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ABSTRACT

The pressure to reduce inventory investments in supply chains has increased as competi-
tion expands and product variety grows. Managers are looking for areas they can improve
to reduce inventories without hurting the level of service provided. Two areas that man-
agers focus on are the reduction of the replenishment lead time from suppliers and the
variability of this lead time. The normal approximation of lead time demand distribution
indicates that both actions reduce inventories for cycle service levels above 50%. The
normal approximation also indicates that reducing lead time variability tends to have a
greater impact than reducing lead times, especially when lead time variability is large.
We build on the work of Eppen and Martin (1988) to show that the conclusions from the
normal approximation are flawed, especially in the range of service levels where most
companies operate. We show the existence of a service-level threshold greater than 50%
below which reorder points increase with a decrease in lead time variability. Thus, for
a firm operating just below this threshold, reducing lead times decreases reorder points,
whereas reducing lead time variability increases reorder points. For firms operating at
these service levels, decreasing lead time is the right lever if they want to cut inventories,
not reducing lead time variability.

Subject Areas: Inventory Management, Mathematical Programming/
Optimization, Probability Models and Supply Chain Management.

INTRODUCTION AND FRAMEWORK

Managers have been under increasing pressure to decrease inventories as supply
chains attempt to become leaner. The goal, however, is to reduce inventories without
hurting the level of service provided to customers. Safety stock is a function of
the cycle service level, the demand uncertainty, the replenishment lead time, and
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the lead time uncertainty. For a fixed-cycle service level, a manager thus has three
levers that affect the safety stock—demand uncertainty, replenishment lead time,
and lead time uncertainty. In this paper we focus on the relationship between lead
time uncertainty and safety stock and the resulting implications for management.

Traditionally, a normal approximation has been used to estimate the relation-
ship between safety stock and demand uncertainty, replenishment lead time, and
lead time uncertainty. According to Eppen and Martin (1988), this approximation
is often justified by using an argument based on the central limit theorem, but
in reality, they say, “the normality assumption is unwarranted in general and this
procedure can produce a probability of stocking out that is egregiously in error.”
Silver and Peterson (1985), however, argue that trying to correct this effect with
a more accurate representation of demand during lead time may be ineffectual
because the gain in precision may only induce minimal improvement in the cost.
Tyworth and O’Neill (1997) also address this issue in a detailed empirical study
for fast-moving finished goods (demand per unit time have coefficients of variation
[c.v.] below 40%) in seven major industries. Their investigations reveal that “the
normal approximation method can lead to large errors in contingency stock—say,
greater than 25%. Such errors have relatively little influence on the optimal solu-
tions, however, because contingency stock holding cost comprises a small portion
of the total logistics system cost” (p. 183). They further conjecture that reducing
the fill rate, the proportion of orders filled from stock, “makes total system costs
less sensitive to normal theory misspecifications” (p. 178) since this will in turn re-
duce the required safety stock level and thus make the total holding costs a smaller
percentage of total system cost.

In this paper our focus is not on the size of the error resulting from using
the normal approximation (that has been captured very well by Eppen and Martin
[1988]), but on the flaws in the managerial prescriptions implied by the normal
approximation. In particular, we focus on two prescriptions of the normal approx-
imation:

1. For cycle service levels above 50%, reducing lead time variability reduces
the reorder point and safety stock.

2. For cycle service levels above 50%, reducing lead time variability is more
effective than reducing lead times because it decreases the safety stock by
a larger amount.

In this paper we show that for cycle service levels that are commonly used
in industry, both prescriptions are false if we consider the exact demand during
the lead time. Using the exact demand during the lead time instead of the normal
approximation we infer the following:

1. For cycle service levels above 50% but below a threshold, reducing lead
time variability increases the reorder point and safety stock.

2. For cycle service levels above 50% but below a threshold, reducing the
lead time variability increases the reorder point and safety stock, whereas
reducing the lead time decreases the reorder point and safety stock.
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Table 1: Safety stocks for gamma lead times and different service levels.

CSL Safety Stock Safety Stock
Row Lead Time Process (α) (Normal Approximation) (Exact value)

1 Gamma, L = 10, sL = 5 .6 28 20
2 Gamma, L = 10, sL = 4 .6 23 22
3 Gamma, L = 8, sL = 5 .6 27 15
4 Gamma, L = 10, sL = 5 .95 182 218
5 Gamma, L = 10, sL = 4 .95 153 181
6 Gamma, L = 8, sL = 5 .95 179 218

CSL = cycle service level.

Both effects are more pronounced when the coefficient of variation of demand is
high and less pronounced when the coefficient of variation of demand is low. This
is consistent with the conclusion of Tyworth and O’Neill (1997) that the normal
approximation is quite effective for low c.v. Our inference also support the results
in Song (1994), who assumes a periodic demand that follows a compound Poisson
process and derives a threshold value underneath which base stocks increase with
a reduction in lead-time uncertainty. It is easy to see that under the normal ap-
proximation, this threshold equals .5. For the distributions we analyze, assuming
a normal period demand, we show that this threshold lies in a range where most
firms operate (between .5 and .7). The comparison of the prescriptions is illustrated
using Table 1.

Consider rows 1–3 of Table 1. For a cycle service level of .6, the normal
approximation predicts that reducing the standard deviation of the lead time from
5 to 4 should decrease the safety stock from 28 to 23. The exact calculation, however,
shows that reducing the standard deviation of lead time increases the required safety
stock from 20 to 22. The normal approximation predicts that reducing the standard
deviation of lead time by 20% (5 to 4) is much more effective at reducing the safety
stock than reducing the lead time by 20% (10 to 8). The exact calculation, however,
shows that for a cycle service level of .6, decreasing lead time is more effective
(safety stock decreases from 20 to 15) than reducing the standard deviation of lead
time (safety stock increases from 20 to 22).

For a cycle service level of 95%, however, the prescriptions of the normal
approximation are correct (see rows 4–6). At this cycle service level both the normal
approximation and the exact calculation show that reducing the standard deviation
of lead time decreases the safety stock and is more effective than decreasing the
lead time itself.

We next argue that many firms in practice operate at cycle service levels
in the 50–70% range rather than the 95–99% that is often assumed. In practice,
managers often focus on the fill rate as a service quality measure (Aiginger, 1987;
Lee & Billington, 1992; Byrne & Markham, 1991), rather than the cycle service
level (CSL or α). The fill rate measures the proportion of demand that is met from
stock, whereas the cycle service level measures the proportion of replenishment
cycles where a stockout does not occur. Table 2 considers the cycle service level
and fill rate for different reorder points for a product that has a weekly demand of
2,500, standard deviation of weekly demand of 500, lead time of two weeks, and
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Table 2: Cycle service level and fill rate as a function of safety stock.

Reorder Point Safety Stock Cycle Service Level Fill Rate

5000 0 .500 .9718
5040 40 .523 .9738
5080 80 .545 .9756
5120 120 .567 .9774
5160 160 .590 .9791
5200 200 .611 .9807
5240 240 .633 .9822
5280 280 .654 .9836
5320 320 .675 .9850
5360 360 .695 .9862
5400 400 .714 .9874

a reorder quantity of 10,000. Calculations for fill rate are detailed in chapter 11 of
Chopra and Meindl (2003).

In this example, Table 2 illustrates that fill rates of between 97 and 99% are
achieved for cycle service levels between 50 and 70%. Most firms aim for fill rates
of between 97 and 99% (and not cycle service levels). This implies cycle service
levels of between 50 and 70%. As we show in this paper, it is for cycle service
levels between 50 and 70% that the prescriptions of the normal approximation are
most distorted and lead to managers pushing the wrong levers to reduce invento-
ries. Our main point is that for cycle service levels where most firms operate, the
normal approximation erroneously encourages managers to focus on reducing the
variability of lead times when they would be better off reducing the lead time itself.

Our general results range from specific theoretical outcomes when the lead
time follows a uniform distribution (see section “Effect of Lead-time Uncertainty:
The Exact Distribution Effect”) to numerical observations when the lead time
follows a uniform, gamma, or normal distribution (see section “Numerical Results
and Analysis”). In the next section, we formalize our model and reexamine the
response to reducing uncertainty when the normal approximation is used rather than
an exact characterization. We conclude with the scope and managerial implications
of our findings in the final section.

EFFECT OF LEAD-TIME UNCERTAINTY:
THE NORMAL APPROXIMATION

For a given cycle service level, determining the required safety stock levels is
predicated on characterizing the distribution of demand during the lead time. We
assume that there is an indivisible period of analysis; for example, a day. Demand
during day i, Xi, are independent and identically distributed random variables drawn
from a normal distribution with mean µX and standard deviation σ X . For a generic
lead time distribution of mean L and standard deviation sL, the demand during lead
time under the normal approximation has mean M = LµX and standard deviation

S =
√

Lσ 2
X + µ2

X s2
L (Silver & Peterson, 1985).
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Figure 1: Reorder point as lead time uncertainty increases for service levels above,
below, and equal to .5.

Reorder 
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Lead Time Uncertainty 
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α   = 0.5 
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Let F(•) represent the cumulative distribution function (CDF) of the standard
normal distribution with mean 0 and standard deviation 1. Define z as the solution
to F(z) = α and ROPN as the reorder point for a cycle service level of α. Under
the normal approximation, we have ROPN = M + zS with zS as the safety stock.
Observe that under the normal approximation S increases (decreases) as sL increases
(decreases). Thus, whether the safety stock S and the reorder point ROPN , rise or
fall as sL increases depends only on the sign of z. For a given mean lead-time L,
Figure 1 depicts the relationship between the lead-time uncertainty (represented
by sL) and the reorder points predicted by the normal approximation for three α’s.
As can be seen from Figure 1, the safety stock S and reorder point ROPN rise with
an increase in sL for a CSL above .5 (since z > 0) and drop with an increase in sL

for CSL below .5 (since z < 0). For a CSL of .5, the reorder point remains at the
level of the deterministic case (sL = 0) and does not change with an increase in sL

(since z = 0, ROPN = M). These observations lead to the following conclusion:

Theorem 1

Suppose that the lead-time uncertainty represented by sL increases. Then for a given
CSL = α, the following is true:

1. If α < .5, then ROPN falls;

2. if α = .5, then ROPN is invariant; and

3. if α > .5, then ROPN rises.

Theorem 1 indicates that, as management works on the reduction of lead time
uncertainty (reduction of sL), the reorder point drops for CSLs above .5. Unfor-
tunately, as demonstrated in Eppen and Martin (1988), this neat prescription is a
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consequence of the normal approximation. In the next section, we show the exis-
tence of a threshold ᾱ > 0.5 such that for CSLs in [.5, ᾱ], the reorder point and
safety stock actually increase as sL decreases.

EFFECT OF LEAD-TIME UNCERTAINTY:
THE EXACT DISTRIBUTION

In this section, we show how the prescriptions of the normal approximation in
Theorem 1 are flawed for the case when periodic demand follows the normal
distribution and the lead time has a discrete uniform distribution with a mean
of Y and a range of Y ± y. Denote the reorder point by R and let Gy(R) be the
(unconditional) probability that demand during the lead time is less than or equal to
R when the lead time is uniformly distributed between Y ± y. If µx is the expected
demand per period and σ x is the standard deviation of demand per period, we
define

zY (R) = (R − Yµx )/(σx

√
Y ). (1)

It is clear from the definition of zY (R) that it represents the number of standard
deviations R is away from the expected value of demand given that the lead time
is Y . Let F(zY (R)) represent the probability that the standard normal is less than or
equal to zY (R). As in Eppen and Martin (1988) it then follows that

G y(R) =
(

1

2y + 1

) Y+y∑
W=Y−y

F(zW (R)). (2)

From (1) and (2), it thus follows that

G y(R1) > G y(R2) if and only if R1 > R2. (3)

Observe that the case when y = 0 corresponds to the case of determinis-
tic lead time. We are interested in examining how Gy(R) behaves as the lead
time uncertainty represented by y changes. We begin by examining the effect
of increasing uncertainty by increasing y by one period. Then, simple algebra
yields:

G y+1(R) − G y(R) =
(

1

2y + 3

)
[F(zY+y+1(R)) + F(zY−y−1(R)) − 2G y(R)],

(4)

and

G y+1(R) =
(

2y + 1

2y + 3

)
G y(R) +

(
1

2y + 3

)
[F(zY+y+1(R)) + F(zY−y−1(R))].

(5)

Since Y + y + 1 > Y − y − 1 ≥ 0, it readily follows that zY−y−1(R) ≥ zY+y+1(R),
so that

1 > F(zY−y−1(R)) > F(zY+y+1(R)) > 0. (6)
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Our objective for the rest of the section is to try to come up with an analogue to
Figure 1 for the case when we use the exact distribution of demand during the lead
time—shown in (2). To proceed we need the following lemma.

Lemma 1

Let Ry and Ry+1 be such that G y(Ry) = G y+1(Ry+1) = α. We have Ry+1 >

(<) Ry if and only if F(zY+y+1(Ry)) + F(zY−y−1(Ry)) < (>) 2G y(Ry).

Proof

Observe that if F(zY+y+1(Ry)) + F(zY−y−1(Ry)) < (>) 2G y(Ry), we have
G y+1(Ry) < (>) G y(Ry) = α by (3.4). Since G y+1(Ry+1) = α, using (3.3) we
thus have Ry+1 > (<) Ry .

On the other hand, if Ry+1> (<) Ry , (3) implies that α = G y+1(Ry+1) >

(<) G y+1(Ry). Since α = G y(Ry), we have G y(Ry) > (<) G y+1(Ry). From (4)
we thus have F(zY+y+1(Ry)) + F(zY−y−1(Ry)) < (>) 2G y(Ry). The result thus
follows. Another result needed is presented below. The proof follows from the
definition of the standard normal distribution.

Lemma 2

Let F(·) be the standard normal cumulative distribution function. If z1 < 0 < z2,
then 1 < F(z1) + F(z2) if and only if −z1 < z2.

We start by considering the reorder point as y increases for the case where the
CSL is .5. For a given value of lead time uncertainty y, let Ry(0.5) be the reorder
point such that G y(Ry(0.5)) = .5. For the case y = 0, observe that Ry(0.5) is the
expected demand, M = Yµx , during the lead time Y. We have zY+1(R0(0.5)) <

0 < −zY+1(R0(0.5)) < zY−1(R0(0.5)) from (1). From Lemma 2 it thus follows
that F(zY+1(R0(0.5))) + F(zY−1(R0(0.5))) > 2G0(R0(0.5)) = 1. Using Lemma 1
it thus follows that R1(0.5) < R0(0.5).

In other words, the reorder point decreases as lead time uncertainty increases
from y = 0 to y = 1 for a cycle service level of .5. In the next result we prove
that this pattern continues to hold as lead time uncertainty (y) increases, that is, the
reorder point continues to drop as lead time uncertainty (y) increases for a cycle
service level of .5.

Theorem 2

For a cycle service level α = .5, the reorder point Ry(0.5) declines with an increase
in lead time uncertainty y, that is, Ry+1(0.5) < Ry(0.5).

Theorem 2 (proved in the appendix) is equivalent to stating that the median
of the distribution of demand during the lead time declines as lead time uncertainty
represented by y increases. In contrast, the median is invariant when the normal
approximation is used. For the specific case of the median, Theorem 2 provides
a complete characterization of the behavior of the reorder point as y increases. In
general, the reorder point is the solution to

G y(R) =
(

1

2y + 1

) Y+y∑
W=Y−y

F(zW (R)) = α. (7)
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Let Ry(α) represent the unique solution to (7). To examine the effect of increasing
the cycle service level α it is sufficient to specialize (4) to:

G y+1(Ry(α)) − G y(Ry(α))

=
(

1

2y + 3

)
[F(zY+y(Ry(α))) + F(zY−y(Ry(α))) − 2α] (8)

Observe that Theorem 2 implicitly analyzes (8) for the special case α =
.5. By Lemma 1, for arbitrary α, determining whether the reorder point in-
creases or decreases depends on the sign of the term 2α − [F(zY+y(Ry(α))) +
F(zY−y(Ry(α)))].

Theorem 3

1. If 0 < α < .5, there exists y > 0 such that Ry(α) < R0(α);

2. There exists .5 < α < 1 and y > 0 such that Ry (α) < R0 (α).

Part 1 of this theorem states that the optimal reorder point falls with increasing
uncertainty if the CSL is less than .5. Part 2 states that there are service levels
α > .5 for which the reorder point initially falls with an increase in lead time
uncertainty, which contradicts the prediction for the normal approximation. We
prove both parts in the Appendix.

In the next section we numerically study the effect of decreasing lead time
uncertainty on safety stocks for various lead time distributions.

NUMERICAL RESULTS AND ANALYSIS

Theorems 2 and 3 show that there is a range of cycle service levels above 50% where
decreasing the lead time uncertainty increases the reorder point and safety stock
when the lead time is uniformly distributed. In this section we present computational
evidence to show that these claims are valid when lead times follow the gamma, the
uniform, or the normal distribution. For the gamma lead time distribution we show
that for cycle service levels around 60%, decreasing lead time variability increases
the reorder point. For the uniform lead time this effect is observed for cycle service
levels close to, but above, 50%. As we have discussed earlier, most firms operate
at cycle service levels in this range because they imply fill rates of around 98%.
Using the computational results we also show that in this range, a manager is better
off decreasing lead time rather than lead time variability if reducing inventories is
the goal.

We first consider the effect of reducing lead time variability on reorder points
and safety stock when the lead time follows the uniform or gamma distribution.
In both cases we keep the mean lead time fixed and vary the standard deviation.
Demand per period is assumed to be normal with a mean µ = 20 and standard
deviation σ = 15 or 5. This allows us to analyze the effect for both a high and low
coefficient of variation of demand.

Figure 2 shows the effect of reducing lead time variability when periodic
demand has a high coefficient of variation (15/20) and lead time is uniformly
distributed with a mean of 10 and a range of 10 ± y, where y ranges from
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Figure 2: ROP as a function of y for uniform lead time.

Reorder Point as a Function of y for Normal Approximation and Exact
Period Demand is Normal, mean = 20, sigma = 15
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0 to 10. We plot the change in reorder point as y changes using both the nor-
mal approximation and the exact calculations for cycle service levels of .5, .51, and
.55. The safety stock is calculated as ss = ROP − 200 because 200 is the mean
demand during the lead time. The curves marked Norm(·) represent the results of
the normal approximation, whereas the others represent the exact calculation of
reorder points.

From Figure 2 we conclude that for a high coefficient of variation of periodic
demand, if lead times are uniformly distributed, there is a range of cycle service
levels above .5 (but close to .5), where reducing lead time uncertainty increases
safety stocks, whereas the normal approximation predicts the opposite.

Figure 3 shows that the effect is even more pronounced when the lead time
follows a gamma distribution. Once again we consider periodic demand to be
normally distributed with a high coefficient of variation (15/20). Lead time is
assumed to follow the gamma distribution with a mean of 10 and standard deviation
varied from 6 to 1 and the reorder point calculated for cycle service levels of
.50, .55, and .6. The plot compares the reorder points obtained using the normal
approximation and the exact calculation.

Figure 3 shows that the normal approximation is even more erroneous when
lead time follows the gamma distribution. Even for a cycle service level of .6,
decreasing the lead time uncertainty increases safety stocks, whereas the normal
approximation predicts just the opposite. When lead times are gamma distributed
we thus conclude that there is a range of cycle service levels even beyond .6 when
decreasing lead time variability increases the required safety stock.
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Figure 3: ROP as a function of lead time standard deviation for gamma lead time.
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Figure 4: Reorder point as a function of lead time uncertainty for a low coefficient
of variation.
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Figure 4 repeats the results of Figures 2 and 3 but for a low coefficient of vari-
ation (5/20) of periodic demand. Figure 4 shows that even with a low coefficient of
variation of periodic demand, for cycle service levels between 50% and a threshold,
the exact calculation shows that decreasing lead time variability increases the re-
quired safety stock, whereas the normal approximation predicts the opposite. The
computational results show that the threshold value decreases as the coefficient of
variation of periodic demand decreases. Thus, for a very low coefficient of variation
of period demand, the error of the normal approximation is less pronounced.

In Figures 5 and 6, we compare the impact of reducing lead time variability
and lead time on safety stocks. In both cases we consider periodic demand to have
a high coefficient of variation (15/20). In Figure 5 we consider lead time to be
uniformly distributed with a mean of 10 and a range of 10 ± y. The chart on the left
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Figure 5: Safety stock as a function of lead time uncertainty (left) and lead time
mean (right) for uniform lead times.
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Figure 6: Safety stock as a function of lead time uncertainty (left) and lead time
mean (right) for gamma lead times.
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shows how the ROP changes as y is decreased from 5 to 0. The chart on the right
shows how for y = 5, the ROP changes as the lead time decreases from 10 to 5.
The results are shown for cycle service levels of .51, .55, and .6. In both cases the
results show that the error of the normal approximation is less pronounced for a
low coefficient of variation of periodic demand.

FINDING THE THRESHOLDS

We now show how to obtain the thresholds below which the conclusions of the
normal approximation are flawed. The CDF of demand during lead time shows how
the ROP changes as a function of the cycle service level. Recall that the safety stock
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Figure 7: CDF for demand during lead time.
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cdf for y+1 

cdf for y 

α 

β 

ss = ROP − mean demand during lead time. In Figure 7 we represent two CDFs
corresponding to the cases where the lead time is uniformly distributed between
Y ± y (represented by y) and Y ± (y + 1) (represented by y + 1). The crossover
ᾱ represents the CSL for which both distributions require the same safety stock.

For a cycle service level α, larger than the crossover point ᾱ, decreasing lead
time range from Y ± (y + 1) to Y ± y results in a decrease in the safety stock.
However, when the CSL is below ᾱ, say β, decreasing lead time range from Y ±
(y + 1) to Y ± y results in an increase in the ROP. Thus, the ROP increases with
a decrease in lead time uncertainty for cycle service levels below the crossover
ᾱ. The crossover point ᾱ is the threshold below which decreasing the lead time
variability increases the required safety stock. For cycle service levels between
50% and the crossover point, decreasing the lead time uncertainty results in an
increase of safety stock.

Next, we numerically describe the cumulative distribution functions for the
case where the lead time distribution is uniform or gamma and obtain crossover
points to explain the results in the section “Numerical Results and Analysis.”
Figure 8 shows the CDF for the demand during the lead time when lead time is
uniformly distributed between 10 ± y as y changes from 9 to 1. Observe that the
crossover point between the CDF for y = 3 and y = 1 is at .564. This implies
that for any cycle service level between 50 and 56.4%, decreasing y from 3 to 1
will increase the safety stock, whereas the normal approximation predicts other-
wise. The crossover point thus establishes the threshold below which the normal
approximation is directionally wrong when lead time is uniformly distributed.

Figure 9 shows how the reorder point ROP varies with the cycle service level
when lead time follows a gamma distribution with a mean of 10 and a standard
deviation that varies from 9 to 1. Once again the crossover point helps explain
the range of cycle service levels over which the conclusions of the normal ap-
proximation are directionally flawed. For example, the crossover point for the
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Figure 8: CDF of lead time demand for different y’s when µ = 20, σ = 15, and
L = 10.
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Figure 9: CDF of lead time demand for gamma lead time, µ = 20, σ = 15, and
L = 10.
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Figure 10: CDF of lead time demand for normal lead time, µ = 20, σ = 15, and
L = 10.
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CDF for a standard deviation of 5 and 3 is at .628. Thus, for cycle service levels
between 50 and 63%, decreasing the standard deviation of lead time from 5 to 3
increases the safety stock required, whereas the normal approximation predicts just
the opposite.

Figure 10 shows how the reorder point ROP varies with the cycle service
level when lead time follows a truncated normal distribution (with mean of 10 and
a discrete support from 0 to 20 days). Here we note that the crossover points are
closer to .5 (.54 when s = 1 and s = 3 intersect, and .51 when s = 3 and s = 5
intersect) illustrating that the width of the interval of service levels in which the
reorder point decrease as variability increases is dependent on the shape of the lead
time distribution.

The procedure detailed above for uniform, gamma, and normal lead times
can be used for any lead time distribution to estimate the threshold below which
decreasing lead time variability increases the safety stock required. To identify
whether decreasing the lead time variability from σ h to σ l will increase or decrease
the safety stock required, we plot the CDF of demand during the lead time for each
lead time variability and identify the crossover point X. Cycle service levels between
50% and the crossover point represent the range over which the exact distribution
predicts an increase in safety stock if lead time variability is decreased, whereas
the normal approximation predicts the opposite.
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CONCLUSION

For the most part, management’s understanding of the effect on safety stocks of
uncertainty in lead time is based on an approximate characterization of demand
during lead time using the normal distribution. For cycle service levels above
50% the normal approximation predicts that a manager can reduce safety stocks by
decreasing lead time uncertainty. Our analytical results and numerical experiments,
however, indicate that for cycle service levels between 50% and a threshold, the
prescriptions of the normal approximation are flawed, and decreasing the lead time
uncertainty, in fact, increases the required safety stock. In this range of cycle service
levels, a manager who wants to decrease inventories should focus on decreasing
lead times rather than lead time variability. This contradicts the conclusion drawn
using the normal approximation.

Our conclusion is more pronounced when demand has a high coefficient of
variation. When the lead time follows a gamma distribution, the prescriptions of
the normal approximation are flawed over a wide range of cycle service levels.
This range is narrower when lead times are uniformly or normally distributed.
Thus, using the normal approximation makes sense if lead times are normally
distributed, but it would not make sense if lead times follow a distribution closer
to the gamma. [Received: February 2002. Accepted: October 2003.]
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APPENDIX A: PROOF OF THEOREMS 2 AND 3

To lighten notation throughout, we let c = σx/µx .

Theorem 2

For α = .5, the reorder point Ry(0.5) declines with an increase in lead time uncer-
tainty y, that is, Ry+1(0.5) < Ry(0.5).
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Proof

The result is proved using induction. We first consider the case for y = 0, that is,
the lead time is fixed at Y . For a fixed lead time Y, the reorder point for a cycle
service level of .5 is given by Ro(0.5) = Yµx .

Now consider the lead time to be uniformly distributed with equal support
on {Y + 1, Y, Y − 1}, that is, y = 1. If the reorder point is kept at R0(.5) = Yµx,
the cycle service level is given by

1

3

{
F

(
(Y − (Y − 1))

c
√

Y − 1

)
+ F

(
(Y − (Y + 1))

c
√

Y + 1

)
+ F

(
(Y − Y )

c
√

Y

)}

We claim that F( 1
c
√

Y − 1
) + F( −1

c
√

Y + 1
) > 1. By Lemma 2, this follows because

−1
c
√

Y + 1
< 0 < 1

c
√

Y − 1
and 1

c
√

Y + 1
< 1

c
√

Y − 1
. This implies that if y = 1, the cycle

service level for a reorder point of R0(.5) is strictly greater than .5. Thus, R1(.5) <

R0(.5). Define �1 = (R0(.5) − R1(.5))/µx. The service level at R1(.5) is .5 and is
given by

1

3

{
F

(
(Y − (Y − 1)) − �1

c
√

Y − 1

)
+ F

(
(Y − (Y + 1)) − �1

c
√

Y + 1

)

+ F

(
(Y − Y ) − �1√

Y

)}
= 0.5. (A1)

Since �1 > 0, we have F(−�1

c
√

Y
) < 0.5.Thus, it must be the case that

F

(
1 − �1

c
√

Y − 1

)
+ F

(−1 − �1

c
√

Y + 1

)
> 1 or by Lemma 2

1 − �1

c
√

Y − 1
>

1 + �1

c
√

Y + 1
. (A2)

Now consider raising the lead time uncertainty by assuming lead time to be uni-
formly distributed over {Y − 2, Y − 1, Y , Y + 1, Y + 2}. If the reorder point is
kept at R1(.5) = Yµx − �1µx, the cycle service level is given by

1

5

{
F

(
(Y − (Y − 2)) − �1

c
√

Y − 2

)
+ F

(
(Y − (Y + 2)) − �1

c
√

Y + 2

)

+ F

(
(Y − (Y − 1)) − �1

c
√

Y − 1

)
+ F

(
(Y − (Y + 1)) − �1

c
√

Y + 1

)

+ F

(
(Y − Y ) − �1√

Y

)}

We now claim that F( 2 − �1

c
√

Y − 2
) + F(−2 − �1

c
√

Y + 2
) > 1.

By Lemma 2, this is equivalent to showing that

2 − �1

c
√

Y − 2
= 1

c
√

Y − 2
+ 1 − �1

c
√

Y − 2
>

2 + �1

c
√

Y + 2
= 1

c
√

Y + 2
+ 1 + �1

c
√

Y + 2
.

(A3)
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From (A2), we have

1 − �1

c
√

Y − 2
>

1 − �1

c
√

Y − 1
>

1 + �1

c
√

Y + 1
>

1 + �1

c
√

Y + 2
.

Given the fact that 1
c
√

Y − 2
> 1

c
√

Y + 2
, (A3) thus follows. This implies that if y = 2,

the cycle service level for a reorder point of R1(.5) is strictly greater than .5. Thus,
R2(.5) < R1(.5). Define �2 = (R1(.5) − R2(.5))/µx.

We now use induction to complete the proof. Define �y = (Ry−1(.5) −
Ry(.5))/µx. To show that Ry+1(.5) < Ry(.5) we start with the induction as-
sumption that y − �y

c
√

Y − y
>

y + �y

c
√

Y + y
. We now need to prove that F( y + 1 − �y

c
√

Y − (y + 1)
) +

F(−(y + 1) − �y

c
√

Y + (y + 1)
) > 1.

Observe that

(y + 1) − �y

c
√

Y − (y + 1)
= y

c
√

Y − (y + 1)
+ 1 − �y

c
√

Y − (y + 1)

>
y

c
√

Y − (y + 1)
+ 1 − �y

c
√

Y − y

>
y

c
√

Y + (y + 1)
+ 1 + �y

c
√

Y + y

> {This follows from the induction hypothesis}

y

c
√

Y + (y + 1)
+ 1 + �y

c
√

Y + (y + 1)
= (y + 1) + �y

c
√

Y + (y + 1)
.

The result thus follows using Lemma 2. This implies that Ry+1(.5) < Ry(.5).

Theorem 3, Part 1

If 0 < α ≤ .5, there exists a y > 0 such that Ry(α) < R0(α).

Proof

If the lead time is fixed at Y , the cycle service level for a reorder point of Rµx (R ∈
(0, Y )) is given by F( R − Y

c
√

Y
). Consider now lead time to be uniformly distributed

on {Y − y, Y , Y + y} where y is some small positive value. We show that the cycle
service level under this setting (with the reorder point fixed at Rµx) increases, or
equivalently

F

(
R − (Y + y)

c
√

Y + y

)
+ F

(
R − (Y − y)

c
√

Y − y

)
> 2F

(
R − Y

c
√

Y

)
(A4)

for some y > 0. By Lemma 1, this is equivalent to proving
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R − (Y + y)

c
√

Y + y
+ R − (Y − y)

c
√

Y − y
> 2

R − Y

c
√

Y

or

R − Y

c
√

Y
− R − (Y + y)

c
√

Y + y
<

R − (Y − y)

c
√

Y − y
− R − Y

c
√

Y
.

This inequality is equivalent to

(R − Y )
(
2
√

Y + y
√

Y − y −
√

Y
√

Y − y −
√

Y
√

Y + y
)

< y
(√

Y
√

Y + y −
√

Y
√

Y − y
)
.

Observe that the right-hand side is clearly positive and (R − Y ) is nonpositive by
assumption and thus maximized at R = 0. Therefore, it remains to show that

(−Y )
(
2
√

Y + y
√

Y − y −
√

Y
√

Y − y −
√

Y
√

Y + y
)

< y
(√

Y
√

Y + y −
√

Y
√

Y − y
)
.

Without loss of generality, assume that y = βY for some β ∈ [0, 1].

Basic algebraic manipulations yield

√
1 − β

√
1 + β

(√
1 + β − 1

)
<

√
1 − β

√
1 + β

(
1 −

√
1 − β

)

or

√
1 + β +

√
1 − β < 2 which is true for β ∈ [0, 1].

Theorem 3, Part 2

There exist α > 0.5 and y > 0 such that Ry (α) < R0 (α).

Proof

Observe that (A4) is tight when y = 0. Differentiating its left-hand side with respect
to y yields

A = f

(
R − Y + y

c
√

Y − y

)c
√

Y − y − (R − Y + y) −c
2
√

Y−y

c2(Y − y)

+ f

(
R − Y − y

c
√

Y + y

)−c
√

Y + y − (R − Y − y) c
2
√

Y+y

c2(Y + y)

which simplifies to
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f

(
R − Y + y

c
√

Y − y

)
Y − y + R

2c(Y − y)3/2
− f

(
R − Y − y

c
√

Y + y

)
Y + y + R

2c(Y + y)3/2

with f (·) being the density function of the standardized normal distribution. We
show that A > 0 for a small positive y. Without loss of generality, assume that
R = (1 + γ )Y and y = βY for γ > 0 and 0 < β < γ . Substituting yields

A = f

(
(γ + β)Y

c
√

Y (1 − β)

)
(2 + γ − β)Y

2cY 3/2(1 − β)3/2
− f

(
(γ − β)Y

c
√

Y (1 + β)

)
(2 + γ + β)Y

2cY 3/2(1 + β)3/2

= 1

2c
√

2πY

[
exp

(
−k

(γ + β)2

1 − β

)
2 + γ − β

(1 − β)3/2
− exp

(
−k

(γ − β)2

1 + β

)
2 + γ + β

(1 + β)3/2

]

where

k = Y

2c2
.

We rewrite A as

A =
exp

( − k (γ −β)2

1 + β

)
2c

√
2πY

[
exp

(
k

{
(γ − β)2

1 + β
− (γ + β)2

1 − β

})
2 + γ − β

(1 − β)3/2

− 2 + γ + β

(1 + β)3/2

]
.

To show that the above is nonnegative for a suitable k, we need to show that

exp

(
k

{
(γ − β)2

1 + β
− (γ + β)2

1 − β

})
2 + γ − β

(1 − β)3/2
− 2 + γ + β

(1 + β)3/2
≥ 0

for a small enough β. Thus A > 0 reduces to

exp

(
−k

{
4γβ + 2γ 2β + 2β3

1 − β2

})
2 + γ − β

(1 + β)3/2
− 2 + γ + β

(1 + β)3/2
≥ 0. (A5)

For k ≤ 1
4γ + 4γ 2 , we have

−k

{
4γβ + 2γ 2β + 2β3

1 − β2

}
≥ − β

1 − β2

or

exp

(
−k

{
β(4γ + 2γ 2 + 2β2)

1 − β2

})
≥ exp

(
− β

1 − β2

)
.

(A5) is satisfied if for a small β > 0 we can show that

H (γ, β) = exp

(
− β

1 − β2

)
2 + γ − β

(1 − β)3/2
− 2 + γ + β

(1 + β)3/2
> 0. (A6)
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Since H (γ , 0) = 0 and 2 + γ +β

(1 +β)3/2 is decreasing in β, it remains to show that H 1 (γ ,
β) is nondecreasing initially for a small positive β, where

H1(γ, β) = exp

(
− β

1 − β2

)
2 + γ − β

(1 − β)3/2
.

We compute

∂ H1(γ, β)

∂β
= exp

(
− β

1 − β2

)−(1 − β)3/2 + 3
2 (2 + γ − β)

√
1 − β

(1 − β)3

+ exp

(
− β

1 − β2

)(
2 + γ − β

(1 − β)3/2

)(−(1 − β)2 − 2β2

(1 − β2)2

)

At β = 0,
∂ H1(γ, β)

∂β

∣∣∣∣
β=0

= −1 + 3

2
(2 + γ ) − (2 + γ ) > 0

and by continuity we conclude that ∂ H1(γ,β)
∂β

≥ 0 for a small positive β and therefore

H 1 (γ , β) is increasing initially. Thus, if k = Y
2c2 ≤ 1

4γ + 4γ 2 the cycle service level
initially increases with an increase in lead time uncertainty and the associated
reorder point decreases.

APPENDIX B: TECHNICAL METHODOLOGY

The Normal Approximation for the Exact Uniform Distribution

ROPN = F−1{α, µyµx ,

√
µyσ

2
X + y(y + 1)µ2

X/3} where F−1 {•, •, •} is the
inverse of the normal distribution (NORMINV) of given mean and standard
deviation.

The Normal Approximation for the Gamma Distribution

ROPN = F−1{α, Lµx ,
√

Lσ 2
X + s2

Lµ2
X} where F−1 {•, •, •} is the inverse of the

normal distribution of given mean and standard deviation and L and sL are the mean
and standard deviation of the gamma distribution.

The Exact Uniform

Sheet 1. Generate Table indexed by (row) ROP and (column) y with CSL in
the body of the Table.

Sheet 2. Use VLOOKUP function to extract ROP index that corresponds to
given y and CSL.

The Discrete Gamma Distribution

We seek the inverse (G−1) of the cumulative distribution function of the demand
during lead time. The lead time distribution has mean L and standard deviation sL.
We know
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ROP = G−1{P(D < X ) =
∑

l=1,...,30

wl ∗ NORMDIST(X, l ∗ µX , σX ∗ sqrt(l), 1)}.

Sheet 1. Generate weights (wl, l = 1, . . . , 30) Table indexed by (row) support
(between 0 and 30) and (column) standard deviation with, in row j
and column s the value

GAMMADIST

(
j,

(
L

s

)2

,
s2

L
, 1

)

−
j−1∑
i=0

GAMMADIST

(
i,

(
L

s

)2

,
s2

L
, 1

)

for j = 1, . . . , 29 with 0 in row j = 0 and, in row j = 30,

GAMMADIST

(
30,

(
L

s

)2

,
s2

L
, 1

)

−
29∑

i=0

GAMMADIST

(
i,

(
L

s

)2

,
s2

L
, 1

)

+ 1 −
30∑

i=0

GAMMADIST

(
i,

(
L

s

)2

,
s2

L
, 1

)
.

That is, we add to j = 30 the mass of the tail to the right of 30. In
Sheet 1, we also generate a table of NORMDIST values as per the
ROP formula above.

Sheet 2. Matrix multiply the Sheet 1’s Normdist table to Sheet 1’s weights
table.

Sheet 3. Use a VLOOKUP(CSL) on Sheet 2 to find the ROP that yields the
given CSL.

The resulting discrete gamma distributions for lead time are illustrated in
Figure A1.

The Truncated Normal Distribution

We seek the inverse (G−1) of the cumulative distribution function of the demand
during lead time. The lead time distribution has mean L and standard deviation sL.
We know

ROP = G−1{P(D < X ) =
∑

l=1,...,L

wl ∗ NORMDIST(X, l ∗ µX , σX ∗ sqrt(l), 1)}.

Sheet 1. Generate weights Table indexed by (row) support (between 0 and
30) and (column) standard deviation with, in row j and column s the
value
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Figure A1: Gamma lead time distributions for standard deviations of 2.5, 5, 7.5,
and 9.
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NORMDIST( j, L , s, 1) −
j−1∑
i=0

NORMDIST(i, L , s, 1)

for j = 1, . . . , 29 with NORMDIST(0, L , s, 1) 0 in row

j = 0 and, in row j = 30,

NORMDIST(30, L , s, 1) −
29∑

i=0

NORMDIST

(
i,

(
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s
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,
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, 1

)

+ 1 −
30∑

i=0
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(
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(
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s

)2

,
s2

L
, 1

)
.

That is, we add to j = 0 and j = 30, respectively, the mass of the tail
to the left of 0 and to the right of 30. In Sheet 1, we also generate a
table of NORMDIST values as per the ROP formula above.

Sheet 2. Matrix multiply the Sheet 1’s Normdist table to Sheet 1’s weights
table.

Sheet 3. Use a VLOOKUP(CSL) on Sheet 2 to find the ROP that yields the
given CSL.
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Figure A2: Normal lead time distributions for standard deviations of 2.5, 5, 7.5,
and 9.
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The resulting truncated normal distributions for lead time are illustrated in
Figure A2.

Sunil Chopra holds the IBM Distinguished Professor of Operations Management
Chair, is director of the Master of Management in Manufacturing Program, and is
the former chair of the Managerial Economics and Decision Sciences Department.
His research interests lie in integer programming, the design of communication
networks, and the design and analysis of distribution and logistics systems. He
has held academic positions at New York University and at the IBM Thomas J.
Watson research center. He has published numerous articles in many journals in-
cluding Mathematical Programming, the SIAM Journal on Discrete Mathematics,
the ORSA Journal on Computing, and Supply Chain Management Review. He com-
pleted his PhD in Operations Research at SUNY Stony Brook in 1986 and his B.
Tech in Mechanical Engineering at IIT Delhi in 1981.

Gilles Reinhardt is assistant professor of operations at DePaul University in
Chicago. He earned his bachelor’s in operations research and his master’s of science
(Systems Sciences) at the University of Ottawa in Canada. He spent four years at
Statistics Canada before completing, in 1998, his PhD in operations management
at the Kellogg School of Management in Evanston, Illinois. Dr. Reinhardt focuses
his research on all aspects of congestion, from the supply chain to emergency de-
partments, to railroads, to the Internet. He has taught various classes in operations



24 The Effect of Lead Time Uncertainty on Safety Stocks

management and quantitative analysis topics at undergraduate, MBA, and PhD
levels and has received awards for teaching excellence. He has presented papers
at national and international conferences. He is an ad hoc referee for five journals
and has published in Computational Economics, Energy Studies Review, and the
Canadian Journal of Emergency Medicine.

Maqbool Dada teaches operations management. His research interests include
inventory systems, pricing models, service systems, and international operations
management. He has published articles in many journals including Management
Science, Marketing Science, Operations Research, the European Journal of
Operational Research, and Interfaces. Prior to joining the Krannert (Purdue) fac-
ulty in 1992, he was an assistant professor in the Department of Information
and Decision Sciences, College of Business Administration, at the University of
Illinois at Chicago. He has held visiting appointments at the Graduate School of
Business, University of Chicago, and at the Kellogg Graduate School of Manage-
ment, Northwestern University. He completed his PhD in operations management
at the Massachusetts Institute of Technology in 1984 and his BS in Industrial
Engineering at Berkeley in 1978.


