Intangible capital, firm scope, and growth

Nicolas Crouzet¹, Janice Eberly^{1,3}, Andrea Eisfeldt^{2,3}, and Dimitris Papanikolaou^{1,3} ¹Northwestern, ²UCLA, ³NBER

Intangibles are an important factor of production

Intangibles are an important factor of production

IT-related assets Intellectual property assets Organization capital

[software, databases] [patents, trademarks] [production processes, management methods]

Intangibles are an important factor of production

IT-related assets Intellectual property assets Organization capital

[software, databases] [patents, trademarks] [production processes, management methods]

What is special about these assets?

Intangibles are an important factor of production

IT-related assets Intellectual property assets Organization capital

[software, databases] [patents, trademarks] [production processes, management methods]

What is special about these assets?

1 Hard to identify and measure

Intangibles are an important factor of production

IT-related assets Intellectual property assets Organization capital

[software, databases] [patents, trademarks] [production processes, management methods]

What is special about these assets?

- 1 Hard to identify and measure
- 2 Distinct economic characteristics

Intangibles are an important factor of production

IT-related assets Intellectual property assets Organization capital

[software, databases] [patents, trademarks] [production processes, management methods]

What is special about these assets?

- 1 Hard to identify and measure
- 2 Distinct economic characteristics

This paper: Model emphasizing 2, with an application to long-run growth

Productive assets that can be replicable and non-exclusive

Productive assets that can be replicable and non-exclusive

Replicability

Non-exclusivity

Productive assets that can be replicable and non-exclusive

Replicability

The asset can be replicated without further investment

Non-exclusivity

Productive assets that can be replicable and non-exclusive

Replicability

The asset can be replicated without further investment

Non-exclusivity

It can be difficult to prevent others from using the asset

Productive assets that can be replicable and non-exclusive

Replicability $-\rho$

The asset can be replicated without further investment

Non-exclusivity $-\lambda$

It can be difficult to prevent others from using the asset

Productive assets that can be replicable and non-exclusive

Replicability $-\rho$

The asset can be replicated without further investment

Technology determines how easy replication is — e.g. writing vs. digital

Non-exclusivity $-\lambda$

It can be difficult to prevent others from using the asset

Productive assets that can be replicable and non-exclusive

Replicability $-\rho$

The asset can be replicated without further investment

Technology determines how easy replication is — e.g. writing vs. digital

Non-exclusivity $-\lambda$

It can be difficult to prevent others from using the asset

Property rights determine degree of exclusivity — e.g. patents vs. trade secrets

Q: How does growth change when $\uparrow \rho$?

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

[e.g., IT revolution]

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

[e.g., IT revolution]

C: Model of production with intangibles

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

[e.g., IT revolution]

C: Model of production with intangibles

Discipline w/ data on firm scope ($\leftrightarrow \rho$) and ownership by founders ($\leftrightarrow \lambda$)

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

[e.g., IT revolution]

C: Model of production with intangibles

Discipline w/ data on firm scope ($\leftrightarrow \rho$) and ownership by founders ($\leftrightarrow \lambda$)

 $\underline{\mathbf{A}}: \uparrow \mathbf{\rho} \not\Rightarrow \uparrow \mathbf{g}$

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

[e.g., IT revolution]

C: Model of production with intangibles

Discipline w/ data on firm scope ($\leftrightarrow \rho$) and ownership by founders ($\leftrightarrow \lambda$)

 $\underline{\mathbf{A}}: \uparrow \mathbf{\rho} \not\Rightarrow \uparrow \mathbf{g}$

Long-run: $\downarrow g$, entry, investment; \uparrow scope, profits, Q, concentration;

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

[e.g., IT revolution]

C: Model of production with intangibles

Discipline w/ data on firm scope ($\leftrightarrow \rho$) and ownership by founders ($\leftrightarrow \lambda$)

 $\underline{\mathbf{A}}: \uparrow \mathbf{\rho} \not\Rightarrow \uparrow \mathbf{g}$

Long-run: $\downarrow g$, entry, investment; \uparrow scope, profits, Q, concentration; Transition: $\uparrow g$, entry, investment

Q: How does growth change when $\uparrow \rho$?

Replication of knowledge assets becomes easier

[e.g., IT revolution]

C: Model of production with intangibles

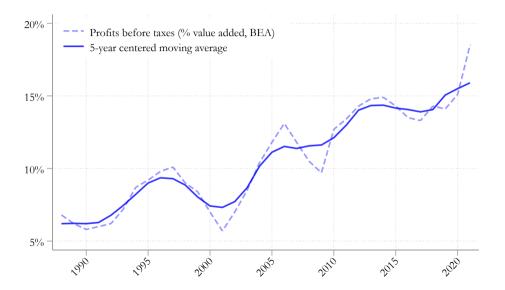
Discipline w/ data on firm scope ($\leftrightarrow \rho$) and ownership by founders ($\leftrightarrow \lambda$)

 $\underline{\mathbf{A}}: \uparrow \mathbf{\rho} \not\Rightarrow \uparrow \mathbf{g}$

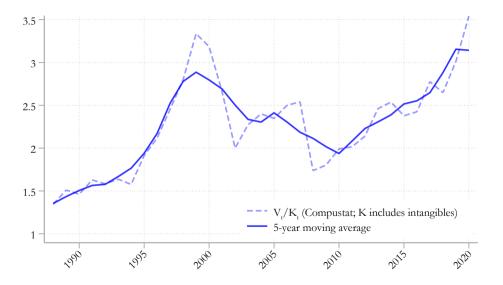
Long-run: $\downarrow g$, entry, investment; \uparrow scope, profits, Q, concentration; Transition: $\uparrow g$, entry, investment

```
Why is this (hopefully) interesting?
```

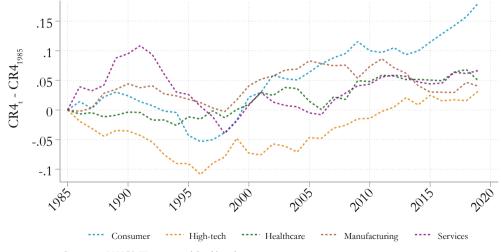
Corporate profits as a share of GDP have increased



Market valuations have increased

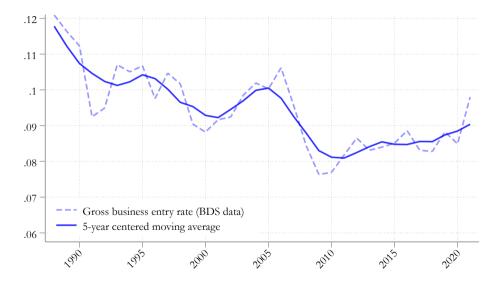


Concentration has increased



Compustat; NAICS-3D sectors weighted by sales.

Entry rates have fallen

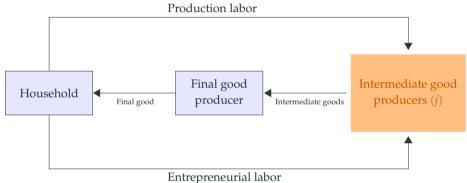


Roadmap

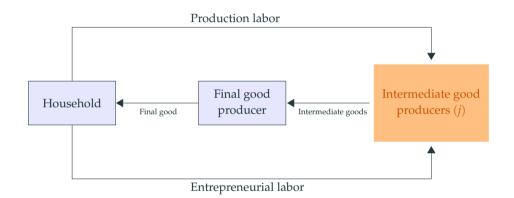
- 1. Model
- 2. Comparative statics
- 3. Data and transitional dynamics

1. Model

Structure

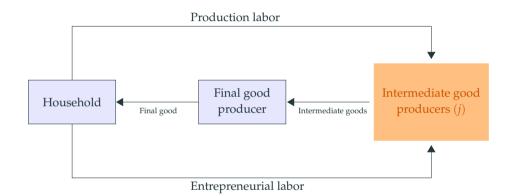


Structure



Firm *j* produces measure x_j of intermediate varieties, indexed by *m*

Structure



Firm *j* produces measure x_j of intermediate varieties, indexed by *m* $x_j \equiv \mathbf{scope}$ of firm *j* Household and final good producer

Household

Household and final good producer

Household

Log utility
$$r_t = \frac{dC_t}{C_t} + \eta$$

Household and final good producer

Household

Log utility $r_t = \frac{dC_t}{C_t} + \eta$ Unit labor supply $1 = L_{E,t} + L_{Y,t}$

Household

Log utility $r_t = \frac{dC_t}{C_t} + \eta$ Unit labor supply $1 = L_{E,t} + L_{Y,t}$

Final good producer

Household

Log utility $r_t = \frac{dC_t}{C_t} + \eta$ Unit labor supply $1 = L_{E,t} + L_{Y,t}$

Final good producer

 $CES \quad \chi \in \left[0,1 \right]$

Household

Log utility $r_t = \frac{dC_t}{C_t} + \eta$ Unit labor supply $1 = L_{E,t} + L_{Y,t}$

Final good producer

 $CES \quad \chi \in [0,1] \qquad \qquad markup \quad = \quad \chi^{-1}$

Household

Log utility $r_t = \frac{dC_t}{C_t} + \eta$ Unit labor supply $1 = L_{E,t} + L_{Y,t}$

Final good producer

 $CES \quad \chi \in [0,1] \qquad \qquad markup \quad = \quad \chi^{-1}$

Household

Log utility $r_t = \frac{dC_t}{C_t} + \eta$ Unit labor supply $1 = L_{E,t} + L_{Y,t}$

Final good producer

CES $\chi \in [0,1]$ markup $= \chi^{-1}$ Demand for variety m $y_t(m) = \left(\frac{p_t(m)}{P_{\Upsilon,t}}\right)^{-\frac{1}{1-\chi}} \Upsilon_t$

Household

Log utility $r_t = \frac{dC_t}{C_t} + \eta$ Unit labor supply $1 = L_{E,t} + L_{Y,t}$

Final good producer

CES $\chi \in [0,1]$ markup $= \chi^{-1}$ Demand for variety m $y_t(m) = \left(\frac{p_t(m)}{P_{\Upsilon,t}}\right)^{-\frac{1}{1-\chi}} \Upsilon_t$

Technology

Technology

Production function

 $y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$

Technology

Production function

 $y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$

n(m): intangible capital sunk at entry

Technology

Production function $y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$ $n(m) : \frac{\text{intangible capital}}{\text{sunk at entry}}$ Cost function $c_{m,t}(y) = W_t n(m)^{-\frac{1-\zeta}{\zeta}} y^{\frac{1}{\zeta}}$

Technology

Production function $y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$ $n(m) : \frac{\text{intangible capital}}{\text{sunk at entry}}$ Cost function $c_{m,t}(y) = W_t n(m)^{-\frac{1-\zeta}{\zeta}} y^{\frac{1}{\zeta}}$

Prices and profits

Technology

Production function $y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$ $n(m) : \frac{\text{intangible capital}}{\text{sunk at entry}}$ Cost function $c_{m,t}(y) = W_t n(m)^{-\frac{1-\zeta}{\zeta}} y^{\frac{1}{\zeta}}$

Prices and profits

Prices $p_t(y) = \chi^{-1} c'_{m,t}(y)$

Technology

Production function $y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$ $n(m) : \frac{\text{intangible capital}}{\text{sunk at entry}}$ Cost function $c_{m,t}(y) = W_t n(m)^{-\frac{1-\zeta}{\zeta}} y^{\frac{1}{\zeta}}$

Prices and profits

Prices $p_t(y) = \chi^{-1} c'_{m,t}(y)$

Profits $\pi_t(n(m)) = A_t n(m)^{\omega}$

Technology

Production function $y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$ $n(m) : \frac{\text{intangible capital}}{\text{sunk at entry}}$ Cost function $c_{m,t}(y) = W_t n(m)^{-\frac{1-\zeta}{\zeta}} y^{\frac{1}{\zeta}}$

Prices and profits

Prices $p_t(y) = \chi^{-1} c'_{m,t}(y)$ Profits $\pi_t(n(m)) = A_t n(m)^{\omega}$ $\omega \equiv \frac{(1-\zeta)\chi}{1-\zeta\chi}$

Technology

Production function
$$y_t(m) = l_t(m)^{\zeta} n(m)^{1-\zeta}$$
 $n(m) : \frac{\text{intangible capital}}{\text{sunk at entry}}$
Cost function $c_{m,t}(y) = W_t n(m)^{-\frac{1-\zeta}{\zeta}} y^{\frac{1}{\zeta}}$

Prices and profits

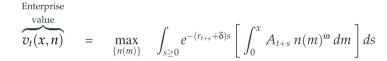
Prices $p_t(y) = \chi^{-1} c'_{m,t}(y)$ Profits $\pi_t(n(m)) = A_t n(m)^{\omega}$ $\omega \equiv \frac{(1-\zeta)\chi}{1-\zeta\chi} \in [0,1]$

At entry, given scope *x* and total intangible capital *n* :

At entry, given scope *x* and total intangible capital *n* :

Enterprise value $v_t(x,n)$

At entry, given scope *x* and total intangible capital *n* :



At entry, given scope *x* and total intangible capital *n* :

Enterprise
value

$$\widetilde{v_t(x,n)} = \max_{\{n(m)\}} \int_{s \ge 0} e^{-(r_{t+s}+\delta)s} \left[\int_0^x A_{t+s} n(m)^{\omega} dm \right] ds$$

s.t. $\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm \right)^{1-\rho} \le n$ $\rho \in [0,1]$

At entry, given scope *x* and total intangible capital *n* :

Enterprise
value

$$\widetilde{v_t(x,n)} = \max_{\{n(m)\}} \int_{s \ge 0} e^{-(r_{t+s}+\delta)s} \left[\int_0^x A_{t+s} n(m)^{\omega} dm \right] ds$$

s.t. $\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm \right)^{1-\rho} \le n$ $\rho \in [0,1]$

 $v_t(x,n) \propto x^{1-\omega+\omega\rho} n^{\omega}$

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

 $\mathbf{\rho} = 0$

$$\int_0^x n(m) dm \leq n$$

 $\mathbf{\rho} = 0$

$$\int_0^x n(m) \, dm \quad \leq \quad n$$

 $\mathbf{\rho} = \mathbf{0}$

increasing n(m) requires reducing n(-m) one-for-one

$$\int_0^x n(m) \, dm \quad \leq \quad n$$

 $\mathbf{\rho} = 0$

increasing n(m) requires reducing n(-m) one-for-one

n is rival within the firm

$$\int_0^x n(m) \, dm \quad \leq \quad n$$

 $\mathbf{\rho} = 0$

increasing n(m) requires reducing n(-m) one-for-one

n is rival within the firm

e.g. machines, structures

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

 $\rho = 1$

 $\max_{m \in [0,x]} n(m) \leq n$

ρ = 1

 $\max_{m \in [0,x]} n(m) \leq n$

 $\rho = 1$

increasing n(m) doesn't require reducing n(-m) at all

n is non-rival within the firm

 $\max_{m \in [0,x]} n(m) \leq n$

 $\rho = 1$

increasing n(m) doesn't require reducing n(-m) at all

n is non-rival within the firm

e.g. a patent for a touchscreen

using it for one product not reduce its availability for other products

 $\max_{m \in [0,x]} n(m) \leq n$

 $\mathbf{\rho} \in (0,1)$

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

 $\mathbf{\rho} \in (0,1)$

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

 $\rho \in (0,1)$

increasing n(m) requires reducing n(-m), but less than one-for-one

n is imperfectly rival within the firm

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

 $\mathbf{\rho} \in (0,1)$

increasing n(m) requires reducing n(-m), but less than one-for-one

n is imperfectly rival within the firm

e.g. an inventory management process for an online retailer

may be hard to perfectly replicate the process across warehouses

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

 $\mathbf{\rho} \in (0,1)$

increasing n(m) requires reducing n(-m), but less than one-for-one

n is imperfectly rival within the firm

e.g. an inventory management process for an online retailer

may be hard to perfectly replicate the process across warehouses

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

non-rivalry $(\rho) \leftrightarrow$ "returns to scale" of intangible capital

What does ρ capture?

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

non-rivalry $(\rho) \leftrightarrow$ "returns to scale" of intangible capital

What does p capture?

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

non-rivalry $(\rho) \leftrightarrow$ "returns to scale" of intangible capital

 $v_t(x,n) \propto x^{1-\omega+\omega\rho}n^{\omega}$

What does p capture?

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

non-rivalry $(\rho) \leftrightarrow$ "returns to scale" of intangible capital

 $v_t(x,n) \propto x^{1-\omega+\omega\rho}n^{\omega}$

if $\rho = 0$, constant returns to (x, n)

What does p capture?

$$\left(\int_0^x n(m)^{\frac{1}{1-\rho}} dm\right)^{1-\rho} \leq n$$

non-rivalry $(\rho) \leftrightarrow$ "returns to scale" of intangible capital

 $v_t(x,n) \propto x^{1-\omega+\omega\rho}n^{\omega}$

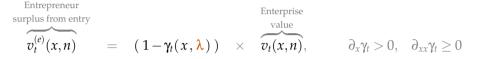
- if $\rho = 0$, constant returns to (x, n)
- if $\rho > 0$, increasing returns to (x, n)

What limits the scope of implementation?

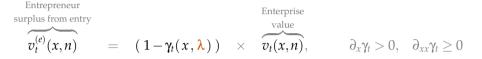
[Microfoundations]

<u>Assumption</u> Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value

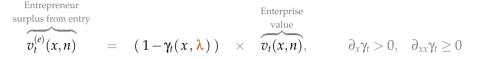


Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



 $\lambda \leftrightarrow$ non-exclusivity

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



$\lambda \leftrightarrow$ non-exclusivity

 $\lambda = 0$: $\gamma_t(x, \lambda) = 0$, full exclusivity

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value

$$\overbrace{v_t^{(e)}(x,n)}^{\text{Entrepreneur}} = (1 - \gamma_t(x, \lambda)) \times \overbrace{v_t(x,n)}^{\text{Entreprise}}, \qquad \partial_x \gamma_t > 0, \quad \partial_{xx} \gamma_t \ge 0$$

$\lambda \leftrightarrow$ non-exclusivity

$$\lambda = 0$$
: $\gamma_t(x, \lambda) = 0$, full exclusivity

 $\lambda \to +\infty$: $\gamma_t(x, \lambda) \to \overline{\gamma}_t(x) \gg 0$, no exclusivity

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value

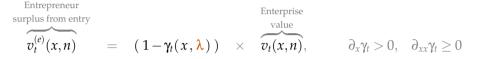
$$\overbrace{v_t^{(e)}(x,n)}^{\text{Entrepreneur}} = (1 - \gamma_t(x, \lambda)) \times \overbrace{v_t(x,n)}^{\text{Entreprise}}, \qquad \partial_x \gamma_t > 0, \quad \partial_{xx} \gamma_t \ge 0$$

$\lambda \leftrightarrow$ non-exclusivity

$$\lambda = 0$$
: $\gamma_t(x, \lambda) = 0$, full exclusivity

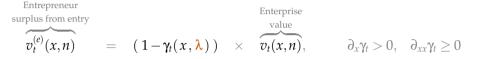
 $\lambda \to +\infty$: $\gamma_t(x, \lambda) \to \overline{\gamma}_t(x) \gg 0$, no exclusivity

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



Microfoundation Deter employees with knowledge of the firm's intangibles from entry

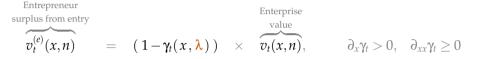
Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



Microfoundation Deter employees with knowledge of the firm's intangibles from entry

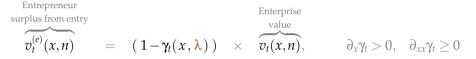
To increase *x*, entrepreneur must share intangible capital w/ subset of employees ("outsiders")

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



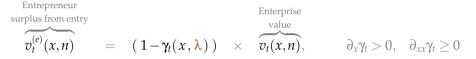
<u>Microfoundation</u> Deter employees with knowledge of the firm's intangibles from entry To increase *x*, entrepreneur must share intangible capital w/ subset of employees ("outsiders") λ : Poisson intensity at outsiders receive right to open competing firm (Cournot)

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



<u>Microfoundation</u> Deter employees with knowledge of the firm's intangibles from entry To increase *x*, entrepreneur must share intangible capital w/ subset of employees ("outsiders") λ : Poisson intensity at outsiders receive right to open competing firm (Cournot) $\lambda \in (0, +\infty)$: patents, trademarks, non-compete clauses

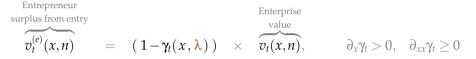
Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



<u>Microfoundation</u> Deter employees with knowledge of the firm's intangibles from entry To increase *x*, entrepreneur must share intangible capital w/ subset of employees ("outsiders") λ : Poisson intensity at outsiders receive right to open competing firm (Cournot) $\lambda \in (0, +\infty)$: patents, trademarks, non-compete clauses

<u>Result</u>: Value of competing to outsiders $v_t^{(c)}(x,n) = \gamma_t(x,\lambda) v_t(x,n) \leftrightarrow \text{cost of deterrence}$

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value



<u>Microfoundation</u> Deter employees with knowledge of the firm's intangibles from entry To increase *x*, entrepreneur must share intangible capital w/ subset of employees ("outsiders") λ : Poisson intensity at outsiders receive right to open competing firm (Cournot) $\lambda \in (0, +\infty)$: patents, trademarks, non-compete clauses

<u>Result</u>: Value of competing to outsiders $v_t^{(c)}(x,n) = \gamma_t(x,\lambda) v_t(x,n) \leftrightarrow \text{cost of deterrence}$

E (

Assumption Entrepreneur only appropriates $1 - \gamma_t(x, \lambda)$ of enterprise value

surplus from entry

$$\widetilde{v_t^{(e)}(x,n)} = (1 - \gamma_t(x,\lambda)) \times \widetilde{v_t(x,n)}, \qquad \partial_x \gamma_t > 0, \quad \partial_{xx} \gamma_t \ge 0$$

Optimal scope
$$x_t = \arg \max_x (1 - \gamma_t(x, \lambda)) \underbrace{x^{1-\omega+\rho\omega}}_{(+) \text{ non-rivalry}}$$

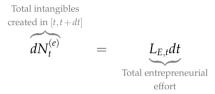
1 unit of entrepreneurial labor

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

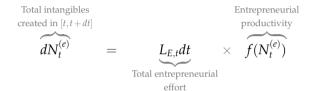
1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

Total intangibles created in [t, t+dt] $\overrightarrow{dN_t^{(e)}} =$

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$



1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$



1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

 $n_t^{(e)}$

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

$$n_t^{(e)} = rac{dN_t^{(e)}}{L_{E,t}dt}$$

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

$$n_t^{(e)} = \frac{dN_t^{(e)}}{L_{E,t}dt} = f(N_t^{(e)})$$

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

$$n_t^{(e)} = rac{dN_t^{(e)}}{L_{E,t}dt} = f(N_t^{(e)})$$

Use $f(N_t^{(e)}) = \xi N_t^{(e)}$

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

$$n_t^{(e)} = rac{dN_t^{(e)}}{L_{E,t}dt} = f(N_t^{(e)})$$

Use $f(N_t^{(e)}) = \xi N_t^{(e)}$

[Romer, 1990]

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

$$n_t^{(e)} = rac{dN_t^{(e)}}{L_{E,t}dt} = f(N_t^{(e)})$$

Use
$$f(N_t^{(e)}) = \xi N_t^{(e)}$$

[Romer, 1990]

$$n_t^{(e)} = \xi N_t^{(e)},$$

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

$$n_t^{(e)} = rac{dN_t^{(e)}}{L_{E,t}dt} = f(N_t^{(e)})$$

Use
$$f(N_t^{(e)}) = \xi N_t^{(e)}$$

 $n_t^{(e)} = \xi N_t^{(e)}, \quad \frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_{E,t} dt$

[Romer, 1990]

1 unit of entrepreneurial labor \rightarrow intangible stock $n_t^{(e)}$

$$n_t^{(e)} = rac{dN_t^{(e)}}{L_{E,t}dt} = f(N_t^{(e)})$$

Use
$$f(N_t^{(e)}) = \xi N_t^{(e)}$$

 $n_t^{(e)} = \xi N_t^{(e)}, \quad \frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_{E,t} dt$

For now, spillovers from incumbents \rightarrow future entrants do not depend on ρ

[Global solution]

Free-entry

$$L_{E,t} \ge 0$$
 and $v_t^{(e)} = W_t,$ or $L_{E,t} = 0$ and $v_t^{(e)} \le W_t.$

[Global solution]

Free-entry

$$L_{E,t} \ge 0$$
 and $v_t^{(e)} = W_t,$
or
 $L_{E,t} = 0$ and $v_t^{(e)} \le W_t.$

Equilibrium:

Free-entry

$$L_{E,t} \ge 0$$
 and $v_t^{(e)} = W_t,$ or $L_{E,t} = 0$ and $v_t^{(e)} \le W_t.$

Equilibrium: $L_{E,t} + L_{Y,t} = 1$, $L_{Y,t} =$ Production labor demand from incumbents.

Free-entry

$$L_{E,t} \ge 0$$
 and $v_t^{(e)} = W_t,$ or $L_{E,t} = 0$ and $v_t^{(e)} \le W_t.$

Equilibrium: $L_{E,t} + L_{Y,t} = 1$, $L_{Y,t} =$ Production labor demand from incumbents.

Balanced growth path

For any $\rho \in [0, 1]$, if $\xi > 0$, there exists a unique equilibrium where $(x_t, L_{E,t})$ are constant and Y_t grows at rate g > 0.

2. Comparative statics

Creation of new intangibles:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E dt$$

Creation of new intangibles:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E dt$$

In balanced growth,

$$Y_t = L_{Y,t}^{\zeta} N_t^{1-\zeta} \quad \propto \quad N_t^{1-\zeta}$$

Creation of new intangibles:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E dt$$

In balanced growth,

$$Y_t = L_{Y,t}^{\zeta} N_t^{1-\zeta} \quad \propto \quad N_t^{1-\zeta} \quad \propto \quad (N_t^{(e)})^{1-\zeta}$$

Creation of new intangibles:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E dt$$

In balanced growth,

$$Y_t = L_{Y,t}^{\zeta} N_t^{1-\zeta} \quad \propto \quad N_t^{1-\zeta} \quad \propto \quad (N_t^{(e)})^{1-\zeta}$$

So growth only depends on entry:

$$g = (1 - \zeta) \xi L_E$$

Creation of new intangibles:

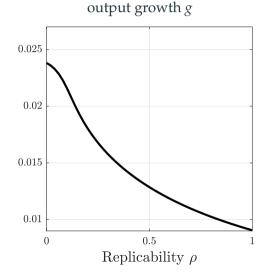
$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E dt$$

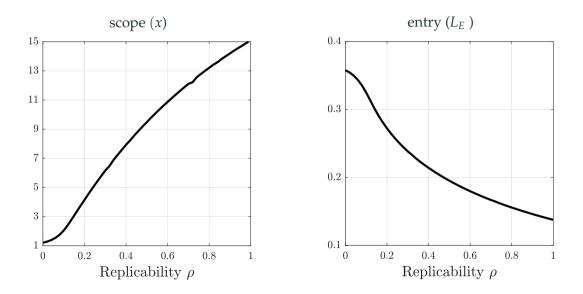
In balanced growth,

$$Y_t = L_{Y,t}^{\zeta} N_t^{1-\zeta} \quad \propto \quad N_t^{1-\zeta} \quad \propto \quad (N_t^{(e)})^{1-\zeta}$$

So growth only depends on entry:

$$g = (1 - \zeta) \xi L_E$$





[Adding spillovers]

 $\uparrow \rho$ has two effects:

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

total intangibles deployed $N_t \uparrow$, so $W_t \uparrow \qquad (\Longrightarrow L_{E,t} \downarrow)$

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

total intangibles deployed $N_t \uparrow$, so $W_t \uparrow \qquad (\Longrightarrow L_{E,t} \downarrow)$

If $\partial_x \gamma = 0$, the two effects offset each other, so growth is unchanged in new BGP

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

total intangibles deployed $N_t \uparrow$, so $W_t \uparrow \qquad (\Longrightarrow L_{E,t} \downarrow)$

If $\underline{\partial}_x \gamma = 0$, the two effects offset each other, so growth is unchanged in new BGP though it may increase along the transition path, when returns to entrepreneurship are high

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

total intangibles deployed $N_t \uparrow$, so $W_t \uparrow (\implies L_{E,t} \downarrow)$

If $\underline{\partial_x \gamma} = 0$, the two effects offset each other, so growth is unchanged in new BGP though it may increase along the transition path, when returns to entrepreneurship are high

If $\partial_x \gamma > 0$, there are disincentives to entry, so growth is lower in new BGP

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

total intangibles deployed $N_t \uparrow$, so $W_t \uparrow (\implies L_{E,t} \downarrow)$

If $\underline{\partial_x \gamma} = 0$, the two effects offset each other, so growth is unchanged in new BGP though it may increase along the transition path, when returns to entrepreneurship are high

If $\partial_x \gamma > 0$, there are disincentives to entry, so growth is lower in new BGP even though it may increase along the transition path

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

total intangibles deployed $N_t \uparrow$, so $W_t \uparrow (\implies L_{E,t} \downarrow)$

If $\underline{\partial_x \gamma} = 0$, the two effects offset each other, so growth is unchanged in new BGP though it may increase along the transition path, when returns to entrepreneurship are high

If $\underline{\partial_x \gamma > 0}$, there are disincentives to entry, so growth is lower in new BGP even though it may increase along the transition path

 $higher \ wages + outsider \ rents \ discourage \ entrepreneurship$

 $\uparrow \rho$ has two effects:

returns to entrepreneurship increase $(\implies L_{E,t}\uparrow)$

total intangibles deployed $N_t \uparrow$, so $W_t \uparrow (\implies L_{E,t} \downarrow)$

If $\underline{\partial_x \gamma} = 0$, the two effects offset each other, so growth is unchanged in new BGP though it may increase along the transition path, when returns to entrepreneurship are high

If $\underline{\partial_x \gamma > 0}$, there are disincentives to entry, so growth is lower in new BGP even though it may increase along the transition path

 $higher \ wages + outsider \ rents \ discourage \ entrepreneurship$

adding spillovers from incumbents \rightarrow future entrants may help offset this

Adding Spillovers

Creation of new intangibles:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E x^\beta dt$$

Adding Spillovers

Creation of new intangibles:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E x^\beta dt$$

Growth

$$g = (1 - \zeta) \xi L_E \mathbf{x}^{\boldsymbol{\beta}}$$

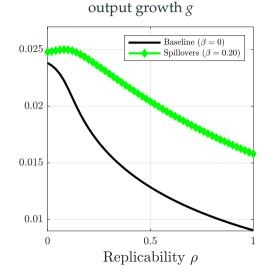
Adding Spillovers

Creation of new intangibles:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi L_E x^\beta dt$$

Growth

 $g = (1 - \zeta) \xi L_E x^{\beta}$



Quantity, price, and user cost of capital

$$K_{N,t} = \int_0^{J_t} n_{j,t} dj$$
, $p_{K_N,t} = \frac{W_t}{n_t^{(e)}}$, $R_{N,t} dt = (r_t + \delta) dt - \frac{dp_{K_N,t}}{p_{K_N,t}}$

Quantity, price, and user cost of capital

$$K_{N,t} = \int_0^{J_t} n_{j,t} dj$$
, $p_{K_N,t} = \frac{W_t}{n_t^{(e)}}$, $R_{N,t} dt = (r_t + \delta) dt - \frac{dp_{K_N,t}}{p_{K_N,t}}$

Aggregate enterprise value

Quantity, price, and user cost of capital

$$K_{N,t} = \int_0^{J_t} n_{j,t} dj$$
, $p_{K_N,t} = \frac{W_t}{n_t^{(e)}}$, $R_{N,t} dt = (r_t + \delta) dt - \frac{dp_{K_N,t}}{p_{K_N,t}}$

Aggregate enterprise value

Aggregate Tobin's Q

$$Q_t = \frac{V_t}{p_{N,t}K_{N,t}} = \underbrace{\frac{1}{1-\gamma}}_{\text{non-exclusivity}} \underbrace{\frac{R_N - \eta}{\omega(R_N - \eta) + (1-\omega)\delta}} > 1$$

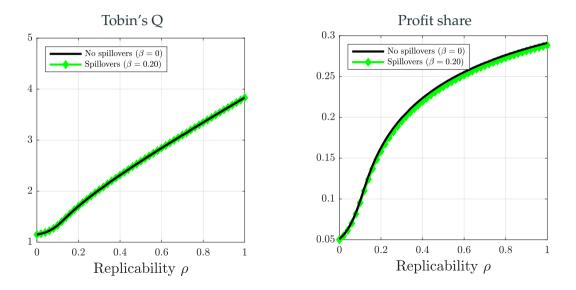
Distribution of capital income

$$(1 - \zeta \chi) Y_t$$
 (Capital income)

 $= R_N (p_{N,t}K_{N,t})$

(Competitive capital cost)

(Profits)



Concentration and measured productivity

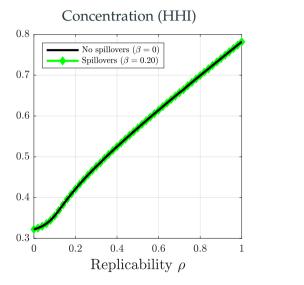
Concentration (HHI)

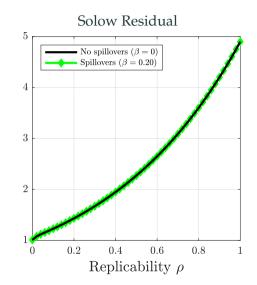
$$H_t = \int_{j=0}^{J_t} \left(x_{\tau(j)}^{1-(1-\rho_{\tau(j)})\omega} \left(\frac{n_{\tau(j)}}{N_t} \right)^{\omega} \right)^2 dj$$

Measured Productivity (Solow Residual)

$$z = \underbrace{x^{(1-\zeta)\rho}}_{\text{Effect of markups}} \underbrace{\left(x^{\frac{1-\omega}{\omega}} \frac{\xi x^{\beta} + \frac{\delta}{L_{E}}}{\left(\omega\xi x^{\beta} + \frac{\delta}{L_{E}}\right)^{\frac{1}{\omega}}}\right)^{1-\zeta}}_{\text{Effect of markups}}$$

Concentration and measured productivity





Data and transitional dynamics

Calibrated parameters (1988-1992)

Parameter	Description	Value	Source
η	Time discount rate	0.02	Annual calibration
ζ	Cobb-Douglas labor elasticity	0.70	Crouzet and Eberly (2023)
$1/\chi$	Markup	1.05	Crouzet and Eberly (2023)
δ	Obsolescence rate	0.11	Gross exit rate (BDS)
β	Spillovers	0	TBD
ρ	Non-rivalry		

Data on firm scope

Hoberg and Phillips (2024)

US publicly traded firms, 1988-2021

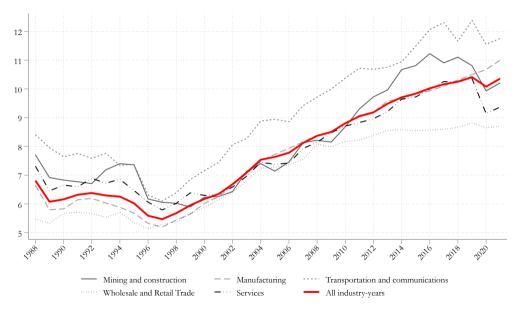
How many product markets a firm operates in

Obtained from textual analysis of 10K statements, Part I, item 1 (business description)

Advantages

Reporting required by Reg S-K Available beyond consumer goods (Nielsen data)

Firm scope over time



Data on firm scope

Hoberg and Phillips (2024)

US publicly traded firms, 1988-2021

How many product markets a firm operates in

Obtained from textual analysis of 10K statements, Part I, item 1 (business description)

Advantages

```
Reporting required by Reg S-K
Available beyond consumer goods (Nielsen data)
```

Empirical target for scope: x = 6.3 (average, 1988-1992)

	1988-1992	1988-2021
	(1)	(1)
$\log(x_{j,t})$	0.30***	0.43***
	(6.8)	(10.3)
$\log(n_{j,t})$	0.66***	0.60***
	(21.9)	(24.9)
obs.	18700	140110
s.e. clustering	$t \times ind$	$t \times ind$
industry f.e.	\checkmark	\checkmark
year f.e.	\checkmark	\checkmark

ModelSales_{j,t}
$$\propto$$
 $x_{j,t}^{1-\omega+\rho\omega} n_{j,t}^{\omega}$ Reduced-form $\log(\text{Sales}_{j,t})$ $=$ $\alpha_{ind(j),t} + \beta_x \log(x_{j,t}) + \beta_n \log(n_{j,t}) + \varepsilon_{j,t}$ (1)

The covariance between scope and sales

	1988-1992	1988-2021
	(1)	(1)
$\log(x_{j,t})$	0.30***	0.43***
	(6.8)	(10.3)
$\log(n_{j,t})$	0.66***	0.60***
,, .	(21.9)	(24.9)
obs.	18700	140110
s.e. clustering	$t \times ind$	$t \times ind$
industry f.e.	\checkmark	\checkmark
year f.e.	\checkmark	\checkmark

ModelSales_{j,t} \propto $x_{j,t}^{1-\omega+\rho\omega} n_{j,t}^{\omega}$ Reduced-form $\log (Sales_{j,t}) = \alpha_{ind(j),t} + \beta_x \log(x_{j,t}) + \beta_n \log(n_{j,t}) + \varepsilon_{j,t}$ (1)Calibrated value ρ = $\frac{\beta_x - (1-\omega)}{\omega} = 0.18$

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

True IPOs (no spin-offs / reverse LBO / reverse mergers)

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

True IPOs (no spin-offs / reverse LBO / reverse mergers)

Listed on NASDAQ or the NYSE

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

True IPOs (no spin-offs / reverse LBO / reverse mergers)

Listed on NASDAQ or the NYSE

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

True IPOs (no spin-offs / reverse LBO / reverse mergers)

Listed on NASDAQ or the NYSE

Equity ownership data:

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

True IPOs (no spin-offs / reverse LBO / reverse mergers)

Listed on NASDAQ or the NYSE

Equity ownership data: Web-scraped from SEC filings

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

True IPOs (no spin-offs / reverse LBO / reverse mergers)

Listed on NASDAQ or the NYSE

Equity ownership data: Web-scraped from SEC filings

IPO prospectuses (424B or S1) report shares of founder+insider (executives) both before and after IPO

Firm sample: Firms with initial public offering (IPO), from Compustat/Execucomp

True IPOs (no spin-offs / reverse LBO / reverse mergers)

Listed on NASDAQ or the NYSE

Equity ownership data: Web-scraped from SEC filings

IPO prospectuses (424B or S1) report shares of founder+insider (executives) both before and after IPO

Ownership shares



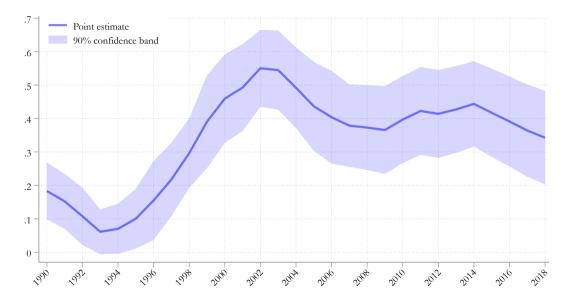
Par.	Description	Par. value	Targeted moment	Model counterpart	Data value	Model value
λ	Exclusivity	1.54	Outsider share	γ	0.36	0.34
α	Level of $\theta(x)$	2.64	Average scope	x	6.3	6.3
κ	Slope of $\theta(x)$	1.32	Tobin's Q	Q	1.5	1.6
ŗ	Entr. productivity	0.39	Output growth	8	0.027	0.027

In balanced growth,
$$\gamma(x; \lambda) \propto \frac{x}{x} \theta(x) \mu(\lambda)$$

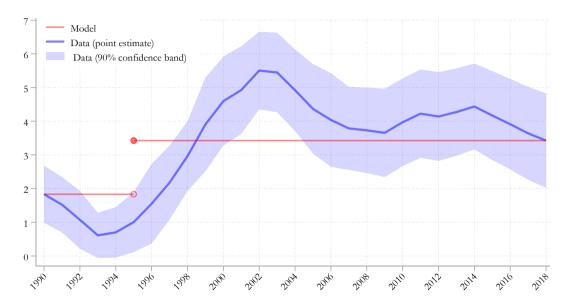
outsiders needed to reach scope $x = \theta(x) = \max(0, \alpha(x - \bar{x})^{\kappa})$

_

Rolling window estimates of $\hat{\rho}$

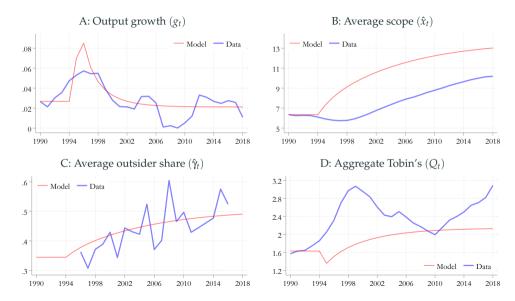


The transition to a higher value of $\boldsymbol{\rho}$



	1988-1992 $\rho = 0.18$		$\begin{array}{c} \textbf{2016-2020}\\ \rho=\textbf{0.34} \end{array}$		
Moment	Data	Model	Data	Model	
Outsider share at IPO	0.36	0.34	0.52	0.51	
Average scope	6.3	6.3	10.1	13.6	
Tobin's Q	1.5	1.6	2.8	2.1	
Output growth	0.027	0.027	0.011	0.021	

Aggregate dynamics



Aggregate dynamics



Conclusion

Conclusion

<u>Q</u>: Intangibles are partly non-rival in use. How does that affect growth?

 $\underline{\mathbf{A}:} \uparrow \mathbf{\rho} \not\Rightarrow \uparrow \mathbf{g}$

Short run: $\uparrow g$

Long-run: $\downarrow g$ and \uparrow profits, valuations, concentration

Next:

Implications for the measurement of capital Microfoundations

More

Non-exclusivity: microfoundations (1/3)

For each *m*, entrepreneur "shares"/"stores" n(m) with subset of employees ("outsiders")

of outsiders per variety =
$$\frac{\theta(x)}{x}$$

Total # of outsiders = $\theta(x) \equiv \max(0, (x - \bar{x})^{\kappa})$

With intensity λ , each outsider receives right to start their own firm

Intangible capital n(m); scope $\bar{x} < x$; Cournot competition

$\lambda \leftrightarrow non-exclusivity$

 $\lambda = 0$: full exclusivity

 $\lambda = +\infty$: no exclusivity

 $\lambda \in (0,+\infty) {:}$ patents, trademarks, non-compete clauses

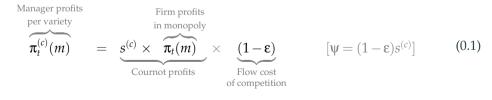
Non-exclusivity: microfoundations (2/3)

Result At entry, the expected value of the right to compete to each outsider is:

$$v_t^{(c)} = \bar{x} \left(\frac{\Psi v_t^{(e)}}{x_t}\right) \mu_t(\lambda), \qquad \mu_t(\lambda) = \lambda \int_{s \ge t} e^{-\int_0^v (r_{t+u} + \lambda) du} \frac{A_{t+s} \mathbf{v}_{t+s}}{A_t \mathbf{v}_t} ds$$

where v_t is the price-earnings ratio of the firm under monopoly, and ψ is a constant.

Intuition



 $\mu_t(\lambda)$: "competitive pressure"

$$[\mu_t(\mathbf{0}) = \mathbf{0}$$
 — full exclusivity; $\mu_t(+\infty) = 1$ — no exclusivity]

Non-exclusivity: microfoundations (3/3)

Entry deterrence To keep all employees from competing, entrepreneur must give them:

$$v_t^{(d)} = \int_0^{x_t} \frac{\theta(x_t)}{x_t} v_t^{(c)} dm = \theta(x_t) \bar{x} \left(\frac{\Psi v_t^{(e)}}{x_t}\right) \mu_t(\lambda)$$

$$\implies \qquad \gamma_t(x_t; \boldsymbol{\lambda}) = \boldsymbol{\theta}(x_t) \, \bar{x} \, \left(\frac{\boldsymbol{\Psi}}{x_t} \right) \boldsymbol{\mu}_t(\boldsymbol{\lambda})$$

If ψ is sufficiently low ($\epsilon \rightarrow 1, s^{(c)} \rightarrow 0$), deterrence is optimal to entrepreneur **ex-post**

 \leftrightarrow collusion is possible for each variety

Cournot competition: details

Equation (0.1) can be derived from solving the Cournot game between the incumbent firm and a potential competitor. The solution pins down uniquely $s^{(c)}$, the ratio of Cournot profits of the potential entrant to the monopoly profits of the incumbent.

The main result is that $s^{(c)}$ only depends on (ζ, χ) , and the ratio ϕ of capital of the incumbent to the potential competitor.

The ratio of capital of the incumbent to the potential competitor is fixed. So, $s^{(c)}$ can be treated as a parameter.

Finally, let $s^{(inc,c)}$ denote the flow profits of the incumbent firm under Cournot competition, relative to their profits in monopoly. There can be cases where:

$$s^{(c)} + s^{(inc,c)} \ge 1,$$

i.e. Cournot competition generates more *total* profits than monopoly — even though it *always* generates less profits for the incumbent. In these cases deterrence might not be time-consistent for the incumbent.

In these cases, if the flow cost ε is large enough, it will remain profitable for the incumbent to deter entry.

Spillovers from incumbents to entrants

Creation of new intangibles depends on scope of existing projects:

$$\frac{dN_t^{(e)}}{N_t^{(e)}} = \xi x_t^\beta L_{E,t} dt.$$

Interpretation:

New entrepreneurs receive ideas by observing existing firms. Higher scope $x \rightarrow$ more new ideas generated.

Implications:

Depending on parameters, increasing ρ can lead to higher LR growth: $\rho\uparrow\to x\uparrow\to \text{higher growth}.$

Global solution

Define

$$\begin{split} \mathbf{v}_t &= \int_{s\geq e} e^{-\int_0^v (r_{t+u}+\delta)du} \frac{A_{t+s}}{A_t} ds \\ \mu_t &= \lambda \int_{s\geq t} e^{-\int_0^v (r_{t+u}+\lambda)du} \frac{A_{t+s}\mathbf{v}_{t+s}}{A_t\mathbf{v}_t} ds \end{split}$$

[ODE system]

[Price-earnings ratio for entrants]

[Value of outsiders' option to compete]

Then there exists sufficient states c_t such that:

$$\mathbf{v}_t = \mathbf{v}(c_t), \quad \boldsymbol{\mu}_t = \boldsymbol{\mu}(c_t), \quad \boldsymbol{L}_{E,t} = \boldsymbol{L}_E(c_t)$$

Given $L_E(.)$, v(.), $\mu(.)$ solve a system of coupled ODEs

The relative size of new entrants c_t is a sufficient state:

$$c_t = \left(\frac{n_t^{(e)}}{N_t}\right)^{\omega}, \quad N_t = \left(\int_j n_{j,t}^{\omega} dj\right)^{\frac{1}{\omega}}.$$

Global solution

Equilibrium equations:

$$\begin{split} \left(\eta + x(\mu(c_t))^{1 - (1 - \rho)\omega} L_E(c_t)c_t \right) \mathbf{v}(c_t) &= 1 + \left(\omega \xi L_E(c_t) + \delta - x(\mu(c_t))^{1 - (1 - \rho)\omega} L_E(c_t)c_t \right) c_t f'(c_t) \\ & \left(\lambda - \delta + \frac{1}{\mathbf{v}(c_t)} \right) \mu(c_t) &= \lambda + \left(\omega \xi L_E(c_t) + \delta - x(\mu(c_t))^{1 - (1 - \rho)\omega} L_E(c_t)c_t \right) c_t \mu'(c_t) \\ & 0 &= \min \left(L_E(c_t), 1 - \frac{1 - \zeta \chi}{\zeta \chi} x(\mu(c_t))^{1 - (1 - \rho)\omega} (1 - \gamma(x(\mu(c_t)), \mu(c_t)))(1 - L_E(c_t))c_t \mathbf{v}(c_t) \right) \right) \end{split}$$

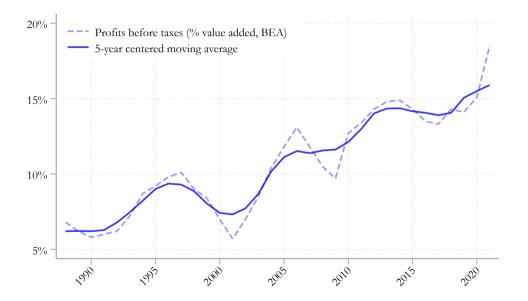
The functions $x(\mu)$ and $\gamma(x;\mu)$ are state-invariant and given by:

$$\begin{split} \gamma(x;\mu) &= s_{\pi} \frac{\theta(x)}{x} \bar{x} \, \mu \\ x(\mu) &= \arg \max_{x} \, (1 - \gamma(x;\mu)) x^{1 - (1 - \rho)\omega} \end{split}$$

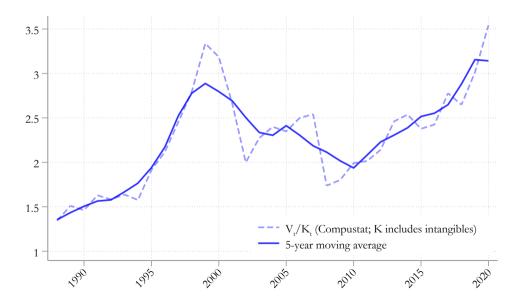
with s_{π} from the Cournot game.

This system can be solved using finite-difference methods.

Other data sources: Profit rates (BEA)

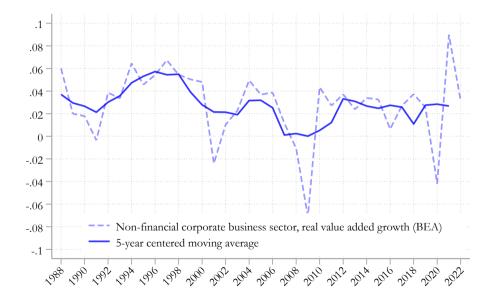


Other data sources: Tobin's Q (Compustat)



Other data sources: Gross entry rates (BDS)

Other data sources: Growth rates (BEA)



Consider the model with no delay $(\lambda = +\infty)$, but calibrate ϵ , subject to: $\epsilon \geq \underline{\epsilon}(\zeta, \phi)$.

Par.	Description	Par. value	Targeted moment	Model counterpart	Data value	Model value
ε	Entry cost	0.89	Outsider share at IPO	γ	0.35	0.34
α	Level of $\theta(x)$	2.37	Average scope	x	6.3	6.3
κ	Slope of $\theta(x)$	1.34	Tobin's Q	Q	1.5	1.6
Ľ	Entr. productivity	0.38	Output growth	8	0.027	0.027

In balanced growth, $\gamma(x; \lambda) \propto \frac{\bar{x}}{x} \theta(x) \mu(\lambda)$ # outsiders needed to reach scope $x = \theta(x) = \max(0, \alpha(x-\bar{x})^{\kappa})$

Consider the model with delay $(\lambda < +\infty)$, but set $\epsilon = 0$.

Par.	Description	Par. value	Targeted moment	Model counterpart	Data value	Model value
λ	Exclusivity	1.35	Outsider share at IPO	γ	0.35	0.34
α	Level of $\theta(x)$	0.27	Average scope	x	6.3	6.3
κ	Slope of $\theta(x)$	1.34	Tobin's Q	Q	1.5	1.6
Ľ	Entr. productivity	0.38	Output growth	8	0.027	0.027

In balanced growth, $\gamma(x; \lambda) \propto \frac{\bar{x}}{x} \theta(x) \mu(\lambda)$ # outsiders needed to reach scope $x = \theta(x) = \max(0, \alpha(x - \bar{x})^{\kappa})$

Consider the model with no delay $(\lambda = +\infty)$, but calibrate ε , subject to: $\varepsilon \ge \underline{\varepsilon}(\zeta, \phi)$.

	$\begin{array}{c} \textbf{1988-1992} \\ \rho = \textbf{0.18} \end{array}$		$\begin{array}{c} \textbf{2016-2020}\\ \rho=\textbf{0.34} \end{array}$	
Moment	Data	Model	Data	Model
Outsider share at IPO	0.35	0.32	0.50	0.53
Average scope	6.3	6.3	10.1	16.0
Tobin's Q	1.5	1.6	2.8	2.3
Output growth	0.027	0.027	0.011	0.021

Consider the model with no delay $(\lambda = +\infty)$, but set $\epsilon = 0$.

	$\begin{array}{l} \textbf{1988-1992}\\ \rho=\textbf{0.18} \end{array}$		$\begin{array}{c} \textbf{2016-2020}\\ \rho=\textbf{0.34} \end{array}$	
Moment	Data	Model	Data	Model
Outsider share at IPO	0.35	0.32	0.50	0.53
Average scope	6.3	6.3	10.1	15.4
Tobin's Q	1.5	1.6	2.8	2.3
Output growth	0.027	0.027	0.011	0.021