocations Ah given by

Ah =
{
x ∈

(
R+
)n

: ‖x‖ ≤ b and ∀i ∈ N,hxi ∈ Z
}
.

Suppose β > 1 − 1
bh+2 , ε <

1−β
bh , δ <

ε
n . Then the set of stable allocations in the new game Γh

(again, in any protocol-free MPE) Sh satisfies S ⊂ Sh.

In other words, taking a finer partition of units of redistributions (splitting each unit into h

indivisible parts) preserves stable allocations. This result follows immediately from Proposition

3 Part 2. It effectively says that even though our results are obtained under the assumption of

discrete number of indivisible units, they have a broader appeal: once dividing units into several

parts is allowed, the stable allocations remain stable. This implies that the set S does not only

describe stable outcomes for any appropriately refined equilibrium within the game, but is also a

robust predictor of stable allocations if the minimal units are redefined, provided, of course, that

players interact frequently enough.10

The next proposition generalizes Example 6 so that one can better understand the mechanics

of mutual protection. It highlights that protection of a non-veto player is sustained, in equilibrium,
10Notice that since the sequence of stable sets satisfies S ⊂ S2⊂ S3⊂ · · ·, their limit is a well-defined set S∞ =⋃
j>1 S

j , where the bar denotes topological closure. This set has the following simple structure:

S∞ =
{
x ∈ ∆ | ∃ρ ∈ Sn : xρ(1) = · · · = xρ(d), xρ(d+1) = · · · = xρ(2d), . . . , xρ((r−1)d+1) = · · · = xρ(rd)

}
,

where ∆ is the (N − 1)-dimensional unit simplex and ρ ∈ Sn is any permutation. However, for these limit allocations
to be approached in a noncooperative game that we study, one would have to take a sequence of discount factors βj
that tends to 1, so interactions should be more and more frequent. Intuitively, to study fine partitions of the state
space, one would need finer partition of time intervals as well to prevent ‘undercutting’. If this condition does not
hold, veto players would be able to expropriate everything in the long run would apply (see, e.g., Nunnari, 2016).
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by equally endowed or richer individuals, rather than by those who has less wealth. Proposition 4

is formulated as follows. We take some equilibrium characterized in Proposition 1, and consider a

stable allocation. Then, we consider another, perturbed, allocation, in which one non-veto player

has less wealth. We show that the resulting allocation is unstable, and compare the ultimate stable

allocation with the initial one (before the perturbation).

Proposition 4 Consider any MPE σ and let φ = φσ. Suppose that the voting rule is not unanimity

(k < n), so d > 1. Take any stable allocation x ∈ S, some non-veto player i ∈ M , and let new
allocation y ∈ A be such that y|M\{i} = x|M\{i} and yi < xi. Then:

1. Player i will never be as well off as before the shock, but he will not get any worse off:

yi ≤ [φ (y)]i < xi. Furthermore, the number of players who suffer as a result of a redistribution

on the equilibrium path defined by σ is given by:∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ = d− 1;

2. Suppose, in addition, that for any k ∈M with xk < xi, xk ≤ yi, i.e., the shock did not make
player i poorer than the players in the next wealth group. Then [φ (y)]j < yj implies xj ≥ xi,
i.e., members of poorer wealth groups do not suffer from redistribution.

The essence of Proposition 4 is that following a negative (exogenous) shock to some player’s

wealth (yi < xi), at least d− 1 other players are expropriated, and player i never fully recovers. If

the shock is relatively minor so the ranking of player i with respect to other wealth groups did not

change (weak inequalities are preserved),11 then it must be equally endowed or richer people who

suffer from subsequent redistribution. Thus, in the initial stable allocation x, they have incentives

to protect i from the negative shock. This result may be extended to the case when a negative shock

affects more than one (but less than d) non-veto players. The proof is straightforward when all the

affected players belong to the same wealth group. However, this requirement is not necessary. If

expropriated players belong to different groups, then the lower bound of the resulting wealth after

redistribution is the amount of wealth that the poorest (post-shock) player possesses. In this case,

the number of players who suffer as a result of the redistribution following the shock is still limited

by d− 1.

Our next step is to derive comparative statics with respect to different voting rules given by k

and v.
11Note that this will always be the case if, e.g., yi = xi − 1.
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4 Comparing Voting Rules

Suppose that we vary the supermajority requirement, k, and the number of veto players, v. The

following result easily follows from the characterization in Proposition 3.

Proposition 5 Fix the number of individuals n.

1. The size of each group Gj, j ≥ 1, is decreasing as the majority requirement k increases. In

particular, for k = v + 1, d = n − v = m, and thus all the non-veto players form a single

group; for k = n (unanimity rule), d = 1, and so each player can veto any change.

2. The number of groups is weakly increasing in k, from 1 when k = v + 1 to m when k = n

(from 0 when k < v + 1).

3. The size of each group Gj, j ≥ 1 does not depend on the number of veto players, but as v

increases, the number of groups weakly decreases, reaching zero for v > n− d.

This result thus implies that the size of groups does not depend on the number of veto players,

but only on the majority requirement as it determines the minimal size of blocking coalitions. As

the majority requirement increases, groups become smaller. This has a very simple intuition: as

redistribution becomes harder (it is necessary to get approval of more players), it takes fewer non-

veto players to defend themselves; as such, smaller groups are suffi cient. Conversely, the largest

group (all non-veto players together) is formed when a single vote from a non-veto player is suffi cient

for veto players to accept a redistribution; in this case, non-veto players can only keep a positive

payoff by holding equal amounts.

Now, consider the number of groups that (non-veto part of) the society is divided into. Intu-

itively, the number of groups corresponds to the maximum possible economic heterogeneity that

a society can have in equilibrium. If we interpret the equally-endowed non-veto members of the

society as economic classes (in the sense that members of the same class have similar possessions,

whereas members of different classes have different fortunes, despite having the same political

power), then the number of groups would correspond to the largest number of economic classes

that the society can contain. With this interpretation, Proposition 4 implies that it is members

of the same or richer economic classes that protect a non-veto player from expropriation. Notice

that we cannot make predictions about the exact number of classes that would be realized. For

example, for any parameters it is possible that all non-veto players possess zero and thus belong to

the same class; similarly, Part 2 of Proposition 3 allows for classes that are larger than others and

that span several groups Gj . Thus, societies with few groups are bound to be homogenous (among

non-veto players), whereas societies with many veto groups have the ability to be heterogenous, at

least with economic fortunes.
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To better understand the determinants of the number of groups, consider the following. Take n

large and v small (so that m is large enough to be interesting) and start with the smallest possible

value of k = v+1. Then all the non-veto players possess the same allocation in any equilibrium. In

other words, all players, except perhaps those explicitly endowed with veto power, must be equal.

If we increase k, then two groups will form, one of which may possess a positive amount, while

the rest possesses zero, which is clearly more heterogenous than for k = v + 1. If we increase k

further beyond v + (m+ 1) /2, then both groups may possess positive amounts and a third group

will form further, etc. In other words, as k increases, so does the number of groups, which implies

that the society becomes less and less homogenous and can support more and more groups of

smaller size. We see that in this model, heterogeneity of the society is directly linked to diffi culty

of expropriation, measured by the degree of majority needed for expropriation or, equivalently, by

the minimal size of a coalition that is able to resist attempts to expropriate. If we interpret the

equally-endowed groups as economic classes, then we have the following result: the more politically

diffi cult it is to expropriate, the more fine is the class division of the society.

Corollary 3 Suppose that k = v+ 1; as before, d = n− v. In this case, an allocation x is stable if
xi = xj for all non-veto players i and j, i.e., if all non-veto players hold the same amount. More

generally, a single group of non-veto players with positive amount of wealth may be formed if and

only if k − v ≡ q ≤ (m+ 1) /2. In this case, some n − k + 1 non-veto players belong to the group

and get the same amount, and the rest get zero.

Proposition 5 dealt with comparing stable allocations for different k and v. We now study

whether or not an allocation that was stable under some rules k and v remains stable if these

rules change. For example, suppose that we make an extra individual a veto player (increase v),

or increase the majority rule requirement (increase k). A naive intuition would say that in both

these cases, individuals would not be worse off from better property rights protection. As the next

proposition shows, in general, the opposite is likely to be true. Let Sk,V denote the set of stable

allocations under the supermajority requirement k and the set of veto players V.

Proposition 6 Suppose that allocation x is stable for k (k < n) and v (x ∈ Sk,V ). Then:

1. If we increase the number of veto players by granting an individual i /∈ V veto power so that

the new veto set is V ∪ {i}, then allocation x ∈ Sk,V ∪{i} if and only if xi = 0;

2. Suppose k + 1 < n and all groups Gj, j ≥ 0, had different amounts of wealth under x:

xGj 6= xGj′ for j
′ 6= j (and x|M 6= 0). If we increase the majority requirement from k to

k′ = k + 1, and k′ < n, then x /∈ Sk+1,V .
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The first part of this proposition suggests that adding a veto player makes an allocation unstable,

and therefore will lead to a redistribution hurting some individual. There is only one exception to

this rule: if the new veto player had nothing to begin with, then the allocation will remain stable.

On the other hand, if the new veto player had a positive amount of the good, then, while he will

be weakly better off from becoming a veto player, there will be at least one other non-veto player

who will be worse off. Indeed, removing a member of one of the groups Gj without changing the

required sizes of the groups must lead to redistribution. This logic would not apply if V ′ = N ,

when all players become veto players; however, the proposition is still true in this case because

then i would have to be the last non-veto player, and under k < n he would have to get xi = 0 in

a stable allocation x. Interestingly, removing a veto player i (making him non-veto) will also make

x unstable as long as xi > 0. This is, of course, less surprising, as this individual may be expected

to be worse off.

The second part says that if all groups got different allocations (which is the typical case), then

an increase in k would decrease the required group sizes, leading to redistribution. When some

groups have equal amounts of wealth in a stable allocation, then allocation x may, in principle,

remain stable. This is trivially true when all non-veto players get zero (xi = 0 for all i /∈ V ), but,
as the following Example 7 demonstrates, this is possible in other cases as well.

Example 7 Suppose n = 7, V = {#7}, b = 6 and the supermajority requirement is k = 5. Then

x = (1, 1, 1, 1, 1, 1; 0) is a stable allocation, because d = 3 and the non-veto players form two groups

of size three. If we increase k to k′ = 6, then x remains stable, as then d′ = 2 and x has three

groups of size two.

5 Discussion

Given our focus on strategic foundation of redistribution by voting, it is natural that we use the

machinery of legislative bargaining with endogenous status quo that started with the work of

Baron (1996) and Kalandrakis (2004). With respect to specific modeling assumptions, important

contributions differentiate along the following lines. First, some models assume a continuous, while

the other a discrete (e.g., finite) allocation space. Second, models differ with respect to the degree

of farsightedness, which is, essentially, whether or not the results require bringing the discount

factor close to 1. Third, there are multiple ways to set up the agenda-setting structure (protocols,

recognition, etc). Fourth, voting rules might be different, ranging from minority quotes to the

requirement of unanimity. Finally, some, but not all, models allow for waste of available resources.

Each of these choices has been demonstrated to be consequential. In what follows, we compare our

modeling choice with the ones made in the literature, and discuss how they affect the results.

In Baron and Ferejohn (1989a), with a closed amendment rule, any proposer makes a policy
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proposal that fully expropriates all voters who are not members of the minimal winning coalition.

Bernheim, Rangel, and Rayo (2006), in a distributive model of legislative bargaining with the

possibility of a finite round of reconsideration and a pre-determined sequence of proposers, arrive

to a similar conclusion: the last proposer is able to implement his ideal policy. Eraslan (2002)

demonstrated that, even with unequal recognition probabilities and discount factors, there is a

single vector of expected utilities common to all stationary subgame perfect equilibria. (See a

comprehensive recent survey of the related literature in Eraslan and McLennan, 2013.)

Baron (1996) initiated the study of legislative bargaining with endogenous default.12 Kalan-

drakis (2004) analyzed distributive politics in a dynamic legislative bargaining with three players,

random recognition, and an evolving status quo in a continuous policy space, and constructed a

class of mixed strategy stationary equilibria, in which after some initial phase the current agenda

setter captures all the benefits. He assumed risk-neutral players, statically effi cient (no waste) allo-

cations, and continuous action space. Kalandrakis (2007) extended this example to allow for a larger

number of players. In a general setup, Kalandrakis (2010) constructed a particular mixed-strategy

MPE, where for any initial status quo, the outcomes converge to an ergodic set with stochastically

rotating dictator allocations.

Anesi and Seidmann (2015) demonstrated that almost any allocation is possible in a pure

strategy MPE when the space is continuous, and legislators have heterogeneous discount factors

and recognition probabilities. They assume that when indifferent, a player votes for status quo if and

only if she belongs to winning coalition under status quo and the status quo is in the supported set.

They found that, unlike in Baron and Ferejohn (1989a) and Eraslan (2002), equilibrium coalitions

are not necessarily minimal, and there might be waste and ineffi ciency along the equilibrium path.

Anesi and Duggan (2015) extends the Anesi and Seidmann (2015) construction to the spatial

setting.

Notably, Anesi and Seidmann (2015) use a constructive approach in describing equilibria. (Dug-

gan and Kalandrakis, 2012, use a fixed point argument to prove existence of pure strategy MPEs

in games with any quota in which preferences and the default are subject to stochastic shocks.)

Similarly, Diermeier and Fong (2011, 2012) describe an algorithm that constructs the stable set in

their model. The existence of the recursive algorithm follows from the fact that there is a suitable

dominance relationship defining the von-Neumann-Morgenstern stable set (von Neumann and Mor-

genstern, 1947). The advantage of focusing on the vNM stable set is that it allows to work with

a much simpler static object, instead of an equilibrium in a strategic voting game. The first non-

cooperative foundation of von Neumann-Morgenstern stable set in a voting context is constructed

12There is an important parallel in the coalition formation literature. See, e.g., Seidmann and Winter (1998) on the
impact of the possibility of renegotiation on the structure of the ultimate coalition, and Hyndman and Ray (2007)
on equilibria in games with possible binding constraints.
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by Anesi (2010). (See Anesi, 2006, for a brief survey of the preceding literature.) The vNM stable

set depends, critically, on the specific dominance relationship defined over the set of states: in Anesi

(2010), the dominance relation is defined as follows: x � y if and only if there is a winning coalition
S such that xi > yi for any i ∈ S. Acemoglu, Egorov, and Sonin (2012) prove a similar result with
a slightly weaker restrictions on the set of winning coalitions (sets of winning coalitions are not

assumed to be the same in different states). In the current paper, we use a similar approach with a

different dominance relation as we need to resolve possible indifferences for non-veto players. Anesi

and Duggan (2016) obtained further results, demonstrating, among other things, that if there is a

veto player with positive recognition probability and players are suffi ciently patient, then starting

from any allocation, the equilibrium path leads to a unique absorbing point.

In Diermeier and Fong (2011, 2012), there is only one strategic player. The other N − 1 players

merely grant their approval for a move to another allocation, rather than choose strategies in a

non-cooperative game. Thus, our results not only extend Diermeier and Fong (2011, 2012) to the

case of more than one veto player, they also considerably strengthen and refine them. Although

Diermeier and Fong (2011) established existence of stable states, they characterized them only for

the case of three players; in particular, they did not observe the existence of ‘economic classes’

structure of groups of players that have incentives to protect each other, nor did they compare

different voting rules. Finally, Diermeier and Fong (2011, 2012) do not consider veto players (as

they have the solo proposer who is, effectively, a veto player); in contrast, our paper emphasizes

the role of veto players in such game.

Nunnari (2016) considers a legislative-bargaining model with a veto player and random recog-

nition of the proposer. He demonstrates that irrespective of the initial status-quo, discount factors,

and recognition probabilities the allocation eventually converges to one in which the veto player gets

all the surplus. (Still, in contrast with our comparative static results, in his three-player model, an

additional veto player does not affect the equilibrium payoff of the non-veto player.) In our model,

we allow for random protocols, but require equilibria to be protocol-free. Baron and Bowen (2013)

characterize a certain set of equilibria that sustain policies that cannot be defeated by another

policy in the set of sustained policies, and cannot be defeated by another policy outside of the

sustained set. While the bargaining model is different, the structure of equilibrium allocations in

Baron and Bowen (2013) resembles that of our paper (see also Richter, 2013).

The basic reasoning underlying the stability of certain allocations in this paper (as well as in

Diermeier and Fong, 2011, 2012) is similar to that of Acemoglu, Egorov, and Sonin (2012), where

stability of a certain political state may be supported by instability of the states where it can be

immediately moved and that are preferred by a winning coalition. However, at the level of generality

in Acemoglu, Egorov, and Sonin (2012), no characterization or even meaningful comparative statics

is possible. The second critical difference is that the former paper does not allow indifferences, while
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the current one depends critically on assumption about voters’behavior in such situations. (Other

papers that achieve characterization results in models with endogenous status quo, but only in

the case where indifferences are largely ruled out, are Anesi, 2010, Diermeier and Fong, 2012, and

Acemoglu, Egorov, and Sonin, 2008.)

When indifferences are present because of the nature of the model, the literature is split on the

approach to resolution of indifferences. Kalandrakis (2004), Diermeier and Fong (2011), Anesi and

Duggan (2015) assume that a player supports a proposal when indifferent between the proposal

and status-quo. In contrast, Baron and Bowen (2013) argue that it is important to assume that

players vote against a proposal when indifferent. Anesi and Seidmann (2015) assume that players

are supportive of the proposal, when indifferent, depending on the point on the equilibrium path.

We assume that transitions to veto players unlock an arbitrarily small budget that may be used to

resolve indifferences. The fact that the results hold for any size of this additional budget provided

that it small enough, points to robustness of our equilibria.

Richter (2013) demonstrates that allowing waste in a dynamic legislative bargaining model can

allow the universal allocation to be supported. (Concavity of the utility function is important as

in such case an equal division maximizes the sum of players’utilities.) Bowen and Zahran (2012)

do not allow for waste. While Baron and Ferejohn (1989a) allow for waste, this does not change

the equilibrium outcomes as the last voting stage gives the proposer a lot of bargaining power. In

our paper, waste is allowed, yet does not happen in equilibrium allocations; this is not surprising

given that all allocations are reached in a one-step transition.

Finally, the literature is split between papers that assume a continuous (divide-a-dollar) policy

space and a discrete (e.g., finite) one. Baron and Ferejohn (1989a), Kalandrakis (2004), Baron and

Bowen (2013), Richter (2013), Anesi and Seidmann (2014), Nunnari (2016), among others, assume

that the policy space is continuous. Anesi (2010), Diermeier and Fong (2011, 2012), Anesi and

Duggan (2016) assume that the space is discrete. On one hand, our assumption of a finite space

considerably simplifies the analysis: in fact, the use of the von-Neumann-Morgenstern stable set in

all voting models that we are aware of requires discrete space. On the other hand, the limit set of

our equilibrium allocations when the size of the unit approaches zero has the same ‘class’structure

as the set of stable sets in Proposition 3, suggesting further robustness of this result.

6 Conclusion

The modern literature often considers constitutional constraints and other formal institutions as

instruments of property rights protection. Allston and Mueller (2008) proclaim: “A set of uni-

versally shared beliefs in a system of checks and balances is what separates populist democracies

from democracies with respect for the rule of law.”The relationship between veto power given to
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different government bodies, supermajority requirements, or additional checks and balances and

better protection seems so obvious that there is little left to explain. Yet, from a political economy

perspective, property rights systems should be understood as equilibrium outcomes rather than

exogenous fixed constraints. Legislators or, more generally, any political actors cannot commit to

entitlements, prerogatives, and rights. Rather, any allocation must be maintained in equilibrium.

By varying characteristics of the political institutions (here modeled as veto power and superma-

jority requirements in a legislative-bargaining model), one can assess the consequences for economic

institutions.

The legislative-bargaining approach suggests that a dynamic perspective may lead to a more

subtle understanding of the effects of veto players and supermajority rules. In a dynamic environ-

ment, they lead to emergence of endogenous veto groups: groups of players that sustain a stable

allocation in equilibrium. The society has a “class structure”: any non-veto player with a positive

wealth is part of a group of equally-endowed individuals who have incentives to protect each other’s

interests. The effect of exogenous constraints on endogenous veto groups is complex. One the one

hand, endogenous veto groups may protect each other in equilibrium even in the absence of formal

veto rights. One the other hand, adding more veto players may lead to more instability and policy

change if such additions upset dynamic equilibria where players were mutually protecting each

other.

Models of legislative bargaining with endogenous status quo seem to be a natural and very

fruitful approach to study the political economy of property rights protection. Our results point

to the importance of looking beyond formally defined property rights, and more, generally, beyond

formal institutions. While formal institutions provide better incentives for investment and produc-

tion, the incentives provided by informal equilibrium institutions are substantial as well. Thus, a

change in formal institutions might strengthen protection of property rights of designated players,

yet have negative consequences for protection of property rights of the others, and, as a result, a

negative overall effect.
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Online Appendix

A1 Proofs

We start with a few auxiliary Lemmas that help us prove Proposition 1. In what follows, we let ζti
denote transfers less transition costs, if any, obtained by player i in period t.

Lemma A1 Any protocol-free MPE σ is acyclic.

Proof of Lemma A1. Let φ = φσ be the equilibrium transition mapping generated by equilibrium

σ. Suppose that there is a cycle starting from x: φ (x) 6= x, but φl (x) = x for some l > 1; without

loss of generality, let l be the minimal such value, i.e., the length of the cycle. Let us first show

that for every i ∈ V ,
[
φj (x)

]
i

= xi for all j. Suppose not, then without loss of generality we may

assume to have chosen x such that xi ≥
[
φj (x)

]
i
for all j (so i gets his maximum allocation along

the cycle), and moreover that [φ (x)]i < xi. Then, in the period that started with xt−1 = x and

where in equilibrium, transition to φσ (x) is made, the continuation utility of player i satisfies (after

taking the expectation over possible realizations of the protocols)

U ti ≤ [φσ (x)]i + ζ + β
([
φ2
σ (x)

]
i
+ ζ
)

+ · · ·+ βl−1
([
φlσ (x)

]
i
+ ζ
)

+ βlU ti ,

where ζ ∈ [0, bε] is the maximum possible value of ζti over different periods. We thus have

U ti ≤
[φσ (x)]i + ζ + β

([
φ2
σ (x)

]
i
+ ζ
)

+ · · ·+ βl−1
([
φlσ (x)

]
i
+ ζ
)

1− βl

≤ (xi − 1) + ζ + β (xi + ζ) + · · ·+ βl−1 (xi + ζ)

1− βl

=
xi + ζ

1− β −
1

1− βl
<
xi + ζ

1− β − 1.

At the same time, if player i always vetoes all proposals in all subsequent periods, his continuation

utility would equal Ũ ti = xi
1−β . Since

ζ
1−β <

bε
1−β < 1, we have U ti < Ũ ti , which implies that player i

has a profitable deviation. Hence, it must be that
[
φjσ (x)

]
i

= xi for all j ≥ 1 and for all i ∈ V .
Since each veto player gets xi in each period, the equilibrium payoff of each player must equal

U ti = xi−δ
1−β . However, player i can always guarantee himself Ũ

t
i = xi

1−β , by vetoing all proposals.

Therefore, he has a profitable deviation, which is impossible in equilibrium. This contradiction

completes the proof. �

Lemma A2 Consider a one-step mapping φ, which is independent of protocols, and suppose that

the current period is t and the current allocation is x = xt−1. Suppose that some player i has
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[φ (y)]i > [φ (z)]i for some y, z ∈ A. Then player i prefers transition to y to transition to z, in
other words (expectations are with respect to realization of protocols),

yi + Eζti +

∞∑
τ=1

βτ
(
[φ (y)]i + Eζt+τi

)
> zi + Eζ̃ti +

∞∑
τ=1

βτ
(

[φ (z)]i + Eζ̃t+τi

)
, (A1)

where ζ and ζ̃ reflect the transfers on path that follow acceptance of y and z, respectively. Further-

more, the same is true if [φ (y)]i = [φ (z)]i, but yi > zi.

Proof of Lemma A2. Suppose [φ (y)]i > [φ (z)]i, but the inequality (A1) does not hold. Since

ξt+τi , ξ̃
t+τ
i ∈ [0, bε] for any τ ≥ 0, this must imply

yi +
∞∑
τ=1

βτ [φ (y)]i ≤ zi +
∞∑
τ=1

βτ [φ (z)]i +
bε

1− β . (A2)

Since [φ (y)]i > [φ (z)]i implies [φ (y)]i − [φ (z)]i ≥ 1, this implies

yi +
β

1− β ≤ zi +
bε

1− β .

Given that zi−yi ≤ b, this implies β−bε1−β ≤ b, which, since we assumed bε < 1−β, implies 2β−1
1−β ≤ b,

which is equivalent to β ≤ 1− 1
b+2 , a contradiction. This proves the first part of the Lemma.

Now suppose that [φ (y)]i = [φ (z)]i, but yi > zi. As before, assume not, in which case (A2)

would hold. Now, given that yi − zi ≥ 1, (A2) would imply 1 ≤ bε
1−β , which contradicts our

assumption that bε < 1− β. This contradiction completes the proof. �

Lemma A3 Suppose that in protocol-free MPE σ, x ∈ A is such that x 6= φσ (x) = φ2
σ (x). Then

φσ (x) B x.

Proof of Lemma A3. Denote y = φσ (x). Let us first prove that {i ∈ N : yi ≥ xi} ∈ W.
Suppose, to obtain a contradiction, that this is not the case. Take some veto player l and consider

protocol π where only player l proposes, and only once (so π = (l)). Under this protocol, alternative

y must be proposed, and subsequently supported at the voting stage by a winning coalition of

players. Now consider any agent i such that yi < xi, which implies xi − yi ≥ 1. If yi is accepted,

agent i gets continuation utility (assuming the current period is t) that satisfies

U ti ≤ yi + bε+ β (yi + bε) + · · · = yi + bε

1− β .

If, however, yi is rejected, then the continuation utility satisfies

Ũ ti ≥ xi + βyi + β2yi + · · · = xi +
β

1− β yi.
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Since bε < 1− β, we have

U ti − Ũ ti ≤
yi + bε

1− β −
(
xi +

β

1− β yi
)

= yi − xi +
bε

1− β ≤
bε

1− β − 1 < 0.

Therefore, such player i prefers the alternative y to fail at the voting stage. This implies that

U ti − Ũ ti ≥ 0 is possible only if yi ≥ xi, and by assertion, the set of such players does not form a

winning coalition, which means that y cannot be accepted at this voting stage. This contradicts

that σ is equilibrium, which proves that {i ∈ N : yi ≥ xi} ∈ W.
It remains to prove that for some i ∈ V , yi > xi and that ‖φσ (x)‖ ≤ ‖x‖. Both results

immediately follow from that transition to φσ (x) is feasible and is not blocked by any veto player

because of transition cost. Now, by definition of the binary relation B, we have φσ (x) B x, which

completes the proof. �

Lemma A4 Every protocol-free equilibrium is simple, i.e., for every x ∈ A, φjσ (x) = φσ (x) for

all j ≥ 1.

Proof of Lemma A4. Suppose that there is a protocol-free equilibrium σ that is not simple,

which means that there is x ∈ A such that φ2
σ (x) 6= φσ (x). By Lemma A1, σ is acyclic, and

therefore the path starting from x: φσ (x) , φ2
σ (x) , . . . stabilizes after no more than |A| iterations,

and thus its limit φ∞σ (x) = φ
|A|
σ (x) is well-defined. Denote the set of all such x ∈ A by Y , so

Y =
{
x ∈ A : φ2

σ (x) 6= φσ (x)
}
6= ∅.

Take allocation y ∈ Y such that φ∞σ (y) = φ2
σ (y) (notice that such y exists: indeed, if we take any

x ∈ Y and the minimal number such that φ∞σ (x) = φjσ (x) is j > 2, then we can take y = φj−2
σ (x)).

Notice that we must have
∑

i∈V
[
φ2
σ (y)

]
i
>
∑

i∈V [φσ (y)]i, for otherwise the transition from φσ (y)

to φ2
σ (y) would be blocked by some veto player due to the cost of transition.

Consider veto player l for whom
[
φ2
σ (y)

]
l
> [φσ (y)]l. Suppose that in period t where the

status quo is y, protocol π = (l) is realized. Since σ is protocol-free, this must imply that player l

proposes alternative allocation φσ (y) and some feasible transfers ξ, and this proposal is subsequently

accepted. Now suppose that protocol π′ = (l, l) is realized, and suppose that the game reached the

second stage of the protocol. This subgame is isomorphic to one where protocol π has just been

realized; consequently, in equilibrium, it must be that φσ (y) is proposed and accepted.

Let us prove that if in the second stage, the society decides to move to φσ (y), then in the first

stage player l would be better off proposing φ2
σ (y) and some feasible vector of transfers ξ̃, which

would be accepted. Notice that in the following period, a transition from φσ (y) to φ2
σ (y) would
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take place, which means that each player would receive a certain vector of transfers ζ̃ (we must

have . These vectors of transfers satisfy

‖ξ‖+ ‖ζ‖ ≤ ε

(
max

(∑
i∈V

[φσ (y)]i −
∑
i∈V

yi, 0

)
+ max

(∑
i∈V

[
φ2
σ (y)

]
i
−
∑
i∈V

[φσ (y)]i , 0

))

≤ ε

(∑
i∈V

[
φ2
σ (y)

]
i
−
∑
i∈V

yi, 0

)
,

consequently, ξ + ζ is a feasible vector. Furthermore, since player l would propose ξ at the last

stage, he must get a transfer strictly larger than the cost of transition, as in equilibrium he only

keeps the other players indifferent, so ξi > δ. Thus, there exists a small value α > 0 such that if

we define χ by χi = ξi + ζi + α for i 6= l and χl = ξl + ζ l − (n− 1)α, we would still get a feasible

vector of transfers.

Now, consider any i ∈ N \{l} such that
[
φ2
σ (y)

]
i
≥
∑

i∈V [φσ (y)]i. Since (ξi − δ)+β (ζi − δ) >
ξi + ζi − δ, this player is better off if φ2

σ (y) is accepted at the first stage. For player l, the same

is true, because
[
φ2
σ (y)

]
l
> [φσ (y)]l. Since the transition from to φ2

σ (y) would happen in a period

starting with φσ (y), Lemma A3 implies φ2
σ (y) B φσ (y), but this implies that the set of players

who are better off if φ2
σ (y) is accepted at the first stage is a winning coalition. This means that

φ2
σ (y) would be accepted if proposed, which implies that player l has a profitable deviation. This

is a contradiction that completes the proof. �

Lemma A5 If σ is a simple protocol-free MPE, then for all x ∈ A either φσ (x) = x or φσ (x) B x.

Proof of Lemma A5. By Lemma A1, σ is acyclic, and by Lemma A4 it is simple. Then for any

x ∈ A, we must have φ2
σ (x) = φσ (x). Now if φσ (x) = x, the result is automatically true, and if

φσ (x) 6= x then it follows immediately from Lemma A3. �

Lemma A6 Suppose that protocol-free MPE σ is played, and suppose that in period t, xt−1 = x.

Then if there exists y ∈ A such that φσ (y) = y and y B x, then x cannot be stable: φσ (x) 6= x.

Proof of Lemma A6. Suppose, to obtain a contradiction, that φσ (x) = x. Let l be a veto player

such that yl > xl (such l exists as y B x). Consider protocol π = (l) (or any protocol ending with

l). In equilibrium, each player i gets U ti = xi
1−β ; they would get the same amount if the proposal is

made and is rejected.

If player l makes proposal (y, ξ), where ξi = (‖y‖−‖x‖)ε
n . Since ‖y‖ − ‖x‖ ≥ 1 and δ < ε

n , we

have ξi > δ for all i ∈ N , so ξi is a feasible transfer. This means that each player i for which

yi ≥ xi would get
yi

1−β + ξi − δ if the proposal is accepted, which exceeds U ti that he would get if
the proposal is rejected. Since y B x, such players form a winning coalition, which implies that
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the proposal (y, ξ) would be accepted if made. Then player l has a profitable deviation, which is

impossible. This contradiction completes the proof. �

Proof of Proposition 2. Part 1. Take any simple protocol-free MPE σ, and let Sσ =

{x ∈ A : φσ (x) = x}. By Lemma A1, it is nonempty. Let us prove that it satisfies internal stability.
Suppose that for some x, y ∈ Sσ, we have y B x. Then by Lemma A6, φσ (y) = y implies φσ (x) 6= x,

which contradicts that x ∈ Sσ. This contradiction proves that Sσ satisfies internal stability.
Let us now show that Sσ satisfies external stability. Take x /∈ Sσ; then by Lemma A5, φσ (x) B

x. Since σ is simple, φσ (x) ∈ Sσ, which shows that there exists y ∈ Sσ such that y B x. This

proves that Sσ satisfies external stability. This proves that Sσ is von Neumann-Morgenstern stable

set. �

Lemma A7 If σ is a protocol-free MPE, then ‖φσ (x)‖ = ‖x‖ for all x ∈ A.

Proof of Lemma A7. Suppose not, then there exists x ∈ A for which ‖φσ (x)‖ < ‖x‖. Since σ
is simple by Lemma A4, we have φσ (x) ∈ S. Take some veto player l and consider the protocol
π = (l); at this stage, player l must propose φσ (x) and it must be accepted. Notice, however, that

player l may propose allocation y that has yl = [φσ (x)]l + 1 and yi = [φσ (x)]i for all i 6= l, and

split the extra ε of available transfers equally among players. By Proposition 3, such allocation y

is stable as well, consequently, all players would be strictly better off from proposal y (with the

corresponding transfers) than the equilibrium proposal φσ (x). Thus, if a winning coalition was

weakly better off from supporting φσ (x), it is strictly better off supporting y. Thus, player l has a

profitable deviation at the proposing stage, which is a contradiction that completes the proof. �

Proof of Proposition 1. Part 1. Consider the unique von Neumann-Morgenstern stable set

for dominance relation B, S (its existence and uniqueness follow from Proposition 3 proven in the

main text. Take any mapping φ such that φ (x) = x for any x ∈ S and for any x /∈ S, φ (x) ∈ S and
φ (x) B x (existence of such mapping follows from external stability of mapping S implying that for
any S we can pick such φ (x) ∈ S) and, moreover, ‖φ (x)‖ = ‖x‖ (existence of such x follows from
Proposition 3 as well, as otherwise one can add ‖x‖− ‖φ (x)‖ units to some veto player and get an
allocation in S with the required property). Let us prove the following (stronger) result: there is

protocol-free MPE σ such that φσ = φ (notice that σ will in this case be simple, because φ2 = φ.)

We construct equilibrium σ using the following steps. For each possible status quo x ∈ A and

each protocol π ∈ Π, we define transfers that each player is supposed to get in that period. We

use allocations and these transfers utilities to define continuation utilities. After that, we use these

continuation utilities to define strategies players would use for each x ∈ A and each π ∈ Π. We

then check that under these strategies, players indeed get the transfers that we defined, and no
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player has a one-shot deviation. This would prove that σ is MPE, which would be protocol-free by

construction.

If x /∈ S, then let Vx = {i ∈ V : [φ (x)]i = xi} and let vx = |Vx|. Furthermore, let Z =∑
i∈V [φ (x)]i −

∑
i∈V xi > 0. Define transfers ξi (x, π) as follows:

ξi (x, π) =


δ if i /∈ Vx ∪ {l} ;

δ + β Zε−nδ
(1−β)v+βvx

if i ∈ Vx \ {l} ;
Zε−

∑
j 6=l ξi (x, π) if i = l.

(A3)

Given these transfers, the continuation utilities (at the beginning of the period, before protocol is

realized), is given by

Vi (x) = [φ (x)]i +
∑
π∈Π

ξi (x, π) +
β

1− β [φ (x)]i . (A4)

Let us now define strategies as follows. Suppose that in period t, the current status quo is

x = xt−1 and protocol π was realized. To define strategies, consider the game with timing from

Section 2, but define payoffs in case transition to some y ∈ A and set of transfers ξ is decided upon

given by

Ui (y, ξ) = yi + ξi + βVi (y)

(in other words, consider the game truncated at the end of the period, i.e., a finite game, but with

payoffs coinciding with continuation payoffs of the original game).

Define strategies by proceeding by backward induction, with a few exceptions. In the last stage,

the proposer π|π| proposes to transfer to φ (x) (or to stay, if φ (x) = x), and offers transfers ξi (x, π).

We require that all players who are at least indifferent vote for the proposal to pass. If any other

proposal is made, as well as in all previous stages, we require that players play any strategies

consistent with backward induction, except that we require that players vote ‘no’when indifferent.

Let us show that the players have no incentive to deviate for any strategy that we defined.

One-shot deviation principle applies, and one can immediately check that after all transitions were

declined, the strategies we defined form an equilibrium in the subgame, with each player i getting,

in expectation, ξ̌i. Now consider the two cases, φ (x) = x and φ (x) 6= x, separately.

First, consider the case φ (x) 6= x. Let us check that at the last stage, it is a best response for

any player i with [φ (x)]i ≥ xi to accept, which would imply that this proposal is indeed accepted.
Indeed, both accepting and rejecting results in getting the same allocation [φ (x)]i in two periods,

thus, if for some player i, [φ (x)]i > xi, then by Lemma A2 he is strictly better off if φ (x) is

accepted. Consider a player i with [φ (x)]i = xi. If i /∈ V , then he gets transfer ξi (x, π) = δ if φ (x)

is accepted, which is just enough to compensate for the transition cost, but he gets the same in the

following period if the proposal is rejected, which implies that he is indifferent, so supporting φ (x)

is a best response. If i ∈ Vx \ {l}, then he gets the transfer ξi (x, t) if the alternative is accepted,

and it makes him exactly indifferent between accepting and rejecting. Finally, if i /∈ Vx or i = l,
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the player is strictly willing to accept. Thus, for all veto players, it a best response to support the

alternative. Since φ (x) B x, the set of players with [φ (x)]i ≥ xi is a winning coalition. Finally,

‖φ (x)‖ = ‖x‖, so the transition is feasible. Consequently, there are best responses that result in
φ (x) being accepted.

Taking one step back, let us verify that it is a best response for player l = π|π| to propose φ (x).

First, since he prefers φ (x) to be accepted rather than rejected, he would only propose an alternative

y if this alternative will be accepted at the voting stage. Suppose there is such alternative; it suffi ces

to prove that proposing it does not make the player l better off. By Lemma A2, if [φ (y)]i < [φ (x)]i

for some player i, then this player would be better off if y is rejected. Consequently, for y to be

accepted in equilibrium, it is necessary that [φ (y)]i ≥ [φ (x)]i for a winning coalition of players, in

particular, for all veto players i ∈ V .
Let us prove that [φ (y)]i = [φ (x)]i for all i ∈ V ; to do so, suppose it is not the case, meaning that

for some j ∈ V , the strict inequality [φ (y)]j > [φ (x)]j holds. In addition, notice that ‖y‖ ≤ ‖x‖
since transition to y is feasible, but ‖φ (y)‖ ≤ ‖y‖ (because transition to φ (y) would be feasible)

and ‖x‖ = ‖φ (x)‖ (by assumption that transition to φ (x) does not result in waste). This implies

‖φ (y)‖ ≤ ‖φ (x)‖ which, together with {i ∈ N : [φ (y)]i ≥ [φ (x)]i} ∈ W and [φ (y)]j > [φ (x)]j

imply φ (y) B φ (x). Since φ (x) , φ (y) ∈ S, this contradicts internal stability of S, which proves
that [φ (y)]i = [φ (x)]i for all i ∈ V .

Notice that for the proposer, player l = π|π|, to prefer transition to y to transition to φ (x), it

must be that yl = [φ (y)]l = [φ (x)]l, for otherwise we would get a contradiction with Lemma A2.

Consider two possibilities. If φ (y) = y, then for player l to be better off, he needs to get a larger

transfer χl > ξl (x, π). However, since all other veto players in Vx were indifferent between accepting

their transfer ξi (x, π) and rejecting, they need to get at least this transfer as well; since other players

need to get χi ≥ δ as well, such deviation cannot be profitable. If, however, φ (y) 6= y, then φ (y)

will be reached in the following period. Notice that for each i ∈ V it must be that yi ≥ xi, for

otherwise this player would block the transition. This means, in particular, that for players in Vx,

xi = yi = φ (xi) = φ (yi) holds, and they therefore need discounted transfer χti + Eχt+1
i ≥ ξi (x, π)

in order to be willing to accept. However, since the transfers available over the two periods are

capped at Zε, player l cannot be better off from such deviation. Therefore, proposing φ (x) at the

last stage is a best response.

We now prove that for any proposal z made at the previous stage by player π|π|−1, the set of

players who strictly prefer transition to z does not form a winning coalition. Indeed, suppose that

it is; then by Lemma A2 it must be that for all i ∈ V , [φ (z)]i = zi = yi, for otherwise we would have

φ (z) B y, which would contradict internal stability of S. This implies that z = φ (z), for otherwise

transition from z to φ (z) would be impossible; furthermore, the set of transfers χ proposed at this

stage must coincide with ξi (x, π). If so, if some player i /∈ V strictly prefers transition to z, this
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implies that zi > yi for such player. However, this would contradict the characterization results

from Proposition 3. This shows that it is a best response for at least n−k+1 players to vote against

proposal z, which implies that there is an equilibrium in this subgame where it is not accepted.

Proceeding by backward induction, we can conclude that there is an equilibrium in this finite game

where no proposal is accepted until the last stage, where y is accepted.

Now consider the game with x ∈ S. We allow any strategies, but require that players vote

against the proposal when indifferent. Now, again by backward induction, we can conclude that

if a winning coalition strictly prefers to accept some proposal z, then either φ (z) B x, which

contradicts internal stability of S, or [φ (z)]i = zi = xi for all i ∈ V , in which case veto players
are actually worse off because of transition costs. Thus, there is an equilibrium in the finite game

where no proposal is accepted, so x remains stable.

Lastly, it is straightforward to check that if the strategies are played, then in every period,

transfers are indeed given by ξ (x, π) defined above, and thus continuation utilities are indeed at

the beginning of period with x as the status quo are V (x). This means that if these strategies

are played in the original game Γ, no player has a one-shot deviation. Since by construction the

strategies are Markovian and transitions do not depend on the realization of the protocol, then σ

is a protocol-free MPE. Moreover, it is simple and effi cient by construction, which completes the

proof of existence of such equilibrium.

Part 2. Follows from Lemma A1.

Part 3. Follows from Lemma A4.

Part 4. Follows from Lemma A7.

Proof of Proposition 4. Part 1. Lemma A5 implies that φ (y) B y; in particular, for

each j ∈ V , [φ (y)]j ≥ yj and for at least one of them the inequality is strict. Suppose, to obtain

a contradiction, that
∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ < d − 1; then
∣∣∣{j ∈M : [φ (y)]j < xj

}∣∣∣ < d.

But we also have that for each j ∈ V , [φ (y)]j ≥ xj , with at least inequality strict. This means

φ (y) B x, which is impossible, given that x, φ (y) ∈ S. Now suppose, to obtain a contradiction, that∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ > d−1. But then for at least d agents [φ (y)]j < yj , which contradicts

φ (y) B y. This contradiction proves that
∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ = d − 1. It remains to

prove that yi ≤ [φ (y)]i < xi. Suppose not, i.e., either [φ (y)]i < yi or [φ (y)]i ≥ xi. In the first case,
we would have that at least d agents have [φ (y)]j < yj , contradicting φ (y) B y. In the second

case, [φ (y)]i ≥ xi, coupled with the already established
∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ = d − 1,

would mean
∣∣∣{j ∈M : [φ (y)]j < xj

}∣∣∣ = d − 1, and therefore φ (y) B x. This is impossible, and

this contradiction completes the proof.

Part 2. This proof is similar to the proof of internal stability in the proof of Proposition 3.

Denote φ (y) = z; then z B y and x, z ∈ S. We know that x and z have the group structure by Part
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2 of Proposition 3; then let the r groups be G1, . . . , Gr for x and H1, . . . ,Hr for z, respectively.

Without loss of generality, we can assume that each set of groups are ordered so that xGj and zHj
are non-increasing in j for 1 ≤ j ≤ r. Suppose, to obtain a contradiction, that for some agent

i′ ∈ M with xi′ ≤ yi < xi, zi′ < yi′ . In that case, among the set {j ∈M : xj ≥ xi} there are at
most d− 1 agents with zj < yj ; similarly, among the set {j ∈M : xj < xi} there are at most d− 1

agents with zj < yj .

We can now proceed by induction, similarly to the proof of Proposition 3, and show that

xGj ≤ zHj for all j. Base: suppose not, then xG1 > zH1 ; then xG1 > zs for all s ∈ M . But this
mean that for all agents l ∈ G1 have xl > zl; since their total number is d, we get a contradiction.

Step: suppose xGl ≤ zHl for 1 ≤ l < j, and suppose, to obtain a contradiction, that xGj > zHj .

Given the ordering of groups, this means that for any l, s such that 1 ≤ l ≤ j and j ≤ s ≤ r,

xGl > zHs . Consequently, for a agent i
′′ ∈

⋃j
l=1Gl to have zi′′ ≥ xi′′ , he must belong to

⋃j−1
s=1Hs.

This implies that for at least jd − (j − 1) d = d agents in
⋃j
l=1Gl ⊂ M , zi′′ ≥ xi′′ does not hold

(denote this set by D. If that is true, it must be that
⋃j
l=1Gl includes all the agents in D, including

agents i and i′ found earlier, and in particular, xGj ≤ yi < xi. But on the other hand, these d

agents are not in
⋃j−1
s=1Hs. In particular, this implies that for any i′′ ∈ D, zi′′ < xGj , but xi′ ≥ xGj ,

which means zi < xi′ . But zi ≥ yi by Part 1 of this Proposition, so yi < xi′ . But this contradicts

with the way we chose i′ to satisfy xi′ ≤ yi < xi. This proves that such i′ cannot exist, and thus

the d− 1 agents other than i who are made worse off satisfy xj ≥ xi. �

Proof of Proposition 5. This result immediately follows from the formulas m = n − v,

d = n− k + 1, r = bm/dc and from Proposition 3. �

Proof of Proposition 6. Part 1. If k < n, then d > 1. An allocation x is stable only if

|{j ∈M : xj > 0}| is divisible by d. If x is stable and some agent i with xi > 0 is made a veto

agent, then the set |{j ∈M ′ : xj > 0}| = |{j ∈M : xj > 0}| − 1 and is not divisible by d, thus x

becomes unstable. At the same time, if xi = 0, then the group structure for all groups with a

positive amount is preserved; thus x remains a stable allocation.

Part 2. In this case, the size of each group in x is d > 2, and every positive amount is possessed

by either none or d non-veto players. If k increases by 1, d decreases by 2. Then allocation x becomes

unstable, except for the case x|M = 0. �
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A2 Examples

In the examples below, we do not explicitly consider costs of transition and transfers explicitly, as

they would complicate the exposition. Unless specified otherwise, each of the examples below may

be modified to accommodate.

Example A1 (If costs of transition are assumed to be 0) Suppose n = 3, v = 1, k = 2,

so there are three players, one of them veto player, and the rule is simple majority rule. Assume

for simplicity that there is only one unit that initially belongs to a non-veto player (say, player

#1), so the initial allocation is (1, 0; 0). Then there would be an equilibrium where the veto player

(proposing last) would propose to move the unit from player #1 to player #2 if it belongs to player

#1, and then propose to move it the other way around if it belongs to player #2. Such proposal

would then be supported by the veto player and the other player who receives the unit.

To complete the description of strategies, we can also assume that any proposal made at a

protocol stage before the last one, except for the proposal to transfer the good to the veto player,

would be vetoed by the veto player (he is indifferent anyway). On the other hand, if a proposal

to transfer the unit to the veto player is ever made, the two non-veto players vote against this

proposal. They both have incentives to do so, because the equilibrium play give them the unit in

possession every other period, which is better than having the unit taken away.

Thus, without transaction costs, it is possible to have cyclic equilibria, which do not seem

particularly natural.

Example A2 (Example where non-veto player proposes last) Suppose n = 11, v = 1,

k = 9, so there are eleven players, one of them veto player, and the rule requires agreement of

nine players. The size of a minimal blocking coalition is then three. In this case, in any protocol-

free MPE (where the last proposal is done by veto player), allocation (3, 3, 3, 2, 2, 2, 1, 1, 1, 10; 0) is

unstable, and in any equilibrium, it results in a transfer to an allocation where all players except

for player #10 (the one possessing 10 units in the beginning of the game) are better off. To

simplify the following argument, let us focus on the equilibrium where an immediate transition to

(3, 3, 3, 2, 2, 2, 1, 1, 1, 0; 10) takes place.

Consider, however, what would happen if a protocol has a non-veto player propose last. Specif-

ically, suppose the protocol has two players: first the veto player (player #11) proposes, and

then the non-veto player #6 proposes. Consider the last stage and suppose that player #6,

instead of proposing to move to (3, 3, 3, 2, 2, 2, 1, 1, 1, 0; 10) or to stay in the current allocation

(3, 3, 3, 2, 2, 2, 1, 1, 1, 10; 0), instead proposes to transfer to allocation (3, 3, 1, 2, 2, 3, 1, 1, 2, 4; 6); in

other words, in addition to moving some units to the veto player, he also proposes to take two
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units from player #3 and takes one himself and gives the other one to player #9 in order to ‘buy’

his vote. This proposal leads to a stable allocation, and it makes only two players (player #3

and player #10) worse off. It therefore would be accepted; the veto player would agree, because

it gives him six of the units right away, and he would be able to get the other four the following

period. (Notice that player #4 might prefer not to get more units for himself in the short run, out

of fear that having four or more units in the next period would make him a candidate for complete

expropriation.)

Taking one step back, consider the stage where the veto player makes the proposal. He would

use the opportunity to get the ten units belonging to him immediately (which hurts player #10).

However, he would not be able to make the society move to (3, 3, 3, 2, 2, 2, 1, 1, 1, 0; 10), which they

are supposed to do in equilibrium, because doing so would make players #6 and #9, in addition to

#10, worse off, and thus such proposal would not gather nine votes needed to pass. This means that

by allowing non-veto players to propose, in some examples we would lose existence of protocol-free

MPE.

This example relies on the fact that non-veto players are not indifferent between different stable

allocations, and would want to make the society reallocate the units in their favor. As the results

in this paper show, these moves cannot happen in protocol-free equilibria studied in the paper.

Consequently, we do not view such possibility to be natural or robust, and impose the assumption

that non-veto players cannot be last ones in a protocol to avoid such issues and obtain existence of

protocol-free equilibria.

Example A3 (Example with fixed protocol) Suppose n = 3, v = 1, k = 2, so there are three

players, one of them veto player, and the rule is simple majority. Consider the allocation (1, 1; 0),

where the veto player possesses nothing initially. In a protocol-free equilibrium, this allocation

would be stable.

Consider a game where the protocol is fixed at π = (1, 3) in each period (we can allow the

second player to propose in-between the other two and get the same result). We claim that the

following transitions are possible in an equilibrium. Player #1 is recognized first, and he proposes

to move to (1, 0; 1), which is supported by him and the veto player, and in the following period

the veto player gets all the surplus, as usual. If the proposal by player #1 is rejected, however,

then player #3 is recognized and proposes to move to (0, 1; 1), and this proposal is supported by

himself and player #2. Thus, in equilibrium, the society moves from (1, 1; 0) to (1, 0; 1), and then

to (0, 0; 2).

The reason for why this example works is the following. Player #1 knows that if he does not

promise the veto player a transfer of one unit, then he would lose his possession immediately (later
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the same period), whereas delivering the unit to the veto player allows him to postpone for another

period. The veto player knows that he cannot take both units at once (as players #1 and #2 would

like to stick to them for another period); however, if he allows player #2 to keep his unit, the latter

would not mind participating in expropriation of player #1, because in either case he keeps his unit

for the current period and loses it in the following one, along the equilibrium path. Furthermore,

if these strategies are played, preserving the status quo (1, 1; 0) is not an option. Thus, there is an

equilibrium where non-veto players participate in expropriation of each other.

Notice that this transition (from (1, 1; 0) to (1, 0; 1)) cannot arise in a protocol-free equilibrium

for the following reason. Suppose the protocol only involves the veto player. In such equilibrium, he

needs to propose to transit to (1, 0; 1). But player #2 will oppose it for obvious reasons, and player

#1 would know that if he agrees, then he keeps his unit for one extra period (the current one),

but if he rejects, then in protocol-free MPE he faces the same transition to (1, 0; 1) the following

period, and thus he would be able to keep the unit for two extra periods, which he obviously prefers.

Consequently, such transition would be impossible in this protocol, which contributes to the idea

that such transitions are not particularly robust.

Example A4 (Example of equilibrium that is not Markov perfect) Suppose n = 3, v = 1,

k = 2, so there are three players, one of them veto player, and the rule is simple majority. Consider

the allocation (1, 1; 0), where the veto player possesses nothing initially.

Suppose that the veto player is always the proposer, so the protocol is π = (3). Then the

following transitions may be supported in equilibrium. As long as the allocation is (1, 1; 0), the

veto player proposes to move to (1, 0; 1) if the period is odd and to move to (0, 1; 1) if the period is

even, and the proposal is supported by him and by the non-veto player who keeps the unit (player

#1 in odd periods and player #2 in even periods). Once this transition has taken place, in the

following period, the veto player gets everything, thus moving to (0, 0; 2).

The rationale for non-veto players to support such proposals is that they get to keep their unit

for exactly one extra period, regardless of the outcome of the voting. Thus, they are indifferent

in such situations, in which case the veto player is able to allocate a small transfer to break this

indifference. As a result, there is a SPE where the society moves to (1, 0; 1) and then to (0, 0; 2);

it is supported by the threat of a move to (0, 1; 1) (and then again to (0, 0; 2)) if this proposal is

rejected.

Two comments are warranted. First, this SPE does not require knowledge of all history, in

particular, players’proposals and votes. It only requires that the veto player acts differently in

odd and even periods. In particular, this is a dynamic equilibrium (DE) in the sense of Anesi and

Seidmann (2015), as if the players are allowed to condition their moves on the past history of
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alternatives, they of course can make use of the length of this history. Second, such transitions

are impossible in a protocol-free equilibrium. Indeed, the proposal to move to (1, 0; 1) made by

the veto player would not be accepted if player 1 knew that the veto player would make this very

proposal again in the following period, rather than proposing (0, 1; 1).

Example A5 (Example with random recognition of players but without protocol-free

requirement) Suppose n = 5, v = 2, k = 3, so there are five players, two of them veto players,

and the rule is simple majority. Consider the allocation (1, 1, 1; 0, 0), where the veto players possess

nothing initially. In a protocol-free equilibrium, this allocation would be stable.

Consider a game, where in each period, one player is recognized as the proposer. Furthermore,

assume for simplicity that only veto players may be recognized, and each of them is recognized with

probability 0.5. Then the following strategies would form a MPE. Suppose that player #4, if he is

the agenda-setter, proposes to move to (2, 0, 0; 1, 0), and this proposal is supported by the two veto

players and player #1. Similarly, if player #5 gets a chance to propose, he proposes to move to

(0, 2, 0; 0, 1), which is supported by the two veto players and player #2. If either of the proposals

is accepted, then in the following period the society moves to (0, 0, 0; 2, 1), where the veto players

possess everything.

To understand why player #1 supports the transition to (2, 0, 0; 1, 0), notice that in this case,

he gets payoff 2 in the current period and 0 thereafter. If he rejects, then he keeps 1 in the current

period, but in the next period he faces a lottery between 2 and 0, and gets 0 thereafter. His

expected continuation payoff is therefore 1 + β 2+0
2 = 1 + β < 2. Consequently, he prefers to agree

on the transition to (2, 0, 0; 1, 0). For the same reason, player #2 would support the transition to

(0, 2, 0; 0, 1). Notice that neither of the veto player can do better by choosing some other proposal,

and therefore these transitions are possible in equilibrium.

Notice that if we impose the requirement that equilibria be protocol-free, which in this case

would mean that the transition is the same regardless of the player that gets to make the proposal,

such equilibrium will be ruled out. Thus, the requirement that equilibria do not depend on the

protocol is important for our results, but also these equilibria may be considered more robust than

the one in this example.
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A3 Characterization for n = 3, 4, 5

The following tables contain a summary of stable allocations if the number of players is small

(n = 3, 4, 5). The nontrivial cases, where non-veto players form groups and protect each other, are

highlighted.
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