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1 Introduction

Given an undirected graph G = (V;E) and a node set T � V , a Steiner tree
for T in G is a set of edges S � E such that the graph (V (S); S) contains
a path between every pair of nodes in T , where V (S) is the set of nodes
incident to the edges in S. Given costs (or weights) on edges and nodes, the
Steiner tree problem on a graph (STP) is to �nd a minimum weight Steiner
tree. The problem is known to be NP-hard even for planar graphs, bipartite
graphs, and grid graphs.

The importance of this problem in the design of electronic circuits as well
as the design of telecommunication networks has led to a signi�cant amount
of research. A variety of solution methods studied include exact algorithms
(see Hakimi [22] and Dreyfus and Wagner [12]), heuristic procedures (see
Duin [13], Duin and Volgenant [15], [16], and Winter and Smith [38]), ap-
proximation methods(see Takahashi and Matsuyama [33], Zelikovsky [40],
Karpinski and Zelikovsky [23]), polynomial algorithms for special instances
(see Wald and Colbourn [35], [36]), polyhedral approaches (see Aneja [1],
Chopra, Gorres, and Rao [8], Lucena and Beasley [26], Koch and Martin
[24], and Suhl and Hilbert [31]), complete inequality descriptions for spe-
cial instances (see Goemans [18], and Margot, Prodon, and Liebling [27]),
Lagrangean relaxation approaches (see Beasley [4], [5], and Wong [39]),
problem reduction procedures (see Balakrishnan and Patel [3], Duin and
Volgenant [15], [16], and Winter [37]).

In this paper our objective is to survey various polyhedral approaches
that have been used to study the problem. All polyhedral approaches for-
mulate STP as an integer program and use linear programming relaxations
of the problem to solve the integer program. Given that the problem is
NP-hard, it is unlikely that a complete inequality description of the integer
polyhedron can be obtained. Thus, polyhedral approaches have been used
to obtain three categories of results. First, the study of associated polyhe-
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dra has been used to obtain solutions with a guaranteed maximum gap from
optimality. This type of approach such as the one in [19] typically provides
a polynomial algorithm to obtain a Steiner tree guaranteed to be within a
speci�ed gap from the optimal solution. Second, polyhedral approaches have
also been used to study speci�c classes of graphs over which complete in-
equality descriptions of the integer polyhedron are obtained. This approach
typically provides a polynomial time algorithm to obtain the optimal Steiner
tree for a speci�c class of graphs (see [18] and [27] for example). Third, poly-
hedral approaches have been used to design cutting plane algorithms that
have proved very e�ective in solving large STPs (see [8], [24] and [34]).

2 Integer Programming Formulations

In this section we describe several categories of integer programming for-
mulations that have been used in the literature to model STP. Given the
undirected graph G, formulations have been considered on G as well as
the bi-directed graph B = (V;A) obtained by replacing each undirected
edge e = (i; j) with two directed arcs (i; j) and (j; i). We consider each
undirected edge e having a weight ce. In the bi-directed graph, each arc
replacing the edge e gets the weight ce. Given an edge (i; j), its weight may
also be represented as cij or c(i;j). Without loss of generality we assume that
the node 1 2 T . In the directed case our goal is to �nd a minimum weight
Steiner arborescence rooted at the node 1 and containing a directed path
from node 1 to every other terminal node in T n f1g.

Given an undirected graph G = (V;E), for a node set X � V , the edge
set Æ(X) = f(i; j) : i 2 X; j 2 V nXg denotes the cut de�ned by the node
set X. Given a directed graph D = (V;A), for a set X � V , the arc set
Æ�(X) = f(i; j) 2 A : i 2 V nX; j 2 Xg denotes the directed cut de�ned by
the arcs entering X. The arc set Æ+(X) = f(i; j) 2 A : i 2 X; j 2 V n Xg
denotes the directed cut de�ned by the set of arcs leaving X.

2.1 Multi-commodity Flow Based Formulations

In this section we present three multi-commodity 
ow based formulations.
They are based on the idea that a Steiner tree will contain a path from the
node 1 to every other node in T nf1g. The formulations thus attempt to pick
edges such that one unit of 
ow can be sent from the node 1 to every other
node in T n f1g. The formulations described here can be used when all edge
weights are non-negative and there are no node weights. Multi-commodity
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ow based formulations have typically been used for Lagrangean relaxation
based solution methods (see Wong [39] and Balakrishnan et. al [2]).

For each node k in T n f1g, de�ne a commodity k. Given the undirected
graph G = (V;E) and the corresponding bi-directed graph B = (V;A), for
each arc a = (i; j), the variable fkij represents the 
ow of commodity k from
node i to node j. The variable xe de�ned for each edge e takes on the value 1
if edge e is in the Steiner tree and 0 otherwise. The natural multi-commodity

ow (NMC) formulation for STP is as follows:

Minimize
X
e2E

cexe

subject to:

X
i2V

fkij �
X
i2V

fkji =

8>>><
>>>:
�1 if j = 1
1 if j = k
0 otherwise for j 2 V n f1g

(1)

fkij � xe for every edge e = (i; j), commodity k (2)

fkij � 0; xe integer

The equations (1) ensure one unit of 
ow from the node 1 to every other
node in T , and if xe is integral there exists a path from the node 1 to every
other node in T resulting in a Steiner tree. In this formulation, there are jEj
capacity variables xe, jT jjAj 
ow variables fkij, jV j 
ow conservation con-
straints (1), and jT jjAj 
ow capacity constraints (2). De�ne the polyhedron
PNMC to be the LP-relaxation of the NMC formulation where

PNMC = f(x; f) � 0 satisfying (1) and (2)g

The polyhedron PNMC
x is the projection of PNMC onto the space of x

variables and is given by

PNMC
x = fx : (x; f) 2 PNMCg

An extended multi-commodity 
ow (EMC) formulation can be obtained
by considering capacities on the bi-directed graph B = (V;A). De�ne vari-
ables ya for each arc a 2 A where ya takes integer values. STP can then be
formulated as
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Minimize
X
e2E

cexe

subject to:
x and f satisfy (1)

fkij � yij for every arc a = (i; j) (3)

yij + yji = xe for all edges e = (i; j) (4)

y integer

Observe that the x variables in the EMC formulation can be eliminated
using equations (4). The x variables are maintained so that we can compare
the various formulations in terms of the projection of their LP-relaxations
to the space of x variables. The EMC formulation was �rst proposed by
Wong [39]. De�ne the polyhedron PEMC to be the LP-relaxation of the
EMC formulation where

PEMC = f(y; x; f) � 0 satisfying (1), (3), and (4)g

The polyhedron PEMC
x is the projection of PEMC onto the space of x

variables and is given by

PEMC
x = fx : (y; x; f) 2 PEMCg

Another 
ow based formulation, common-
ow (CF) formulation, pro-
posed by Polzin and Daneshmand [28] looks further into the 
ow shared by
two commodities on the same arc. Common-
ow (CF) formulation can be
obtained by adding variables and constraints to the EMC formulation on
the bi-directed graph B = (V;A). De�ne variables f̂klij for each arc (i; j) 2 A
and commodities k; l 2 T n f1g as the common 
ow shared by commodities
k and l on arc (i; j). The common-
ow (CF) formulation can be written as

Minimize
X
e2E

cexe

subject to:
(x; y; f) satisfy (1), (3), and (4)

X
i2V

f̂klij �
X
i2V

f̂klji �

(
�1 if j = 1, and k; l 2 T n f1g
0 if j 2 V n f1g, and k; l 2 T n f1g

(5)
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f̂klij � fkij for all k; l 2 T n f1g and (i; j) 2 A (6)

f̂klij � f lij for all k; l 2 T n f1g and (i; j) 2 A (7)

fkij + f lij � f̂klij � yij for all k; l 2 T n f1g and (i; j) 2 A (8)

X
i2V

yij �
X
i2V

yji for j 2 V n T (9)

y integer

The x variables in the CF formulation can be eliminated using equations
(4) as before. De�ne the polyhedron PCF to be the LP-relaxation of the
CF formulation where

PCF = f(y; x; f; f̂) � 0 satisfying (1), (3), (4), (5), (6), (7), (8), and (9) g

The polyhedron PCF
x is the projection of PCF onto the space of x vari-

ables and is given by

PCF
x = fx : (y; x; f; f̂) 2 PCF g

2.2 Cut Based Formulations

Cut based formulations for STP can be de�ned on both the undirected as
well as the bi-directed graph. We discuss both formulations here. They
are based on the idea that a Steiner tree contains a path from the node
1 to every other terminal node in T n f1g. Thus every cut separating the
node 1 from any other node in T n f1g must contain at least one edge from
the Steiner tree in the undirected case or at least one arc from the Steiner
arborescence in the directed case. The formulations presented here may be
used if all edge weights are non-negative and there are no node weights.
Cut based formulations have typically been used for cutting plane based
solution approaches (see Chopra, Gorres, and Rao [8], Suhl and Hilbert
[31], and Koch and Martin [24]).

For the undirected graph G = (V;E) and terminal set T , given a node set
N � V , the cut Æ(N) is called a Steiner cut if 1 2 N and jfV nNg\T j � 1.
The undirected cut based (UCB) formulation for STP is given by

Minimize
X
e2E

cexe
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subject to: X
e2Æ(N)

xe � 1 for every Steiner cut Æ(N) of G (10)

x integer for all e 2 E

The UCB formulation was �rst considered by Aneja [1]. De�ne the
polyhedron PUCB to be the LP-relaxation of the UCB formulation where

PUCB = fx � 0 satisfying (10)g

The directed cut based (DCB) formulation for STP can be obtained on
the bi-directed graph B = (V;A). Given N � V , the directed cut Æ+(N) is
called a directed Steiner cut if 1 2 N and jfV n Ng \ T j � 1. The directed
cut based (DCB) formulation for STP is given by

Minimize
X
e2E

cexe

subject to:

X
a2Æ+(N)

ya � 1 for every directed Steiner cut Æ+(N) of B (11)

yij + yji = xe for all edges e = (i; j) (12)

y integer for all e 2 E

The DCB formulation was �rst considered by Chopra and Rao [9]. Ob-
serve that we can eliminate the x variables from the DCB formulation using
equations (12). De�ne the polyhedron PDCB to be the LP-relaxation of the
DCB formulation where

PDCB = f(y; x) � 0 satisfying (11); (12)g

The polyhedron PDCB
x is the projection of PDCB onto the space of x

variables and is given by

PDCB
x = fx : (y; x) 2 PDCBg

7



2.3 Node Variable Based Formulations

In node variable based formulations we also include node variables zi for
nodes in V nT . The variable zi takes on the value 1 if the node i is spanned by
the Steiner tree and 0 otherwise. Observe that all nodes in the terminal set T
are spanned by the Steiner tree and for this reason we do not consider node
variables associated with them. We consider node weights wi for each node
i 2 V n T along with edge weights ce. Node variable based formulations can
be used to �nd minimum weight Steiner trees when the graph has both edge
as well as node weights. By setting all node weights to 0, these formulations
can also be used when there are no node weights.

The �rst formulation we present is based on the idea that a tree can
have at most k-1 edges from the set of edges spanned by a node set of size k.
Such a constraint is referred to as a subtour elimination constraint. Given
a node set X � V de�ne E(X) = fe = (i; j) 2 E : i 2 X and j 2 Xg to
be the edges in E with both end nodes in X. The subtour elimination (SE)
formulation for STP is as follows:

Minimize
X
e2E

cexe +
X

i2V nT

wizi

subject to: X
e2E

xe =
X

i2V nT

zi + jT j � 1 (13)

X
e2E(X)

xe �
X

i2XnT

zi + jX \ T j � 1 for X � V; jX \ T j � 1 (14)

X
e2E(X)

xe �
X

i2Xnfkg

zi for k 2 X � V n T (15)

zi � 1 for i 2 V n T (16)

xe � 0 and integer for e 2 E; zi integer for i 2 V n T

The SE formulation was proposed by Goemans [18] and a related for-
mulation was considered by Margot, Prodon, and Liebling [27]. The SE
formulation can be used for all edge and node weights. De�ne the polyhe-
dron P SE to be the LP-relaxation of the SE formulation where

P SE = f(x; z) � 0 satisfying (13); (14); (15); and (16)g

The polyhedron P SE
x is the projection of P SE on to the space of x

variables and is given by
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P SE
x = fx : (x; z) 2 P SEg

The cut based formulation DCB can be extended to include node vari-
ables in the directed cut based node variable (DCBN) formulation shown
here for the bi-directed graph B = (V;A). The variables x, y, and z are as
de�ned earlier. The formulation as shown is applicable for the case when all
edge weights are non-negative. Any problem on a directed graph, however,
can be modi�ed to the case when all arc weights are non-negative. The
modi�cation does not result in arcs (i; j) and (j; i) having the same weight.

Minimize
X
e2E

cexe +
X

i2V nT

wizi

Subject to:
(y; x; z) satis�es (11) and (12)X

a2Æ+(N)

ya � zi for i 2 V nN;T � N � V (17)

(y; x; z) � 0; y; z integer

Observe that the x variables can be eliminated from the formulation
using equations (12). The x variables are maintained to be able to compare
the projections of the LP-relaxations of the various formulations on to the
space of x variables. The DCBN formulation was �rst proposed by Chopra
and Gorres [21]. The polyhedron PDCBN is de�ned by the LP-relaxation of
the DCBN formulation where

PDCBN = f(y; x; z) � 0; zi � 1 for i 2 V n T satisfying (11); (12); (17)g

The polyhedron PDCBN
x is the projection of PDCBN on to the space of

x variables and is given by

PDCBN
x = fx : (y; x; z) 2 PDCBNg

3 A Comparison of LP-relaxations

In this section we compare the various LP-relaxations of the formulations
for STP considered in Section 2. Some of the LP-relaxations have been
compared previously in [9], [20], and [28]. We will �rst consider a comparison
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of all LP-relaxations when there are no node weights. We will also compare
the LP-relaxations of the SE and DCBN formulations in case node weights
are present.

The optimal solution to the LP-relaxation of any of the formulations in
Section 2 provides a lower bound for the integer optimum. For a given STP,
we can compare the strengths of the various LP-relaxations in terms of the
lower bound they provide for the integer optimum. The higher the lower
bound provided, the stronger the LP-relaxation.

First consider STP in an undirected graph G = (V;E) with edge weights
ce � 0 for all edges e 2 E and no node weights. All formulations discussed
in Section 2 are applicable in this case. We compare the projections of the
LP-relaxations of the various formulations on to the space of x variables.
De�ne

ZNMC = Min f
X
e2E

cexejx 2 PNMC
x g

ZEMC = Min f
X
e2E

cexejx 2 PEMC
x g

ZCF = Min f
X
e2E

cexejx 2 PCF
x g

ZUCB = Min f
X
e2E

cexejx 2 PUCBg

ZDCB = Min f
X
e2E

cexejx 2 PDCB
x g

ZSE = Min f
X
e2E

cexejx 2 P SE
x g

ZDCBN = Min f
X
e2E

cexejx 2 PDCBN
x g

The results are stated here without proof. The proofs are either given in
([9]), ([20]), and ([28]) or they can be obtained using similar proof techniques.

Theorem 3.1 The LP-relaxations to the NMC and UCB formulations pro-

vide the same lower bound for STP, i.e., ZNMC = ZUCB.

From Theorem 3.1 it follows that the formulations NMC and UCB pro-
vide equally strong LP-relaxations. Neither LP-relaxation, however, is par-
ticularly strong. Consider the graph G6 = (V6; E6) on six nodes where V6 =
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f1; 2; 3; 4; 5; 6g, E6 = f(1; 2); (1; 6); (2; 3); (2; 4); (2; 6); (3; 4); (4; 5); (4; 6); (5; 6)g
and T = f1; 3; 5g. If all edge weights are 1, the integer optimum is 4 and
the optimal Steiner tree consists of the edges (1,2), (2,3), (3,4), and (4,5).
Using the LP-relaxations to NMC and UCB we obtain ZNMC = ZUCB = 3
which is less than 4. The optimal solution to the LP-relaxation has xe = 0:5
for e 2 f(1,2), (1,6), (2,3), (3,4), (4,5), (5,6)g and xe = 0 for all other edges.
Thus, even on this simple graph, the two LP-relaxations provide solutions
that are far from optimal. Chopra and Rao [9], [10] and Goemans [18] pro-
vide families of facet de�ning inequalities that strengthen the LP-relaxation
to NMC and UCB.

Theorem 3.2 The LP-relaxations to the EMC, DCB, SE, and DCBN for-

mulations provide the same lower bound for STP, i.e., ZEMC = ZDCB =
ZSE = ZDCBN .

From Theorem 3.2 it follows that the formulations EMC, DCB, SE, and
DCBN provide equally strong LP-relaxations when solving STP without
node weights. These LP-relaxations provide better lower bounds than the
LP-relaxations to NMC and UCB.

Theorem 3.3 The LP-relaxations to the EMC, DCB, SE, and DCBN for-

mulations provide at least as strong a lower bound as the LP-relaxations for

the NMC and UCB formulations, i.e., ZEMC = ZDCB = ZSE = ZDCBN �
ZNMC = ZUCB.

The LP-relaxations to EMC, DCB, SE, and DCBN formulations gener-
ally provide better lower bounds than the LP-relaxations to NMC and UCB.
For example, on the graph G6 discussed earlier, all four LP-relaxations pro-
vide the integer optimum. Thus, from a practical perspective, the EMC,
DCB, SE, and DCBN formulations are likely to be much more e�ective
than either the NMC or the UCB formulation. This fact is veri�ed by
computational results in Chopra, Gorres, and Rao [8]. In the sample of
459 problems considered by them, the LP-relaxation of DCB resulted in
the integer optimum for all but 12 problems. When UCB and DCB were
compared, the LP-relaxation of DCB resulted in the optimal solution for
each problem while the LP-relaxation of UCB resulted in an average gap of
17% from optimality. These �ndings were con�rmed by Koch and Martin
[24] who did an even more extensive computational study using the DCB
formulation.

11



The strength of LP-relaxations can also be compared in terms of the gap
of the optimal solution to the LP-relaxation from the integer optimum in
the worst case. Goemans and Bertsimas [19] show the following result.

Theorem 3.4 The optimum, ZUCB, to the LP-relaxation of UCB is within

a factor of 1=(2� 2=jT j) of the integer optimum, if all edge costs satisfy the

triangle inequality.

Theorem 3.3 and Theorem 3.4 together show that if edge costs satisfy the
triangle inequality, optimum solutions to any of the LP-relaxations consid-
ered here are guaranteed to be within a factor of 1=(2�2=jT j) of the integer
optimum. The factor approaches 1

2 when jT j is large. In practice, how-
ever, the gaps from optimality tend to be much smaller than the worst-case
guarantee.

The strength of the EMC, DCB, SE, and DCBN formulations is also
shown by the following result proved by Goemans [18] and Margot, Prodon,
and Liebling [27].

Theorem 3.5 If G is a series-parallel graph, the polyhedron P SE has inte-

ger extreme points.

As a result, for series-parallel graphs, the optimum solution to the LP-
relaxations ZEMC ; ZDCB; ZSE and ZDCBN has the same value as the integer
optimum.

Because the CF formulation uses a great number of additional variables
to de�ne the 
ow on arcs, its LP-relaxation produces better lower bounds
than those obtained from the LP-relaxation of formulation EMC [28]. This
result and Theorem 3.3 give us the following conclusion.

Theorem 3.6 The LP-relaxations to the CF formulation is at least as strong

a lower bound as the LP-relaxations for the EMC, DCB, SE, and DCBN

formulations, i.e., ZCF � ZEMC = ZDCB = ZSE = ZDCBN � ZNMC =
ZUCB.

Although the LP-relaxation of the CF formulation provides a better
lower bound, it has many more variables and constraints compared to the
EMC formulation. There is no computational study that has tested the
e�ectiveness of the CF formulation.

In the presence of node weights it can be shown that the LP relaxations
to the SE and DCBN formulations provide the same lower bound.
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4 Strengthening LP-relaxations Using Facets

When an LP-relaxation provides an incomplete inequality description of
the integer polyhedron, the optimal LP solution often tends to be frac-
tional. Any polyhedral approach attempts to strengthen the LP-relaxation
by identifying inequalities that are valid for the integer polyhedron but are
violated by the current fractional solution. Addition of such inequalities
allows the LP-relaxation to be strengthened. Facet de�ning inequalities are
the strongest inequalities that can be added to the LP-relaxation. The con-
vex hull of integer points satisfying a facet de�ning inequality at equality
has dimension one less than the dimension of the integer polyhedron. In
this section we discuss how the various LP-relaxations discussed in Section
2 can be strengthened with the addition of facet de�ning inequalities.

Given that the NMC and UCB formulations do not provide very strong
LP-relaxations they have not been used in practice to solve large instances.
Facet de�ning inequalities that strengthen the two formulations are dis-
cussed in Chopra and Rao [10], Goemans [18] and Balakrishnan, Magnanti,
and Wong [2]. Here we introduce two classes of facet de�ning inequalities
for the DCB and DCBN formulations.

4.1 Facet De�ning Inequalities for the DCB Formulation

Given a directed graph D = (V;A) and a set of terminals T with the root
node 1 2 T , de�ne IPDCB(D;T ) to be the convex hull of all integer points
in the polyhedron PDCB(D;T ). The extreme points of IPDCB(D;T ) are
thus incidence vectors of Steiner arborescences in D. Our goal is to identify
facet de�ning inequalities for IPDCB(D;T ). The results in this section are
discussed in detail in [10]. All facet de�ning inequalities discussed here
can be lifted to facet de�ning inequalities for larger graphs using lifting
procedures discussed in [9] and [10].

We �rst de�ne odd wheel inequalities. Consider the graphDWk = (Vk; A)
where Tk = f1; tj ; j = 1; 2; : : : ; kg with node 1 as the root, Vk = Tk [
fvj ; j = 1; 2; : : : ; kg, A = f(i; j)ji; j 2 Vkg and A1 = f(1; vj); j = 1; 2; : : : ; kg
[f(tj ; vj); (tj ; vj�1); j = 1; 2; : : : ; kg, A2 = f(vj ; 1); j = 1; 2; : : : ; kg [f(vj ; tj);
(vj�1; tj); j = 1; 2; : : : ; kg. All indices are de�ned modulo k with 0 = k. De-
�ne A3 = f(tj ; 1); j = 1; 2; : : : ; kg. Tk is the set of terminals that must be
spanned by the Steiner tree.
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Theorem 4.1 The odd wheel inequalityX
a2A1[fAnfA1[A2[A3gg

ya � (k + 1)=2 (18)

is facet de�ning for IPDCB(DWk; Tk) for k � 3 and odd.

Next we de�ne bipartite inequalities. Consider the graph DBk = (Vk; A)
with node tk�1 as the root where Tk = ftj ; j = 1; 2; : : : ; kg, Vk = Tk[fvj ; j =
1; 2; : : : ; k � 1g, A = f(i; j)ji; j 2 Vkg with A1 = f(tj ; vi); i = 1; 2; : : : ; k; j 6=
i � 1( mod k)g, A2 = f(vi; tj); i = 1; 2; : : : ; k; j 6= i � 1( mod k)g, and A3 is
the set of all arcs entering tk�1. All indices are de�ned modulo k with 0 =
k. Tk is the set of terminals that must be spanned by the Steiner tree.

Theorem 4.2 The bipartite inequalityX
a2A1[fAnfA1[A2[A3gg

ya � 2 (19)

is facet de�ning for IPDCB(DBk; Tk) for k � 4.

Other facet de�ning inequalities for IPDCB(D;T ) are discussed in [10].

4.2 Facet De�ning Inequalities for the DCBN Formulation

Given a directed graph D = (V;A) and a set of terminals T with the root
node 1 2 T , de�ne IPDCBN (D;T ) to be the convex hull of all integer points
in the polyhedron PDCBN (D;T ). Several families of facet de�ning inequali-
ties are described by Gorres [21]. Here we only describe two that are related
to the facet de�ning inequalities for IPDCB(D;T ).

The node variable odd wheel inequality is de�ned for graphs DWk =
(Vk; A) discussed earlier. The sets Tk, A1, A2, and A3 are as de�ned for the
odd wheel inequalities. The terminals to be spanned by the Steiner tree are
represented by �T � Tk. We assume that the root node 1 2 �T . In this case
we have node variables z along with the arc variables y.

Theorem 4.3 The node variable odd wheel inequalityX
vj2Tkn �T

z(vj)�
X

a2A1[fAnfA1[A2[A3gg

ya � (k � 1)=2 + j �T j (20)

is facet de�ning for IPDCBN (DWk; �T ) for k � 3 and odd.
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The node variable bipartite inequality is de�ned for graphsDBk = (Vk; A)
discussed earlier. The sets Tk, A1, A2, and A3 are as de�ned for the odd
wheel inequalities. The terminals to be spanned by the Steiner tree are
represented by �T � Tk. We assume that the root node tk�1 2 �T . In this
case we have node variables z along with the arc variables y.

Theorem 4.4 The node variable bipartite inequality

X
vj2Tkn �T

z(vj)�
X

a2A1[fAnfA1[A2[A3gg

ya � (k � 2)� j �T j (21)

is facet de�ning for IPDCBN (DBk; �T ) for k � 4.

5 Branch-and-cut Approach for Solving STP on

Graphs

In this section we present a branch-and-cut approach that has proved very
e�ective at solving STP on graphs when there are no node weights and
all edge weights are non-negative (see [34] and [24] for example). Many
network and VLSI design problems in practice can be modeled as having
non-negative edge weights and no node weights ([34], [11]). When node
weights are present, this approach with some modi�cations also shows great
success in solving large instances (see [7] and [21]). Those modi�cations are
brie
y mentioned at the end of this section.

The approach detailed here applies to an undirected graph but can easily
be modi�ed for directed graphs. Given the undirected graph G = (V;E)
with terminals T and edge weights ce � 0 for e 2 E, the branch-and-cut
procedure can be summarized as the following steps:

1. Preprocessing (Graph Reduction)

2. Initialization

3. select a leaf from the branch-and-cut tree and consider associated LP

4. solve the LP

5. identify violated inequalities (cuts) and augment LP. Eliminate in-
equalities that are not tight for the current solution. If some violated
inequalities are found go to step 3
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6. run heuristic to obtain a Steiner tree

7. branch if optimal solution is fractional and a gap exists from the best
heuristic solution, else remove the leaf from tree

8. If branch-and-cut tree is empty STOP, else go to step 2.

Each LP is solved using the dual simplex method because the addition
of violated inequalities results in an LP for which the existing solution is
not primal feasible but is dual feasible. A few critical success factors to a
branch-and-cut approach are highlighted next. More detailed discussions
can be found in [8] and [24].

5.1 Preprocessing STP on a Graph

Preprocessing plays a very important role when solving STPs in practice. In
most instances, preprocessing reduces problem size by a signi�cant amount
making it feasible to solve large problems. Preprocessing should be used no
matter what the solution procedure is. Preprocessing, however, is particu-
larly e�ective when using cutting plane based approaches because it reduces
the size of each LP relaxation. It is applied to the undirected graph G and
the goal is to identify edges that must be in some optimal solution as well
as edges that cannot be in any optimal solution. The edges in some optimal
solution are contracted and the edges in no optimal solution are deleted to
get an equivalent problem on a smaller graph.

The preprocessing algorithms discussed here are from [3], [15], [16], [8],
[13], and [24]. Refer to [34] and [29] for more preprocessing algorithms.

5.1.1 Degree Tests for STP on Graphs

If node j 2 T has degree one, the edge adjacent to j is always part of an
optimal Steiner tree and can be contracted. The resulting node belongs to
the new set of terminals T 0.

If node j 2 V n T has degree one, the edge adjacent to j can be deleted
because edge weights are non-negative and this edge cannot be part of an
optimal Steiner tree.

If node j 2 V n T has degree two, the two edges (j; i) and (j; k) adjacent
to it can be replaced by the edge (i; k) with weight cik = cji + cjk.
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5.1.2 Terminal Distance Test

This test was introduced by Duin and Volgenant [16] and is also discussed
in [24]. Consider a node set W with jW \ T j � 1 and jfV nWg \ T j � 1,
that induces a connected subgraph H = (W;F ) of G. Let e = (u; v) with
u 2 W be the edge with the lowest weight and f the edge with the second
lowest weight in the cut Æ(W ). De�ne the shortest path from a node u to
a set of nodes X to be the minimum of the shortest paths from u to each
node in X. Let du be the length of the shortest path from the node u to the
set W \T and dv the length of the shortest path from the node v to the set
fV nWg \ T . The edge e can be contracted if

cf � du + dv + ce

Duin [13] provides an O(V 2) approach to obtaining all edges that can be
contracted using the terminal distance test.

In practice, however, we often perform only special cases of this test to
save time. The minimum spanning tree based R�R Edge Deletion described
in [3] is one example. Other test includes the special case when fu; vg � T
and one of the nodes is the nearest neighbor of the other. It also includes
the special case where W = fjg, j 2 T , u is the nearest neighbor of j, and
(u; v) 2 E where v 2 T . Let i be the second closest neighbor of j. The edge
(j; u) can be contracted if

cuv + cuj � cji

5.1.3 Special Distance Test

This test was introduced by Duin[13] and is also discussed in [16]. Consider
any edge e = (u; v) 2 E. Consider any path P from u to v in G not using the
edge e and containing at least one node from T . The path can be divided
into segments with end points belonging to T [ fu; vg. De�ne d(P ) to be
the length of the largest such segment in the path P . Also de�ne

s(u; v) = min fd(P ) : P is a path connecting u and v not containing edge eg

s(u; v) has been called the special distance by Duin. It is easy to verify that
the edge (u; v) cannot be in an optimal Steiner tree and can be deleted if

s(u; v) � cuv

The special case where we only consider paths in the graph induced by the
nodes T [ fu; vg can be checked faster and is reasonably e�ective. In fact
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it is very fast to restrict attention to this graph and only consider paths of
length two or three. When considering paths of length two we consider any
node j 2 T and any two of its neighbors u and v. If

max fcuj ; cvjg � cuv

the edge (u; v) can be deleted. When considering paths of length three we
consider any edge (i; j) where fi; jg � T , and two adjacent edges (u; i) and
(v; j). The edge (u; v) can be deleted if

max fcui; cij ; cvjg � cuv

These graph reduction steps can be performed repeatedly until no further
reduction is achieved. They work eÆciently on general graphs but do not
work as well in grid graphs which exist in many VLSI design problems.
Uchoa, Arag~ao and Ribeiro [34] enhance the graph reduction algorithms
discussed in this section for grid graphs and show signi�cant improvement
in performance.

5.2 Initializing to Solve STP

Given the undirected graph G = (V;E) with terminals T obtained at the
end of preprocessing, construct the bi-directed graph B = (V;A) where
each undirected edge (i; j) is replaced by two directed arcs (i; j) and (j; i).
Each arc gets the same weight ce as the undirected edge. We introduce the
directed cut based (DCB) formulation discussed earlier on the bi-directed
graph. Without loss of generality assume that the node 1 2 T . De�ne arc
variables ya as described earlier. We do not include the edge variables xe
in the formulation because their values can be obtained given the value of
the y variables. The formulation used in the branch-and-cut procedure is as
follows.

Minimize
X
a2A

caya

subject to:

X
a2Æ+(N)

ya � 1 for every directed Steiner cut Æ+(N) of B (22)

ya integer for all a 2 A
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Since there is an exponential number of directed Steiner cuts in the
formulation, a small subset of those cuts is used for the initial formation
and additional cuts are added and dropped in each subsequent iteration
as needed. We set up the �rst LP and initialize the branch-and-cut tree
with the root representing the whole problem. The starting LP consists of
the directed Steiner cut inequalities (22) for N = V n fjg for each node
j 2 T n f1g. For grid graphs, it helps to also include all cuts de�ned by each
row or column of the grid.

5.3 Identifying Violated Inequalities for STP

Separation for Steiner cut inequalities (22) is performed using a max-
ow
algorithm where the capacity on each arc a equals the value of ya in the
current solution. If the minimum cut separating the root node 1 from any
other terminal node in T n f1g has capacity less than 1, we have a violated
Steiner cut inequality.

While the basic separation problem is easy to solve, ideas of Chopra et
al. [8] and Koch and Martin [24] are extremely important in speeding up
the solution time. The three basic ideas have been referred to as back cuts,
nested cuts, and creep 
ow.

The idea of back cuts, proposed in [8], increases the number of cuts gen-
erated at each iteration by reversing the direction of all arcs and considering
the minimum cut separating any node j from the root node 1 rather than
the other way around. This approach provides many distinct cuts that are
added to the LP at each iteration and signi�cantly speeds up the overall
solution time. In addition to the idea of back cut, the use of breadth-�rst-
search (BFS) in place of the max-
ow algorithm at the stage when the in-
duced graph contains disconnected components could also improve solution
times because BFS has lower order of complexity compared to the max-
ow
algorithm. BFS can be executed on both original and reverse graphs. A
switch can be built to activate the appropriate algorithm depending on the
connectivity status of the graph [11].

The idea of nested cuts, proposed in [24], �nds additional violated cuts
between a node j and the root node 1 by setting all arcs in previously iden-
ti�ed cuts to 1. This procedure also increases the time spent in identifying
violated inequalities but decreases the total time.

The idea of creep 
ow, proposed in [24], is to identify minimum weight
cuts that are also minimal in terms of the number of arcs included in the
cut. This is done by adding a tiny capacity (for example 10�6) to each arc
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when �nding the minimum weight cuts.
Of the three ideas, back cuts play the most signi�cant role in speeding

up solution times.

5.4 Primal Heuristics for STP

During our branch-and-cut procedure, we obtain fractional LP solutions that
can provide valuable information for constructing good heuristic solutions
especially when the fractional solution is already very close to the optimal
solution. Good heuristic solutions not only provide upper bounds to an
optimal solution but also curtail the branching tree to improve solution
times. We introduce three primal heuristics that make use of the current
fractional solutions.

The �rst primal heuristic is based on the fact that if we know the set of
Steiner nodes T 0 � V n T to be included in an optimal Steiner tree, STP
can be solved as a minimum spanning tree problem on the graph induced by
T [ T 0. Given a fractional solution y, de�ne a node value rj for each node
j 2 V n T , where

rj =
X

a2Æ�(fjg)

ya

rj is the sum of all arc variables entering the node j. Consider the undirected
graph Gy = (Vy; Ey), where Ey consists of edges (i; j) for which at least one
of yij or yji is positive, and Vy consists of all nodes spanned by the edges in
Ey. Let T

0 = fj 2 V n T jrj = 1g. The heuristic then proceeds as follows:

1. Set N = T [ T 0

2. If the subgraph of Gy induced by nodes in N is connected, go to step
4 else go to step 3.

3. For each node j 2 V nN , generate a random number nj, 0 � nj � 1.
Add all nodes j for which nj � rj to the set N . Go to step 2.

4. Find the minimum spanning tree on the subgraph of Gy induced by
the nodes in N . This is a Steiner tree because T � N . Prune the tree
until all leaf nodes belong to T .

The heuristic is applied multiple times for the same fractional solution
and the Steiner tree with the lowest weight is selected as the heuristic so-
lution. The old heuristic solution is updated only if the new one has lower
weight.
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The second heuristic applies Takahashi and Matsuyama's heuristic [33]
on the bi-directed graph B whose arc weight, c0a is dictated by the current
LP solution, for example, c0a = (1�ya)ca in [24]. Let P (N; j) be the shortest
path between a node set N � V and a single node j 2 V , j 62 N using the
edge weight c0a. The procudure goes as follows.

1. Initialization: N = f1g and C = 0.

2. if T � N Stop. Else go to the next step.

3. Search: �nd P (N; �j) = minfP (N; j)jj 2 T and j 62 Ng.

4. Update: N = N [ J and C = C+length(P (N; �j)) where J is the set
of nodes on P (N; �j). Go to Step 2.

The heuristic solution has total weight C and contains all arcs on P (N; �j)
chosen in all iterations.

The third heuristic applies Takahashi and Matsuyama's heuristic [33] on
the subgraph induced by arcs with ya > 0 in the fractional solution using
the edge weight ca [8].

5.5 Modi�cations for the Node Weighted STP

The branch-and-cut procedure used for the node weighted STP has the same
steps as the procedure for STP without node weights. The preprocessing
steps and heuristic discussed earlier for STP without node weights can be
modi�ed easily to accommodate node weights. Thus we only describe the
initialization phase and identi�cation of violated inequalities. We use the
directed cut based node variable formulation (DCBN) discussed earlier on
the bi-directed graph B created from the preprocessed undirected graph
G. The goal is to �nd a minimum weight (including node weights) Steiner
arborescence rooted at 1 that spans all nodes in T . We de�ne arc variables
ya for each arc a 2 A and node variables zj for each node j 2 V n T as
described earlier. For the same reason stated early, edge variables xe do not
need to be included. The formulation used in the branch-and-cut procedure
is as follows:

Minimize
X
a2A

caya +
X

j2V nT

wjzj

subject to: X
a2Æ+(N)

ya � 1 for every directed Steiner cut Æ+(N) of B (23)
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X
a2Æ+(N)

ya � zi for i 2 V nN;T � N � V (24)

(y; z) � 0; zj � 1 and integer for all j 2 V

Initially we set up the �rst LP and initialize the branch-and-cut tree with
the root node representing the whole problem. The starting LP consists of
the directed Steiner cut inequalities (23) for N = V n fjg for each node
j 2 T n f1g, the inequalities (24) for N = V n fjg for each node j 2 V n T .
Each node variable zj is assigned an upper bound of 1.

Separation for both the Steiner cut inequalities (23) and the inequalities
(24) can be performed in polynomial time using any polynomial max-
ow
algorithm on a graph where the capacity of each arc equals the value of
the corresponding variable in the LP-solution. If the minimum weight cut
separating the root node 1 from any other terminal node in T nf1g is less than
1, a violated Steiner cut inequality (23) is obtained where N corresponds to
the shore of the minimum weight cut containing the root node 1. For each
node j 2 V nT , if the minimum cut separating the root node 1 from the node
j has capacity less than zj , the value of the corresponding node variable in
the LP solution, we have a violated inequality (24). Computational studies
applying the branch-and-cut approach on the node weighted STP can be
found in ([7]) and ([21]). Solving node weighted STP using Lagrangean
relaxation approach can be found in ([30]) and ([17]).

The ideas of back cuts, BFS cuts, nested cuts, and creep 
ow discussed
earlier can be implemented for both the inequalities (23) and (24). As
mentioned earlier, the use of back cuts has a signi�cant impact on total
solution times.

5.6 Computational Results for STP

In this section we report some computational results in the Steiner tree
literature based on a branch-and-cut approach. For comparability reason,
we only pick those studies that solve STP instances from two benchmark
libraries, OR-Library [6] and SteinLib [25]. The instances in both libraries
are STP without node weights.

Table 1 lists the studies that solve three subsets of OR-Library STP
instances each containing 20 instances. The �rst study [5] applies a La-
grangean relaxation approach instead of a branch-and-cut approach. We
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source [5] [8] [26] [24] [29]

Formulation - DCB RSST* DCB DCB**

machine X-MP/48 VAX 8700 Indigo SPARC 20 Pentium-II
Cray Digital Silicon Graphic Sun Intel

Set C 20 20 20 20 20

Set D 20 20 20 20 20

Set E 14 19 16 20 20
* Restricted Shortest Spanning Tree formulation (a node based formulation not dis-
cussed in this review)

** This study applies a synthesized approach on DCB formulation.

Table 1: Computational Results on OR-Library

citation [24] [34] [29]

Formulation DCB DCB DCB*

machine/CPU SPARC 20 ULTRA Pentium-II
Sun Sun Intel

VLSI instances

alue (15) 7 13 13

alut (9) 3 7 7

diw (21) 14 21 21

dmxa (14) 13 14 14

gap (13) 12 13 13

msm (30) 25 30 30

taq (14) 10 14 14
* This study applies a synthesized approach on DCB formulation.

Table 2: Computational Results on OR-Library
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include it because it is the �rst study using the instances in OR-Library.
Numbers in the table shows the number of instances in each category solved
to optimality by each study. We do not report computational times because
those studies were conducted on di�erent computers. However, the result
reported in Polzin and Daneshmand [29] is by far the best result in terms
of both number of instances solved to optimality and computational times
factoring into the di�erence in cpu speed. Their approach is a synthesized
approach based on the DCB formulation. It combines various approaches,
including dual ascent, cut generation, Lagrangean relaxation, and heuristics.
The synthesized approach is very e�ective in graph reduction. In fact, most
of the instances reported here are solved to optimality by the reductions. A
comparison of the performance of graph reductions used in the �ve studies
shows the following order from the most to the least e�ective, ([29]), ([26]),
([24]), ([5]), and ([8]). The less e�ective reductions usually implement algo-
rithms that are special cases of the more complete ones. They are simple
and fast algorithms but can only pick up a smaller set of edges to be con-
tracted or deleted. The result in Table 1 indicates that the LP relaxation of
DCB is a strong formulation which solves more instances to optimality. It
also demonstrates the importance of preprocessing.

For computational studies based on instances from StienLib Library,
there are three recent studies solving various sets of instances from the li-
brary. However, the VLSI set is the only one solved by all studies and it is
one of the hardest among various classes of STP instances. Table 2 shows
the number of instances solved to optimality by the three studies. Each row
records the result from solving a subset of VLSI instances with the number in
the parentheses indicating total number of instances in the subset. Compu-
tational times reported in ([29]) are far better than the rest. However, pre-
processing results are not reported for each instance in this study. Between
the remaining two studies, the reduction algorithms designed speci�cally for
grid graphs [34] outperform those developed for general STP [24] by a great
margin. That is an important reason why Uchoa, Arag~ao, and Ribeiro [34]
are able to solve more instances to optimality in their computational study
than the study conducted by Koch and Martin [24].

Computational results con�rm that cutting plane approaches coupled
with good preprocessing algorithms are very e�ective at solving Steiner tree
problems on graphs.
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