Intangible capital, non-rivalry, and growth

Nicolas Crouzet ${ }^{1}$, Janice Eberly ${ }^{1,3}$, Andrea Eisfeldt ${ }^{1,2}$, and Dimitris Papanikolaou ${ }^{1,3}$
${ }^{1}$ Northwestern, ${ }^{2}$ UCLA, ${ }^{3}$ NBER

Introduction

Intangible assets are an important factor of production

Introduction

Intangible assets are an important factor of production
IT-related assets
[software, databases]
Intellectual property assets [patents, trademarks]
Organization capital
[managerial know-how, production processes]

Introduction

Intangible assets are an important factor of production
IT-related assets
[software, databases]
Intellectual property assets [patents, trademarks]
Organization capital
[managerial know-how, production processes]

Question: What is special about intangible assets, relative to physical assets?

Introduction

Intangible assets are an important factor of production
IT-related assets
[software, databases]
Intellectual property assets
[patents, trademarks]
Organization capital
[managerial know-how, production processes]

Question: What is special about intangible assets, relative to physical assets?

1 Intangibles are simply hard to identify and measure?

Introduction

Intangible assets are an important factor of production
IT-related assets
[software, databases]
Intellectual property assets
[patents, trademarks]
Organization capital
[managerial know-how, production processes]

Question: What is special about intangible assets, relative to physical assets?

1 Intangibles are simply hard to identify and measure?
2 Intangibles have distinct economic characteristics?

Introduction

Intangible assets are an important factor of production

> IT-related assets
> [software, databases]
> Intellectual property assets
> [patents, trademarks]
> Organization capital
> [managerial know-how, production processes]

Question: What is special about intangible assets, relative to physical assets?

1 Intangibles are simply hard to identify and measure?
2 Intangibles have distinct economic characteristics?

This paper: Model emphasizing 2, with an application to long-run growth

Key characteristics of intangible assets

Key characteristics of intangible assets

Knowledge assets that can be non-rival, but hard to exclude.

Key characteristics of intangible assets

Knowledge assets that can be non-rival, but hard to exclude.

Non-rivalry

Limited excludability

Key characteristics of intangible assets

Knowledge assets that can be non-rival, but hard to exclude.

Non-rivalry
Can use multiple copies of the asset at the same time
Technology determines how easy reproduction is - e.g. writing vs. digital

Limited excludability

Key characteristics of intangible assets

Knowledge assets that can be non-rival, but hard to exclude.

Non-rivalry
Can use multiple copies of the asset at the same time
Technology determines how easy reproduction is - e.g. writing vs. digital

Limited excludability

The asset only has private value if its use by others can be restricted
Property rights determine how easy exclusion is - e.g. patent system

Key characteristics of intangible assets

Knowledge assets that can be non-rival, but hard to exclude.

Non-rivalry - ρ
Can use multiple copies of the asset at the same time
Technology determines how easy reproduction is - e.g. writing vs. digital

Limited excludability - δ

The asset only has private value if its use by others can be restricted
Property rights determine how easy exclusion is - e.g. patent system

Key characteristics of intangible assets

Knowledge assets that can be non-rival, but hard to exclude.

Non-rivalry - ρ
Can use multiple copies of the asset at the same time
Technology determines how easy reproduction is - e.g. writing vs. digital

Limited excludability - δ

The asset only has private value if its use by others can be restricted
Property rights determine how easy exclusion is - e.g. patent system

Different types of intangible assets \leftrightarrow different (ρ, δ)

Classifying intangibles

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier Oral \rightarrow Writing \rightarrow Digital

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

$$
\text { Oral } \rightarrow \text { Writing } \rightarrow \text { Digital }
$$

A form of technological (ρ) change, keeping property rights (δ) fixed

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier
Oral \rightarrow Writing \rightarrow Digital
A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

$$
\text { Oral } \rightarrow \text { Writing } \rightarrow \text { Digital }
$$

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

$$
\text { Oral } \rightarrow \text { Writing } \rightarrow \text { Digital }
$$

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival)

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

$$
\text { Oral } \rightarrow \text { Writing } \rightarrow \text { Digital }
$$

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival) $\quad \rightarrow$ no growth (Solow)

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

$$
\text { Oral } \rightarrow \text { Writing } \rightarrow \text { Digital }
$$

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival) \rightarrow no growth (Solow) Aggregate TFP

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

$$
\text { Oral } \rightarrow \text { Writing } \rightarrow \text { Digital }
$$

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival) \rightarrow no growth (Solow)
Aggregate TFP $\quad \rho=1$ (fully non-rival)

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

$$
\text { Oral } \rightarrow \text { Writing } \rightarrow \text { Digital }
$$

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival) \rightarrow no growth (Solow)
Aggregate TFP $\quad \rho=1$ (fully non-rival) \rightarrow perpetual growth (Romer)

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

Oral \rightarrow Writing \rightarrow Digital

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival) \rightarrow no growth (Solow)
Aggregate TFP $\rho=1$ (fully non-rival) \rightarrow perpetual growth (Romer)

Naive A: Long-run growth increases with ρ.

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

Oral \rightarrow Writing \rightarrow Digital

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival) \rightarrow no growth (Solow)
Aggregate TFP $\rho=1$ (fully non-rival) \rightarrow perpetual growth (Romer)

Long-run growth implications

Q: How does growth change when $\uparrow \rho$?
Replication of knowledge assets becomes easier

Oral \rightarrow Writing \rightarrow Digital

A form of technological (ρ) change, keeping property rights (δ) fixed

Benchmarks:
Physical capital $\rho=0$ (fully rival) $\quad \rightarrow$ no growth (Solow)
Aggregate TFP $\rho=1$ (fully non-rival) \rightarrow perpetual growth (Romer)

Naive A: Long-run growth increases with ρ. No!
Real A: Non-monotonic relationship between ρ and growth

Main Mechanism

$\uparrow \rho$

Main Mechanism

$$
\uparrow \rho \Longrightarrow
$$

Main Mechanism

$$
\uparrow \rho \Longrightarrow\left\{\begin{array}{l}
\uparrow \text { scale economies } \\
\end{array}\right.
$$

Main Mechanism

$\uparrow \rho \Longrightarrow\left\{\begin{array}{l}\uparrow \text { scale economies } \\ \uparrow \text { spillovers to future entrants }\end{array}\right.$

Main Mechanism

$\uparrow \rho \Longrightarrow\left\{\begin{array}{l}\uparrow \text { scale economies } \\ \uparrow \text { spillovers to future entrants } \\ \uparrow \text { spillovers to existing competitors }\end{array}\right.$

Main Mechanism

$$
\uparrow \rho \Longrightarrow\left\{\begin{array}{l}
\uparrow \text { scale economies } \\
\uparrow \text { spillovers to future entrants } \\
\uparrow \text { spillovers to existing competitors }
\end{array}\right.
$$

Competing forces:

Main Mechanism

$$
\uparrow \rho \Longrightarrow\left\{\begin{array}{l}
\uparrow \text { scale economies } \\
\uparrow \text { spillovers to future entrants } \\
\uparrow \text { spillovers to existing competitors }
\end{array}\right.
$$

Competing forces:
Entrants are larger, have more intangibles to build on (\uparrow incentive to enter)

Main Mechanism

$$
\uparrow \rho \Longrightarrow\left\{\begin{array}{l}
\uparrow \text { scale economies } \\
\uparrow \text { spillovers to future entrants } \\
\uparrow \text { spillovers to existing competitors }
\end{array}\right.
$$

Competing forces:
Entrants are larger, have more intangibles to build on (\uparrow incentive to enter)
Entrants appropriate lower share of surplus created (\downarrow incentive to enter)

Main Mechanism

$\uparrow \rho \Longrightarrow\left\{\begin{array}{l}\uparrow \text { scale economies } \\ \uparrow \text { spillovers to future entrants } \\ \uparrow \text { spillovers to existing competitors }\end{array}\right.$
Competing forces:
Entrants are larger, have more intangibles to build on (\uparrow incentive to enter)
Entrants appropriate lower share of surplus created (\downarrow incentive to enter)
Implications: \uparrow profits, valuations, concentration
\downarrow entry and investment

Main Mechanism

$$
\uparrow \rho \Longrightarrow\left\{\begin{array}{l}
\uparrow \text { scale economies } \\
\uparrow \text { spillovers to future entrants } \\
\uparrow \text { spillovers to existing competitors }
\end{array}\right.
$$

Competing forces:
Entrants are larger, have more intangibles to build on (\uparrow incentive to enter)
Entrants appropriate lower share of surplus created (\downarrow incentive to enter)
Implications: \uparrow profits, valuations, concentration
\downarrow entry and investment
Why is this interesting?

Market valuations have increased

Corporate profits as a share of GDP have increased

Concentration has been increased

New entry has declined

Fig. 4: Young Firms (aged five years or younger) as a Share of Total Firms by Sector (1982-2011)

Related literature

Macro and financial implications of rising intangibles
Hall (2001), Atkeson and Kehoe (2005), McGrattan and Prescott (2010), Eisfeldt and Papanikolaou
(2013), Bhandari and McGrattan (2021), Crouzet and Eberly (2021)

Contribution: formalize non-rivalry and limited excludability

Endogenous technological change
Lucas and Moll (2014), Stokey (2015); Jones and Tonetti (2020), Farboodi and Veldkamp (2022)
Contribution: non-rivalry facilitates imitation; not limited to data

Competition and returns to innovation
Aghion, Bloom, Blundell, Griffith, Howitt (2005), Aghion, Bergeaud, Boppart, Klenow, Li (2022)
Contribution: non-rivalry creates both returns to scale and competitive risk

Roadmap

1. Economic environment
2. The effects of non-rivalry on growth
3. Other macro implications
4. Economic environment

Overview

Consumption goods

Overview

Consumption goods

Overview

Consumption goods

Overview

Consumption goods

project $=\left\{\right.$ product streams $\left.s \in\left[0, x_{t}\right]\right\}$
$x_{t}:$ project "span"

Allocating intangible capital within a project

$$
\Pi\left(x_{t}, N_{t}\right)=\max _{\{N(s), L(s)\}, L_{t}} \int_{0}^{x_{t}} N(s)^{1-\zeta} L(s)^{\zeta} d s-W_{t} L_{t}
$$

Allocating intangible capital within a project

$$
\begin{aligned}
& \Pi\left(x_{t}, N_{t}\right)=\max _{\{N(s), L(s)\}, L_{t}} \int_{0}^{x_{t}} N(s)^{1-\zeta} L(s)^{\zeta} d s-W_{t} L_{t} \\
& \text { s.t. } \quad \int_{0}^{x_{t}} L(s) d s \leq L_{t}
\end{aligned}
$$

Allocating intangible capital within a project

$$
\begin{aligned}
\Pi\left(x_{t}, N_{t}\right)= & \max _{\{N(s), L(s)\}, L_{t}} \int_{0}^{x_{t}} N(s)^{1-\zeta} L(s)^{\zeta} d s-W_{t} L_{t} \\
\text { s.t. } & \int_{0}^{x_{t}} L(s) d s \leq L_{t} \\
& \left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-p}} d s\right)^{1-\rho} \leq N_{t} \quad \rho \in[0,1]
\end{aligned}
$$

Allocating intangible capital within a project

$$
\begin{aligned}
& \Pi\left(x_{t}, N_{t}\right)= \max _{\{N(s), L(s)\}, L_{t}} \int_{0}^{x_{t}} N(s)^{1-\zeta} L(s)^{\zeta} d s-W_{t} L_{t} \\
& \text { s.t. } \int_{0}^{x_{t}} L(s) d s \leq L_{t} \\
&\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t} \quad \rho \in[0,1] \\
& \Pi\left(x_{t}, N_{t}\right) \quad \propto \quad x_{t}^{\rho} N_{t}
\end{aligned}
$$

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-p}} d s\right)^{1-p} \leq N_{t}
$$

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

$$
\rho=0
$$

What does ρ capture?

$$
\int_{0}^{x_{t}} N(s) d s \leq N_{t}
$$

$$
\rho=0
$$

What does ρ capture?

$$
\int_{0}^{x_{t}} N(s) d s \leq N_{t}
$$

$\rho=0$
increasing $N(s)$ requires reducing $N(-s)$ one-for-one

What does ρ capture?

$$
\int_{0}^{x_{t}} N(s) d s \leq N_{t}
$$

$$
\rho=0
$$

increasing $N(s)$ requires reducing $N(-s)$ one-for-one
N is rival within the project

What does ρ capture?

$$
\int_{0}^{x_{t}} N(s) d s \leq N_{t}
$$

$$
\rho=0
$$

increasing $N(s)$ requires reducing $N(-s)$ one-for-one
N is rival within the project
e.g. machines, structures

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

$$
\rho=1
$$

What does ρ capture?

$$
\max _{s \in\left[0, x_{t}\right]} N(s) \leq N_{t}
$$

$$
\rho=1
$$

What does ρ capture?

$$
\max _{s \in\left[0, x_{t}\right]} N(s) \leq N_{t}
$$

$\rho=1$
increasing $N(s)$ doesn't require reducing $N(-s)$ at all
N is non-rival within the project

What does ρ capture?

$$
\max _{s \in\left[0, x_{t}\right]} N(s) \leq N_{t}
$$

$\rho=1$
increasing $N(s)$ doesn't require reducing $N(-s)$ at all
N is non-rival within the project
e.g. a patent for a touchscreen
using it for one product not reduce its availability for other products

What does ρ capture?

$$
\max _{s \in\left[0, x_{t}\right]} N(s) \leq N_{t}
$$

$$
\rho \in(0,1)
$$

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

$$
\rho \in(0,1)
$$

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

$\rho \in(0,1)$
increasing $N(s)$ requires reducing $N(-s)$, but less than one-for-one
N is imperfectly rival within the project

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

$\rho \in(0,1)$
increasing $N(s)$ requires reducing $N(-s)$, but less than one-for-one
N is imperfectly rival within the project
e.g. an inventory management process for an online retailer implementation in a new warehouse may be imperfect it may require allocating

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

$\rho \in(0,1)$
increasing $N(s)$ requires reducing $N(-s)$, but less than one-for-one
N is imperfectly rival within the project
e.g. an inventory management process for an online retailer implementation in a new warehouse may be imperfect it may require allocating

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

non-rivalry of intangibles (ρ) \leftrightarrow returns to scale

What does ρ capture?

$$
\left(\int_{0}^{x_{t}} N(s)^{\frac{1}{1-\rho}} d s\right)^{1-\rho} \leq N_{t}
$$

non-rivalry of intangibles (ρ) \leftrightarrow returns to scale
$\Pi_{t} \propto x_{t}^{\rho} N_{t}$
if $\rho>0, N_{t}$ raises marginal returns to x_{t}

Imperfect excludability and spillovers

Imperfect excludability and spillovers

Imitators progressively appropriate streams initially created by E

Imperfect excludability and spillovers

Imitators progressively appropriate streams initially created by E Imperfect excludability: E loses each stream $\tilde{\delta} d t$

Imperfect excludability and spillovers

Imitators progressively appropriate streams initially created by E Imperfect excludability: E loses each stream $\tilde{\delta} d t$

$$
\begin{aligned}
d x_{t} & =-\tilde{\delta} x_{t} d t \\
\Longrightarrow d N_{t} & =-\tilde{\delta}(1-\rho) N_{t} d t
\end{aligned}
$$

Imperfect excludability and spillovers

Imitators progressively appropriate streams initially created by E Imperfect excludability: E loses each stream $\tilde{\delta} d t$

$$
\begin{aligned}
d x_{t} & =-\tilde{\delta} x_{t} d t \\
\Longrightarrow d N_{t} & =-\tilde{\delta}(1-\rho) N_{t} d t
\end{aligned}
$$

Spillovers: Spillovers $S_{t}=$ intangibles in expropriated streams

Imperfect excludability and spillovers

Imitators progressively appropriate streams initially created by E Imperfect excludability: E loses each stream $\tilde{\delta} d t$

$$
\begin{aligned}
d x_{t} & =-\tilde{\delta} x_{t} d t \\
\Longrightarrow d N_{t} & =-\tilde{\delta}(1-\rho) N_{t} d t
\end{aligned}
$$

Spillovers: Spillovers $S_{t}=$ intangibles in expropriated streams

$$
\text { Initial intangible stock }=N_{\tau}=\left(N_{t}^{\frac{1}{1-\rho}}+S_{t}^{\frac{1}{1-\rho}}\right)^{1-\rho}
$$

ρ determines how fast spillovers accumulate
ρ determines how fast spillovers accumulate

ρ determines how fast spillovers accumulate

ρ determines how fast spillovers accumulate

ρ determines how fast spillovers accumulate

New projects

Initial span: x_{τ}.

New projects

Initial span: x_{τ}. Assume:

$$
\tilde{\delta}=\delta\left(x_{\tau}\right), \quad \delta \text { increasing and (sufficiently) convex. }
$$

New projects

Initial span: x_{τ}. Assume:

$$
\tilde{\delta}=\delta\left(x_{\tau}\right), \quad \delta \text { increasing and (sufficiently) convex. }
$$

Value of project to E:

$$
V_{\tau}^{e}\left(N_{\tau}\right) \propto \max _{x_{\tau}} \frac{N_{\tau} x_{\tau}^{\rho}}{r+\delta\left(x_{\tau}\right)-(-\zeta g)}
$$

New projects

Initial span: x_{τ}. Assume:

$$
\tilde{\delta}=\delta\left(x_{\tau}\right), \quad \delta \text { increasing and (sufficiently) convex. }
$$

Value of project to E:

$$
V_{\tau}^{e}\left(N_{\tau}\right) \propto \max _{x_{\tau}} \frac{N_{\tau} x_{\tau}^{\rho}}{r+\delta\left(x_{\tau}\right)-(-\zeta g)}
$$

(scale)
(limited excludability)

New projects

Initial span: x_{τ}. Assume:

$$
\tilde{\delta}=\delta\left(x_{\tau}\right), \quad \delta \text { increasing and (sufficiently) convex. }
$$

Value of project to E:

$$
V_{\tau}^{e}\left(N_{\tau}\right) \propto \max _{x_{\tau}} \frac{N_{\tau} x_{\tau}^{\rho}}{r+\delta\left(x_{\tau}\right)-(-\zeta g)}
$$

(scale)
(limited excludability)

New projects

Initial span: x_{τ}. Assume:

$$
\tilde{\delta}=\delta\left(x_{\tau}\right), \quad \delta \text { increasing and (sufficiently) convex. }
$$

Value of project to E:

$$
V_{\tau}^{e}\left(N_{\tau}\right) \propto \max _{x_{\tau}} \frac{N_{\tau} x_{\tau}^{\rho}}{r+\delta\left(x_{\tau}\right)-(-\zeta g)}
$$

(scale)
(limited excludability)

New project requires 1 unit of labor, and starts with intangible stock:

New projects

Initial span: x_{τ}. Assume:

$$
\tilde{\delta}=\delta\left(x_{\tau}\right), \quad \delta \text { increasing and (sufficiently) convex. }
$$

Value of project to E:

$$
V_{\tau}^{e}\left(N_{\tau}\right) \propto \max _{x_{\tau}} \frac{N_{\tau} x_{\tau}^{\rho}}{r+\delta\left(x_{\tau}\right)-(-\zeta g)}
$$

(scale)
(limited excludability)

New project requires 1 unit of labor, and starts with intangible stock:

$$
N_{\tau}=v \underbrace{\int_{\tau(i) \leq \tau} S_{i, \tau} d i}_{\bar{S}_{\tau}}
$$

Imitators

Imitators take over expropriated product streams from a particular entrepreneur

Imitators

Imitators take over expropriated product streams from a particular entrepreneur
Produce using labor, and existing stock of spillovers

Imitators

Imitators take over expropriated product streams from a particular entrepreneur
Produce using labor, and existing stock of spillovers

$$
V_{\tau} \equiv \text { Total project value } \propto \frac{N_{\tau} x_{\tau}^{\rho}}{r-(-\zeta g)}
$$

Imitators

Imitators take over expropriated product streams from a particular entrepreneur
Produce using labor, and existing stock of spillovers

$$
V_{\tau} \equiv \text { Total project value } \propto \frac{N_{\tau} x_{\tau}^{\rho}}{r-(-\zeta g)}
$$

$$
\text { Entrepreneur's share }=\frac{V_{\tau}^{e}}{V_{\tau}}=\frac{r+\zeta g}{r+\tilde{\delta}-(-\zeta g)} \equiv \theta
$$

Imitators

Imitators take over expropriated product streams from a particular entrepreneur
Produce using labor, and existing stock of spillovers

$$
V_{\tau} \equiv \text { Total project value } \propto \frac{N_{\tau} x_{\tau}^{\rho}}{r-(-\zeta g)}
$$

$$
\text { Entrepreneur's share }=\frac{V_{\tau}^{e}}{V_{\tau}}=\frac{r+\zeta g}{r+\tilde{\delta}-(-\zeta g)} \equiv \theta
$$

$$
\text { Imitators' share }=1-\theta
$$

Labor markets and equilibrium

Free-entry

$$
V_{t}^{e}\left(x_{t}, N_{t}\right)=W_{t}
$$

Labor markets and equilibrium

Free-entry
Labor market clearing

$$
V_{t}^{e}\left(x_{t}, N_{t}\right)=W_{t}
$$

$$
\underbrace{L_{e, t}}_{\text {fnew projects }}+L_{p, t}=1
$$

Labor markets and equilibrium

Free-entry
Labor market clearing

$$
V_{t}^{e}\left(x_{t}, N_{t}\right)=W_{t}
$$

new projects

Result 1 (Balanced growth path)

For any $\rho \in[0,1]$, if v is sufficiently high, there exists a unique equilibrium where $\left(x_{t}, L_{e, t}\right)$ are constant and $\left(\bar{S}_{t}, N_{t}\right)$ grow at the same constant rate g.

2. The Effects of Non-Rivalry

The effects of non-rivalry

$$
N_{t}=v \bar{S}_{t}
$$

$$
g=\underbrace{n(g ; \rho)}_{\text {Return to Investment }} \times \underbrace{L_{e}}_{\text {Investment }}
$$

The effects of non-rivalry

$$
N_{t}=v \bar{S}_{t}
$$

$$
g=\underbrace{n(g ; \rho)}_{\text {Return to Investment }} \times \underbrace{L_{e}}_{\text {Investment }}
$$

$\rho=0$: Solow model

The effects of non-rivalry

$$
\begin{aligned}
& N_{t}=\mathrm{v} \bar{S}_{t} \\
& g=\underbrace{n(g ; \rho)}_{\text {Return to Investment }} \times \underbrace{L_{e}}_{\text {Investment }}
\end{aligned}
$$

$\rho=0$: Solow model

$$
n=0
$$

The effects of non-rivalry

$$
\begin{aligned}
& N_{t}=\mathrm{v} \bar{S}_{t} \\
& g=\underbrace{n(g ; \rho)}_{\text {Return to Investment }} \times \underbrace{L_{e}}_{\text {Investment }}
\end{aligned}
$$

$\rho=0$: Solow model

$$
\begin{aligned}
& n=0 \\
& g=0
\end{aligned}
$$

The effects of non-rivalry

$$
\begin{aligned}
& N_{t}=\mathrm{v} \bar{S}_{t} \\
& g=\underbrace{n(g ; \rho)}_{\text {Return to Investment }} \times \underbrace{L_{e}}_{\text {Investment }}
\end{aligned}
$$

$\rho=0$: Solow model

$$
n=0
$$

$$
g=0
$$

$\rho=1$: Romer model

The effects of non-rivalry

$$
N_{t}=v \bar{S}_{t}
$$

$$
g=\underbrace{n(g ; \rho)}_{\text {Return to Investment }} \times \underbrace{L_{e}}_{\text {Investment }}
$$

$\rho=0$: Solow model

$$
n=0
$$

$$
g=0
$$

$\rho=1$: Romer model

$$
n=v
$$

The effects of non-rivalry

$$
\begin{aligned}
& N_{t}=v \bar{S}_{t} \\
& g=\underbrace{n(g ; \rho)}_{\text {Return to Investment }} \times \underbrace{L_{e}}_{\text {Investment }}
\end{aligned}
$$

$\rho=0$: Solow model

$$
\begin{aligned}
& n=0 \\
& g=0
\end{aligned}
$$

$\rho=1$: Romer model

$$
\begin{aligned}
& n=\mathrm{v} \\
& g=\mathrm{v} L_{e}
\end{aligned}
$$

The effects of non-rivalry

The effects of non-rivalry

The effects of non-rivalry

The effects of non-rivalry

The effects of non-rivalry

When is there an inverse-U shaped relationship?

$$
\delta(z) \equiv \frac{1}{\lambda}(z-1)^{1+\alpha}
$$

When is there an inverse-U shaped relationship?

$$
\delta(z) \equiv \frac{1}{\lambda}(z-1)^{1+\alpha} \quad \Longrightarrow \quad \tilde{\delta}(\lambda)
$$

When is there an inverse-U shaped relationship?

$$
\delta(z) \equiv \frac{1}{\lambda}(z-1)^{1+\alpha} \quad \Longrightarrow \quad \tilde{\delta}(\lambda)
$$

Result 2 (Non-monotonicity)

There exists $\underline{\lambda}$ such that $\forall \lambda \geq \underline{\lambda}$, growth is maximized at $\hat{\rho} \in(0,1)$.

When is there an inverse-U shaped relationship?

$$
\delta(z) \equiv \frac{1}{\lambda}(z-1)^{1+\alpha} \quad \Longrightarrow \quad \tilde{\delta}(\lambda)
$$

Result 2 (Non-monotonicity)

There exists $\boldsymbol{\lambda}$ such that $\forall \lambda \geq \underline{\lambda}$, growth is maximized at $\hat{\rho} \in(0,1)$.

When λ is large enough, spillovers to imitators \gg spillovers to new firms at $\rho=1$

When is there an inverse-U shaped relationship?

3. Model Implications

Valuations and profits

Valuations

$$
V_{t}=\underbrace{V_{t}^{e}}_{\text {creators }}+\underbrace{(1-\theta) V_{t}}_{\text {imitators }}
$$

Valuations and profits

Valuations

$$
\begin{aligned}
V_{t} & =\underbrace{V_{t}^{e}}_{\text {creators }}+\underbrace{(1-\theta) V_{t}}_{\text {imitators }} \\
Q_{t}^{e} & \equiv \frac{V_{t}^{e}}{p_{N, t} \bar{N}_{\text {tot }, t}}=1 \\
Q_{t} & \equiv \frac{V_{t}}{p_{N, t} \bar{N}_{\text {tot }, t}}=\frac{1}{\theta}>1
\end{aligned}
$$

Valuations and profits

Valuations

$$
\begin{aligned}
V_{t} & =\underbrace{V_{t}^{e}}_{\text {creators }}+\underbrace{(1-\theta) V_{t}}_{\text {imitators }} \\
Q_{t}^{e} & \equiv \frac{V_{t}^{e}}{p_{N, t} \bar{N}_{t o t, t}}=1 \\
Q_{t} & \equiv \frac{V_{t}}{p_{N, t} \bar{N}_{t o t, t}}=\frac{1}{\theta}>1
\end{aligned}
$$

Profits

$$
Y_{t}=\overbrace{W_{t} L_{t}}^{\text {labor }}+\overbrace{R_{N, t} \times\left(p_{N, t} \bar{N}_{\text {tot }, t}\right)+(1-\theta) Y_{t}}^{\text {capital }}
$$

Valuations and profits

Valuations

$$
\begin{aligned}
V_{t} & =\underbrace{V_{t}^{e}}_{\text {creators }}+\underbrace{(1-\theta) V_{t}}_{\text {imitators }} \\
Q_{t}^{e} & \equiv \frac{V_{t}^{e}}{p_{N, t} \bar{N}_{t o t, t}}=1 \\
Q_{t} & \equiv \frac{V_{t}}{p_{N, t} \bar{N}_{t o t, t}}=\frac{1}{\theta}>1
\end{aligned}
$$

Profits

$$
Y_{t}=\overbrace{W_{t} L_{t}}^{\text {labor }}+\overbrace{R_{N, t} \times\left(p_{N, t} \bar{N}_{\text {tot }, t}\right)+(1-\theta) Y_{t}}^{\text {capital }}
$$

Valuations and profits in the model

Valuations and profits in the model

Concentration

Sales share for project i

$$
s_{i, t}=n \times e^{-g} \overbrace{(t-\tau(i))}^{\text {projectage }}
$$

Stronger spillovers (n) makes the relative size of new projects larger

Concentration

Sales share for project i

$$
s_{i, t}=n \times e^{-g} \overbrace{(t-\tau(i))}^{\text {projectage }}
$$

Stronger spillovers (n) makes the relative size of new projects larger
Herfindhal of sales across projects

$$
H_{t}=\int_{\tau(i) \leq t} s_{i, t}^{2} d i=\frac{n}{2}
$$

Concentration

The effects of excludability

Conclusion

Q: Intangibles can be non-rival within firm. Does that matter for growth?
Scale + spillovers to new firms vs. spillovers to imitators
Non-monotonic relationship btw. ρ and growth

Next:
Transitional dynamics
Estimation of (ρ, δ)

