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Abstract

Network design models with more than one facility type have many applications in commu-
nication and distribution problems. Due to their complexity, previous studies have focused on
2nding good heuristic solutions. In this study, we develop algorithms that solve the multi-level
network design problem to optimality. In our approach, the problem is converted to a Steiner
tree problem and is solved by a branch-and-cut approach. Our computational study shows that
the approach outperforms a dual ascent approach in the literature (Mirchandani, INFORMS J.
Comput. 8 (3) (1996) 202) not only on solution times but also on the quality of the solutions.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Network design problems have received a great deal of attention among researchers
and practitioners in recent years due to applications in designing telecommunications,
transportation, and distributed computer networks. Since the costs involved in setting
up a new network or expanding an existing one is usually tremendously high, even
a small percentage improvement in the cost can mean signi2cant dollar savings [3,7].
In a distributed computer system, the problem is to 2nd a minimum cost design that
assigns and links each terminal to a backbone computer such that demands from all
terminals are met and various network constraints are satis2ed such as capacities on
each node and link (see Gavish [18] for details). The network may have a central-
ized backbone computer [18] or several backbone computers whose locations either
are speci2ed [1] or result from the decision [20]. Routing algorithms that minimize
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Fig. 1. G = (N; E); 3 levels.

delays on a given network are addressed in [23,26]. Assigning primary routes and
capacities simultaneously on the links of a given network is studied by Gavish and
Altinkemer [19].
The Multi-Level Network Design (MLND) problem involves installing links of

diJerent grades between nodes depending on their demands and other requirements.
A higher grade link has higher capacity but also incurs higher installation cost. This
problem can be represented on an underlying undirected graph G=(N; E), whose nodes
N need to be linked while edges E correspond to potential links that may be estab-
lished. Consider the graph in Fig. 1. Nodes {1; 5; 7} require connections using grade 1
facilities (highest grade); nodes {3; 4; 6} require connections using at least grade 2
facilities, while node 2 requires connections using at least grade 3 facilities. There
are costs associated with installing each grade facility on each edge. The objective
is to minimize total installation cost while ensuring that nodes are connected through
appropriate grade facilities. Fig. 1 contains a potential solution to the problem.
The importance and potential applications of MLND model in power, transportation

and communication systems are discussed in [4,5,13,15,22,25]. In telecommunications,
grades may represent diJerent types of cables ranging from 2ber optic cables, DS3(T3
link), DS1(T1 link) to DS0 where a standard DS0 has the capacity of carrying one
voice circuit; the capacity of a DS1 is equivalent to that of 24 DS0 while a DS3 holds
28 DS1; optical systems have nonstandard capacity and have a bandwidth between 90
Mbs to 1.1 Gbs [7]. In [7], a real application of a decision support system for designing
multi-level networks developed and used by NYNEX (now Bell Atlantic) exempli2es
the importance and complexity of the problem.
The simplest form of multi-level network design problems is the Hierarchical Net-

work Design (HND) problem where all nodes are spanned by a tree with a path between



S. Chopra, C.-Y. Tsai / Discrete Mathematics 242 (2002) 65–92 67

two given primary nodes on the network requiring higher grade links on every edge of
the path [14,15,25]. Current et al. [14] propose a heuristic to obtain an upper bound to
HND problem and Pirkul et al. [25] develop a Lagrangian relaxation based heuristic
that produces a tighter bound. Duin and Volgenant [15] transform a HNDP with n
nodes and m edges into a directed Steiner tree problem on a directed graph with 2n
nodes and 4m+ n directed arcs and introduce some graph reduction methods. Current
and Pirkul [13] consider HND problem with transshipment facilities required on nodes
connecting and converting traLcs between two diJerent grades of links. The instance
of MLND problem with two levels (referred to as TLND problem by Balakrishnan
et al. [4,5]) has been considered by Duin and Volgenant [17] and Balakrishnan et al.
[4,5]. In [17], Duin and Volgenant develop a heuristic for TLND problem by combin-
ing heuristics proposed for the Steiner tree problem and HND problem. Balakrishnan
et al. [4,5] discuss the MLND model that addresses topological design trade-oJs in
hierarchical networks requiring higher-grade interconnections for certain critical nodes.
They de2ne the problem on an undirected graph whose nodes are partitioned into L
levels. Each edge of the network is allowed one of L diJerent facility types, with
higher-grade facilities requiring higher non-negative 2xed costs.
In [5], Balakrishnan et al. develop a heuristic for TLND problem whose solution is

guaranteed to be within 4=3 of the optimal solution. In [4] they develop a dual ascent
algorithm for TLND problem. This procedure is used by them to obtain solutions within
0.9% of optimality on average from instance sets with up to 500 nodes and 5000 edges.
The general multi-level network design problem is studied by Mirchandani in [22]
where more than two grades of connection are required. In [22] Mirchandani extends
results in [4,5] from TLND problem to MLND problem. He considers instances with
400 and 800 nodes and up to 5 levels. Using a dual based algorithm he obtains gaps
under 6% on average, even though in some instances gaps are as large as 13%.
In our notation a level r facility is a higher grade facility than a level r + 1 facil-

ity. Thus level 1 nodes require interconnections with level 1 facilities, which are the
highest grade. The objective is to select a minimum cost connected subset of edges,
and choose a facility type for each edge so that all nodes at any level communicate
via the corresponding or higher-grade facilities. Costs of installing transshipment or
switching facility at the connecting node between two diJerent grades are ignored (as
in Balakrishnan et al. [4,5,22]), although it can be considered as an extension of our
formulation. In [4,5], Balakrishnan et al. point out that HND problem is NP-hard
even in the case when all edges have the same primary to secondary cost ratio, or
if the primary costs are 1 and the secondary costs are either 0 or 1. Thus, MLND
problem is also NP-hard.
In this study, we propose an extended formulation that exploits the fact that higher-

grade facilities are at least as expensive as lower-grade facilities. We use Duin and
Volgenant’s idea [15] to transform a MLND problem on an undirected graph with n
nodes, m edges and L levels into a directed Steiner tree problem on an extended directed
graph with Ln nodes and 2Lm+ (L− 1)n arcs. We show that the directed Steiner cut
formulation (see Chopra et al. [9]) applied to the extended graph is stronger than the
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strongest formulations considered in [4], [5] or [22]. We then apply the branch-and-cut
approach to the extended directed Steiner cut formulation. This approach allows us
to solve most of the MLND problems tested (with up to 1200 nodes, 4200 edges and
up to 2ve levels) to optimality, in a reasonable amount of time using a Pentium III
500 MHz personal computer.
In Section 2, we describe the extended directed Steiner cut formulation for MLND

problem and show it to provide a stronger LP-relaxation than the directed multicom-
modity formulation considered in [5,22]. Section 3 describes the branch-and-cut ap-
proach used by us. Section 4 discusses the computational study and summarizes the
2ndings of this study.

2. Comparing formulations for MLND

In [5], Balakrishnan et al. show that the directed multicommodity (DM) formulation
for TLND problem provides as strong an LP-relaxation as the undirected formulation
with strengthening inequalities included. Mirchandani [22] uses the same argument to
justify the use of the DM formulation to solve MLND problem. The DM formulation
has a drawback in that the size of the LP to be solved becomes very large both in
terms of the number of variables as well as the number of constraints. This makes it
very diLcult to even solve the LP-relaxation to optimality.
In this section we provide a directed Steiner cut (DSC) formulation for MLND

problem and show that it provides an LP-relaxation that is as strong as the one
given by the DM formulation. The DSC formulation typically has far fewer variables,
though more constraints than the DM formulation. This makes it more amenable to a
branch-and-cut approach. We then discuss the extended directed Steiner cut (EDSC)
formulation for MLND problem and show that its LP-relaxation is strictly stronger than
the LP-relaxation given by the DM and DSC formulations. The EDSC formulation has
fewer variables, though potentially more constraints than the DSC formulation. This
makes it even more suitable for a branch-and-cut approach.

2.1. Directed multicommodity (DM) formulation

Mirchandani [22] provides the following Directed Multicommodity (DM) formulation
for MLND problem. Each edge (i; j) in the undirected graph G=(N; E) is replaced by
two directed arcs (i; j) and (j; i). The cost of installing a level-r facility on arc (i; j) or
(j; i) is equal to the cost of a level-r facility on edge (i; j) and is denoted by brij. Thus
the undirected graph G is replaced by the corresponding directed graph D = (N; A).
The node set N is partitioned into S1; S2; : : : ; SL and node set Si, i ∈ {1; : : : ; L} contains
nodes that need to be covered by edges with facility of level i or higher, i.e. levels
1; 2; : : : ; i. Node 1∈ S1 is declared the root and we seek an arborescence rooted at node
1 that spans all nodes in N . The grade of facilities installed on each arc is such that all
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arcs on the unique path from node 1 to a node k (in the arborescence) have facilities
of a grade at least as high as that required by node k.
For each node k ∈ N\{1}, we de2ne a commodity k and require that one unit of Pow

of this commodity be sent from the root node to node k. The level of a node k ∈ Si
is denoted by lev(k), i.e. lev(k)= i. Variables in the DM formulation are described as
follows:

urij =
{
1 if arc (i; j) contains a level r facility;
0 otherwise;

fkij = Pow from i to j on arc (i; j) of commodity k:

The problem MLND is formulated as follows:

Min
L∑
r=1

∑
(i; j)∈A

briju
r
ij

s.t.

∑
i∈N

fkij −
∑
i∈N

fkji =


−1 if j = 1
1 if j = k
0 otherwise

for j ∈ N; k ∈ N \{1}; (i; j); (j; i) ∈ A

(1)

fkij6
lev(k)∑
r=1

urij for k ∈ N \{1}; (i; j) ∈ A (2)

urij ∈ {0; 1}; fkij¿0 for k ∈ N \{1}; (i; j) ∈ A; r ∈ {1; : : : ; L}:
Eqs. (1) ensure that one unit of Pow goes from the root node to every other node k.
Inequalities (2) ensure that facilities of lev(k) or higher provide suLcient capacity for
the Pow. De2ne the polytope

LP1 = {fkij¿0; 1¿urij¿0 | (f; u) satis2es (1) and (2)}:
LP1 de2nes the LP-relaxation of the DM formulation.
The DM formulation has 2|E|L + 2|E||N | variables and |N |2 + 2|E||N | constraints

in the LP-relaxation. For a problem on a graph with 600 nodes, 2100 edges and 5
levels this equals 2 541 000 variables and 2 880 000 constraints. The size is so large
that even the LP-relaxation cannot be solved to optimality. Thus all approaches us-
ing this formulation have relied on Lagrangian relaxation to approximately solve the
LP-relaxation.

2.2. Directed Steiner cut (DSC) formulation

To try and obtain an optimal solution to the LP-relaxation we need a formulation that
is not as large as the DM formulation. The Directed Steiner Cut (DSC) formulation that
we propose next has some characteristics that facilitate the solution of the LP-relaxation.
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For the DSC formulation consider the directed graph D=(N; A) de2ned earlier. The
variables urij are exactly as de2ned for the DM formulation.
Given any subset X ⊆N; 1 ∈ X; X �= N , de2ne �(X ) to be

�(X ) = {a= (p; q) ∈ A |p ∈ X; q ∈ N \X }:
Consider any node k ∈ N \X . Each feasible solution to a MLND problem satis2es the
directed multilevel Steiner cut inequality de2ned for node k,

lev(k)∑
r=1

∑
(i; j)∈�(X )

urij¿1: (3)

Inequality (3) is a generalization of the directed Steiner cut inequality in [10] and
ensures that there is a directed path with lev(k) or higher facilities from the root to
the node k. Notice that there is a distinct inequality for each set X and node k ∈ N\X .
The problem MLND can be formulated as follows:

Min


L∑
r=1

∑
(i; j)∈A

briju
r
ij | u ∈ {0; 1}; u satis2es all inequalities (3)

 :

This is referred to as the DSC formulation. De2ne the polytope

LP2 = {1¿urij¿0 | u satis2es all inequalities (3)}:
LP2 is the LP-relaxation of the DSC formulation.
The DSC formulation has only 2|E|L variables but an exponential number of con-

straints. In particular, for the problem with 600 nodes, 2100 edges and 5 levels, we
end up with only 21 000 variables. Even though we have an exponential number of
constraints, a cutting plane approach has a chance to give us an optimal solution to
the LP-relaxation.
Solving the LP-relaxation of DSC to optimality would not have much value if it

provides a weaker bound for the integer optimum than the DM formulation. However
next we prove that the LP-relaxations LP1 and LP2 are equally strong in terms of the
bounds they provide.

Proposition 1. If ( Qu; Qf)∈LP1 then Qu∈LP2. Conversely; for any û∈LP2, there exists
f̂ such that (û; f̂) ∈ LP1.

Proof. Consider any vector ( Qu; Qf) ∈ LP1. Clearly 06 Qurij61. Thus we need to show
that Qu satis2es all inequalities (3). Given X ⊆N , 1 ∈ X , k ∈ N \X , we have∑

(i; j)∈�(X )

lev(k)∑
r=1

urij¿
∑

(i; j)∈�(X )
Qf
k
ij by (2)

¿
∑

(i; j)∈�(X )
Qf
k
ij −

∑
(i; j)∈�(N\X )

Qf
k
ij =

∑
j∈X

{∑
i∈N

Qf
k
ji −

∑
i∈N

Qf
k
ij

}

= 1 by (1) since 1 ∈ X; k ∈ N \X:
Thus Qu satis2es all inequalities (3).
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Now consider any solution û ∈ LP2. Consider any node k ∈ N \{1}. On the graph
D, assign a capacity

∑lev(k)
r=1 ûrij to each arc (i; j). Since û satis2es all inequalities (3),

the minimum cut separating nodes 1 and k has capacity at least 1 with arc capacities
as de2ned above. Thus it is possible to send one unit of Pow from node 1 to node
k using the capacities de2ned above. Repeating the above procedure for each of the
nodes k ∈ N\{1} gives us the required Pow f̂ such that (û; f̂) ∈ LP1. The result thus
follows.

Proposition 1 shows that the LP-relaxations of the DM and DSC formulations are
theoretically identical in terms of the bounds they provide. Thus if we are able to
solve the LP-relaxation to the DSC formulation to optimality, it would provide a better
bound than the LP-relaxation to the DM formulation which we are only able to solve
approximately and obtain a lower bound.

2.3. Extended directed Steiner cut (EDSC) formulation

We exploit the fact that a higher-grade facility can cost no less than a lower-grade
facility to come up with an extended formulation for MLND problem. This cost struc-
ture allows us to assume that in any optimal solution, each arc will contain the lowest
grade facility that is feasible. Our formulation is similar in spirit to a transformation
suggested by Duin and Volgenant [15].
Consider an optimal solution û to an MLND problem on the directed graph D.

De2ne T = (N; AT ) to be the arborescence de2ned by the arcs in the optimal solution,
i.e. an arc a ∈ AT , if and only if,

∑L
r=1 û

r
a =1. For any node k ∈ N\{1}, there exists

a directed path PT (1; k) = {a1; : : : ; as} from the root 1 to node k in T . Consider any
two arcs ag and ah where ag comes before ah on the path PT (1; k). Let rg(rh) be the
level of facility installed on arc ag(ah) in the solution û, i.e. ûrgag = ûrhah = 1. If arc ah
has a higher-grade facility than arc ag, i.e. rg ¿ rh, de2ne a new solution Qu where

ura =


1 for r = rg; a= ah;
0 for r = rh; a= ah;
ûra otherwise:

The vector Qu is a feasible solution to the MLND problem since the arc ag is on every
path in T that contains ah, and the grade of facility on ah is no lower than that on
ag in this solution. Since the cost of a level rg facility on arc ah is no more than the
cost of a level rh facility, the total cost of solution Qu is no more than that of û. This
allows us to restrict attention to optimal solutions as stated in the next result.

Proposition 2. Since higher-grade facilities cost no less than lower-grade facilities;
there exist optimal solutions to MLND problem such that on the directed path from
the root 1 to any node k; the level of facility installed is nondecreasing as we move
from 1 to k; i.e. no arc that occurs later on the path from 1 to k has a higher-grade
facility than an arc that precedes it.
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Fig. 2. ED = (V; EA) converted from Fig. 1 with the corresponding solution.

This characterization allows us to rede2ne MLND problem on an extended graph as
follows. Given the directed graph D= (N; A) we construct an extended directed graph
ED = (V; EA) where V = N1 ∪ N2 · · · ∪ NL and EA = A1 ∪ A2 · · · ∪ AL ∪ AC. For each
node i in N , construct L copies i1; i2; : : : ; iL where ir ∈ Nr . For r ∈ {1; : : : ; L}, de2ne
 r(i) = ir . Given S ⊆N , de2ne  r(S) = { r(i): i ∈ S}. Thus |V |= L|N |. Similarly for
each arc a=(i; j) in A, we construct the arcs (ir ; jr), r ∈ {1; : : : ; L}, where (ir ; jr) ∈ Ar .
For each node i ∈ N , there are cross-level arcs (ir ; ir+1) ∈ AC; r ∈ {1; : : : ; L − 1}.
Thus |A1| = |A2| = · · · = |AL| = |A|; |AC| = (L − 1)|N | and |EA| = L|A| + (L − 1)|N |.
Given the costs brij for each arc (i; j) ∈ A, de2ne arc costs cir ;jr =b

r
ij for r ∈ {1; : : : ; L}.

Each arc of the form (ir ; ir+1) in AC has a cost of zero. Given the set of nodes Sr
in N , de2ne Srr =  r(Sr) to be the corresponding nodes in Nr . The node 11 ∈ S11 is
declared the root. Fig. 2 shows the extended directed graph ED(V; EA) corresponding
to the undirected graph shown in Fig. 1. Given the solution in Fig. 1, we also show
the corresponding solution (a Steiner arborescence) in Fig. 2 on the extended graph.
Fig. 3a shows an example of a directed graph D(N; A) with |N |=5; |A|=8 and L=4
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Fig. 3. (a) D(N; A); |N | = 5; |A| = 8; L = 4. (b) ED(V; EA) constructed from Fig. 3a. (c) ED(V; EA) in
Fig. 3b after structural arc exclusions.

where the number located above a node i represents lev(i) and bidirectional arcs are
represented by assigning arrows to both ends of a line segment. The graph in Fig. 3b
corresponds to the graph ED(V; EA) constructed from D(N; A) with nodes in

⋃L
r=1 S

r
r

(demand nodes in a Steiner tree problem) marked by 2lled circles. In this example,
|V |= 20, |EA|= 47.
In the graph ED, we search for a minimum cost Steiner arborescence rooted at node

11 that spans all nodes in
⋃L
r=1 S

r
r . Since all cross-level arcs have a cost of zero, once a

node is reached at level i it can be reached at levels i+1 and beyond at zero cost. Thus
no arc (i; j) will be used at two diJerent levels in the optimal solution, i.e. if (ir ; jr)
appears in the optimal Steiner arborescence, then none of the arcs of the form (i‘; j‘)
appear in the optimal arborescence for ‘ �= r. Further, in any Steiner arborescence, all



74 S. Chopra, C.-Y. Tsai / Discrete Mathematics 242 (2002) 65–92

paths from the root are such that no arc from the set Aj can occur before Ai if j¿ i.
Thus we restrict solutions considered to be of the form described in Proposition 2.
Given the directed graph ED, consider X ⊆V; 11 ∈ X; |{V \X } ∩ {⋃L

r=1 S
r
r }|¿1.

De2ne the directed Steiner cut �(X ) where

�(X ) = {a= (p; q) ∈ EA |p ∈ X; q ∈ V \X }:
For each arc (p; q), de2ne the variable zpq, where

zpq =
{
1 if arc (p; q) is in the Steiner arborescence;
0 otherwise:

Given any node set X as de2ned above, each Steiner arborescence in ED satis2es the
directed Steiner cut inequality (see the work of Chopra and Rao [10,11])∑

a∈�(X )
za¿1: (4)

De2ne the polytope

LP3 = {1¿z¿0 | z satis2es all inequalities (4)}:
The problem MLND can thus also be formulated as

Min
∑
a∈EA

caza s:t: z ∈ LP3; z integer:

This integer programming formulation is referred to as the extended directed Steiner
cut (EDSC) formulation for MLND problem.
Given the optimal solution for the EDSC formulation, one can obtain the optimal

solution to the DSC formulation as stated in the following proposition.

Proposition 3. If ẑ is the optimal solution to the EDSC formulation for MLND
problem; then û is the optimal solution to the DSC formulation for MLND problem;
where

ûrij = ẑir ; jr :

As in the above proposition, de2ne the linear transformation  from the z variables
to the u variables where

urij = zir ; jr for each arc (i; j) and level r:

It is easy to verify that for every vector Qz ∈ LP3 there exists a corresponding vector
Qu =  ( Qz)∈LP2. However the converse is not true. There exist solutions û ∈ LP2,
where, on a path from the root 1 to a node k, the level of facilities assigned to the
arcs decreases as we move from 1 to k, i.e. the grade of facility installed is higher as
we move away from the root. However no such solutions are feasible in LP3 since all
cross-level arcs are directed from a level i to a level i+1, i.e. from a higher grade to
a lower grade. Thus we obtain the following result.
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Fig. 4. A feasible solution to LP2 but not LP3.

Proposition 4. Given the linear transformation  as de<ned above; let  (LP3) be the
polytope obtained in the u space on transforming LP3. Then

 (LP3)⊆LP2;  (LP3) �= LP2;

i.e.  (LP3) is a proper subset of LP2. Thus LP3 provides a stronger LP-relaxation to
MLND problem than LP2.

As an example, consider the graph D = (N; A) in Fig. 3a. Consider the solution
û where û415 = û212 = û323 = û234 = 1; ûra = 0 for all other r; a. It is easy to verify
that û ∈ LP2. Observe that this solution violates Proposition 2 since there exists a
path {(1; 2); (2; 3); (3; 4)} from the root 1 to node 4 where arc (2; 3) comes before arc
(3; 4), but arc (2; 3) has a level 3 facility while arc (3; 4) has a level 2 facility. The
corresponding extended graph ED = (V; EA) is shown in Fig. 4.
We now show that no corresponding solution ẑ exists in LP3. If such a solution did

exist we would have ẑa=0 for all arcs a ∈ EA\{AC∪{(12; 22); (23; 33); (32; 42); (14; 54)}.
The arcs 2xed at 0 are shown as dotted lines in the corresponding extended directed
graph in Fig. 4. Observe that there does not exist a directed arborescence from the
root spanning all demand nodes (shown as 2lled circles) that does not use at least one
arc represented by a dotted line. Thus there does not exist a vector ẑ ∈ LP3 such that
û=  (ẑ). This example illustrates Proposition 4 and shows that LP3 provides a tighter
LP-relaxation than LP2.
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3. Branch-and-cut approach

The branch-and-cut approach is well understood (see [12,24]) and is not described
here. In this section we discuss the design of the branch-and-cut approach for solving
the EDSC formulation. The key tasks in the branch-and-cut approach include prepro-
cessing, selection of the initial formulation, cut generation (to identify directed Steiner
cut inequalities (4) violated by the current LP solution), and obtaining a good upper
bound.

3.1. Preprocessing: graph reduction

The methods described in this section reduce problem size by identifying arcs that
are always in an optimal Steiner arborescence and arcs that can never be in an optimal
Steiner arborescence. Some of the reductions are done on the graph G(N; E) and others
are performed on the extended directed graph ED(V; EA). Since all cross-level arcs
a ∈ AC have cost zero, we can always obtain an optimal solution to EDSC where all
cross-level arcs have value 1. This property is exploited in our solution approach. The
preprocessing steps used by us are described below:

1. Arc inclusions: This is the primary arc inclusion used in Balakrishnan et al. [4]
for TLND problems. The algorithm 2rst 2nds a minimum spanning tree T1(N ) on
graph G(N; E) using edge cost b1e for e ∈ E. An edge (i; j) ∈ T1(N ) is always in
an optimal solution to an MLND problem if i; j ∈ S1. Thus these edges can be
contracted. At each level if parallel edges exist after contraction, only the one with
the lowest edge cost is kept for constructing ED(V; EA).

2. Structural arc exclusions: Consider any demand node j at level r, i.e. jr ∈ Srr for
some level r ∈ {1; : : : ; L−1}. Every optimal solution to EDSC, contains a path from
the root node to any demand node jr ∈ Srr . By Proposition 2, no arcs below level
r are included in this path, i.e. jr must be reached using arcs in Al; l6r. Because
of the inclusion of all cross-level arcs in the optimal solution, no arcs of the form
(it ; jt) ∈ At can be in the Steiner arborescence for t ∈ {r + 1; r + 2; : : : ; L}. Thus,
these arcs can be eliminated from ED. In addition, any node jt , t ∈ {r + 1; : : : ; L}
is connected to jr through arcs (jr ; jr+1); (jr+1; jr+2); : : : ; (jL−1; jL) in AC. Therefore
we can delete these nodes and arcs and redirect arcs (jt ; pt); t ∈ {r+1; r+2; : : : ; L}
to (jr ; pt). Note that in this case lev(p)¿ lev(j). Otherwise, node pt should have
been eliminated using the above approach. Fig. 3c shows the result of ED(V; EA) in
Fig. 3b after structural arc exclusions where |V | and |EA| are reduced from 20 and
47 to 13 and 27 respectively. This preprocessing step is very eJective in reducing
graph size.

3. Heuristic arc exclusions: We adopted the edge deletion heuristic used in Chopra
et al. [9]. If ci; j ¿max{ci;k ; cj;k} and k ∈ ⋃L

t=1 S
t
t then arcs (i; j) and (j; i) cannot

be part of an optimal Steiner arborescence. Thus they can be deleted from the arc
set EA. The arcs found by this heuristic are a subset of arcs that can be identi2ed
by the minimum spanning tree based R-S, S-S Deletion Algorithms in Balakrishnan
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and Patel [6]. Since there are no reverse arcs for arcs in AC, the algorithm can be
implemented L times independently on G(N; E) each time to a level i applying edge
cost bie.

The preprocessing steps used by us are quite eJective in reducing the size of the
graph. On test instances solved by us in our computational tests, preprocessing reduces
the number of nodes by 0.67–43.6% and number of arcs by 34.5–81.7%.

3.2. Initial formulation

For a node jt ∈ Stt , de2ne J (jt) = {j1; j2; : : : ; jt}. The set J (jt) corresponds to all
nodes in the graph ED(V; EA) that are copies of jt . Note that nodes jt+1; : : : ; jL have
been eliminated in the reduction stage using structural arc exclusions, for example
J (11) = {11}. In our initial formulation, we include all EDSC cuts de2ned by the sets
J (jt) for demand nodes jt ∈

⋃L
r=1 S

r
r . Given a node set X , de2ne )(X )= {a=(p; q) ∈

A |p ∈ V \X; q ∈ X }. The initial formulation can be written as

Min:
∑
a∈EA

caza

s:t:
∑

a∈�(11)
za¿1 11: root node;

∑
a∈)(J ( jt))

za¿1; jt ∈
L⋃
r=1

Srr \{11};

06za61; a ∈ EA:
In the initial formulation, all variables corresponding to arcs remained after graph
reduction are included except for those representing cross-level arcs and the number of
constraints equals the number of demand nodes remained. During the solution process,
variables may be added to or removed from the formulation depending on whether
they appear in the EDSC cuts currently in the formulation or not.

3.3. Cut generation

Given a solution to the current LP-relaxation, our goal in this stage is to identify
Directed Steiner Cut inequalities (4) that are violated by it. We use two basic algorithms
for this purpose, namely Breadth First Search (BFS) and Minimum Cut.
These algorithms are run on the graph ÊD(V; ÊA) induced by a solution ẑ where the

capacity of arc a is determined by the value of ẑa in the solution. ÊA only includes
arcs that have ẑa ¿ 0. Recall that the directed steiner cut inequalities (4) require that
all cuts in ÊD separating the root node and any other terminal (demand) node must
have capacity at least 1. As a result the following violated cuts may be generated.

1. BFS cuts: This separation performs a BFS on ÊD to 2nd a BFS tree originating
from the root node. A cut is generated if any of the demand nodes

⋃L
r=1 S

r
r \{11}
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is not in the tree. This identi2es a violated EDSC inequality (4) where we have a
cut of capacity 0 in ÊD.

2. Mincuts: We use the root node 11 as the source to run maxPow-mincut algorithm
each time with a randomly selected sink node from the set

⋃L
r=1 S

r
r \{11}. If the

capacity of the mincut is less than one, a violated EDSC inequality (4) is found
and is referred to as a mincut inequality.

Observe that both BFS cut and mincut will result in the minimum capacity cut closest
to the root node being generated. As observed by Chopra et al. [9], it is very likely
that some of the mincuts generated by the regular mincut algorithm for diJerent sinks
could be identical. Attempting to identify more distinct mincuts, we try to generate
minimum capacity cuts closest to the sink nodes. For this we construct a reverse graph
ED(V; EA) from ÊD(V; ÊA) where EA= {(i; j) | (j; i) ∈ ÊA} and Qzij = ẑji. Observe that
the minimum capacity cuts in ED and ÊD have the same value. On the graph ED we
run the following variants of the previous two separation algorithms. Since the cuts
generated are likely to be closer to the sinks, the chance of generating distinct cuts is
higher, especially when the induced graph is not completely connected.

1. Reverse BFS cuts: We choose a demand node at random from
⋃L
r=1 S

r
r\{11} as the

root node. If in the BFS tree node 11 is not reachable from the root node chosen,
a violated EDSC inequality (4) is found and is referred to as a reverse BFS cut.
Unlike the regular BFS cut, this algorithm could generate more than one violated
reverse BFS cuts on an induced graph ED(V; EA).

2. Reverse Mincuts: Here we randomly select a node from
⋃L
r=1 S

r
r\{11} as the source

and 11 as the sink. If the capacity on the mincut is less than one, we have a violated
EDSC inequality (4) that is referred to as a reverse mincut. Our experiment shows
that the reverse mincut algorithm usually generates more distinct violated EDSC
inequalities than its regular counterpart.

As the complexity of a maxPow-mincut algorithm (O(|V ||EA|log |V |) [27]) is higher
than that of a breadth <rst search (O(|EA|)), the design of the algorithm tries to utilize
BFS more frequently whenever possible. As long as the graph induced by the current
LP solution is not connected, we state that the algorithm is in stage 1 and use BFS
and reverse BFS to generate violated inequalities (4). If the graph induced by the
current LP solution is connected, the algorithm is in stage 2 and reverse mincut is
used to generate violated inequalities. In each iteration the number of cuts generated
is up to a threshold. In our experiments, the threshold is set at perc× |N | where perc
is a parameter between 0 and 1. In stage 1 the order in which we try and generate
violated inequalities is BFS, reverse BFS and then reverse mincut. Thus we only resort
to reverse mincut if the total number of violated inequalities generated by BFS and
reverse BFS is less than the threshold. In this stage, BFS is run in every iteration and
reverse BFS is attempted in every iteration except that in every freq iterations, reverse
mincut is run in place of reverse BFS, where freq is a parameter. In stage 2, reverse
mincut is run in every iteration except that in every freq iterations, reverse BFS is
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run in place of reverse mincut. If some violated reverse BFS cuts are found, we have
disconnected components again on the graph and the process switches back to stage
one. Regular mincut is used only for optimality test in stage one when no BFS cut is
found before constructing ED(V; EA).

Because the root=source=sink nodes in the separation algorithms are randomly se-
lected, each demand node has an equal opportunity of being examined for violated
cuts based on it. From our computational test, randomizing is found to be more eJec-
tive than 2xing an order on the nodes and searching for violated inequalities in that
sequence.
If no violated cuts are found, the current solution solves the LP-relaxation LP3. If

the solution is integral, we have an optimal solution. Else we proceed to the branching
phase. In the branching phase, we limit the number of iterations in which new cuts are
generated to maxiter iterations at each branch before creating a new one. The values
of perc, freq, and maxiter are chosen from calibration tests in our computational study.

3.4. Heuristic upper bound

We develop a heuristic algorithm to obtain an upper bound for the optimal solution
based on the fractional solution to the LP-relaxation. The approach is to sequentially
2x arcs to be in the solution, using the current LP solution as a guide when 2xing
variables.
Given a fractional solution, each variable with value larger than 0.7 is 2xed to 1

with probability equal to its fractional value. We have found this randomized 2xing
to be more eJective than 2xing all variables with value larger than 0.7 to 1. Given
the speci2c structure of the extended graph and the fact that we are seeking a Steiner
arborescence, a 2xing of one variable allows us to 2x several other variables as well.
However, we need to ensure that between the arcs 2xed to 1 and the arcs not yet
2xed, there exists a feasible solution to the LP-relaxation. For this reason we also
un2x variables as needed.
If a variable zipjq is 2xed to 1, the variable zjqip is un2xed if it was previously 2xed.

This is because the underlying problem is on an undirected graph and the un2xing
allows us the Pexibility of reversing the direction of the arc (ip; jq) in a solution to
get a new solution of the same value.
Recall that all cross-level arcs have a cost of 0. Thus if the variable zipjq is 2xed to

1, we can reach any of the nodes js for s¿q at zero cost using the cross-level arcs.
Thus we can 2x all arcs of the form (ur; js) �= (ip; jq) to have zurjs = 0 for s¿q. This
includes any such arcs that may previously have been 2xed to 1. In case we reach a
situation where no feasible solution exists among the variables not 2xed to 0, we run a
breadth <rst search using arcs not 2xed to zero. If a demand node cannot be reached
from the root, we obtain a cut which contains arcs 2xed to zero. We then un2x all
arcs in the cut and resolve the resulting linear program.
As stated earlier, we 2x only a subset of the fractional variables at each stage.

Ideally, we would like to solve the new LP-relaxation to optimality before 2xing new
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variables since this would likely give better information on the value of the variable at
optimality. However, to speed up the process, we run only maxiter (the same parameter
used in the branching phase) iterations of cut generation between successive stages of
variable 2xing.

4. Computational results

To test the eJectiveness of our branch-and-cut algorithm, we generate 420 instances
of various sizes and structures. Forty of those generated instances are used for cali-
brating some key parameters used in our branch-and-cut solver. Those tests allow us
to tune the solver for the best performance. Once the best parameters are found, the
remaining 380 instances were solved to test the eJectiveness of the EDSC formulation
and the solver. For each instance, we allow 20 min of CPU time. If branching is re-
quired, the heuristic is solved to obtain an initial upper bound. If an optimal solution
is not found after 75% of the allowable time and the process has not proceeded to
the branching stage, we also solve the heuristic to 2nd an upper bound. The choice of
75% is to reserve 5 min for the heuristic so that an upper bound is available in case
an instance is not solved to optimality within the allowable time. Tailing-oJ criterion
adopted by the solver is similar to that in [24]. All instances are solved on a Dell
Pentium III 500 MHz personal computer with 128 MB of RAM running windows op-
erating system. The LP solver is ILOG CPLEX 6.5 [21] by ILOG, Inc. To compare
the performance of our branch-and-cut algorithm with the dual ascent method [4,22],
we implement the dual ascent approach described in [22] as a benchmark method.

4.1. Problem generator

Test instances are generated the same way as those in Mirchandani [22]. Instances
are characterized by four features: size, cost function, cost ratio and the distribution of
demand nodes. Problem size is determined by the numbers of nodes, edges, and levels.
Nodes are generated uniformly distributed over a 1000 by 1000 grid as in [22]. Cost
function is speci2ed by the four diJerent ways with which edge costs are calculated,
namely, Euclidean distance, Manhattan distance, in2nity norm and randomly generated
cost. Cost ratio is either 2xed or general. It determines the cost ratio between two
successive levels. A 2xed ratio problem has a constant ratio of br+1

ij =brij=*
r for all edges

(i; j) ∈ E where 0¡*r ¡ 1 and r ∈ {1; : : : ; L − 1} whereas a general (variable) ratio
problem could have various cost ratios for diJerent edges, i.e. br+1

ij =brij=*
r
ij, 0¡*rij ¡ 1.

The values of *r and *rij are generated uniformly from ranges given by Mirchandani
[22]. The combination of cost functions and cost ratios results in eight diJerent cost
structures. The distribution of demand nodes dictates the number of demand nodes
assigned to each level. Since |N | = ∑L

r=1 |Srr |, given a 2xed |N | diJerent instances
can be generated by changing the assignment of |Srr |, r ∈ {1; : : : ; L}. In measuring the
performance of the algorithm on each set of instances, we take the average solution
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time from solving 2ve randomly generated instances with the same characteristics. We
also report the standard deviation of the solution times, average optimality gap, and
number of instances solved to optimality among the 2ve.

4.2. Selection of parameters

In practice, the performance of the branch-and-cut algorithm depends on the values
of some crucial parameters mentioned in Sections 3.3 and 3.4. The test to 2nd the best
parameters for the branch-and-cut approach is conducted on 40 problem instances with
eight diJerent con2gurations whose characteristics are listed below, where |N | × |E|
denotes the number of nodes and edges in the original graph G(N; E); L represents the
number of levels and the distribution of demand nodes among levels are written as
|S11 |=|S22 |= · · · =|SLL |. Five test instances are generated from each of the con2gurations:

I. 400× 1400; L= 4, (50=80=120=150) Euclidean, 2xed ratio,
II. 400× 1400; L= 4, (150=120=80=50) Euclidean, 2xed ratio,
III. 600× 2100; L= 4, (150=150=150=150) Random, general ratio,
IV. 600× 2100; L= 4, (150=150=150=150) Euclidean, general ratio,
V. 800× 2800; L= 4, (200=200=200=200) Random, 2xed ratio,
VI. 800× 2800; L= 4, (200=200=200=200) Random, general ratio,
VII. 1000× 3500; L= 4, (250=250=250=250) Manhattan, general ratio,
VIII. 1000× 3500; L= 4, (250=250=250=250), In2nity, 2xed ratio,

In each test, we vary the value of a single parameter while keeping others 2xed at
the best parameter values found from other tests. For each parameter value (p) and
test set combination (i∈{I; II; : : : ;VIII}), we identify an e>ectiveness index EI(p; i),
where

EI(p; i) = (Average time to solve test set i with parameter value p)=

(Average time to solve test set i using best parameter value):

Thus the best parameter value has an e>ectiveness index of 1. In general, we seek
a parameter value that has an eJectiveness index close to 1 over all eight test sets.
Parameter perc: In any branch-and-cut algorithm, most of the time is spent either

generating violated inequalities or solving the resulting LP. We use perc× |N | to de-
2ne the maximum number of violated inequalities generated before a new LP is solved
where perc is set to a value between 0 and 1. Increasing perc results in more and
(possibly) stronger inequalities leading to a greater improvement in the objective func-
tion. However, it takes longer time in generating violated inequalities of which some
become inactive later. It also increases the computer memory requirement due to the
larger size of the resulting LP. Thus perc is an important parameter to be calibrated. We
consider six choices of the threshold 0:5%×|N |, 1:0%×|N |, 5:0%×|N |, 10:0%×|N |,
20:0% × |N |, and 50:0% × |N |. The results are reported in the six perc columns in
Table 1. Observe that the eJectiveness index varies signi2cantly (the range is from
1.00 to 12.44) as we change the value of perc. Our conclusion from this calibration is
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Table 1
Calibration of key computational options

Problem set perc (eJectiveness index) gencut
t(seq)=t(rnd)

0.005 0.01 0.05 0.1 0.2 0.5

I 1.91 2.02 1.14 1.00 1.28 2.58 0.52
II 1.92 1.91 1.12 1.00 1.70 4.32 1.25
III 1.25 1.01 1.01 1.00 1.70 3.39 1.74
IV 3.28 2.16 1.00 1.18 1.73 7.16 1.38
V 2.24 1.00 1.81 2.21 3.73 9.56 1.29
VI 2.07 1.00 1.88 3.03 5.39 12.44 1.22
VII 1.37 1.00 1.30 1.47 1.82 3.31 1.03
VIII 1.43 1.00 1.70 1.88 2.41 3.59 1.66

to set perc = 10% for graphs with |N |6600 and perc = 1% otherwise. This approach
gives an overall e>ectiveness index very close to 1 across all test sets. This clearly
demonstrates that one should not generate too many cuts in each iteration before re-
solving the LP and as the problem size grows the value of perc should be reduced.
To keep the size of the LP manageable, we also purge inactive constraints every 2ve
iterations.
Parameters freq, maxiter: These parameters do not exhibit signi2cant diJerences

among diJerent parameter values. Hence, we only report the best choices without
providing numerical details from these tests. Parameter freq controls the switch between
stage one and stage two, allowing the process to focus more on connecting the graph
in stage one using BFS and reverse BFS, and once the graph is connected devoting
more time in reverse mincut to remove fractional values. However, in stage two we
still run reverse BFS once in a while so that when the graph is disconnected again, the
process returns to stage one, while in stage one reverse mincut is executed once in a
few iterations to get better improvement on the objective function. The best choice of
freq is 2ve chosen among every 1, 5, 10, 15, 20, and 30 iterations. When a problem
instance takes too much time to solve, our goal is to 2nd a good feasible solution in
a given amount of computational time instead of 2nding an optimal solution. Limiting
the number of iterations on each branch of a branching tree and in the heuristic before
2xing more variables might reach a feasible solution sooner. However, it can have a
negative impact on the optimality gap of the upper bound thus obtained. We tested 15,
30, and 45 iterations on a few instances requiring branching and found no signi2cant
impact on both solution times and optimality gaps. maxiter = 30 provides the best
balance between computational times and the quality of upper bounds.
Sequence of examining potential violated cuts: When running reverse BFS or reverse

mincut in each iteration, we select a demand node i �= 11 as the root or source node.
The selection of the root (source) node can be done following either a 2xed order
for all iterations or a process randomly choosing a node from the candidate nodes not
selected yet. Since our algorithm stops searching for more violated cuts and solve the
resulting LP once perc × |N | violated inequalities are found, the choice between the
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two approaches may aJect the solution time. The 2xed order search tends to grow
the tree to connect the demand nodes to node 11 following the 2xed sequence. The
random order process, on the other hand, grows the tree to connect the demand nodes
to 11 more evenly among the demand nodes. The last column of Table 1 shows the
ratio of the solution time between the sequential and random approaches. It indicates
that except for the 2rst test set, the random process has an edge over the sequential
approach. Thus, it is adopted in our design of the solver.

4.3. Analysis of computational times

In our computational experiments, there are three questions we seek to answer:

1. How eJective is the EDSC formulation for multi-level network design problem?
2. How eJective is the branch-and-cut approach (applied to the EDSC formulation)

for multi-level network design problem?
3. What problem characteristics have a signi2cant impact on solution time and quality?

We answer those questions by observing the behavior of the branch-and-cut algorithm
in solving 380 randomly generated instances with graph sizes varying from 400 to
1200 nodes, from 1200 to 4200 edges, and from two to 2ve levels. All test instances
are solved by both the proposed approach and the benchmark approach. Tables 2–6
summarize the result. Each row in the table represents the average result from solving
2ve problem instances of the same con2guration. Rows are then grouped into sets
by the number of nodes, edges, levels and demand node distributions. These problem
characteristics are the most inPuential ones in solution times. Rows in the same set,
following a title row showing those problem characteristics, diJer only in their cost
functions (Random, Euclidean, Manhattan, and In2nity) and cost ratios (2xed, general).
Cost factors appear to be less conclusive in their inPuence on solution times. Thus,
comparisons are made mostly from the ‘Average’ row, which contains the overall
average from the rows in the same set.
E>ectiveness of EDSC formulation: Our results indicate that EDSC is a very eJec-

tive formulation for multi-level network design problem since 356 (94%) of the 380
instances attempted are solved to optimality without branching compared to 112 (29%)
instances solved to optimality by the dual ascent method. An instance is solved to op-
timality by an approach if the approach shows zero optimality gap without comparing
its solution to that obtained from the other approach. In each of those 356 instances,
the LP-relaxation given by the EDSC formulation provides the integer optimum. For
the remaining 24 test instances, the optimality gap is closed to within 2.5% for two and
within 2% for three and within 1% for the remaining 19 instances. We consider that
the extended directed Steiner cuts generated from the branch-and-cut approach provide
a very good description of the facial structure of the integer polytope near the optimal
extreme point. Note that in the dual ascent method, we allow three iterations of the
Add-Drop process as in [22]. The more iterations allowed, the longer solution time it
takes but with a potentially smaller optimality gap. Our implementation of the dual
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Table 2
Computations to study impact of changing cost structurea

Approach Branch-and-cut on EDSC Dual ascent

Problem type Average SD of Average # solved Average SD of Average # solved
time (s) time gap (%) to optimal time (s) time gap (%) to optimal

|N | = 400, |E| = 1400, 4 levels, demand node distribution: 100=100=100=100
Random (2xed) 206 378 0 5 179 50 0.10 1
Random (general) 22 11 0 5 118 99 0.08 1
Euclidean (2xed) 24 8 0 5 213 23 0.24 0
Euclidean (general) 18 6 0 5 144 27 0.27 0
Manhattan (2xed) 23 10 0 5 205 34 0.20 0
Manhattan (general) 17 4 0 5 135 27 0.25 0
In2nity (2xed) 29 5 0 5 225 22 0.24 0
In2nity (general) 25 9 0 5 122 10 0.28 0
Average 46 54 0 5.0 168 36 0.21 0.3

|N | = 600, |E| = 2100, 4 levels, demand node distribution: 150=150=150=150
Random (2xed) 281 403 0 5 409 66 0.08 0
Random (general) 135 156 0 5 297 65 0.24 0
Euclidean (2xed) 158 143 0 5 332 163 0.17 0
Euclidean (general) 93 63 0 5 269 75 0.29 0
Manhattan (2xed) 92 53 0 5 384 128 0.14 0
Manhattan (general) 56 32 0 5 235 37 0.29 0
In2nity (2xed) 109 74 0 5 395 99 0.10 0
In2nity (general) 82 71 0 5 256 63 0.18 0
Average 125 124 0 5.0 322 87 0.19 0.0

|N | = 800, |E| = 2800, 4 levels, demand node distribution: 200=200=200=200
Random (2xed) 55 57 0 5 75 115 0.00 3
Random (general) 34 16 0 5 26 7 0.03 0
Euclidean (2xed) 120 204 0 5 400 306 0.01 4
Euclidean (general) 123 203 0 5 199 235 0.05 0
Manhattan (2xed) 136 250 0 5 193 149 0.01 3
Manhattan (general) 187 366 0 5 209 219 0.03 1
In2nity (2xed) 98 164 0 5 277 273 0.02 3
In2nity (general) 95 160 0 5 117 205 0.04 0
Average 106 178 0 5.0 187 189 0.02 1.8

aBold 2gures: one of the instances solved to optimality in branching phase without branching any nodes.

ascent algorithm takes longer average solution times to solve problem instances of the
same sizes compared to the result in [22] in exchange of a much smaller optimality
gap. This may be caused by diJerences in some implementational details that are not
fully disclosed in [22].
E>ectiveness of the branch-and-cut approach: We can also claim that the branch-and-

cut approach is an eJective solution methodology since 356 of the 380 test instances
are solved to optimality within 20 min. In terms of average solution times, the branch-
and-cut approach consistently outperforms the dual ascent method except for the
smallest set of test instances (1000 nodes, 3500 edges, 2 levels). In terms of the quality
of solutions, it also has a smaller average optimality gap for most of the test instances
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Table 3
Computations to study impact of changing demand node distributions among levelsa

Approach Branch-and-cut on EDSC Dual ascent
Problem type

Average SD of Average # solved Average SD of Average (%) # solved
time (s) time gap (%) to optimal time (s) time gap to optimal

|N | = 800, |E| = 2800, 4 levels, demand node distribution: 80=160=240=320
Random (2xed) 62 66 0.000 5 120 209 0.002 4
Random (general) 105 111 0.000 5 35 13 0.037 0
Euclidean (2xed) 484 612 0.466 4 351 285 0.002 4
Euclidean (general) 405 525 0.480 4 597 514 0.042 0
Average 264 328 0.237 4.5 276 255 0.021 2.0

|N | = 800, |E| = 2800, 4 levels, demand node distribution: 100=170=230=300
Random (2xed) 68 81 0.000 5 197 233 0.000 4
Random (general) 51 43 0.000 5 187 347 0.030 1
Euclidean (2xed) 425 639 0.226 4 327 277 0.006 2
Euclidean (general) 325 501 0.076 4 544 477 0.022 1
Average 217 316 0.076 4.5 314 333 0.015 2.0

|N | = 800, |E| = 2800, 4 levels, demand node distribution: 200=200=200=200
Random (2xed) 55 57 0 5 75 115 0.002 4
Random (general) 34 16 0 5 26 7 0.032 0
Euclidean (2xed) 120 204 0 5 400 306 0.006 4
Euclidean (general) 123 203 0 5 199 235 0.046 0
Average 83 120 0 5.0 175 166 0.022 2.0

|N | = 800, |E| = 2800, 4 levels, demand node distribution: 300=230=170=100
Random (2xed) 19 8 0 5 14 5 0.000 5
Random (general) 20 8 0 5 17 7 0.022 3
Euclidean (2xed) 35 39 0 5 84 62 0.000 5
Euclidean (general) 36 37 0 5 28 21 0.043 0
Average 27 23 0 5.0 36 24 0.016 3.3

|N | = 800, |E| = 2800, 4 levels, demand node distribution: 320=240=160=80
Random (2xed) 15 5 0 5 12 4 0.000 5
Random (general) 17 5 0 5 15 5 0.010 3
Euclidean (2xed) 33 40 0 5 71 56 0.000 5
Euclidean (general) 32 39 0 5 23 21 0.046 1
Average 24 22 0 5.0 30 22 0.014 3.5

aBold 2gures: one of the instances solved to optimality in branching phase without branching any nodes.

compared to the benchmark method. In many cases, the higher average solution times
and gaps of the branch-and-cut approach are caused by few instances which take much
longer time to solve than other instances of the same con2guration. The following
observations are made from studying the behavior of the solver on some selected in-
stances.

1. 14 problems are solved to optimality in branching phase without branching any
nodes due to the cuts generated from the heuristic. Recall that we solve the heuristic
as the 2rst step in the branching phase and the resulting LP with the new cuts
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Table 4
Computations to study impact of changing number of levelsa

Approach Branch-and-cut on EDSC Dual ascent
Problem type

Average SD of Average # solved Average SD of Average # solved
time (s) time gap (%) to optimal time (s) time gap (%) to optimal

|N | = 1000; |E| = 3500; 2 levels, demand node distribution: 500=500
Random (2xed) 21 13 0.000 5 15 5 0.254 4
Random (general) 18 3 0.000 5 110 206 0.004 4
Euclidean (2xed) 262 525 0.042 4 46 37 0.000 5
Euclidean (general) 34 26 0.000 5 91 159 0.004 4
Average 84 142 0.011 4.8 66 102 0.066 4.3

|N | = 1000; |E| = 3500; 3 levels, demand node distribution: 333=333=334
Random (2xed) 22 4 0 5 27 10 0.000 5
Random (general) 26 4 0 5 29 9 0.010 1
Euclidean (2xed) 65 64 0 5 216 158 0.002 3
Euclidean (general) 68 60 0 5 273 281 0.027 0
Average 45 33 0 5.0 136 114 0.010 2.3

|N | = 1000; |E| = 3500; 4 levels, demand node distribution: 250=250=250=250
Random (2xed) 34 5 0.000 5 889 1237 0.000 5
Random (general) 35 5 0.000 5 230 424 0.012 1
Euclidean (2xed) 306 503 0.014 4 821 797 0.004 3
Euclidean (general) 304 507 0.014 4 285 459 0.058 0
Average 170 255 0.007 4.5 556 729 0.019 2.3

|N | = 1000; |E| = 3500; 5 levels, demand node distribution: 200=200=200=200=200
Random (2xed) 48 15 0.000 5 752 647 0.002 4
Random (general) 50 17 0.000 5 360 697 0.040 0
Euclidean (2xed) 358 478 0.174 4 1012 1493 0.002 4
Euclidean (general) 397 472 0.174 4 408 626 0.032 1
Average 213 245 0.087 4.5 633 866 0.019 2.3

aBold 2gures: one of the instances solved to optimality in branching phase without branching any nodes.

added but without the variable 2xing constraints is solved again before branching
any nodes. If the resulting LP solution is optimal, no branching nodes are created.
Those 14 instances do not take signi2cantly more time than those not requiring
branching. For these instances, the process reaches the branching phase because no
violated inequalities are found rather than tailing-oJ.

2. In order to study the behavior of the solver on challenging instances, we conduct
further investigation on the 9 instances not solved to optimality from the last set of
Table 5. This is the set of 20 instances in which we solve the least number of them
to optimality. No branching nodes are created for those nine instances due to the
time limit. All nine instances have optimality gaps within 1.09% from the heuristic.

3. In the next experiment, we quadruple the maximum allowable time from 20 to 80
min. Five out of the nine instances are solved to optimality in 24 min without
branching. On average, there are 21 612 cuts generated for these 2ve instances. Be-
cause violated cuts are added and inactive constraints are purged during the solution
process, we measure the maximum number of constraints reached in all iterations
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Table 5
Computations to study the impact of increasing number of edgesa

Approach Branch-and-cut on EDSC Dual ascent
Problem type

Average SD of Average # solved Average SD of Average # solved
time (s) time gap (%) to optimal time (s) time gap (%) to optimal

|N | = 600; |E| = 1200; 5 levels, demand node distribution: 80=100=120=140=160
Random (2xed) 96 36 0 5 379 174 0.200 0
Random (general) 108 113 0 5 225 18 0.388 0
Euclidean (2xed) 150 157 0 5 442 211 0.408 0
Euclidean (general) 130 160 0 5 371 224 0.486 0
Average 121 116 0 5.0 354 157 0.371 0.0

|N | = 600; |E| = 1600; 5 levels, demand node distribution: 80=100=120=140=160
Random (2xed) 94 39 0 5 685 464 0.208 0
Random (general) 60 18 0 5 271 13 0.448 0
Euclidean (2xed) 161 163 0 5 622 199 0.348 0
Euclidean (general) 90 69 0 5 283 35 0.564 0
Average 101 72 0 5.0 465 178 0.392 0.0

|N | = 600; |E| = 2000; 5 levels, demand node distribution: 80=100=120=140=160
Random (2xed) 460 457 0.034 4 789 274 0.440 0
Random (general) 612 546 0.000 5 535 359 0.450 0
Euclidean (2xed) 647 654 0.655 3 905 405 0.478 0
Euclidean (general) 538 524 0.044 4 470 248 0.706 0
Average 564 545 0.183 4.0 675 321 0.519 0.0

|N | = 600; |E| = 2400; 5 levels, demand node distribution: 80=100=120=140=160
Random (2xed) 811 586 0.373 2 880 392 0.276 0
Random (general) 745 612 0.052 3 811 680 0.450 0
Euclidean (2xed) 612 653 0.090 3 876 293 0.388 0
Euclidean (general) 587 601 0.282 3 424 51 0.942 0
Average 689 613 0.199 2.8 748 354 0.514 0.0

aBold 2gures: one of the instances solved to optimality in branching phase without branching any nodes.

as an indicator of the degree of diLculty for each instance. The average maximum
number of constraints for the 2ve instances is 1967. For the remaining four in-
stances, two instances did not reach branching stage and the other two have one
and two branching nodes created respectively in 80 min. Their average integrality
gap is improved from 0.45% to 0.26%. The average number of cuts generated and
average maximum constraints reached are 44 455 and 3808 respectively, which are
twice as many as those from the 2ve solved instances.

4. To further test the eJect of branching on the four diLcult instances, we increase
the threshold of tailing-oJ, forcing the process to get into branching phase earlier.
Thus, more time is spent in the branching phase. However, since the maximum
number of constraints goes as high as 8000, with more than 55 000 cuts generated,
it reaches the limit of computer memory and dramatically slows down the solver
due to swapping between hard drive and main memory. As a result, only 1 to 2
more branching nodes were created in the 80 min time period.
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Table 6
Computations to study impact of increasing number of nodes and edgesa

Approach Branch-and-cut on EDSC Dual ascent
Problem type

Average SD of Average # solved Average SD of Average # solved
time (s) time gap (%) to optimal time (s) time gap (%) to optimal

|N | = 400; |E| = 1400; 4 levels, demand node distribution: 100=100=100=100
Random (2xed) 206 378 0 5 179 50 0.100 1
Random (general) 22 11 0 5 118 99 0.079 1
Euclidean (2xed) 24 8 0 5 213 23 0.242 0
Euclidean (general) 18 6 0 5 144 27 0.270 0
Average 68 101 0 5.0 163 50 0.173 0.5

|N | = 600; |E| = 2100; 4 levels, demand node distribution: 150=150=150=150
Random (2xed) 281 403 0 5 409 66 0.084 0
Random (general) 133 154 0 5 297 65 0.236 0
Euclidean (2xed) 157 142 0 5 332 163 0.170 0
Euclidean (general) 91 61 0 5 269 75 0.286 0
Average 166 190 0 5.0 327 92 0.194 0.0

|N | = 800; |E| = 2800; 4 levels, demand node distribution: 200=200=200=200
Random (2xed) 55 57 0 5 75 115 0.005 3
Random (general) 34 16 0 5 26 7 0.032 0
Euclidean (2xed) 120 204 0 5 400 306 0.006 4
Euclidean (general) 123 203 0 5 199 235 0.046 0
Average 83 120 0 5.0 175 166 0.022 1.8

|N | = 1000; |E| = 3500; 4 levels, demand node distribution: 250=250=250=250
Random (2xed) 34 5 0.000 5 889 1237 0.000 5
Random (general) 35 5 0.000 5 230 424 0.012 1
Euclidean (2xed) 305 502 0.014 4 821 797 0.004 3
Euclidean (general) 303 503 0.014 4 285 459 0.058 0
Average 169 254 0.007 4.5 556 729 0.019 2.3

|N | = 1200; |E| = 4200; 4 levels, demand node distribution: 300=300=300=300
Random (2xed) 71 21 0.000 5 280 481 0.000 5
Random (general) 88 28 0.000 5 74 24 0.254 0
Euclidean (2xed) 305 501 0.232 4 856 543 0.006 3
Euclidean (general) 344 485 0.170 4 1259 862 0.021 1
Average 202 259 0.101 4.5 617 478 0.070 2.3

aBold 2gures: one of the instances solved to optimality in branching phase without branching any nodes.

From the analysis, we observe that instances requiring branching because of no
violated cuts found are not particularly diLcult as seen from the 14 instances solved
without creating branching nodes. Problem instances that are hard because of their size
can be solved to optimality given more time such as the 5 instances solved to optimality
in 24 min. Problem instances that are hard because their polyhedral structures cause
tailing oJ, can not be solved eLciently to optimality by the branch-and-cut approach.
Therefore, the best solution strategy for the solver is to avoid branching even if more
computationally time is available. For large size but less computationally challenging
instances, this allows us to solve more instances to optimality. For diLcult instances
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involving tailing-oJ, this strategy allows more time spent in improving lower bound
from which a better heuristic upper bound can be expected.
E>ect of problem characteristics: To identify problem characteristics that may have

a signi2cant impact on solution times or quality, we consider the following three major
attributes.

1. Cost structures: In Table 2, we compare the average solution times obtained from
solving 80 instances of diJerent cost structures (Random, Euclidean, Manhattan,
In2nity cost functions for both 2xed and general cost ratios) on graphs with four
levels and sizes varying from 400 nodes, 1400 edges to 800 nodes and 2800 edges.
In each case, the demand nodes are equally distributed across the four levels. The
results indicate that random cost function instances with 2xed cost ratios take longer
to solve for 400-node and 600-node instances. For larger problem sizes (800 nodes)
Euclidean, Manhattan, and In2nity cost functions tend to be harder. In general, there
is no consistent pattern in solution times among diJerent cost functions especially
given the large standard deviations. Thus we use Euclidean cost function to represent
all three geographic functions for the rest of our computational experiment. The two
remaining cost functions, Euclidean and Random, are the most commonly studied
cost functions in literature (for example [2,8,9,16,25]). The dual ascent approach
takes much longer average time to solve each set of instances and does not show
any pattern in favor of any particular cost functions either. From Tables 2–6, there
is no concrete evidence showing the impact of cost functions and cost ratios on
solution times.

2. Distributions of demand nodes: The impact of changing the distribution of de-
mand nodes (across diJerent levels) is signi2cant from the result detailed in Table
3. In Table 3, we consider 800-node, 2800-edge, and 4-level instances. The 2ve
distributions of demand nodes considered are 80=160=240=320, 100=170=230=300,
200=200=200=200, 300=230=170=100, 320=240=160=80 from level 1 to level 4. Re-
sults in Table 3 clearly indicate that as the proportion of nodes requiring higher
grade facilities increases, the problem becomes easier to solve for both approaches.
The decrease in solution times is signi2cant except for one instance set in the
dual ascent approach. For the branch-and-cut approach, this phenomenon can be
explained by the smaller graph size due to eJective preprocessing in such instances
as well as the fact that separations tend to be cheaper since more demand nodes are
closer to the root in the extended graph. For example, the 20 instances tested with
demand node distribution 80=160=240=320 have average node reduction of 6% and
arc reduction of 57% compared to 31% and 80% respectively for the 20 instances
with demand node distribution 320=240=160=80. Again, the branch-and-cut approach
takes less solution times and solves more instances to optimality compared to the
dual ascent approach in all 2ve test sets. It also has smaller average optimality gaps
in three sets.

3. Problem sizes: The impact of problem size on solution times is signi2cant from
three experiments whose results are found in Tables 4–6. In Table 4, we consider



90 S. Chopra, C.-Y. Tsai / Discrete Mathematics 242 (2002) 65–92

graphs with 1000 nodes, 3500 edges, and number of levels from 2 to 5. When
converted to the corresponding extended graph ED, the largest instances solved in
this test have 5000 nodes and 39 000 arcs. In each case the number of demand nodes
in each level is kept the same at |N |=L. We are able to handle instances up to 2ve
levels for this problem size within 20 min, solving 75 of the 80 instances attempted
to optimality. It is clear that the longer average solution times and higher standard
deviations in 2ve rows of Table 4 are caused by the one instance not solved to
optimality in that row. The table also shows that increasing the number of levels
increases the time taken to solve the instance with an exception in the two-level
set due to an outlier. The 20 2ve-level instances take on average 272 iterations
before branching with a range between 95 and 501 and less than 200 iterations
in the branching stage for the 2 instances requiring branching. There are 2833 cuts
generated on average, among which, 315, 2018, 0, and 500 come from BFS, reverse
BFS, mincut, and reverse mincut, respectively. This shows that we are able to count
more on the less time consuming reverse BFS than on the reverse mincut due to
the design of the switch between stage one and stage two. Note that the regular
mincut serves only as an optimality check under certain circumstances in stage one.
The dual ascent approach also exhibits longer solution times when the number of
levels increases. However, the branch-and-cut approach has smaller optimality gaps
and much shorter average solution times except for the two-level set.
In Table 5, we consider the impact of changing the number of edges in the

graph. The number of nodes is 2xed at 600 and the number of levels is 2xed at
5. As a result, the largest problems include 3000 nodes and 26 400 arcs in the
extended graph. Except for one set in the branch-and-cut approach, it is clear that
increasing the edge density of the graph makes the instance harder to solve. Since
these instances have more demand nodes at lower level, it is expected that they
are harder instances for the branch-and-cut approach from previous discussions.
Indeed, in the 2400-edge set, 9 out of 20 instances are not solved to optimality.
Those 20 instances have 1.7% of nodes and 36% of arcs removed by the graph
reduction algorithm. As a result, in the initial formulation, there are on average
590 (roughly 600 × (1 − 0:017)) constraints and 15 445 variables (approximately
2400 × 2 × 5 × (1 − 0:36)). During the solution process, the maximum number
of constraints in the formulation reaches 2206 on average, about 3.7 times of its
initial size while there are, on average, 12 484 constraints generated. It shows that
the selection of parameter perc and purging inactive constraints keep the LP under
manageable size for the available computing resources. For easier instances, the
maximum number of constraints in the LP is less than 1.5 times of those in the
initial formulation. Comparing to the benchmark approach, our approach has shorter
average solution times and smaller average optimality gaps for all four test sets. In
addition, the dual ascent method solves none of the 80 instances to optimality while
the branch-and-cut approach solved 67 instances to optimality.
In Table 6, we increase the size of the graph from 400 to 1200 nodes keeping

the number of levels 2xed at 4 and the edge density 2xed at |E|=3:5|V |. It is clear
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that the problems become more diLcult to solve as size increases with an exception
from the 600-node set. However, we are able to solve 96 out of 100 instances
to optimality and the average times for all 2ve sets are less than 4 min. In the
1000-node and 1200-node sets, each has two instances not solved to optimality. The
optimality gaps left by those from the larger size (1200 nodes) instances are bigger
than those left by the smaller size (1000 nodes) instances. Average solution times
from the branch-and-cut approach are much lower than those from the dual ascent
method. A closer look at the twenty 400-node instances shows that, on average,
3.4% of the computational time is spent in preprocessing; 31% in solving LP by
CPLEX; 29% in generating reverse BFSs; 15% in generating reverse mincuts; 11%
in purging rows; 3% and 4.5% in generating regular BFSs and mincuts, respectively.
This again shows that the design of the solver allows us to depend more on the less
time consuming reverse BFS cut than the reverse mincut and to balance between
the time spent in solving LPs and the time taken by separation algorithms. From
Tables 4–6, we demonstrate that the size of an instance has a signi2cant impact on
solution times.

In conclusion, our study shows that MLND problems can be solved eLciently by
a branch-and-cut approach with limited amount of computer resources on a personal
computer. The conversion of MLND problem to directed Steiner tree problem not only
allows us to treat the problem as a standard Steiner tree problem but also provides
a tighter LP relaxation to the problem supported by the fact that 356 of the 380
instances are solved to optimality without branching. Finally, the EDSC formulation
can be modi2ed to include problems with switching equipment required at the node
connecting one grade of facility to another by associating the equipment costs with
the cross-level arcs. However, the problem is expected to be harder as graph reduction
methods and heuristics relying on the property of free ride on the cross-level arcs are
no longer valid.
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