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Abstract

In many contracting settings, actions costly to one party but with no direct benefits to the other
(money-burning) may be part of the explicit or implicit contract. A leading example is bureaucratic
procedures in an employer-employee relationship. We study a model of delegation with an informed
agent, where the principal may impose money-burning on the agent as a function of the agent’s choice
of action, and show that money-burning may be part of the optimal contract. This result holds even if
action-contingent monetary transfers are possible, as long as transfers from the principal to the agent
are bounded from below (as in limited liability or minimal wage requirements). In fact, the optimal
contract can involve a combination of both effi cient monetary incentives and ineffi cient nonmonetary
incentives through money burning. Our model delivers some results novel to the delegation literature.
First, money-burning is more likely if the principal is more “sensitive” to the choice of action than the
agent. This is consistent with the perception that there is more bureaucratization in large organizations.
Second, money-burning is more likely if the agent’s limited liability constraint is tighter relative to his
participation constraint. This implies that a higher minimum wage distorts employment contracts towards
using socially wasteful nonmonetary incentives, leading to a Pareto inferior outcome as the agent is still
held down to his reservation value through increased money burning.
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1 Introduction

In many economic and political interactions, the use of monetary incentives is ruled out or

limited. For example, members of a legislation typically receive salaries that compensate them

financially for their work, but their payments do not depend on how they vote, or how many

amendments they make. It is even more common that in an economic relationship financial

incentives are possible, but they are constrained. For example, a minimum wage requirement

bounds monetary transfers from employers to employees from below. Another common source

of limitations on monetary transfers is that one or both parties might be liquidity-constrained.1

Despite these restrictions on transfers, nonmonetary incentives are often available, and thus may

be used to align the interests of participants. In many settings these incentives take the form

of imposing activities that are costly for one agent and do not directly benefit any of the rest.

Following the standard terminology, we refer to such activities as money burning.

To study such situations formally, we consider a scenario where an uninformed principal

delegates the task of choosing the action from a unidimensional action space to an agent, who

before making the decision receives private information about a state variable. The state variable

affects the well-being of both parties in a way that a higher state is associated with a higher

optimal action choice for both of them. The principal delegates by offering the agent a contract

which for any possible action prescribes a nonnegative amount of money burning the agent has to

make if he takes that action. We investigate this contracting problem in two different contexts:

first, we assume monetary transfers conditional on the action choice are completely ruled out

(only an ex ante wage payment is possible); second, we add the possibility of such transfers.

Throughout the paper we assume that the principal has to satisfy a participation constraint for

the agent, and that the amount of monetary transfer from the principal to the agent is bounded

from below.2 The latter can come from a nonnegativity constraint on transfers to the agent,

liquidity constraints on the part of the agent, or a minimum wage requirement.

The model we describe is applicable to many different situations. One important example

is organizations, where a primary form of providing such incentives is bureaucracy. If managers

of organizational units are biased towards requesting a higher budget for their units than what

would be optimal for the organization, a manager applying for a higher budget might be required

to fill out more paperwork, or get stamps of approval from different offi ces. In fact, it is a common

1For this reason, cash penalties are hardly ever used in employment contracts, except for employees with very
large incomes relative to the damage that their actions can cause (p.249 of Milgrom and Roberts (1992)).

2 In some applications it is reasonable to drop one of these constraints, which corresponds to the limiting case
of our model in which the corresponding lower bound is −∞.
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perception that there is an excess of bureaucratic procedures.3 Another application of our model

is situations in which an activist group can launch a campaign or boycott against a company

violating environmental or human rights standard, as in Baron and Diermeier (2007) and Abito

et al. (2015).4 Our model facilitates investigating such situations in a contract theory setting,

assuming that the activist group can ex ante commit to a money-burning scheme. Lastly,

academic journals might use editorial delay, as opposed to submission fees, to deter excessive

submissions of low-quality manuscripts (see Azar (2006)).

Within the delegation literature, launched by the seminal work of Holmstrom (1977), the

papers closest to ours are Athey et al. (2004), Amador et al. (2006) and Amador and Bagwell

(2013a,b).5 Athey et al. (2004), Amador et al. (2006) and Amador and Bagwell (2013a) feature

models that are similar to ours, but they impose restrictions that ultimately imply that money

burning is not part of the optimal contract. In contrast, our paper suggests that the use of money

burning can be widespread in many different types of situations. Amador and Bagwell (2013b,

from now on AB) is the only other paper in the delegation literature, as far as we know, that

considers cases when the optimal contract involves money-burning. Our analysis is more general

in the following dimensions: (i) the results that we provide outside the uniform-quadratic setting

(the results in Section 4) allow for more general payoffs than AB restricts attention to; (ii) we

allow for a lower bound constraint on ex ante transfers from the principal, such as a minimal

wage; (iii) we provide an extension that allows for state-contingent monetary transfers; (iv) in

the uniform-quadratic setting with no contingent transfers we provide a full characterization of

the optimal contract, while AB only focuses on specifications when the optimal contract is one

of two particular kinds. On the other hand, AB offers suffi cient conditions for the optimality of

the latter two kinds of contracts for more general specifications than the uniform-quadratic.

Our analysis reveals that money-burning is more likely to be used as an incentive device when

the principal’s utility, measured in monetary terms, is more sensitive to the implemented action

3 Indeed, most of the related economic literature takes this stance, looking for explanations for excessive bu-
reaucratization as in Strausz (2006), or connect bureaucracy and corruption as in Banerjee (1997) and Guriev
(2004). In contrast, in this paper we suggest that bureaucratic procedures, as well as other costly and wasteful
activities, can improve the (ex-ante) effi ciency of an organization.

4Although these papers abstract away from the campaign imposing direct costs on the interest group, it is
reasonable to assume that such actions are not free. This would require an extension of our model, to allow
for money-burning to impose costs directly on the principal as well. This extension would be straightforward
though, and as long as the cost of money-burning for the principal is small relative to the cost it imposes on the
agent, the qualitative conclusions of the model would not change. For a different economic situation involving
money-burning as a disciplinary device that is costly for all participants, see Padro i Miquel and Yared (2012).

5There is also a less directly related literature suggesting that signaling, even if costly for individual agents,
may improve economic effi ciency in allocation problems. For example, Chakravarty and Kaplan (2013) show
that allocation of goods without transfers may be more effi cient if agents are able to send costly signals to the
mechanism designer (see also Condorelli (2012) and Yoon (2011)).
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than the agent’s utility. This is consistent with the common perception that bureaucracy is

more widespread in large organizations, as the agent’s choices typically influence the well-being

of more other agents (represented by the principal).

Second, we find that money-burning is more likely to arise when there are more stringent re-

strictions on monetary transfers between the contracting parties, such as a higher minimum wage

or other forms of wage control, and when outside option of the agent is low. Intuitively, in these

cases the principal can impose money-burning without violating the participation constraint.

This points to an additional distortionary effect of increasing the minimum wage, besides the

ones commonly discussed in policy debates: an increase in minimal wage makes it more likely

that employers use socially ineffi cient nonmonetary incentives, rather than effi cient monetary

incentives. In fact, increasing the minimum wage in our model may lead to a Pareto inferior

outcome, in which the agent is held down to the same reservation utility as before, with the

increase in wage being offset by more money burning imposed, whereas the principal is strictly

worse off.6

Our paper proceeds as follows. We first show some basic general results, such as existence

of the optimal contract, that the implemented action scheme is monotonically increasing in the

state, and that the action specified in the contract is never below the optimal action of the

principal. Under some regularity conditions, we also show that both money burning and the

action choice are continuous functions of the state, and that the implemented action is always

between the optimal points of the principal and the agent. Under the same regularity conditions

we transform the principal’s problem to an intuitive and tractable form. We demonstrate the

usefulness of this result by explicitly solving the transformed problem in the popular uniform-

quadratic specification of the delegation model, with the extra parameter capturing the relative

importance of the action chosen for the principal and the sender (in monetary terms).7 We

show that this parameter and the agent’s outside option relative to the minimum bound on

transfers are the two crucial parameters determining whether there is money burning in the

optimal contract.

6Wessels (1980a, 1980b) makes an observation that is a counterpart of our point: If a firm can provide fringe
benefits to its workers in a socially effi cient way (namely the benefit for the workers is larger than the cost for the
firm), for example by maintaining better working conditions, then an increase in the minimum wage can induce
the firm to cut down in these socially effi cient fringe benefits. Both the latter papers and our work points out a
substitution effect between monetary and nonmonetary compensation schemes, effecting social surplus. Of course
we recognize that both Wessels (1980a, 1980b) and our paper only focus on particular effects of increasing the
minimum wage, and that the issue is a complex one - as reflected by the large and diverse literature devoted on
the topic.

7This extended uniform-quadratic setting is the only class of specifications for which we explicitly solve for the
optimal contract. We note however, that ours is the first paper in the literature that characterizes the optimal
contract for all specifications within this class.
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In the version of the model that allows for monetary transfers, we show that the optimal

contract can involve transfers only, or money burning only, or transfers in some states and money

burning in other states, providing an explanation for why ineffi cient nonmonetary incentives are

used even in settings where financial incentives are feasible. If the agent’s outside option is high

enough, there is no wasteful money burning, and the optimal contract achieves jointly effi cient

action choices. In this case, the principal and the agent essentially form a partnership. If the

agent’s outside option is very low, the agent receives exactly the minimum wage in each state,

but money burning may be used. For an intermediate range of parameters, both positive and

negative incentives can be used in the optimal contract, in a way that monetary transfers are

used to reward the agent for actions he is unlikely to prefer, while money burning is used to

punish him for actions that the principal is unlikely to prefer. Intuitively, using both the carrot

and the stick (transfers and money-burning) allows the principal to provide incentives while

keeping the participation constraint bind.

Lastly, we note that often the principal may choose between different costly activities to

provide incentives to the agent, and some of these may provide benefits to the principal. However,

the qualitative conclusions of the model would generalize to a setting in which the principal

benefits from these activities, as long as this activity implies some effi ciency loss.

2 Related literature

Our work continues the literature on constrained delegation started by Holmstrom (1977).8

Holmstrom, as well as Melumad and Shibano (1991) and Alonso and Matouschek (2007, 2008),

considers deterministic delegation with no monetary transfers, in which the principal can restrict

the action space of the agent, but cannot make different actions differentially costly.9 In our

framework the principal can always achieve such delegation schemes by setting some actions free

while the remaining ones prohibitively costly, hence she is at least weakly better off.

Kováč and Mylovanov (2007) and Goltsman et al. (2009) investigate stochastic delegation

mechanisms in the constrained delegation context, assuming quadratic utilities.10 Quadratic

utilities imply that the utilities of both parties are additively separable to a term that only

depends on the expectation of the induced action and a common negative term that depends

8Dessein (2002) considers delegation in which restricting the agent’s action space is not allowed, but the
principal can potentially retain a veto power. See also Aghion and Tirole (1997) and Szalay (2005) for models of
delegation less related to ours. There is also a literature in political science on delegation and control: see, for
example, Bendor et al. (1987), and McCubbins et al. (1987).

9For a recent more detailed description of this line of literature, see Armstrong and Vickers (2010).
10Stochastic delegation implies that the principal can commit to different probabilistic action choices after

different reports by the agent. See also Strausz (2006) on stochastic mechanisms in a different setting.
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on the variance of the induced action. In our model, money burning is only a direct cost for the

agent, but it is ex ante costly for the principal if the participation constraint is binding, leading

to similar terms in the principal’s objective function in the contracting problem.

Ottaviani (2000), Krahmer (2004), and Krishna and Morgan (2008) investigate delegation

with monetary transfers, although either not characterizing the optimal contract, or not in-

corporating a participation constraint for the agent, making the results of the above papers

diffi cult to compare to ours.11 Koessler and Martimort (2012) consider a delegation problem in

a 2-dimensional policy space, which is somewhat analogous to our 2-dimensional setting with

money burning and a one-dimensional policy choice, although with completely different prefer-

ences over the policy space, leading to different results.

A major alternative of delegation is cheap talk communication between the informed and

the uninformed parties, as in Crawford and Sobel (1982) and a large literature building on

it. In a cheap talk game the uninformed party cannot commit to let the informed party to

choose an action, therefore her action choice is required to be sequentially rational. The closest

papers to our work in this literature are Austen-Smith and Banks (2000) and Kartik (2007), who

consider communication with money burning by the informed party. The focus of these papers

is very different from ours: they investigate how money burning can expand the set of cheap

talk equilibria in the Crawford and Sobel model. The existing literature on both delegation

and cheap talk only considers incentive compatibility constraints. A contribution of the current

paper is incorporating a participation constraint for the agent.

The formal literature on procedural rules and organizational bureaucracy, despite its practical

importance, is relatively scarce and not directly related to our paper.12

3 The basic model

In this Section we set up the basic model, in which the principal can set costly procedural rules

for the agent, but contingent monetary transfers are not possible. For the extension of the model

which allows for contingent transfers, see Section 6.

We consider the following principal-agent problem. There is an uninformed principal, and an

informed agent who observes the realization of a random variable θ ∈ Θ = [0, 1]. From now on

we will refer to θ as the state. The c.d.f. of θ is F (θ), and we assume it has a density function f

that is strictly positive and absolutely continuous on [0, 1]. The principal in our model delegates

11See the end of Section 4 for a partial comparison with the results in Krishna and Morgan (2008). The main
qualitative difference is that while monetary transfers are always used to some extent in the optimal contract,
money burning might be a too costly incentive device for the principal, and hence not used at all.
12See Tirole (1986), Garicano (2000), Prendergast (2007) and Crémer et al. (2007).
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decision-making, hence the agent has to choose an action y ∈ Y = [yL, yH ], after observing the

state. Both the state and the action affect the well-being of both parties. We assume that both

the principal and the agent are von Neumann and Morgenstern expected utility maximizers. If

action y is chosen at state θ, then the principal and the agent get utilities up (θ, y) = −lp (θ, y),

while the corresponding utility for the agent is given by ua (θ, y) = −la (θ, y). We refer to lp

and la as the loss functions of the principal and the agent, and we assume that both functions

are twice continuously differentiable and strictly convex in y. We assume that for fixed θ,

up (θ, y) reaches its maximum value 0 at yp(θ) = θ, while ua (θ, y) reaches its maximum value

0 at ya(θ) = θ + b (θ) for some b (θ) > 0. We refer to yp(θ) and ya(θ) as the ideal actions of

the principal and the agent at state θ, and to b (θ) as the bias of the agent at state θ. We

assume that Y contains the interval [0, 1 + b(1)]. We also assume the single-crossing condition
∂2la(θ,y)
∂θ∂y < 0; this implies, in particular, that θ + b (θ) is continuous and strictly increasing.13

Finally, we assume that all parameters of the model are commonly known to the two parties

involved.

So far the model is just the standard workhorse model of the delegation literature, that

builds on the framework provided in Holmstrom (1977). The novel features of the model are

the following:

(i) The principal can impose costs on the agent which may depend on his choice of ac-

tion. Formally, the principal can specify a function m : Y → R+. For any y ∈ Y , m (y) is a

non-recoverable loss for the agent, which does not directly affect the principal’s utility, and we

interpret it as the amount of paperwork needed to pick policy y. Following standard terminology

for purely wasteful activities, we refer to m(y) as the amount of money burning required when

choosing action y. Money burning enters the agent’s utility as a cost, in an additively separa-

ble manner. We note that delegation with differential costs encompasses standard delegation

agreements considered in the existing literature, where the principal restricts the set of available

policies for the agent to D ⊂ Y : in our framework this could be replicated by setting m(y) to

be zero if y ∈ D, and m(y) to be prohibitively high if y ∈ Y \D. Hence, a principal who can
set differential costs is at least weakly better off than a principal who can only choose a set of

feasible actions for the agent.

(ii) The principal has to hire the agent by offering an acceptable contract. We assume that

contracting happens ex ante, i.e., before the agent observes the state. The contract specifies the

13We therefore rule out the possibility that the agent’s ideal point is state-independent. It is not unrealistic
(the agent might always prefer to exert zero effort), but in this paper, we focus on the case where the interests
of the principal and the agent are somewhat aligned. We want to thank an anonymous referee for pointing out
that in this case, too, an optimal contract may involve money burning if the agent’s willingness-to-pay depends
on the state even if his ideal action does not.
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cost function m (interpreted as the description of the paperwork requirements for all possible

actions), and a constant transfer payment T (interpreted as a wage) that enters the agent’s

utility function in an additively separable manner. In our basic model, we assume that monetary

transfers contingent on either θ or y are not possible (in Section 6 we relax this requirement).

The agent has an outside option ũ, therefore we assume that he accepts any contract that gives

him at least this much expected utility, given the ex ante distribution of θ. We assume that the

unconditional transfer T must satisfy T ≥ w̃ (which may or may not be a binding constraint).

We allow w̃ to be either positive or negative: w̃ ≤ 0 would correspond to the case where the

agent has liquidity constraints, with w̃ = 0 meaning that no transfer from the agent is allowed,

while w̃ > 0 would naturally model a minimal wage requirement.

4 Properties of the optimal contract

In this section we derive some qualitative features of the optimal contract. We first establish

properties that hold for the most general specification of the model that we introduced above.

Then we derive additional properties that require certain regularity conditions on the loss func-

tions and the prior distribution of states to hold.

As standard in the literature, we rewrite the delegation problem to its direct mechanism

interpretation:14 the principal’s task is to set a transfer T and a pair of measurable functions

y (θ), the action that the agent takes in state θ, and m (θ), the amount of paperwork or money

burning in this state, that solve the following problem:

max
T,{y(θ),m(θ)}θ∈Θ

∫
Θ
up (θ, y (θ)) dF (θ)− T (1)

s.t.
∫

Θ
(ua (θ, y (θ))−m (θ)) dF (θ) + T ≥ ũ, (2)

∀θ, θ′ ∈ Θ : ua (θ, y (θ))−m (θ) ≥ ua
(
θ, y

(
θ′
))
−m

(
θ′
)
, (3)

∀θ ∈ Θ : m (θ) ≥ 0, (4)

T ≥ w̃. (5)

In other words, the principal maximizes his payoff subject to the agent’s individual rationality

14Standard arguments establish that for every mechanism in which the agent sends a message and the principal
commits to a message-contingent action plan there is an equivalent direct mechanism, in the sense of having the
same set of perfect Bayesian Nash equilibrium outcomes. See pp. 25-6 in Chapter II of Holmstrom (1977), and
Krishna and Morgan (2008) for extending the arguments to settings with imperfect commitment on the part of
the principal. In this paper we restrict attention to deterministic mechanisms, in which any message of the agent
induces action and money-burning choices deterministically.
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and incentive compatibility constraints (equations (2) and (3), respectively), as well as exogenous

constraints on money burning and transfers.

First we observe that in an optimal contract either the agent’s participation constraint (2)

binds, or the transfer is minimal, so (5) binds: otherwise the principal could reduce the ex-ante

transfer without violating the participation constraint (and not affecting the IC constraints) and

achieve a higher expected payoff. Denote the total principal’s loss from the contract by Lp and

the agent’s loss, conditional on θ, by La (θ):

Lp (y (·) ,m (·) , T ) =

∫
Θ
lp (θ, y (θ)) dF (θ) + T, (6)

La (θ) = La (θ, y (θ) ,m (θ)) = la (θ, y (θ)) +m (θ) . (7)

We find it convenient to rewrite the problem in the following way (we denote the principal’s loss

from contract (y (·) ,m (·)) by Lp (y (·) ,m (·)):

min
T,{y(θ),m(θ)}θ∈Θ

Lp (y (·) ,m (·) , T ) = min
T,{y(θ),m(θ)}θ∈Θ

∫
Θ
lp (θ, y (θ)) dF (θ) + T (8)

s.t.
∫

Θ
(la (θ, y (θ)) +m (θ)) dF (θ) ≤ T − ũ, (9)

∀ θ, θ′ ∈ Θ : la (θ, y (θ)) +m (θ) ≤ la
(
θ, y

(
θ′
))

+m
(
θ′
)
, (10)

∀θ ∈ Θ : m (θ) ≥ 0, (11)

T ≥ w̃. (12)

Our model is not a standard hidden information principal-agent model with monetary trans-

fers (Baron and Myerson, 1982, Guesnerie and Laffont, 1984), since money burning enters par-

ties’ utility functions differently than monetary transfers. Furthermore, as opposed to most

principal-agent models, the agent’s ideal action is a nontrivial function of the state.15 For these

reasons, existing results from the above literature cannot be directly used in our setting. How-

ever, some basic results can be derived in an analogous manner to the standard model. Claims

1—3 states these results. Since the proofs are straightforward and similar to proofs of analogous

results in the literature, they are relegated to the Supplementary Appendix.16

Claim 1 If a pair of functions {y (θ) ,m (θ)}θ∈Θ satisfies (10), then θ2 ≥ θ1 implies y (θ2) ≥
y (θ1). Moreover, if y (θ1) = y (θ2), then m (θ1) = m (θ2).
15Related to the point that our model differs from standard principal-agent models, the optimal contract that

we derive below does not satisfy some standard results like “no distortion at the top.”The agent never chooses
his ideal action for θ = 1, and it is possible that he does not choose his ideal action for any θ.
16One additional diffi culty that we face, relative to the most standard principal-agent problems is that the

m (·) ≥ 0 condition is diffi cult to translate into a condition on payoffs. For this reason we cannot follow the
standard approach of solving for the optimal contract in payoffs space.
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Claim 2 If there exists a solution to the problem (8)-(12) then there is a solution

{y∗ (θ) ,m∗ (θ)}θ∈Θ such that infθ∈Θm
∗(θ) = 0.

Claim 3 If a pair of functions {y (θ) ,m (θ)}θ∈Θ satisfies (10), then for agent’s loss function

La (θ) the following is true:17

(i) La (θ) is Lipschitz continuous with parameter ∆θ = maxθ∈Θ,y∈Y

∣∣∣∂la(θ,y)
∂θ

∣∣∣.
(ii) La (θ) has left derivative for each θ0 > 0 and has right derivative for each θ0 < 1, given by:

dlLa (θ0)

dθ
=

∂la (θ0, limθ→θ0− y (θ))

∂θ
,

drLa (θ0)

dθ
=

∂la (θ0, limθ→θ0+ y (θ))

∂θ
.

(iii) La (θ) is differentiable at θ0 ∈ (0, 1) if and only if y (θ) is continuous at θ0, and then18

dLa (θ0)

dθ
=
∂la (θ0, y (θ0))

∂θ
. (13)

Claim 3 implies that the IC constraint (10) pins down the amount of money-burning in each

state m (θ) given an increasing function y (θ), up to a constant (which is itself pinned down

by the condition infθ∈Θm(θ) = 0). The reformulation (15) below is similar to known results in

settings different from ours (see for example Appendix 1 in Jullien (2000) or Lemma 1 in Noldeke

and Samuelson (2006)).19 The proof of this and subsequent results are in the Appendix. Take

a pair of functions (y (θ) ,m (θ))θ∈Θ satisfying (10) and define function m̃ (y) as the amount of

money required to burn when action y ∈ R is chosen (where R is the range of y (θ)) by:

m̃ (y) = m (θ) where θ ∈ Θ satisfies y (θ) = y; (14)

notice that m̃ (·) is well-defined (this follows from Claim 1). We now define θ̃ (·) as the inverse
of y (·) if y (·) is continuous and strictly increasing; otherwise, we let θ̃ (·) be any monotone
single-valued function [y (0) , y (1)]→ Θ such that y

(
θ̃ (y0)

)
= y0 for any y0 ∈ R.20

17We could apply Theorem 1 in Milgrom and Segal (2002) to obtain absolute continuity of La (θ). However, we
need the stronger results that require a separate proof.
18Throughout, ∂l

a

∂θ
and ∂la

∂y
denote the partial derivatives of la (θ, y) with respect to the first argument and the

second arguments, respectively.
19Our analysis here is also similar to that in Goldman et al. (1984), who examine a context in which a monopolist

can offer a menu of price-quantity pairs. Quantity (q) plays an analogous role to y in our model, while price (R)
does to m in our model. Their R(q) function is similar to m̃ (y) in our setting. However, both the assumptions
they impose and the type of results they derive differ from ours, hence their results are not applicable in our
investigation.
20Monotonicity on R must follow from Claim 1; to achieve monotonicity on the entire θ̃ (y), we define θ̃ (y) for

y ∈ [y (0) , y (1)] \ R by θ̃ (y) = sup {θ : y (θ) < y} = inf {θ : y (θ) > y}. This last part is not necessary if y (·) is
continuous, and thus R = [y (0) , y (1)].
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Claim 4 If (y (θ) ,m (θ))θ∈Θ satisfies (10), then for any ŷ ∈ [y (0) , y (1)],

m̃ (ŷ) = m̃ (y (0)) +

∫ ŷ

y(0)

−∂la
(
θ̃ (y) , y

)
∂y

 dy. (15)

Conversely, if y (·) : Θ → Y is a monotone function and m̃ (y) satisfies (15), then

(y (θ) ,m (θ))θ∈Θ = (y (θ) , m̃ (y (θ)))θ∈Θ satisfies (10).

This formula holds both for continuous actions schemes and for ones with jumps; in the latter

case, for the purpose of integration, we pretend that there is a vertical segment connecting the

two sides of the jump, and θ̃ (y) is constant. It is obvious that money burning is (weakly)

increasing as long as the prescribed action stays below the optimal point of the agent (that is,

if there is no overshooting). This result has a convenient graphical representation when the

agent has a quadratic utility function. In this case, −∂la(θ̃(y),y)
∂y = 2

(
θ̃ (y) + b− y

)
, therefore

the change in the amount of money burning is proportional to the area between the ideal points

curve of the agent and the actions scheme (with negative sign if the action scheme increases

above the agent’s ideal curve y = θ + b), as illustrated by Figure 1.

Figure 1: Representation of money burned as an integral.

The problem is thus reduced to finding a monotone action scheme y (θ), as then m (θ) will

be uniquely defined by (15) (also using infθ∈Θm
∗(θ) = 0 implied by Claim 2). This implies the

following.
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Theorem 5 There exists a solution to problem (8)-(12).

This result follows from Theorem 2.2 in Balder (1996).21 It is not immediately applicable

as T is not taken from a compact set. However, clearly, very high T is suboptimal, and by

restricting T from above we can make this result applicable (see the proof in the Appendix for

the formal argument).

We next establish some qualitative properties of the optimal contract. The first one, that the

implemented action is never below the ideal point of the principal, holds in general. However,

the other two, namely that the implemented policy is a continuous function of the state and that

the implemented action is never above the ideal point of the agent, hold only under additional

regularity conditions, discussed below. Most importantly for us, if there is no overshooting

(y∗ (θ) ≤ θ + b (θ)), then money-burning has to be monotonically increasing in the state. This

follows from Claim 4 and means that it is enough for us to ensure that m (0) ≥ 0. (If there is

overshooting, then money-burning is not monotonically increasing in the state, provided that

y∗ (θ) is non-constant.) In the Supplementary Appendix we provide an example which shows

that without the regularity conditions, the latter properties need not hold in the optimum.

Intuitively, if money-burning has to be monotone, then it is very costly for the principal to impose

it in low states, because he will have to increase money-burning everywhere. Overshooting in an

interval of intermediate states would allow him to decrease money-burning in higher states. This

sacrifices ex-post utility in the intermediate states, but decreases the level of money-burning in

higher states. In the example we provide, the density function of the state takes high values in

low and high states, but low values for an intermediate range of states. This violates regularity

conditions and features overshooting in the optimum.

Theorem 6 Suppose (y∗ (·) ,m∗ (·)) solves the problem (8)-(12) and y∗ (·) is continuous at θ = 0

and θ = 1.22 Then:

1. For every θ ∈ Θ, y∗(θ) ≥ θ (i.e., there is no undershooting);

2. If ∂l
p(θ0,y)
∂y /

(
−∂2la(θ0,y)

∂θ∂y

)
is increasing in y for any θ0 ∈ Θ and any y > θ0, then y∗ (·) is

continuous on Θ;

21An earlier draft of the paper contained a direct proof of existence for this model and is available from the
authors upon request.
22We can always adjust y (θ) and m (θ) for θ = 0, 1 so that y (0) = limθ↘0 y (θ), y (1) = limθ↗1 y (θ), m (0) =

limθ↘0 m (θ), m (1) = limθ↗1 m (θ), and this will preserve (10) and other constraints and will not affect the
objective function as the changes are made on the set of measure 0 only. In what follows, we restrict our attention
on such contracts only. However, we cannot assume that y∗ (·) is continuous in general, as there are examples
(see Supplementary Appendix) where this is not the case.
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3. If f (θ) ∂l
p(θ,θ+b(θ))

∂y /
(
−∂2la(θ,θ+b(θ))

∂θ∂y

)
is non-decreasing in θ, then for every θ ∈ Θ, y∗ (θ) ≤

θ + b (θ) (i.e., there is no overshooting).

For symmetric loss functions and constant agent bias (which is assumed in most of the

literature), that is when lp (θ, y) = l (y − θ) and la (θ, y) = l (y − θ − b), the condition in part 2
simplifies to requiring that l

′′(x−b)
l′(x) is decreasing in x for x > 0. Furthermore, for any loss function

of the principal that satisfies our basic assumptions (including ones with state-dependent bias),

the condition is satisfied whenever the agent’s loss function is quadratic, that is when la (θ, y) =

A(y− θ− b)2 for some A > 0. To see this, note that in this case the denominator in the relevant

expression is constant, hence the strict convexity of lp implies that the condition holds.

A suffi cient condition for the condition in part 3 to hold is that
∂lp(θ,θ+b(θ))

∂y

− ∂
2la(θ,θ+b(θ))

∂θ∂y

is non-decreasing

in θ and f (θ) is non-decreasing in θ. For a constant bias b, the first condition holds automatically,

therefore the condition is equivalent to the simple requirement that f (θ) is non-decreasing in θ.

We prove each part by contradiction, i.e., by assuming the contrary and finding another

feasible contract which decreases principal’s loss function. For Part 1, we consider increasing

the action y (θ) if y (θ) < θ; this relaxes the participation constraint of the agent and decreases

the loss of the principal, while simultaneously decreasing the amount of money-burning needed

to keep (15) fulfilled. However, such decrease in m (θ) may violate the nonnegativity constraint

(11), and we need to adjust y (θ) so that this does not happen.

The idea of the proof of Part 2 is to take a candidate optimal contract y∗ (·) that contains a
discontinuity, say from y1 to y2 at θ = θ0, and making it “less discontinuous”by adding an in-

between action, with an amount of money-burning that attracts a small interval of types around

θ0. This on the one hand is beneficial for the principal since types above θ0 who choose the new

action now induce an action closer to the principal’s ideal point. On the other hand, types below

θ0 who choose the new action now induce an action farther away the principal’s ideal point. We

derive a condition for this modification of the contract to be profitable for the principal close to

the limit when the interval of types attracted to the new action goes to zero (by increasing the

implied money burning). It turns out that this condition always holds for strictly convex loss

functions if y1 is below the agent’s ideal point (if the jump involves no overshooting). Moreover,

we show that the condition in Part 2 of Theorem 6 is suffi cient for the inequality to hold for any

kind of jump. This means that by making the jump in actions more “gradual”, the principal

could improve her welfare, contradicting that the optimal contract involves discontinuity.

Regarding Part 3, it is straightforward to show that it is suboptimal for the principal to

specify an overshooting action at state 0: a deviation lowering the prescribed action on an

12



interval around 0 to the ideal curve of the agent would be in the common interest of the players

and hence unambiguously increase the well-being of the principal. Let now θ0 be the infimum of

states with overshooting. We consider a deviation which keeps the implemented action on the

agent’s ideal curve for a small interval on the right of θ0. The direct effect of this would be an

increase in the welfare of the principal, from the implemented action getting closer to her ideal

point over the interval. However, this action would negate the decrease in money burning that

the original contract would induce over the interval. We show that the condition in part 3 of

Theorem 6 implies that for small enough deviations like the one specified above the deviation is

beneficial for the principal, contradicting that the original contract is welfare-improving.

Note that Claim 4 and Part 3 of Theorem 6 together imply that money burning is monoton-

ically increasing as a function of state θ in the optimal contract (provided that the conditions in

Part 3 of Theorem 6 hold). Consequently, we may assume m (0) = 0. This allows us to rewrite

the maximization problem, in this case, in the following simpler way. Taking into account (13),

we have∫
Θ
La (θ) f (θ) dθ =

∫ 1

0

(
La (0) +

∫ θ

0

∂la (ξ, y (ξ))

∂θ
dξ

)
f (θ) dθ

= La (0) +

∫ 1

0

∫ 1

ξ

∂la (ξ, y (ξ))

∂θ
f (θ) dθdξ = La (0) +

∫ 1

0

∂la (θ, y (θ))

∂θ
(1− F (θ)) dθ.

Now m (0) = 0 implies La (0) = la (0, y (0)), and thus the optimization problem is equivalent to

the following one:

min
T,{y(θ)}

∫ 1

0
lp (θ, y (θ)) dF (θ) + T (16)

s.t. la (0, y (0)) +

∫ 1

0

∂la (θ, y (θ))

∂θ
(1− F (θ)) dθ ≤ T − ũ

y (·) is non-decreasing and continuous,

θ ≤ y (θ) ≤ θ + b (θ)

T ≥ w̃.

The rewritten form of the optimization problem has the advantage that the incentive con-

straints are incorporated in a simpler integral constraint. The reformulation indicates that

there can be a trade-off between decreasing the first term la (0, y (0)), which is minimized at

y (0) = b(0), and the second integral term, which can be minimized pointwise with the minimiz-

ing y (0) being possibly strictly below b(0). The trade-off is caused by the requirement that y (·)
is non-decreasing and continuous. Intuitively, this reflects the tension between minimizing the

agent’s loss (from money burning and from the implemented policy being away from the agent’s

13



ideal point), which serves the purpose of decreasing the ex-ante transfer to the agent, and the

principal’s loss from the implemented policy being away from the principal’s ideal point.

5 The optimal contract in uniform-quadratic settings

The reformulated problem is tractable enough that we can explicitly solve for the optimal con-

tract in a class of games that are generalizations of the canonical uniform-quadratic specification

of the delegation problem. We will derive economic insights from how the optimal contract and

in particular money burning is imposed on the agent depends on various parameter values of

the problem.

Specifically, we assume that θ is distributed uniformly on [0, 1] and restrict ourselves to the

quadratic loss functions

lp (θ, y) = A (y − θ)2 , (17)

la (θ, y) = (y − θ − b)2 , (18)

where A, b > 0. These loss functions imply that the agent has a constant bias b (θ) = b.

Parameter value A = 1 corresponds to the uniform-quadratic example frequently used in the

literature. The extra parameter A allows us to change the sensitivity of the loss function of the

principal relative to the sensitivity of the loss function of the agent, independently of the size of

bias. Values A < 1 imply that the principal is less sensitive to policy choice than the agent (the

same deviation from the ideal point means a smaller loss); values A > 1 imply the opposite.23

Alternatively, if we interpret the principal and the agents as firms/organizations rather than

individuals, then A may be interpreted as the ratio of people in the principal organization to that

in the agent organization. In other words, a large A may be thought of as a large corporation

(or the public sector) employing an individual, and a small A corresponds to an individual

delegating the task to a large organization. As we show below, the qualitative features of the

optimal contract, including whether money burning is used in equilibrium, depend crucially on

this parameter. In particular, if b < 1, which is the typical scenario in the delegation literature,

money-burning will always be part of the optimal contract if A > 1.

Under these assumptions on the functional form, both conditions in Theorem 6 are satisfied.

Let F be the set of all continuous functions f : [0, 1]→ R, which are nondecreasing and satisfy
23Martimort and Semenov (2007) introduce a similar multiplicative parameter for a policymaker in an unrelated

model of lobbying.
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θ ≤ f (θ) ≤ θ + b. The problem (16) may be rewritten as

min
(y(·),T )∈F×R

∫ 1

0
A (y (θ)− θ)2 dθ + T , (19)

s.t. (y (0)− b)2 −
∫ 1

0
2 (y (θ)− θ − b) (1− θ) dθ − T + ũ ≤ 0, (20)

w̃ − T ≤ 0. (21)

In what follows, we formulate and prove the following result, and then use it to study

comparative statics. The following auxiliary function is critical:

Ω (A, b) =


8
3

(
Ab
A+1

)3
if A < min

(
1, 1

2b−1

)
;

1
3A

2b3 if 1 ≤ A ≤ 1
b ;

1
12 +

(
Ab
A+1

)2
if 1

2b−1 ≤ A ≤ 2b− 1;

b2 + b− ω (A, b) if A > max
(

1
b , 2b− 1

)
,

where we define ω (A, b) by

ω (A, b) =

(
10 + 6A3b− 2A− 8A2b− 6A2

)√
2A2b−A−1

A−1 + 2A3 + 18A2b+ 3A2 − 8A− 10

3A4
.

For each b, Ω (A, b) is an increasing function of A, tending to 0 as A→ 0 and to b2 +b as A→∞.
As b increases for any fixed A, Ω (A, b) increases from 0 to ∞.

Theorem 7 There exists a unique solution to the problem (19) s.t. (20), (21). This solution

takes the following form:

1. If w̃ − ũ < Ω (A, b) then the agent receives a transfer larger than minimal. The exact

solution is given by (we give only y∗ (·) and T ∗, and the corresponding m∗ (·) may be found
using Claim 4):

(a) If A ≤ min
(

1, 1
2b−1

)
then the contract takes the form of “free choice with a cap”, and

there is no money-burning; more precisely,

y∗ (θ) = min

(
θ + b, 1 +

1−A
1 +A

b

)
;

T ∗ =
8

3

(
Ab

A+ 1

)3

+ ũ;

(b) If 1 < A < 1
b (this is possible for b < 1 only) then the contract takes the form of “free

choice, then money burning”; more precisely,

y∗ (θ) = min

(
θ + b,

1

A
+

(
1− 1

A

)
θ

)
;

T ∗ =
1

3
A2b3 + ũ;
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(c) If 1
2b−1 < A < 2b− 1 (this is possible for b > 1 only) then the contract is a constant

and there is no money-burning; more precisely,

y∗ (θ) =
1

2
+

b

A+ 1
;

T ∗ =
1

12
+

(
Ab

A+ 1

)2

+ ũ;

(d) If A ≥ max
(

1
b , 2b− 1

)
then the contract takes the form “free action, then money

burning”; more precisely,

y∗ (θ) = max

(
1

A
+

(
1− 1

A

)
θ,

1 +
√

(A− 1) (2A2b−A− 1)

A2

)
;

T ∗ = b2 + b− ω (A, b) + ũ;

2. If Ω (A, b) ≤ w̃ − ũ < b2 + b then the agent receives a minimal transfer, T ∗ = w̃. To

find y (·) and m (·), consider the “effective principal’s weight”D = D (w̃ − ũ, b), which is
the unique solution to equation Ω (D, b) = w̃ − ũ (this solution satisfies D ≥ A). Then

y∗ (·) and m∗ (·) are the same as in the previous case, with A replaced by D; namely (we

characterize y (·) only):

(a) If w̃ − ũ ≤ min
(

1
3 ,

b3

3

)
then the contract takes the form of “free choice with a cap”,

and there is no money-burning; more precisely,

y∗ (θ) = min

(
θ + b, 1 +

1−D
1 +D

b

)
;

(b) If b
3

3 < w̃− ũ < b
3 (this is possible for b < 1 only) then the contract takes the form of

“free choice, then money burning”; more precisely,

y∗ (θ) = min

(
θ + b,

1

D
+

(
1− 1

D

)
θ

)
;

(c) If 1
3 < w̃ − ũ < b2 − b + 1

3 (this is possible for b > 1 only) then the contract is a

constant and there is no money-burning; more precisely,

y∗ (θ) =
1

2
+

b

D + 1
;

(d) If max
(
b2 − b, 0

)
+ min(b,1)

3 ≤ w̃ − ũ < b2 + b then the contract takes the form “free

action, then money burning”; more precisely,

y∗ (θ) = max

(
1

D
+

(
1− 1

D

)
θ,

1 +
√

(D − 1) (2D2b−D − 1)

D2

)
;
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3. If w̃ − ũ ≥ b + b2 then principal’s ideal action is implemented: y∗ (θ) = θ, and money-

burning in state θ is m∗ (θ) = θb. The agent receives a minimal transfer T ∗ = w̃.

Figures 2 and 3 illustrate the optimal contract for specific parameter regions.

Existence follows from Claim 5, while uniqueness follows, since (19)—(21) is a maximization

problem on a convex domain with convex constraints. The simplest way to understand the

characterization result is the following. The space of parameter values, (A, b, ũ, w̃), is split into

three areas, depending on which of the two constraints, the participation constraint (20) and

the minimum wage constraint (21), are binding. For w̃ − ũ < Ω (A, b), only the participation

constraint is binding, and the principal is paying the agent more than a minimal transfer. It

is more likely to be satisfied for large A or large b, as well as for small w̃ − ũ (in particular, if
w̃ ≤ ũ, then the minimal wage is lower than the outside option and is thus non-binding). For

Ω (A, b) < w̃ − ũ < b2 + b, both the participation and the minimum wage constraints bind; the

agent gets the minimum wage and a contract that makes him indifferent between working for

the principal and not. Finally, if w̃ − ũ > b2 + b, the minimum wage constraint is binding, but

the participation constraint is not; in this case, the principal implements his ideal action, the

agent gets expected disutility −b − b2, but is still willing to work for the minimum wage as he

has too low outside option. The precise contract y∗ (·) is depicted on Figure 2 for b < 1 and on

Figure 3 for b > 1; the dotted green lines correspond to y∗ (θ) for θ such that m∗ (θ) = 0, and

the solid red lines correspond to y∗ (θ) for θ such that m∗ (θ) > 0.

The explicit characterization makes it easy to obtain comparative statics results.

Theorem 8 In the uniform-quadratic setting, the following is true in the optimal contract:

1. Money-burning is used if either (a) A > 2 max (b, 1)− 1 or (b) w̃− ũ > b3−(max(b,1)−1)3

3 . If

there is money-burning for some parameters (A, b, ũ, w̃), then there is also money-burning

for higher A, higher w̃, lower ũ, or lower b.

2. The total amount of money-burning is (weakly) increasing in A and w̃, decreasing in ũ;

the effect of b is ambiguous.

3. The agent receives higher-than-minimum wage T ∗ > w̃ if and only if w̃ − ũ < Ω (A, b). If

this is the case for (A, b, ũ, w̃), then it is also the case for higher A, b, ũ, or for lower w̃.

4. The principal implements his ideal contract if w̃−ũ ≥ b2+b; this condition does not depend

on A.
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Figure 2: Optimal contract if b < 1.

This result implies that a high minimal wage increases both the incidence of money-burning

and the expected amount, while a higher outside option decreases both. This is intuitive: a

higher w̃ − ũ relaxes the participation constraint, making the agent willing to work for the

principal, which the latter compensates by both enforcing a more favorable outcome y (·) (less
favorable for the agent) and more money-burning. A higher A means the principal is willing to

set y (·) closer to his ideal, which requires more money-burning, and is willing to compensate
the agent by a higher wage. As a result, a higher A only affects the contract if the agent is given

higher than minimum wage (the next theorem formalizes this). The effect of b is ambiguous.

On the one hand, a lower b makes the use of money-burning more likely. On the other hand,

it decreases the absolute cap on expected money-burning, b2 + b (this amount is suffi cient to

enforce the principal’s ideal contract). Thus, a decrease in b may increase or decrease the

expected money-burning.

The principal will pay more than the minimal transfer if the agent has a high outside option

18



Figure 3: Optimal contract if b > 1.

(this is natural), or if the action is important for the principal (here, the principal will make

the agent choose the actions that the agent dislikes and make him burn money, and he has to

be compensated for that). A higher b also makes a high wage more likely, because it takes a

higher amount of money-burning to keep the implemented actions closer to the principal’s ideal

line, which needs to be compensated through a higher wage. Not surprisingly, a higher w̃ makes

more likely that the minimum wage is paid. It should be emphasized, however, that paying a

higher-than-minimum wage is fully compatible with money-burning. For example, if b < 1 < A

and w̃ < ũ, the principal’s payoff is suffi ciently important to provide strong incentives to the

agent, but the binding constraint is his outside option rather than the minimum wage. Thus,

transfers higher than minimal do not crowd out money-burning.

The next result shows that all comparative statics results depend on whether the agent

receives the minimum wage or a higher wage.
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Theorem 9 Consider the uniform-quadratic setting, and suppose that w̃ − ũ < Ω (A, b), so in

the optimal contract, the agent receives a higher-than-minimum wage. Then a marginal change

in w̃ or ũ does not change the action y∗ (·) or money-burning m∗ (·) (moreover, a marginal
change in w̃ does not affect the optimal contract, whereas an increase in ũ is matched by a

higher transfer, one-to-one). An increase in A changes the optimal contract: it brings y (·)
closer to the principal’s ideal action schedule, weakly increases the amount of money-burning,

and compensates the agent by a higher wage.

Now suppose that w̃−ũ > Ω (A, b), so in the optimal contract, the agent receives the minimum

wage. Then a marginal change of A has no effect on the contract. An increase in w̃, or a decrease

in ũ, move y∗ (·) closer to the principal’s ideal action schedule, and increase the total amount of
money-burning.

We see that if the agent receives the minimum wage, his contract will depend on w̃ − ũ; an
increase of this difference will increase money-burning and bring y (·) closer to the principal’s
ideal. But an increase in A will not change the contract: the principal is already getting from

the agent everything he can for the minimum wage, and he will not get more until A becomes

high enough so that he is ready to pay extra to the agent. However, once the principal pays a

higher wage, the comparative statics becomes different. At this point, a marginal change in w̃

plays no role, and a change in ũ is matched by a higher wage. An increase in A would lead to

lower y∗ (·) (closer to the principal’s ideal), more money-burning, and also a higher wage.
The following thought experiment is of interest. Suppose that an agent, who is working for

the principal, got an increase of his outside option ũ, for example, by getting an outside offer.

Suppose that the principal is willing to keep the agent. Then the way he will do so will be

different, depending on whether the agent receives the minimum wage allowed or not. If the

wage is at the minimum, the principal responds by giving the agent more freedom, so y∗ (·)
becomes closer to the agent’s ideal action scheme, and there is less money-burning. However,

if the wage is higher than minimum, the principal just increases the wage. To get a further

intuition, imagine that this scenario repeats multiple times (say, the agent gets experience and

better outside offers over time). Then in the first few instances, the agent is retained by better

working conditions, and starting at some point he just gets raises, while the action and money-

burning, if any, remains the same.

Finally, we present a result on the utilities of the two players. If the agent’s participation

constraint binds, he receives ũ, and any changes in parameters affect the principal’s utility only.

All parameters ũ, w̃, A, b decrease the principal’s utility: ũ does so because the agent needs to be

compensated by a higher wage or a contract which is more beneficial to him, w̃ has a negative
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impact whenever the minimum wage constraint binds. A higher A increases the principal’s

disutility from actions away from the principal’s ideal scheme, so it has a negative impact; a

higher b increases the conflict of interest, which also hurts both players. The only case where the

agent’s IC constraint does not bind is where the principal is able to implement his ideal point,

in which case the agent receives w̃ − b2 − b, and the principal pays this minimum wage, thus

getting −w̃. In this case, the principal only cares about the minimum wage; the agent’s utility

increases in the minimum wage and decreases in b (as he has to implement the policy further

from his ideal and burn more money). Thus, if the participation constraint does not bind, the

contract does not depend on A or ũ. This is summarized in the following theorem.

Theorem 10 In the uniform-quadratic setting, in the optimal contract, the agent’s utility equals

W ∗A = max
(
ũ, w̃ − b2 − b

)
.

The agent gets utility higher than his outside option if and only if the principal’s ideal action

is implemented. In this case, the principal’s utility is −w̃, and an increase in minimum wage

results in a transfer from the principal to the agent.

The principal’s utility is weakly decreasing in ũ, w̃, A, and b. It reaches its maximum, −w̃,
whenever w̃ − ũ ≥ b2 + b.

It is instructive to compare these optimal contracts with the ones obtained in Krishna and

Morgan (2008) — from now on KM — for the case of delegation with one-sided transfers, no

participation constraint, and symmetric quadratic loss functions (corresponding to ũ = −∞ and

A = 1, without the possibility of money-burning). In this environment, the optimal transfer

scheme sets a positive transfer to the agent when choosing low actions, and it is monotonically

decreasing. This is parallel to our results that the money burning scheme specifies zero money

burning at the lowest implemented action, and that it is monotonically increasing. Furthermore,

the implemented action scheme is monotonically increasing in both models, with a possible cap

on the highest action that can be chosen by the agent. An important qualitative difference is

that while contingent monetary transfers are always used to some extent in the optimal contract

in KM, money burning might be a too costly incentive device for the principal and hence not

used at all in the optimal contract. This results from the fact that as opposed to our model,

there is no participation constraint in KM.24

24Other relevant benchmarks include Melumad and Shibano (1991) and Kovač and Mylovanov (2009). Melumad
and Shibano (1991) consider a delegation problem without transfers and money-burning. In the setting with
commitment (where the principal can commit to a certain action as a function of the agent’s message, as in
delegation but not cheap talk models), our models share a common particular case. If we assume uniform-

21



6 Delegation with both Conditional Transfers and Money Burn-
ing

So far, we have ruled out transfers other than a fixed wage to focus on money-burning. In this

section, we allow for transfers conditional on the agent’s report (and, by revelation principle,

on the state θ). In other words, we will study the same problem, except that the transfer t (θ)

may depend on the state θ rather than satisfy the restriction t (θ) ≡ T . As before, this transfer
must satisfy the minimum wage requirement, which we assume to hold in each state: t (θ) ≥ w̃

for all θ ∈ Θ. The principal therefore has two means to incentivize the agent: money-burning or

contingent monetary transfers. In what follows, we show that even though the former is a less

effi cient way to create incentives for the agent than the latter, money-burning nevertheless can

be used in the optimal contract (at different states). In fact, depending on parameter values,

both means of providing incentives may be used, or only one of them. The primary factors

determining which case applies are once again: (i) the outside option of the agent ũ, (ii) the

minimum wage w̃, and (iii) the relative importance A of the action choice for the principal versus

the agent.

Formally, in this Section the contract is given by a triple (y (·) ,m (·) , t (·)) consisting of
policy y (θ), money burnt by the agent m (θ) ≥ 0, and transfer from the principal to the agent

t (θ) ≥ w̃. The agent’s loss function is now given by

La (θ) = la (θ, y (θ)) +m (θ)− t (θ) . (22)

The principal solves the following problem (we immediately write it as a minimization problem,

quadratic setting with A = 1 in our model (and also that the participation constraint is not binding), this would
correspond to the case where parameter a = 1 and k < 0 in their model. In this case, our contract (for the
interesting case b < 1) takes the form y (θ) = min {θ + b, 1}, coinciding with their contract.
Kovač and Mylovanov (2009) do not have money-burning, but they explicitly allow for stochastic mechanisms.

They assume the agent to have a quadratic utility function, which means that if the action is stochastic, the agent
loses an extra term corresponding to the variance, which could be interpreted as money burning if the principal
were not risk-averse as well and did not get disutility from non-deterministic contract herself. This means that
the principal could do at least as well with money-burning as with stochastic contracts; moreover, once we allow
money-burning, considering deterministic contracts, as we do, is without loss of generality. As expected, our
contracts coincide if the principal also has a quadratic utility function with a constant bias, and A = 1, and there
is no participation constraint. More generally, if the bias in the uniform-quadratic setting is not constant (but
the parameter A still equals 1), the authors show that the optimal contract allows the agent to implement his
ideal action, as long as it is above some floor and below some floor. We do not get a similar result because in
our model, money-burning does not directly affect the principal’s payoff, and in general he can choose among a
broader set of contracts. However, whenever money-burning is not optimal (for A < 1), our optimal contract
exhibits this property.
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similar to (8)—(12)):

min
{y(θ),m(θ),t(θ)}θ∈Θ

∫
Θ

(lp (θ, y (θ)) + t (θ)) f (θ) dθ (23)

s.t.
∫

Θ
(la (θ, y (θ)) +m (θ)− t (θ)) f (θ) dθ ≤ −ũ, (24)

∀θ, θ′ ∈ Θ : la (θ, y (θ)) +m (θ)− t (θ) ≤ la
(
θ, y

(
θ′
))

+m
(
θ′
)
− t
(
θ′
)
, (25)

∀θ ∈ Θ : m (θ) ≥ 0, t (θ) ≥ w̃. (26)

Many of the properties of the problem (23)—(26) are analogous to the case with fixed transfer.

For example, under the same conditions as in Theorem 6, y∗ (·) is continuous and satisfies
θ ≤ y∗ (θ) ≤ θ+ b (θ). Moreover, m∗ (θ) is non-decreasing on Θ and t∗ (θ) is non-increasing, and

there is θ0 ∈ Θ such that m∗ (θ0) = 0 and t0 = t∗ (θ0) = minθ∈Θ t (θ); in other words, there is

state θ0 where there is no money-burning, and the transfer is minimal among all other states

(it typically, but not always, satisfies t (θ0) = w̃). If money burning is used, it is used at high

states (θ > θ0), while conditional transfers will be made in low states (θ < θ0). We can then

rewrite the problem in a tractable way (details are available in Supplementary Appendix). The

following is the result of these transformations for the uniform-quadratic case, which we focus

on from now on:

min
(y(·),θ0,t0)∈F×[0,1]×R

∫ 1

0
A (y (θ)− θ)2 dθ+ (27)∫ θ0

0

(
(y (θ)− θ − b)2 − 2 (y (θ)− θ − b) θ

)
dθ − (y (θ0)− θ0 − b)2 θ0 + t0,

s.t. (y (θ0)− θ0 − b)2 −
∫ 1

0
2 (y (θ)− θ − b) (1− θ) dθ +

∫ θ0

0
2 (y (θ)− θ − b) dθ − t0 + ũ ≤ 0,

(28)

w̃ − t0 ≤ 0. (29)

The explicit characterization of the optimum is cumbersome, and it is relegated to the

Supplementary Appendix. Here we only state a result that establishes some basic characteristics

of the optimal contract.

Theorem 11 There exists a unique solution to the problem (23)—(26). More precisely:

1. If w̃ − ũ < −Ab1+A−Ab
(1+A)2 , then for all θ the agent receives a transfer larger than minimal,

and there is no money-burning. The optimal contract implements

y∗ (θ) =
b

A+ 1
+ θ,
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which maximizes the joint utility of the agent and the principal. For an arbitrary θ, t∗ (θ) =

ũ+
(

Ab
A+1

)2
− Ab

A+1θ and m
∗ (θ) = 0.

2. −Ab1+A−Ab
(1+A)2 ≤ w̃ − ũ < b2 + b, then the agent receives a minimal transfer at θ = 1. A

precise characterization of the set of states for which t∗(θ) > w̃ or m∗ (θ) > 0 is available

in the Supplementary Appendix.

3. If w̃ − ũ ≥ b + b2, then principal’s ideal action is implemented: y∗ (θ) = θ, and money-

burning in state θ is m∗ (θ) = θb. The agent receives a minimal transfer t∗ (θ) = w̃ for all

θ.

While a complete characterization is in the Supplementary Appendix, Figure 4 provides an

example of what the optimal scheme y (·) looks like, and whether and when money-burning and
contingent transfers are used, if b is suffi ciently small. Several observations are in place. First,

one of the incentive schemes — either contingent transfers or money-burning — is always used

(this is not the case for b > 1, where a constant scheme with no incentives is possible for some

parameter values). Money-burning is being used if and only if y∗ (1) = 1, and if y∗ (1) > 1, then

there is no money-burning and the principal never gets his ideal point. Contingent transfers are

being used if and only if y∗ (0) = b
A+1 , which is the action that maximizes the joint utility of

the principal and the agent for θ = 0; otherwise, y∗ (0) < b
A+1 and contingent transfers are not

being used.

Using this characterization, we can obtain the comparative statics results:

Theorem 12 In the uniform-quadratic setting with contingent transfers, the following is true

in the optimal contract:

1. The social optimum is implemented if and only if

w̃ − ũ ≤ −Ab1 +A−Ab
(A+ 1)2 .

2. The principal implements his ideal contract if w̃−ũ ≥ b2+b; this condition does not depend

on A.

3. If money-burning is used in the optimal contract for some values of (A, b, ũ, w̃) then it is

also used for higher w̃, lower ũ, or higher A.

4. If contingent transfer is used in the optimal contract for some values of (A, b, ũ, w̃) then it

is also used for lower w̃, higher ũ, or higher A.
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Figure 4: Optimal contract with transfers for b suffi ciently low.

5. The effect of b on the use of either of the instruments (money-burning or contingent trans-

fers) is ambiguous.

These results are intuitive. First, if the minimal wage requirement is suffi ciently small or the

agent’s outside option is suffi ciently high, then the social optimum is implemented and, moreover,

only contingent transfers are used (i.e., no money-burning). Conversely, if the minimal wage is

suffi ciently high or the agent’s outside option is suffi ciently small, the principal implements his

ideal action, and does so through money-burning. Indeed, for such combination of parameters,

the agent is ‘overpaid’, and making the agent burn enough money so that the principal’s ideal

is implemented is costless for the principal. The use of the two instruments clearly depends on

the parameters. If the minimal wage increases, the principal is more willing to adopt minimal

wage, and subsequently abandon conditional transfers. If the agent’s outside option increases,

then he needs to be compensated more, and the principal does so by using contingent transfers,

while at the same time abandoning money-burning. Interestingly, a higher A makes the use of

both instruments more likely: intuitively, it just increases the importance of having y (·) closer
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to the principal’s ideal, and the principal will use all means available to achieve this.

The welfare implications of contingent transfers are summarized in the following theorem.

Theorem 13 In the uniform-quadratic setting with contingent contracts, in the optimal con-

tract, the agent’s expected payoff is:

W ∗A = max
(
ũ, w̃ − b2 − b

)
.

The agent’s expected payoff is higher than his outside option if and only if the principal’s ideal

action is implemented. The principal’s utility is weakly decreasing in ũ, w̃, A, and b.

Furthermore, for a given tuple of parameters (A, b, ũ, w̃), allowing for contingent transfers

does not affect the utility of the agent, while making the principal weakly better off (strictly if he

uses contingent transfers in the optimal contract with contingent transfers).

We conclude the section by pointing out a nonmonotonicity of the implemented action scheme

in the optimal contract, as a function of the outside option of the agent. If the outside option is

very low, then for any A, the implemented action scheme is equal to the principal’s ideal line.

As the outside option increases, the implemented action scheme shifts towards the principal’s

ideal points. As a result, for low values of A, there is an intermediate range of outside options in

which the agent can choose his ideal action in a large set of states. However, a further increase in

the outside option results in the jointly optimal action being implemented in all states, meaning

that the agent cannot choose his ideal action in any of the states.

7 Conclusion

Our model of delegation with nonmonetary transfers may be developed in many different direc-

tions. Monetary versus nonmonetary incentives are extensively discussed in the economics of

crime literature, starting from Becker (1968).25 The models offered in this literature differ in

many crucial aspects from ours: for example it is assumed that in the absence of any deterrents

every criminal would choose the highest possible crime activity level, while our approach would

assume that the optimal crime activity, from the criminal’s viewpoint, is state-specific. Applying

the delegation framework in this area might provide new insights on the structure of optimal

monetary fines and prison sentences.

An intriguing question is that why bureaucratic procedures and paperwork seem to be the

primary types of costly activity that organizations impose on their workers. A possible ex-

planation for this, which we would like to investigate in future research, is that bureaucratic
25See for example Shavell (1987), Mookherjee and Png (1994), and Levitt (1997).
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paperwork has the feature that the same level of activity is less costly in higher states. For

example, when applying for a research grant requires turning in a long proposal, writing the

proposal is less costly for an applicant who indeed has a good idea for a research project than for

one who does not. Similarly, when an employee has to explain it in a report when taking a guest

to an expensive restaurant from corporate budget, writing the report is less costly for employees

who indeed had good reasons to select the expensive restaurant. This suggests incorporating

costs of lying as in Kartik (2009) into our model.
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Appendix

Proof of Claim 4. Recall that R is the range of y(θ). Consider Z = [y(0), y(1)] \ R and let

us extend the definition of function θ̃ (·) on the set Z. Take any y ∈ Z (then y(0) < y < y(1))

and let θ̃ (y) = sup
y∗(θ)≤y

θ = inf
y∗(θ)≥y

θ (these coincide because y∗ is monotone). Let us now define,

for y ∈ Z, m̃ (y) = m̃
(
y∗
(
θ̃ (y)

))
+ la

(
θ̃ (y) , y∗

(
θ̃ (y)

))
− la

(
θ̃ (y) , y

)
; in other words, we

define m̃ (y) as an amount of money burning that would leave the type θ̃ (y) indifferent between

(y, m̃ (y)) and
(
y∗
(
θ̃ (y)

)
, m̃
(
y∗
(
θ̃ (y)

)))
. We will have m̃ (y) ≥ 0 because la is convex in its

second argument. Let us now prove that m̃ (·) is continuous at any y ∈ [y1, y2]; its left derivative

exists at y if y > y1, and its right derivative exists at y if y < y2, and they are equal to:

dlm̃ (y)

dy
= −

∂la
(
θ̃min (y) , y

)
∂y

,

drm̃ (y)

dy
= −

∂la
(
θ̃max (y) , y

)
∂y

,

where θ̃min (y) = infy∗(θ)=y θ and θ̃max (y) = supy∗(θ)=y θ.
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Indeed, if y > y1, take suffi ciently small ε > 0. Let us prove that

la
(
θ̃ (y − ε) , y − ε

)
+ m̃ (y − ε) ≤ la

(
θ̃ (y − ε) , y

)
+ m̃ (y) ;

la
(
θ̃ (y) , y

)
+ m̃ (y) ≤ la

(
θ̃ (y) , y − ε

)
+ m̃ (y − ε) .

(30)

We prove the first inequality (the second one can be proved analogously). Applying (10) to type

θ̃ (y − ε), we get

la
(
θ̃ (y − ε) , y∗

(
θ̃ (y − ε)

))
+ m̃

(
y∗
(
θ̃ (y − ε)

))
≤ la

(
θ̃ (y − ε) , lim

δ→+0
y∗
(
θ̃ (y)− δ

))
+ lim
δ→+0

m̃
(
y∗
(
θ̃ (y)− δ

))
;

indeed, the agent does not want to pretend to be any type arbitrarily close to θ̃ (y). By con-

struction, we have

la
(
θ̃ (y − ε) , y∗

(
θ̃ (y − ε)

))
+ m̃

(
y∗
(
θ̃ (y − ε)

))
= la

(
θ̃ (y − ε) , y − ε

)
+ m̃ (y − ε)

(this inequality is trivial if y − ε ∈ R (y∗)). We also have that if y ∈ R (y∗), then

la
(
θ̃ (y − ε) , y∗

(
θ̃ (y)

))
+ m̃

(
y∗
(
θ̃ (y)

))
= la

(
θ̃ (y − ε) , y

)
+ m̃ (y) ,

and it remains to prove that for y ∈ Z, we must have

la
(
θ̃ (y − ε) , y

)
+ m̃ (y) ≥ la

(
θ̃ (y − ε) , lim

δ→+0
y∗
(
θ̃ (y)− δ

))
+ lim
δ→+0

m̃
(
y∗
(
θ̃ (y)− δ

))
.

But the agent of type θ̃ (y) must be indifferent between the contracts (y, m̃ (y)) and(
lim
δ→+0

y∗
(
θ̃ (y)− δ

)
, lim
δ→+0

m̃
(
y∗
(
θ̃ (y)− δ

)))
. As y ≥ lim

δ→+0
y∗
(
θ̃ (y)− δ

)
by monotonicity,

and θ̃ (y − ε) ≤ θ̃ (y) the type θ̃ (y − ε) must strictly prefer the latter. This establishes the first
inequality of (30).

The inequalities in (30) imply

la
(
θ̃ (y − ε) , y − ε

)
− la

(
θ̃ (y − ε) , y

)
≤ m̃ (y)− m̃ (y − ε) ≤ la

(
θ̃ (y) , y − ε

)
− la

(
θ̃ (y) , y

)
.

Since this holds for any function θ̃ (·) that satisfies y∗
(
θ̃ (y)

)
= y, by continuity, we have

la
(
θ̃min (y − ε) , y − ε

)
−la

(
θ̃min (y − ε) , y

)
≤ m̃ (y)−m̃ (y − ε) ≤ la

(
θ̃min (y) , y − ε

)
−la

(
θ̃min (y) , y

)
.

Dividing all parts by ε, we notice that the leftmost and the rightmost parts tend to

−∂la(θ̃min(y),y)
∂y , because lim

ε→+0
θ̃min (y − ε) = θ̃min (y). This shows that dlm̃(y)

dy exists and it is

given by the formula. The same argument works for the right derivative; in either case, m̃ (y) is
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continuous at y. This also implies that m̃ (·) is differentiable at y if and only if (y∗)−1 (y) is a

singleton (in particular, m̃ (·) is differentiable in any point in Z).
Given that m̃ (·) is almost everywhere differentiable with bounded derivative, it satisfies the

Lipschitz conditions and is thus absolutely continuous. It can then be reconstructed from its

derivative. �

Proof of Theorem 5. To be able to apply Theorem 2.2 in Balder (1996), we need to make

the space of feasible contracts compact. First note that we can assume that T ≤ T̄ for some T̄

suffi ciently high, so T is taken from a compact set
[
w̃, T̄

]
: indeed, the contract y (θ) = θ+ b(θ),

m (θ) = 0, T = max {ũ, w̃} is feasible and yields Lp = Ab2 + max {ū, w̄}, and thus any contract

featuring T > T̄ =
1∫
0

lp(θ, θ + b(θ))dF (θ) + max {ū, w̄} is suboptimal. The set of monotonic

mappings from Θ to Y is compact in sup-metrics, so the set of feasible y (θ) is compact. Finally,

by Claim 4 we have

m (θ) = m̃ (y (0)) +

∫ ŷ

y(0)

−∂la
(
θ̃ (y) , y

)
∂y

 dy, (31)

which means that the entire function m (θ) may be derived from y (θ) and m (y (0)). Since

m (y (0)) may be assumed to be taken from some compact set [0, m̄], the set of feasible contracts

(T, y (θ) ,m (θ)) may be assumed to be compact. With this modification of the space the condi-

tions of Theorem 2.2 from Balder (1996) trivially hold, therefore there exists a solution to the

problem. �

Proof of Theorem 6. Part 1. Assume y∗(θ) < θ for some θ ∈ [0, 1]. Below we show that

the principal can offer a contract that improves his expected payoff.

Since we are focusing on y (·) that are (right- and left-)continuous at θ = 0 and θ = 1, there

must exist (θ, θ) such that y∗(θ) < θ for every θ ∈ (θ, θ). Take 0 ≤ θ < θ ≤ 1 such that (i)

y∗(θ) < θ for every θ ∈ (θ, θ); (ii) either y∗(θ) ≥ θ or θ = 0; (iii) either y∗(θ) ≥ θ or θ = 1. We

consider two situations.

Case 1. Suppose that for all θ > θ, y∗ (θ) ≤ ya (θ). Then define action function y′ (·)
such that y′ (θ) = θ for θ ∈

[
θ, θ
]
and y′(θ) = y∗(θ) otherwise, and define m′ (·) such that

m′ (θ) = m∗ (θ) for θ ≤ θ and m′ (·) and y′ (·) together satisfy (10). In this case, y′ (θ) ≤ ya (θ)

for every θ ≥ θ and therefore m′ (·) is increasing over this range. This implies that m′(θ) ≥ 0 for

every θ ∈ [0, 1]. Furthermore, note that every type θ is weakly better offgiven (y′ (·) ,m′ (·)) than
given (y∗ (·) ,m∗ (·)); the reason for this is that every action between y∗ (θ) and max

(
y∗
(
θ
)
, 1
)

that was used by some type in y∗ (·) now involves equal or less money-burning, plus perhaps some
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actions that were not available (as y∗ (·) is not assumed to be continuous) are now available.

Consequently, all actions now involve weakly less money-burning, and this makes every type

θ of agent weakly better off. Therefore the participation constraint of the agent holds with

transfer T ∗. The above imply that (y′ (·) ,m′ (·) , T ∗) is a feasible contract. For θ ∈ (θ, θ) the

implemented action is strictly better for the principal (while at other states the implemented

action remains the same), hence the principal is strictly better off ex ante, contradicting the

optimality of (y∗ (·) ,m∗ (·) , T ∗).
Case 2. Suppose that for some θ > θ, y∗ (θ) > ya (θ). Then there are θ′, θ′′ such that

θ < θ′ < θ′′ and for all θ ∈
(
θ′, θ′′

)
, y∗ (θ) > ya (θ); we can pick θ′ such that the left limit

limθ↗θ′ y
∗ (θ) ≤ ya

(
θ′
)
. Then there exist α,β ∈ (0, 1) such that y′ (θ) and m′ (θ) defined as

below is a feasible contract: y′ (θ) = y∗ (θ) for θ /∈
[
θ, θ
]
∪
[
θ′, θ′′

]
, y′ (θ) = αy∗ (θ) + (1 − α)θ

for θ ∈
(
θ, θ
)
, y′ (θ) = βy∗ (θ) + (1 − β)ya (θ) for θ ∈

(
θ′, θ′′

)
, and m′ (θ) = m∗ (θ) for m < θ

and m > θ′′ (whereas for θ ∈
[
θ, θ′′

]
, m′ (θ) is defined so that m′ (·) and y′ (·) satisfy (10)).

To see this, note that if α is close enough to 1 then since the amount of money-burning in

any state is continuous in α and β, there exists β ∈ (0, 1) such that the increase of money-

burning on
(
θ′, θ′′

)
is exactly offset by the decrease of money-burning on

(
θ, θ
)
, and therefore

m′(θ) ≥ 0 for every θ ∈ [0, 1]. Moreover, every type θ is weakly better off given (y′ (·) ,m′ (·))
than given (y∗ (·) ,m∗ (·)). To see this, notice that we can augment the plan (y′ (·) ,m′ (·)) by
allowing agents to choose any action y ∈ [y′ (0) , y′ (1)] and choosing m̃ (y) such that agent

with type θ̃ = sup {θ : y′ (θ) ≤ y} is exactly indifferent between
(
y′
(
θ̃
)
,m′

(
θ̃
))
and (y, m̃ (y)),

in this case no agent will be willing to switch, so no agent is strictly better off from having

these additional options. Compared to the plan (y∗ (·) ,m∗ (·)), every action that was available
under (y∗ (·) ,m∗ (·)) now involves weakly less money-burning, and perhaps additional actions
were made available. Thus, similarly to Case 1, the participation constraint of the agent holds

under (y′ (·) ,m′ (·)) with the same transfer T ∗. Notice, however, that for θ ∈ (θ, θ) ∪ (θ′, θ′′)

the implemented action y′ (·) is strictly better for the principal than y∗ (·), while at other states
the implemented action remains the same, hence the principal is strictly better off ex ante,

contradicting the optimality of (y∗ (·) ,m∗ (·) , T ∗).

Part 2. We start by proving the following result. Suppose that
∂la(θ,y1)

∂θ
− ∂l

a(θ,y0)
∂θ

lp(θ,y0)−lp(θ,y1) >
∂la(θ,y1)

∂θ
− ∂l

a(θ,y2)
∂θ

lp(θ,y2)−lp(θ,y1) , for every θ ∈ (0, 1), and limθ′↘θ y
∗ (θ′) ≥ y2 > y0 > y1 ≥ θ. Then y∗(θ)

and m∗(θ) are continuous on (0, 1).

To prove this, note that Claim 4 implies that m∗ is continuous at θ if y∗ is continuous at

θ, hence it is enough to prove continuity of the latter. The proof below is by contradiction.
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Suppose that for some θ0 ∈ (0, 1), y∗ is discontinuous at θ0. Denote

ŷ1 = supθ∈[0,θ0) y
∗ (θ) ,

ŷ2 = infθ∈(θ0,1] y
∗ (θ) .

Note that, since y∗ (θ) is monotonic, it is true that ŷ1 = limθ→θ0− y
∗ (θ), ŷ2 = limθ→θ0+ y

∗ (θ).

Define m̂1 = limθ→θ0−m
∗ (θ) ≥ 0 and m̂2 = limθ→θ0+m

∗ (θ) ≥ 0; these limits exist

by the continuity of loss function La (θ): m̂1 = limθ→θ0− L
a (θ) − la (θ0, ŷ1), and similarly

m̂2 = limθ→θ0+ L
a (θ) − la (θ0, ŷ2). It is evident that an agent of type θ0 is indifferent be-

tween contracts (y∗ (θ0) ,m∗ (θ0)), (ŷ1, m̂1) and (ŷ2, m̂2): otherwise, if, for instance, we had

la (θ0, ŷ1) + m̂1 > la (θ0, ŷ2) + m̂2 instead, then an agent of type θ0 + ε would strictly prefer con-

tract (y∗ (θ0 − ε) ,m∗ (θ0 − ε)) to (y∗ (θ0 + ε) ,m∗ (θ0 + ε)) by continuity, which would violate

(10).

The idea of the proof is to perturb the optimal contract (y∗ (θ) ,m∗ (θ))θ∈Θ around the point

of discontinuity θ0 and obtain a higher value of V p, which would contradict the optimality of

the initial contract. Take some a ∈ (0, 1) and define ŷ0 by

∂la (θ0, ŷ0)

∂θ
= a

∂la (θ0, ŷ1)

∂θ
+ (1− a)

∂la (θ0, ŷ2)

∂θ
; (32)

clearly, such ŷ0 ∈ (ŷ1, ŷ2) exists (and is unique) for any a ∈ (0, 1), since ∂la(θ0,y)
∂y is continuous

and monotonic (increasing) in y. Trivially, (32) is equivalent to

∂la(θ0,ŷ0)
∂θ − ∂la(θ0,ŷ2)

∂θ
∂la(θ0,ŷ1)

∂θ − ∂la(θ0,ŷ0)
∂θ

=
a

1− a.

We now pick m̂0 to be such that

la (θ0, ŷ0) + m̂0 = la (θ0, ŷ1) + m̂1 = la (θ0, ŷ2) + m̂2.

Since la (θ0, y) is strictly convex in y, we have la (θ0, ŷ0) < max (la (θ0, ŷ1) , la (θ0, ŷ2)), and

therefore m̂0 > min (m̂1, m̂2) ≥ 0.

By construction, agent of type θ0 is indifferent between (ŷ0, m̂0), (ŷ1, m̂1), and (ŷ2, m̂2). In

contrast, agents with θ < θ0 strictly prefer (ŷ1, m̂1) to (ŷ0, m̂0) (this immediately follows from

the single-crossing condition), and prefer (y∗ (θ) ,m∗ (θ)) to (ŷ1, m̂1) (from (10), as (ŷ1, m̂1) is a

limit of feasible contracts), while agents with θ > θ0 weakly prefer (y∗ (θ) ,m∗ (θ)) to (ŷ2, m̂2),

which they strictly prefer to (ŷ0, m̂0). Consider the function

z (θ) = la (θ, ŷ0) + m̂0 − La (θ) ,

which is naturally interpreted as the “gap”in utility from choosing (y∗ (θ) ,m∗ (θ)), which agent

θ does, and choosing (ŷ0, m̂0) if he had such an option. From Claim 3 it follows that function
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z (θ) is continuous for θ ∈ Θ, it is positive and strictly decreasing for θ < θ0, it is positive and

strictly increasing for θ > θ0, and it equals zero at θ = θ0.

Let us take a suffi ciently small ε > 0 and augment the set of available choices

(y∗ (θ) ,m∗ (θ))θ∈Θ by adding (ŷ0, m̂0 − ε) to it. From the properties of function z (θ) it fol-

lows that players with θ ∈ (θ1 (ε) , θ2 (ε)) will switch to (ŷ0, m̂0 − ε) while the rest will not (and
those with types θ1 (ε) and θ2 (ε) will be indifferent); here, θ1 (ε) and θ2 (ε) are continuous func-

tions of θ such that θ1 (ε) is decreasing and θ2 (ε) is increasing in ε. As ε → 0, θ1 (ε) → θ0

and θ2 (ε)→ θ0. Let us find the limit of
θ0−θ1(ε)
θ2(ε)−θ0

(and simultaneously show that it exists and is

finite). To do that, it is convenient to consider the inverse functions, ε1 (θ1), defined for θ1 ≤ θ0,

and ε2 (θ2), defined for θ2 ≥ θ0.

By construction, ε1 (θ1) satisfies

La (θ1) = la (θ1, ŷ0) + m̂0 − ε1 (θ1) .

Hence,

ε1 (θ1) = la (θ1, ŷ0) + m̂0 − La (θ1)

= la (θ1, ŷ0)− la (θ0, ŷ0) + La (θ0)− La (θ1) .

Therefore Claim 3 implies that ε1 (θ1) has a left derivative at θ1 = θ0:

dlε1 (θ1)

dθ1
=
∂la (θ0, ŷ0)

∂θ
− ∂la (θ0, ŷ1)

∂θ
.

Similarly,
drε2 (θ1)

dθ1
=
∂la (θ0, ŷ0)

∂θ
− ∂la (θ0, ŷ2)

∂θ
.

We then have

∂la (θ0, ŷ0)

∂θ
− ∂la (θ0, ŷ1)

∂θ
= lim

θ1→θ0−

ε1 (θ0)− ε1 (θ1)

θ0 − θ1

= lim
ε→0+

−ε
θ0 − θ1 (ε)

,

∂la (θ0, ŷ0)

∂θ
− ∂la (θ0, ŷ2)

∂θ
= lim

θ1→θ0+

ε2 (θ2)− ε2 (θ0)

θ2 − θ0

= lim
ε→0+

ε

θ2 (ε)− θ0
.

Therefore,

lim
ε→0+

θ0 − θ1 (ε)

θ2 (ε)− θ0
=

limε→0+
ε

θ2(ε)−θ0

− limε→0+
−ε

θ0−θ1(ε)

(33)

=
∂la(θ0,ŷ0)

∂θ − ∂la(θ0,ŷ2)
∂θ

∂la(θ0,ŷ1)
∂θ − ∂la(θ0,ŷ0)

∂θ

=
a

1− a.
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We are now ready to estimate the welfare effect of this perturbation. The agent of any type

is weakly better off, and for some types the agent is strictly better off: for θ ∈ (θ1 (ε) , θ2 (ε))

switched to (ŷ0, m̂0 − ε) which he strictly prefers to (y∗ (θ) ,m∗ (θ)) which he was choosing before,

and the rest have not changed their contract. We therefore only need to compute the change in

the principal’s payoff. This change equals∫ θ2(ε)

θ1(ε)
(lp (θ, y (θ))− lp (θ, ŷ0)) f (θ) dθ =

∫ θ2(ε)

θ1(ε)

∫ y(θ)

ŷ0

∂lp (θ, y)

∂y
dyf (θ) dθ (34)

=

∫ θ2(ε)

θ0

(lp (θ, y (θ))− lp (θ, ŷ0)) f (θ) dθ −
∫ θ0

θ1(ε)
(lp (θ, ŷ0)− lp (θ, y (θ))) f (θ) dθ.

To check that this expression is positive, it is suffi cient, given the continuity of f (θ) at θ0 and

existence of limits limθ→θ0−
∂lp(θ,y)
∂y = ∂lp(θ0,y)

∂y and limθ→θ0+
∂lp(θ,y)
∂y = ∂lp(θ0,y)

∂y , to prove that

lim
ε→0

((θ2 (ε)− θ0) (lp (θ, ŷ2)− lp (θ, ŷ0))− (θ0 − θ1 (ε)) (lp (θ, ŷ0)− lp (θ, ŷ1))) > 0.

In light of (33), it suffi ces to prove that

(1− a) (lp (θ, ŷ2)− lp (θ, ŷ0)) > a (lp (θ, ŷ0)− lp (θ, ŷ1)) . (35)

By Part 1, lp (θ, ŷ2) > lp (θ, ŷ0) and lp (θ, ŷ0) > lp (θ, ŷ1), and (35) is equivalent to

lp (θ0, ŷ2)− lp (θ0, ŷ0)

lp (θ0, ŷ0)− lp (θ0, ŷ1)
>

∂la(θ0,ŷ0)
∂θ − ∂la(θ0,ŷ2)

∂θ
∂la(θ0,ŷ1)

∂θ − ∂la(θ0,ŷ0)
∂θ

.

By adding 1 to both sides, we find this is equivalent to

lp (θ0, ŷ2)− lp (θ0, ŷ1)

lp (θ0, ŷ0)− lp (θ0, ŷ1)
>

∂la(θ0,ŷ1)
∂θ − ∂la(θ0,ŷ2)

∂θ
∂la(θ0,ŷ1)

∂θ − ∂la(θ0,ŷ0)
∂θ

.

Now, rearranging (note that the denominators are positive) and changing the sign, we get

∂la(θ0,ŷ1)
∂θ − ∂la(θ0,ŷ0)

∂θ

lp (θ0, ŷ0)− lp (θ0, ŷ1)
>

∂la(θ0,ŷ1)
∂θ − ∂la(θ0,ŷ2)

∂θ

lp (θ0, ŷ2)− lp (θ0, ŷ1)
. (36)

Claim 1 and part 1 of the current claim imply that θ ≤ ŷ1 < ŷ0 < ŷ2, hence the assumption

of the lemma implies that (36) holds. This implies that the proposed deviation is profitable,

contradicting that y∗ is discontinuous at θ0.

To finish the proof of this result, notice that for any θ0 ≤ y1 < y0 < y2 the following holds:

∂la(θ0,y1)
∂θ

− ∂l
a(θ0,y0)
∂θ

y0−y1

lp(θ0,y0)−lp(θ0,y1)
y0−y1

>

∂la(θ0,y0)
∂θ

− ∂l
a(θ0,y2)
∂θ

y2−y0

lp(θ0,y2)−lp(θ0,y0)
y2−y0

.
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This is equivalent to
∂la(θ0,y1)

∂θ
− ∂l

a(θ0,y0)
∂θ

lp(θ0,y0)−lp(θ0,y1) >
∂la(θ0,y1)

∂θ
− ∂l

a(θ0,y2)
∂θ

lp(θ0,y2)−lp(θ0,y1) , therefore the argument above im-

plies the claim in the theorem.

Part 3. We first prove the following auxiliary result. Suppose (y (θ) ,m (θ)) satisfies (10)

and y (θ) is continuous on Θ. Then for any θ1, θ2 ∈ Θ, we have

m (θ2)−m (θ1) = la (θ1, y (θ1))− la (θ2, y (θ2)) +

∫ θ2

θ1

(
∂la (θ, y (θ))

∂θ

)
dθ. (37)

Indeed, from (13), we have∫ θ2

θ1

(
∂la (θ, y (θ))

∂θ

)
dθ = La (θ2)− La (θ1)

= la (θ2, y (θ2)) +m (θ2)− la (θ1, y (θ1))−m (θ1) .

Rearranging, we obtain (37).

Now, by Part 2, y∗ (θ) is a continuous function. Suppose, to obtain a contradiction, that

there exists θ0 ∈ Θ such that y (θ0) > θ0 + b (θ0). Because y∗ (·) is continuous, without loss of
generality we may assume that 0 < θ0 < 1. There are two possibilities: either for all θ < θ0,

y∗ (θ) ≥ θ + b (θ), or there exists θ′ < θ0 such that y∗
(
θ′
)
< θ′ + b

(
θ′
)
. We start with the first

possibility.

Suppose y∗ (θ) ≥ θ + b (θ) for all θ < θ0. Let θ̄ = inf {θ : y∗ (θ) < θ + b (θ)} if such θ exists;
otherwise, let θ̄ = 1. Define function y (θ) by

y (θ) =

{
y∗ (θ) if θ > θ̄,
θ + b (θ) if θ ≤ θ̄.

Note that by continuity, y∗
(
θ̄
)

= θ̄ + b(θ̄), hence the above function is continuous.

Suppose θ̄ < 1, then let

m (θ) =

{
m∗ (θ) if θ > θ̄,
m∗
(
θ̄
)
if θ ≤ θ̄;

given that scheme y∗(),m∗() satisfies (10) and (11), it is straightforward to verify that scheme

(y(),m()) also satisfies (10) and (11). In the modified scheme, the utility of the agent at θ ≥ θ̄

is unchanged. If θ < θ̄, then, by (13)

La (θ, y (θ) ,m (θ)) = La
(
θ̄, y

(
θ̄
)
,m
(
θ̄
))
−
∫ θ̄

θ

∂la (ξ, y (ξ))

∂θ
dξ

< La
(
θ̄, y∗

(
θ̄
)
,m∗

(
θ̄
))
−
∫ θ̄

θ

∂la (ξ, y∗ (ξ))

∂θ
dξ = La (θ, y∗ (θ) ,m∗ (θ)) ;

this holds because at θ̄ the contract is unchanged, and∫ θ̄

θ

∂la (ξ, y∗ (ξ))

∂θ
dξ −

∫ θ̄

θ

∂la (ξ, y (ξ))

∂θ
dξ =

∫ θ̄

θ

∫ y∗(ξ)

y(ξ)

∂2la (ξ, y)

∂θ∂y
dξ < 0,
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since y (ξ) < y∗ (ξ) whenever ξ < θ̄, at least for ξ close to θ0. Consequently, all types of agent are

at least weakly better off. The principal, is obviously better off, since for some θ, y (θ) became

closer to θ than y∗ (θ). This contradicts that contract (y∗ (θ) ,m∗ (θ)) solves the problem (8).

Now suppose that θ̄ = 1. In this case, y (θ) = θ+ b (θ), so let us take m (θ) = 0. This makes

all agents at least weakly better off (their loss becomes zero), and the principal is strictly better

off. This again contradicts that contract (y∗ (θ) ,m∗ (θ)) solves the problem (8).

Consider the second case, where there exists θ′ < θ0 such that y∗
(
θ′
)
< θ′+ b

(
θ′
)
. Let θ1 =

min
{
θ ∈

[
θ′, θ0

]
: y∗ (θ) = θ + b (θ)

}
, θ2 = inf {θ ∈ [θ1, θ0] : y∗ (θ) > θ + b (θ)}; by continuity, θ1

and θ2 are well-defined and they may or may not coincide. By construction, if θ ∈ [θ1, θ2], then

y∗ (θ) = θ+ b (θ); moreover, for suffi ciently small ε > 0 we have y∗ (θ1 − ε) < θ1 − ε+ b (θ1 − ε)
and y∗ (θ2 + ε) > θ1 + ε + b (θ1 + ε). This implies, in particular, that m∗ (θ) is bounded away

from 0 on [θ1, θ2] (from Claim 4 it follows that

m∗ (θ)−m∗ (θ1 − ε) =

∫ y∗(θ)

y∗(θ1−ε)

−∂la
(
θ̃ (y) , y

)
∂y

 dy > 0,

where the inequality is true, because y∗ (θ1) = θ1 + b (θ1) > θ1 − ε + b (θ1 − ε) > y∗ (θ1 − ε),
so integration is conducted over a nondegenerate interval; moreover, for almost all y, θ̃ (y) (the

inverse) is uniquely defined, and for θ̃ ∈ (θ1 − ε, θ1), y∗
(
θ̃
)
< θ̃+b

(
θ̃
)
, so the partial derivative

under the integral is positive, and for θ̃ ∈ (θ1, θ2) it is at least nonnegative).

Let us construct an alternative y (θ) as follows. We take ε1 and ε2 to be such small positive

numbers such that∫ θ1

θ1−ε1

∫ θ+b(θ)

y∗(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ =

∫ θ2+ε2

θ2

∫ y∗(θ)

θ+b(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ, (38)

and pick a small ε0 > 0. We require that

y (θ) =


y∗ (θ) if θ ≤ θ1 − ε1 − ε0,

∈ (y∗ (θ) , θ + b (θ)) if θ ∈ (θ1 − ε1 − ε0, θ1 − ε1) ,
θ + b (θ) if θ ∈ [θ1 − ε1, θ2 + ε2] ,

∈ (θ + b (θ) , y∗ (θ)) if θ ∈ (θ2 + ε2, θ2 + ε2 + ε0) ,
y∗ (θ) if θ ≥ θ2 + ε2 + ε0,

and that∫ θ1

θ1−ε1−ε0

∫ y(θ)

y∗(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ =

∫ θ2+ε2+ε0

θ2

∫ y∗(θ)

y(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ. (39)

Now, if we define m (θ) to be such that the agent’s loss function La (θ, y (θ) ,m (θ)) satisfies

(13) and coincides with La (θ, y∗ (θ) ,m∗ (θ)) for θ /∈ (θ1 − ε1 − ε0, θ2 + ε2 + ε0), we would get
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a contract (y (θ) ,m (θ)) that satisfies (10) and (11), as well as (12). (To see that such m (θ)

exists, take m (θ) = m∗ (θ) for θ ≤ θ1 − ε1 − ε0, and for θ ≤ θ1 − ε1 − ε0, define m (θ) by

m (θ) = m (θ1 − ε1 − ε0)+la (θ1 − ε1 − ε0, y (θ1 − ε1 − ε0))−la (θ, y (θ))+

∫ θ

θ1−ε1−ε0

(
∂la (θ, y (θ))

∂θ

)
dθ.

In this case, m (θ) = m∗ (θ) would be true for θ ≥ θ2 + ε2 + ε0, which immediately implies

La (θ, y∗ (θ) ,m∗ (θ)) = La (θ, y (θ) ,m (θ)) for θ /∈ (θ1 − ε1 − ε0, θ2 + ε2 + ε0). Indeed, it suffi ces

to show that m (θ2 + ε2 + ε0) = m∗ (θ2 + ε2 + ε0), because for larger θ the schemes y() and y∗()

coincide, and indeed (using (37)) we have

m (θ2 + ε2 + ε0)−m∗ (θ2 + ε2 + ε0)

= (m (θ2 + ε2 + ε0)−m (θ1 − ε1 − ε0))− (m∗ (θ2 + ε2 + ε0)−m∗ (θ1 − ε1 − ε0))

=

∫ θ2+ε2+ε0

θ1−ε1−ε0

(
∂la (θ, y (θ))

∂θ

)
dθ −

∫ θ2+ε2+ε0

θ1−ε1−ε0

(
∂la (θ, y∗ (θ))

∂θ

)
dθ

=

∫ θ1

θ1−ε1−ε0

(
∂la (θ, y (θ))

∂θ
− ∂la (θ, y∗ (θ))

∂θ

)
dθ +

∫ θ2+ε2+ε0

θ2

(
∂la (θ, y (θ))

∂θ
− ∂la (θ, y∗ (θ))

∂θ

)
dθ∫ θ2

θ1

(
∂la (θ, y (θ))

∂θ
− ∂la (θ, y∗ (θ))

∂θ

)
dθ

=

∫ θ1

θ1−ε1−ε0

∫ y(θ)

y∗(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ +

∫ θ2+ε2+ε0

θ2

∫ y(θ)

y∗(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ

+

∫ θ2

θ1

∫ y(θ)

y∗(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ

=

∫ θ2

θ1

∫ θ+b

θ+b

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ = 0.

The last thing to check is that m (θ) ≥ 0 is satisfied, but this is true because m∗ (θ) is bounded

away from zero, and ε1 and ε2 are small.

Under the new contract (y (θ) ,m (θ)), all agents with type θ ∈ (θ1 − ε1 − ε0, θ2 + ε2 + ε0)

are better off; moreover, the agents with types θ ∈ [θ1, θ2] are better off by at least (38). The

change in the principal’s utility is given by∫ θ2+ε2+ε0

θ2

(lp (θ, y∗ (θ))− lp (θ, y (θ))) f (θ) dθ −
∫ θ1

θ1−ε1−ε0
(lp (θ, y (θ))− lp (θ, y∗ (θ))) f (θ) dθ

=

∫ θ2+ε2+ε0

θ2

∫ y(θ)

y∗(θ)

∂lp (θ, y)

∂y
f (θ) dydθ −

∫ θ1

θ1−ε1−ε0

∫ y(θ)

y∗(θ)

∂lp (θ, y)

∂y
f (θ) dydθ.

It suffi ces to show that∫ θ2+ε2+ε0

θ2

∫ y(θ)

y∗(θ)

∂lp (θ, y)

∂y
f (θ) dydθ >

∫ θ1

θ1−ε1−ε0

∫ y(θ)

y∗(θ)

∂lp (θ, y)

∂y
f (θ) dydθ.
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Dividing this by (39), we are to prove∫ θ2+ε2+ε0
θ2

∫ y(θ)
y∗(θ)

∂lp(θ,y)
∂y f (θ) dydθ∫ θ2+ε2+ε0

θ2

∫ y(θ)
y∗(θ)

(
−∂2la(θ,y)

∂θ∂y

)
dydθ

>

∫ θ1

θ1−ε1−ε0
∫ y(θ)
y∗(θ)

∂lp(θ,y)
∂y f (θ) dydθ∫ θ1

θ1−ε1−ε0
∫ y(θ)
y∗(θ)

(
−∂2la(θ,y)

∂θ∂y

)
dydθ

.

This would be true26 if we prove that for any (θL, yL) and (θH , yH) such that θ1 − ε1 − ε0 <

θL < θ1, y∗ (θL) < yL < y (θL), θ2 < θH < θ2 + ε2 + ε0, y (θH) < yH < y∗ (θH),

∂lp(θH ,yH)
∂y f (θH)

−∂2la(θH ,yH)
∂θ∂y

>

∂lp(θL,yL)
∂y f (θL)

−∂2la(θL,yL)
∂θ∂y

.

Since
∂lp(θ,y)
∂y

f(θ)

− ∂
2la(θ,y)
∂θ∂y

is strictly increasing in y for any fixed θ, and yL < θL+b (θL), yH > θH+b (θH),

it suffi ces to prove that

∂lp(θH ,θH+b(θH))
∂y f (θH)

−∂2la(θH ,θH+b(θH))
∂θ∂y

≥
∂lp(θL,θL+b(θL))

∂y f (θL)

−∂2la(θL,θL+b(θL))
∂θ∂y

.

However, this follows from the assumption. This completes the proof. �

Lemma 1 Suppose y∗ (·) solves

min
(y(·),T )∈Z

∫ 1

0

(
A (y (θ)− θ)2 − 2 (y (θ)− θ − b) (1− θ)

)
dθ + (y (0)− b)2 .

Then if θ satisfies y∗ (0) < y∗ (θ) < y∗ (1), then y∗ (θ) = min {z (θ) , θ + b}, where z (θ) =

1− A−1
A (1− θ).

26Since both denominators are positive, let us subtract the right-hand side from the left-hand side and find the
sign of the numerator. We have∫ θ2+ε2+ε0

θ2

∫ y(θ)

y∗(θ)

∂lp (θ, y)

∂y
f (θ) dydθ ×

∫ θ1

θ1−ε1−ε0

∫ y(θ)

y∗(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ

−
∫ θ2+ε2+ε0

θ2

∫ y(θ)

y∗(θ)

(
−∂

2la (θ, y)

∂θ∂y

)
dydθ ×

∫ θ1

θ1−ε1−ε0

∫ y(θ)

y∗(θ)

∂lp (θ, y)

∂y
f (θ) dydθ

=

∫ θ2+ε2+ε0

θ2

∫ y(θH )

y∗(θH )

∂lp (θH , yH)

∂y
f (θH) dyHdθH ×

∫ θ1

θ1−ε1−ε0

∫ y(θL)

y∗(θL)

(
−∂

2la (θL, yL)

∂θ∂y

)
dyLdθL

−
∫ θ2+ε2+ε0

θ2

∫ y(θH )

y∗(θH )

(
−∂

2la (θH , yH)

∂θ∂y

)
dyHdθH ×

∫ θ1

θ1−ε1−ε0

∫ y(θL)

y∗(θL)

∂lp (θL, yL)

∂y
f (θL) dyLdθL

=

∫ θ2+ε2+ε0

θ2

∫ y(θH )

y∗(θH )

∫ θ1

θ1−ε1−ε0

∫ y(θL)

y∗(θL)

 ∂lp(θH ,yH )
∂y

f (θH)
(
− ∂

2la(θL,yL)
∂θ∂y

)
−
(
− ∂

2la(θH ,yH )
∂θ∂y

)
∂lp(θL,yL)

∂y
f (θL)

 dyHdθHdyLdθL
> 0;

here, the first equality is just renaming variables of integration, and the last inequality follows from
∂lp(θH,yH )

∂y
f(θH )

− ∂
2la(θH,yH )

∂θ∂y

>
∂lp(θL,yL)

∂y
f(θL)

− ∂
2la(θL,yL)
∂θ∂y

, which holds for all (θL, yL, θH , yH) in the domain of integration. This proves

that the top expression is positive, and thus the inequality with integrals holds. Consequently, this condition is
indeed suffi cient.
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Proof of Lemma 1. We start by noticing that for a fixed θ, the expression under the

integral is convex in y and is minimized at z (θ). Furthermore, z (θ) > θ for all θ < 1.

Suppose, to obtain a contradiction, that the statement does not hold. Then there is θ0 such

that y∗ (0) < y∗ (θ0) < y∗ (1) (which means, in particular, that 0 < θ0 < 1) and y∗ (θ0) 6=
min {z (θ0) , θ0 + b}. First, consider the case where z (θ) is nondecreasing (note that it is a linear

function of θ). Suppose first that y∗ (θ0) < min {z (θ0) , θ0 + b}. Then, by continuity of y∗ (θ) and

the assumption that y∗ (θ0) < y∗ (1), there exists θ′ > θ0 such that y∗ (θ) < min {z (θ) , θ + b} for
all θ ∈

[
θ0, θ

′] and also y∗ (θ0) < y∗
(
θ′
)
. But then slightly increasing y∗ (θ) for θ ∈

(
θ0, θ

′) while
preserving y∗ (θ0) and y∗

(
θ′
)
would decrease the minimand, because of convexity in y. Now

suppose y∗ (θ0) > min {z (θ0) , θ0 + b}; since y∗ (θ0) ≤ θ0 + b for functions in F , we must have
z (θ0) < y∗ (θ0) ≤ θ0 + b. Since z (θ) is nondecreasing and y∗ (·) is continuous, we can choose
θ′ < θ0 such that z

(
θ′
)
< y∗

(
θ′
)
< y∗ (θ0). Then if we slightly decrease y∗ (θ) for θ ∈

(
θ′, θ0

)
while preserving y∗

(
θ′
)
and y∗ (θ0), this would again decrease the minimand. In either case, if

z (θ) is nondecreasing, we get a contradiction.

Now suppose that z (θ) is strictly decreasing. Let us first suppose that y∗ (θ0) >

min {z (θ0) , θ0 + b}, which means z (θ0) < y∗ (θ0) ≤ θ0 + b. Then z (1) < y∗ (1) ≤ 1 + b,

so we could slightly decrease y∗ (θ) for θ ∈ (θ0, 1] while preserving y∗ (θ0) and thereby make

y∗ (θ) closer to z (θ) on (θ0, 1]; this would decrease the minimand. This means, in particu-

lar, that in this case, if for some θ′, y∗
(
θ′
)

= z
(
θ′
)
, then y∗

(
θ′
)

= y∗ (1): indeed, this is

trivially true if θ′ = 1, while if θ′ < 1 and y∗
(
θ′
)
6= y∗ (1) then there exists θ > θ′ such that

z (θ) < y∗ (θ) < y∗ (1), which is, as we just proved, impossible. Now consider the remaining case,

y∗ (θ0) < min {z (θ0) , θ0 + b}. We have y∗ (1) ≥ 1 = z (1), and thus there is some θ′ ∈ (θ0, 1] for

which y∗
(
θ′
)

= z
(
θ′
)
(because y∗ (θ0) < z (θ0) and y∗ (1) ≥ z (1)), and then for θ ∈

(
θ0, θ

′) we
have y∗ (θ) < z (θ). Hence, if we slightly increase y∗ (θ) for θ ∈

(
θ0, θ

′) while preserving y∗ (θ0)

and y∗
(
θ′
)
, we would decrease the minimand. In all cases, we get a contradiction to that y∗ (·)

is optimal. This contradiction completes the proof of Lemma 1. �

Proof of Theorem 7. Existence follows from Theorem 5. Uniqueness follows, since the

constraints define a convex subset of a linear space, and the objective function is strictly convex

in y (·), and linear in T , so multiplicity solely due to different T is not possible.
To proceed, we analyze the cases separately.

Part 1. Let us find the optimal contract for w̃ − ũ ≤ Ω (A, b), i.e., including the boundary

w̃ − ũ = Ω (A, b); this will be helpful for analyzing Part 2. We now solve the problem (19)

s.t. (20) while ignoring (21), and then show that (21) is satisfied. We use Theorem 8.4.1 from

Luenberger (1969, p. 220; henceforth Luenberger’s theorem) in the following way. We take the
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Lagrange multiplier λ = 1 and y∗ (·) and T ∗ given in the statement of the Theorem. To show
that (y∗ (·) , T ∗) solve the problem (19) s.t. (20), we need to verify that (y∗ (·) , T ∗) minimizes

min
(y(·),T )∈F×R

∫ 1

0

(
A (y (θ)− θ)2 − 2λ (y (θ)− θ − b) (1− θ)

)
dθ + λ (y (0)− b)2 + λũ+ (1− λ)T

for λ = 1. For such λ, this becomes

min
y(·)∈F

∫ 1

0

(
A (y (θ)− θ)2 − 2 (y (θ)− θ − b) (1− θ)

)
dθ + (y (0)− b)2 + ũ. (40)

As follows from Claim 1, the solution takes the form min (z (θ) , θ + b), with z (·) given by
z (θ) = θ + 1

A (1− θ), potentially with a floor and a cap. It thus remains to do the following:
(1) optimize over the floor and the cap and show that the optimal contract is indeed given by

y∗ (·), (2) verify that the constraint (20) holds as equality; this would imply (by Luenberger’s

theorem) that (y∗ (·) , T ∗) indeed solves (19) s.t. (20) and, finally, (2) verify that T ∗ ≥ w̃ holds.
Before we proceed, the following calculation is useful. If y (·) is a constant, then the value

of the minimand equals (A+ 1) y2 − (A+ 2b+ 1) y + b2 + b + A+1
3 + ũ, and its minimal value

is achieved at y (θ) = 1
2 + b

A+1 and is equal to
A+1
12 + Ab2

A+1 + ũ. In what follows, we find

optimal nonconstant contracts (in which case Lemma 1 will be applicable), and then compare

the minimum with A+1
12 + Ab2

A+1 + ũ.

Case a: A ≤ min
(

1, 1
2b−1

)
. Consider the case A /∈

{
1, 1

2b−1

}
. In this case, z (θ) is decreasing.

If the optimal y (·) is nonconstant, then it equals min {z (θ) , θ + b} on a segment of positive
measure of θ, and since z (θ) is decreasing, we must have y (θ) = θ + b whenever y (θ) /∈
{y (0) , y (1)}. If so, it must be that y (0) = b (y (0) > b is impossible for y (·) ∈ F , and y (0) < b

would imply a discontinuity, which is also impossible for y (·) ∈ F). Thus, if a nonconstant y (·)
is optimal, it must take the form y (θ) = θ + b for θ < q, y (θ) = q + b for θ ≥ q, for some q > 0.

To optimize with respect to q, we need to solve

min
q

∫ q

0

(
Ab2

)
dθ +

∫ 1

q

(
A (q + b− θ)2 − 2 (q − θ) (1− θ)

)
dθ + ũ. (41)

This is a cubic polynomial in q, with a local minimum at q = 1− 2Ab
A+1 and a local maximum at

q = 1; furthermore, 1− 2Ab
A+1 ∈ (0, 1). This implies that the minimum is achieved at q = 1− 2Ab

A+1 .

The corresponding value y (q) = q+ b = 1 + 1−A
1+Ab > 1 (so this y (·) ∈ F). Plugging this value of

q into the minimand, we find that it equals Ab2 − 4
3

A3b3

(A+1)2 + ũ, which is less than the optimal

value under a constant contract A+1
12 + Ab2

A+1 + ũ (the difference between the former and the latter

equals Ab2 − 4
3

A3b3

(A+1)2 −
(
A+1
12 + Ab2

A+1

)
= − 1

12 (A+ 4Ab+ 1) (1−2Ab+A)2

(A+1)2 < 0). Consequently,

y∗ (·) indeed minimizes (40) if A < min
(

1, 1
2b−1

)
. If, however, A ∈

{
1, 1

2b−1

}
, then it follows by
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continuity that y∗ (·) minimizes (40) in these limit cases as well. Plugging the y (·) and T into
(20), one immediately verifies that it holds as equality.

Case b: 1 < A < 1
b . In this case, z (θ) is increasing, and, furthermore, satisfies z (0) = 1

A > b.

Moreover, in this case b < 1, and therefore F does not contain constant functions y (·). Since
the optimal y (·) is nonconstant, it equals min {z (θ) , θ + b} whenever y (θ) /∈ {y (0) , y (1)},
and this is true for a segment of positive measure. Furthermore, we must have y (0) ≤ b =

min {z (0) , 0 + b} and y (1) ≥ 1 = min {z (1) , 1 + b}, which implies that there is neither a ‘floor’
(where y (θ) = y (0) for a set of positive measure) not a ‘cap’ (where y (θ) = y (1) for a set

of positive measure). Thus, y∗ (θ) = min {z (θ) , θ + b} is a function in F that minimizes (40).

Plugging y∗ (·) and T ∗ into (20), it is immediate to verify that it holds as equality.

Case c: 1
2b−1 < A < 2b − 1. Here, we need to prove that the optimal y (·) is a constant, in

which case, as we showed above, it indeed equals 1
2 + b

A+1 (this constant is in F in this case).
Suppose that the optimal y (·) is not a constant. First, 1

2b−1 < 2b − 1 implies b > 1. Suppose

first that Ab ≤ 1; this implies, in particular, that A < 1. In this case, z (θ) is decreasing, and

thus (similar to Case a) y (θ) would have to equal θ + b for θ ≤ q and q + b for θ > q, for some

q > 0. Optimizing with respect to q is equivalent to minimizing (41). Notice that its derivative

is (1− q) (2Ab+ (A+ 1) (q − 1)); since the first term is nonnegative and the second is increasing

in q, it is positive for all q ∈ (0, 1) if and only if it is positive at q = 0, which is true, as there

it equals 2Ab − A − 1 = A (2b− 1) − 1 > 0. Thus, minimum is attained at q = 0, where the

function is a constant. This contradiction shows that the optimal y (θ) is a constant in this case.

Second, suppose that Ab > 1, but A ≤ 1. In this case, z (θ) is nonincreasing, but z (θ) < θ+b

for all θ, somin {z (θ) , θ + b} = z (θ). But y (θ) = z (θ) cannot hold on an interval of θ where y (θ)

is increasing, so y (0) < y (1) is impossible, and y (·) must be a constant, again a contradiction.
Finally, suppose A > 1. Then z (θ) is an increasing function; since z (1) = 1, then if y (θ) is

not a constant, it must equal z (θ) for θ ≥ q and z (q) for θ < q for some q < 1. Let us optimize

over q; we need to solve

min
q

∫ q

0

(
A

(
1− A− 1

A
(1− q)− θ

)2

− 2

(
1− A− 1

A
(1− q)− θ − b

)
(1− θ)

)
dθ+ (42)

∫ 1

q

(
A

(
1− A− 1

A
(1− θ)− θ

)2

− 2

(
1− A− 1

A
(1− θ)− θ − b

)
(1− θ)

)
dθ

+

(
1− A− 1

A
(1− q)− b

)2

+ ũ.

The derivative of the minimand with respect to q equals (A− 1) A(A−1)q2+2(A−1)q+2(1−Ab)
A2 , which

is negative for all q (indeed, this is increasing in q, so it suffi ces to check that the sign is negative
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for q = 1, and in this case it equals A−1
A (A− (2b− 1)) < 0). Thus, minimum is reached at

q = 1, and for this q the function is actually a constant (y (θ) = 1), again a contradiction.

Consequently, our assertion that y (θ) is not constant was shown to be wrong, therefore, in

this case y (θ) is a constant, and as shown above, y (θ) = 1
2 + b

A+1 ; this function lies in F and
therefore it solves (40). Now it is straightforward to plug y∗ (θ) and T ∗ into (20) and verify that

it holds as equality.

Case d: A ≥ max
(

1
b , 2b− 1

)
. As in case a, start with assuming A /∈

{
1
b , 2b− 1

}
. In this

case, A > 1 (if b ≤ 1 this follows from A > 1
b and if b ≥ 1 this follows from A > 2b − 1), and

therefore z (θ) is increasing. Furthermore, Ab ≥ 1 implies that z (θ) ≤ θ + b for all θ and thus,

as in the similar subcase of Case c, if y (θ) is not a constant, then it must equal z (θ) for θ ≥ q

and z (q) for θ < q for some q < 1. Let us optimize over q; we need to solve (42), which equals

(A− 1)2

3A
q3 +

(A− 1)2

A2
q2 + 2

(A− 1) (1−Ab)
A2

q +
1

3A2

(
3A2b2 + 3A2b− 6Ab−A+ 3

)
+ ũ.

Its derivative with respect to q equals (A− 1) A(A−1)q2+2(A−1)q+2(1−Ab)
A2 . In this case, how-

ever, this derivative is monotonically increasing in q; it is negative (equal to 2A−1
A2 (1−Ab))

if q = 0 and positive (equal to A−1
A (A− (2b− 1))) for q = 1. Thus, (42) has a unique

minimum on [0, 1], attained at q = 1
A

(√
1 + 2AAb−1

A−1 − 1
)
. This function y (θ) is in F , is

nonconstant (since we assumed A 6= 1
b ), and the corresponding value of the minimand is

2
3 (A− 1) 1+A−2A2b

A4

√
1 + 2AAb−1

A−1 +
3A2b(A2b+A2−2)−(A+1)(A2−2)

3A4 + ũ.

Now consider the possibility that y (θ) is a constant. This cannot be the solution for b < 1,

since in this case there are no constant functions in F . If b ≥ 1, notice that if y (·) is a
constant, then the minimand (40) is strictly convex in this value. In the case under consideration,

A ≥ 2b+ 1 implies 1
2 + b

A+1 ≤ 1, and since (40) is minimized (among constant y (·)) at y (θ) =

1
2 + b

A+1 , the constant function in F that minimizes (40) must be the one closest to 1
2 + b

A+1 ,

i.e., y (θ) = 1. Notice, however, that this function belong in the class above for q = 0. Thus, if

A > max
(

1
b , 2b− 1

)
, y (θ) = 1 does not achieve minimum and thus y∗ (θ) minimizes (40), and if

A ∈
{

1
b , 2b− 1

}
, then y∗ (·) minimizes (40) by continuity. It remains to plug y∗ (θ) and T ∗ into

(20) and verify that it holds as equality, which is straightforward.

Luenberger’s theorem now implies that (y∗ (·) , T ∗) indeed solves (19) s.t. (20). It remains

to check that T ∗ ≥ w̃, but this is equivalent to w̃ − ũ ≤ Ω (A, b), which holds in the case under

consideration. Furthermore, if w̃ − ũ < Ω (A, b), so the inequality is strict, then T ∗ > w̃, so the

transfer is higher than minimal. This completes the proof of Part 1.

Part 2. In these cases, Ω (A, b) ≤ w̃ − ũ < b2 + b, we again use Luenberger’s theorem, this

time applying it to the problem (19) s.t. (20) and (21) directly. We take Lagrange multipliers
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λ = A
D (where D = D (w̃ − ũ, b) is defined in the statement of the Theorem; as it is easy to

check, Ω (A, b) is strictly increasing from 0 to b+ b2 as A increases from 0 to ∞, and therefore
Ω (D, b) = w̃− ũ has a unique solution for 0 < w̃− ũ < b+b2, which, if Ω (A, b) ≤ w̃− ũ, satisfies
D ≥ A) and µ = 1− A

D , and verify that (y∗ (·) , T ∗ = w̃) minimize

min
(y(·),T )∈Z

∫ 1

0

(
A (y (θ)− θ)2 − 2λ (y (θ)− θ − b) (1− θ)

)
dθ+λ (y (0)− b)2+λũ+µw̃+(1− λ− µ)T .

(43)

Notice, however, that the last term (1− λ− µ)T vanishes (as λ+ µ = 1) and µw̃ is a constant,

so the problem is equivalent to

min
y(·)∈F

∫ 1

0

(
A (y (θ)− θ)2 − 2λ (y (θ)− θ − b) (1− θ)

)
dθ + λ (y (0)− b)2 + λũ.

Since λ is a positive scalar, we can divide by it, getting

min
y(·)∈F

∫ 1

0

(
D (y (θ)− θ)2 − 2 (y (θ)− θ − b) (1− θ)

)
dθ + (y (0)− b)2 + ũ,

but this is exactly the same problem as (40), except thatA is substituted forD. This immediately

implies that y∗ (·) indeed minimizes the (43).

Let us show that (20) and (21) hold as equalities. This is trivially true for (21). For (20),

notice that y∗ (·) , T ∗ is also the solution for the set of parameters (A′, b′, ũ′, w̃′) = (D, b, ũ, w̃)

(since Ω (D, b) = w̃ − ũ, Part 1 prescribes T ∗ = w̃). This means that (20) holds as equality for

(A′, b′, ũ′, w̃′). Notice, however, that it does not explicitly depend on parameter A, which implies

that it holds as equality for (A, b, ũ, w̃) as well. Thus, for y∗ (·) and T ∗, both constraints (20)

and (21) hold as equality. Now, Luenberger’s theorem implies that (y∗ (·) , T ∗ = w̃) is indeed

the solution to (19) s.t. (20) and (21).

Part 3. Notice that the value of (19) cannot be less than w̃, if the constraints are to be

satisfied, and moreover it is achieved under y∗ (θ) = θ, T ∗ = w̃. Let us verify that if w̃−ũ ≥ b+b2,
then (20) is satisfied as well. Indeed, the left-hand side of (20) becomes

(0− b)2 −
∫ 1

0
2 (θ − θ − b) (1− θ) dθ − w̃ + ũ = b+ b2 − (w̃ − ũ) ≤ 0.

Thus, this contract is indeed optimal. �

Proof of Theorem 8. Part 1. According to Theorem 7, if b ≤ 1, then money burning

is used either if A > 1 or if w̃ − ũ ≥ b3

3 , and if b > 1, then it is used if either if A > 2b − 1

or w̃ − ũ > b2 − b + 1
3 . Together, this amounts to the condition A > 2 max (b, 1) − 1 or

w̃ − ũ > b3−(max(b,1)−1)3

3 . The comparative statics results here are straightforward.
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Part 2. Consider first comparative statics with respect to A. It suffi ces to study the effect

of a small increase in A. From Theorem 7 it follows that if w̃− ũ > Ω (A, b), a small increase in

A does not change the optimal y (·) and thus does not affect money-burning, thus, consider the
case w̃ − ũ ≤ Ω (A, b).

If A < min
(

1, 1
2b−1

)
or 1

2b−1 < A < 2b − 1, then there is no money-burning, and a small

change in A does not change this. Consider the case 1 < A < 1
b . Taking Claim 4 into account,

it suffi ces to show that optimal y∗ (θ) is weakly decreasing in A for all θ. But this immediately

follows from the formula y∗ (θ) = min
(
θ + b, 1

A +
(
1− 1

A

)
θ
)
.

Lastly, consider the case A > max
(

1
b , 2b− 1

)
, where y∗ (θ) =

max

(
1
A +

(
1− 1

A

)
θ,

1+
√

(A−1)(2A2b−A−1)

A2

)
. The first expression 1

A +
(
1− 1

A

)
θ is decreasing in

A, so it suffi ces to show that h (A, b) =
1+
√

(A−1)(2A2b−A−1)

A2 also is. We have

∂h (A, b)

∂A
=

2A2b−A3b+A2 − 2− 2
√

(A− 1) (2A2b−A− 1)

A3
√

(A− 1) (2A2b−A− 1)
.

Notice also that
∂h (A, b)

∂b
=

1√
1 + 2A(Ab−1)

A−1

,

and thus the sign of ∂
2h(A,b)
∂A∂b is the same as the sign of d

dA

(
−2A(Ab−1)

A−1

)
= 22Ab−A2b−1

(A−1)2 . If A ≥ 2,

the numerator is negative, which means that for a fixed A, ∂h(A,b)
∂A is decreasing in b. Since

A > 1
b , it suffi ces to check that

∂h(A,b)
∂A ≤ 0 for b = 1

A , and it turns out that it equals 0. Thus, for

such A and b > 1
A ,

∂h(A,b)
∂A < 0. If, however, A < 2, then 2Ab−A2b−1 is negative for b < 1

2A−A2

and positive for b > 1
2A−A2 . Thus, for a fixed A < 1, ∂h(A,b)

∂A is decreasing in b on
(

1
A ,

1
2A−A2

)
and is increasing in b thereafter. We already know that for b = 1

A ,
∂h(A,b)
∂A = 0; since A > 2b− 1

in this case, it now suffi ces to verify that for b = A+1
2 , ∂h(A,b)

∂A ≤ 0. But this is true, since it in

fact equals − 1
2(A+1) < 0. This proves that for all parameter values where A > max

(
1
b , 2b− 1

)
,

∂h(A,b)
∂A is negative. Thus, y∗ (θ) is weakly increasing in A for all θ, which completes this part of

the proof.

The reasoning in the case of w̃ and ũ is similar and is omitted. To see that the amount

of money-burning may be nonmonotone in b, take A = 2 and w̃ − ũ = 5
16 . Then if b = 1,

there is no money burning, if b = 1
2 , there is a positive amount of money-burning (totally,

1
3Ab

3 (A− 1) = 1
12), but for b <

1
4 , the total amount of money-burning equals b (and the

principal implements his ideal contract) and therefore decreases as b decreases further. This

completes the proof of Part 2.

Part 3. The first part of the statement immediately follows from Theorem 7, and the second

from the fact that Ω (A, b) is increasing in A and b.
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Part 4. Immediately follows from Theorem 7. �

Proof of Theorem 9. These statements immediately follow from Theorem 7. �

Proof of Theorem 10. From Theorem 7, it follows that the agent’s participation

constraint (20) binds if and only if w̃ − ũ ≤ b + b2, in which case agent’s utility is ũ.

If w̃ − ũ ≤ b + b2, principal’s ideal y (θ) = θ is implemented, and the agent’s utility is

T −
(

(y (0)− b)2 −
∫ 1

0 2 (y (θ)− θ − b) (1− θ) dθ
)

= w̃ − b − b2, which proves the first part

of the statement.

To show that the principal’s utility is decreasing in ũ and w̃, notice that lower ũ or w̃

relax both constraints (20) and (21), thus the principal cannot be worse off, and it is trivial

to find examples where he is better off. A higher A decreases the principal’s payoff from any

fixed scheme y (·) (except if y (θ) = θ where an increase in A has no effect), and thus he is

worse off. Finally, suppose that y (·) solved the problem for (A, b, ũ, w̃) and let b′ < b. Take

y′ (θ) = b′

b (y (θ)− θ) + θ and take the same transfer T ′ = w̃. This new contract satisfies the

constraints (20) and (21) because the previous one did (it makes agent’s disutility from actions

less and weakly reduces money-burning), and it also makes the principal better off. Thus, there

is a contract that makes the principal better off, which means that if the principal were to choose

the optimal contract under new b′, he would be better off from a lower b′. This completes the

proof. �
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