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Appendix

A. Proposition Proofs

Proof of Proposition 1: We first consider the case in which all signals are mutually independent. We use

the following orders and inventory formulations:

ot =µ+
∞∑
l=0

õt,l, õt,l =
∞∑

i=−∞

(wi,l−wi+1,l)εt+L+i,l,

it =m+
∞∑
l=0

ĩt,l, ĩt,l =
∞∑
i=0

wi+1,lεt+i+1,l + (w−i,l− 1)εt−i,l.

Accordingly, the firm’s objective is:
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s.t.

V ar
(̃
it,l
)

= el
′Σel ·

∞∑
i=0

[
w2
i+1,l + (w−i,l− 1)2

]
V ar

(
õt,l
)

= el
′Σel ·

∞∑
i=−∞

(wi,l−wi+1,l)2

wi,l = 0 for i > l−L.

Inventory variability grows quadraticly in wi,l, so a global minimum must exist in a compact region about

the origin. At this global minimum, the following first-order conditions must hold:

(θ+ 2)wi,l =wi−1,l +wi+1,l i≥ 1, (2)
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(θ+ 2)w̃i,l = w̃i−1,l + w̃i+1,l i≤ 0, (3)

θ= ki/kp

√
V ar(ot|wi,l)
V ar(it|wi,l)

, (4)

where w̃i,l =wi,l− 1. Expressions (2) and (3) describe second order difference equations, with characteristic

polynomial x2− (θ+ 2)x+ 1 = 0. This polynomial has roots λ and λ−1, where λ= θ/2 + 1−
√

(θ/2 + 1)2− 1.

First, we consider the case in which L≥ l. Here, the constraints set the left-hand-side variables of (2) to zero.

Applying the w̃l−L+1,l = 1 boundary condition to (3) yields, for some constant κ:

w̃i,l = κλl−L+1−i + (κ− 1)λi−l+L−1, L≥ l and l−L≥ i. (5)

Notice, for all wi,l to be finite—an optimality requirement—κ must equal one. Hence, we find:

wi,l = 1−λl−L+1−i, L≥ l and l−L≥ i. (6)

Second, we consider l > L. Now we apply the wl−L+1,l = 0 boundary condition to (2), to get:

wi,l = κ(λi+−l+L−1−λl−L+1−i), l > L and l−L≥ i > 0. (7)

Expression (7), in turn, yields w̃1,l = κ(λ−l+L−λl−L)−1 and w̃0,l = κ(λ−l+L−1−λ1+l−L)−1, which we apply

as boundary conditions to (3) to get:

w̃i,l =
[
−κλl−L− 1/(1 +λ)

]
λ−i+1 +

[
κλ−l+L−λ/(1 +λ)

]
λi−1, l > L and i≤ 0. (8)

Now, for each wi,l to be finite, κ must equal λl+L+1

1+λ
, because λ−1 > 1. Plugging this κ value into (7) and (8)

yields:

wi,l =

{
λi−λ2+2l−2L−i

1+λ
l > L and l−L≥ i > 0,

1− 1+λ2l−2L+1

1+λ
λ−i+1 l > L and i≤ 0.

(9)

From wi,l we can then derive A.

The solution easily extends to the case in which εt+l,l and εt+j,j are correlated, when l and j are less than

or equal to L. All unmet demands impose the same per-period inventory costs, so the firm finds it optimal

to adopt the same order schedule for εt,l and εt−l+L,L, for l > L, as these signals are both realized within

the product lead time. The only difference between these signals is the former’s additional L− l periods

of delinquency. Hence, as long as we properly account for these delinquent periods, we can treat εt,l as if

it where εt−l+L,L. Consequently, we can use the solution outlined above, with three small changes: first,

we let l-lead-time signals, for l > L, have zero variance; second, we let L-lead time signals have variance(∑L

l=0 e
′
l

)
Σ

(∑L

l=0 el

)
; third, we add

∑L−1
i=0 e

i
0
′Σei0 to V ar(it), where ei0 =

∑i

j=0 ej . Doing so yields wi,l,

for l≥L; we get the rest with the following: wi,l =wi+L−l,L, for l < L. The result has the same form as (6).

�



Information Transmission & Bullwhip Effect
3

Proof of Propositions 2 and 3: One can use a simple substitution argument to demonstrate that the

optimal inventory and production standard deviations weakly decrease and increase in ki/kp, respectively,

which means θ and λ strictly increase and decrease in ki/kp, respectively. Then one can show: 1) λ∈ (0,1); 2)

β and liml→∞ βl strictly decrease in λ; 3) if
(∑L

l=0 e
′
l

)
Σ
(∑L

l=0 el

)
>
∑L

l=0 el
′Σel then β is negative for λ in a

neighborhood of one, and positive for λ in a neighborhood of zero; 4) if
(∑L

l=0 e
′
l

)
Σ
(∑L

l=0 el

)
≤
∑L

l=0 el
′Σel

then β converges to a negative or zero value as λ approaches zero; 5) liml→∞ βl converges to zero with λ.

These conditions are sufficient. �

B. Additional Product Aggregation Robustness Checks

We present two additional product-aggregation-bias analyses: the first further aggregates products with

merger and acquisitions data, and the second proxies for the degree of aggregation with business segment

counts. Neither analysis suggests the presence of a meaningful product aggregation bias.

B.1. Mergers and Acquisitions

Mergers and acquisitions, aggregate two companies’ products into a single firm. Since a company’s product

assortment increases after merging with another, the bullwhip change, following a merger, should point in

the direction of the aggregation bias. Our null hypothesis is that product aggregation does not meaningfully

impact bullwhip estimates (i.e. that pre- and post-merger bullwhips are the same). Naturally we hope to fail to

reject the null (i.e. find no significant difference between pre- and post-merger bullwhips). This investigation

has several limitations: company mergers are not exogenous, many other unobserved changes transpire when

two companies become one, and the ability to forecast sales and demand likely changes post merger.

Combining the COMPUSTAT and Thompson SDC M&A datasets, we create a panel of 882 acquisitions,

made by 400 acquiring companies. We treat each acquisition as a separate event, so some acquiring companies

have replicated data (our standard errors account for these replications). In constructing our sample, we

allocate the same number of pre- and post-merger observations to all acquiring companies (at least 25), so

forecasts are equally accurate, before and after mergers. We regress the squared forecast errors on a post-

merger indicator variable and control variables (quarter dummies, inventory levels, and total assets).1 Table

A’s estimates are not significantly positive, which demonstrates that M&A aggregation does not significantly

accentuate bullwhip estimates. Thus we fail to reject the null hypothesis that the pre- and post-merger

bullwhips are the same: viz., we find no evidence of a meaningful product aggregation bias.

1 This regression, unlike the others, block bootstraps for standard errors, as two-way cluster robust standard errors
are not valid with quarter dummy regressors.
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B.2. Product Segments:

Since 1976, the SFAS No. 14 of the US GAAP has mandated public companies to produce segment reports

for product divisions that constitute at least 10% of firm operating revenues. Using these segment reports,

we create product aggregation proxies, with which we explore the effect of aggregation. The first proxy

is company segment sales concentrations, measured by the Herfindahl index: dispersed sales suggests high

product assortment. The second is company segment counts: more product divisions suggests more products.

Our null hypothesis is that the estimated bullwhip effect is not decreasing in segment sales concentrations,

nor increasing in the segment count. Rejecting the null would provide evidence that the bullwhip is increasing

in product aggregation. (As before, we hope to fail to reject.)

Merging our forecast error panel with the COMPUSTAT product-segment dataset yields 31,777 obser-

vations from 3,979 companies. The segment counts and sales concentrations have means of 2.00 and .68,

respectively, and standard deviations of 1.56 and .32. We regress the squared forecast errors on segment

sales concentrations and segment count indicator variables, and present the results in Table B. The concen-

tration coefficients are all insignificant, so we fail to reject the hypothesis that the degree of concentration

has no meaningful impact on our bullwhip estimates. Similarly, there is no consistent trend amongst the

segment-count coefficients, and all but three of these coefficients are insignificant, and those that are sig-

nificant are negative, which indicates bullwhips that are smaller than their counterparts at single-segment

companies. Thus we fail to reject the null hypothesis that product aggregation does not exaggerate our

bullwhip estimates. (Apologies for the double negative.)
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Table A Mergers and Acquisitions

Combining the COMPUSTAT and Thompson SDC M&A datasets, we create a panel of 882 acquisitions, made by 400

acquiring companies. We treat each acquisition a separate event, so some acquiring companies have replicated data

(our standard errors account for these replications). In constructing our sample, we allocate the same number of pre-

and post-merger observations to all acquiring companies (at least 23), so forecasts are equally accurate, before and

after the mergers. We regress square forecast errors on a post-merger indicator variable and control variables (quarter

dummies, inventory levels, and total assets). The following are the post-merger indicator variable coefficients, the

mean bullwhip changes attributable to mergers.

bβ bβ0 bβ1 bβ2 ̂P∞
i=3 βi

bβ∞
Sample −3.79 −3.18 −0.57 −1.11 −1.14 3.14

(6.09) (2.88) (1.36) (1.33) (3.07) (3.72)

Retail −25.08*** −10.77*** −2.55 −1.87 −6.42* −2.30
(6.84) (2.75) (2.06) (1.60) (3.54) (4.97)

Wholesale −3.68 −5.43 −5.05** −1.11 −3.60 11.78***
(7.66) (3.53) (2.26) (1.99) (3.68) (4.32)

Manufacturing −1.49 −2.26 −0.09 −1.03 −0.46 3.32
(6.79) (3.23) (1.35) (1.38) (3.28) (3.68)

Extraction −7.51 −3.81 −2.59 −1.10 −1.24 0.58
(7.97) (3.71) (3.75) (2.58) (3.98) (5.07)

∗, ∗∗, and ∗∗∗ indicate significance levels p≤ .1, p≤ .05, and p≤ .01, respectively.
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Table B Product Segments

We regress squared forecast errors on sales concentrations within firm business segments, measured by the Herfindahl

Index, and on business segment count indicator variables, whose coefficients measure bullwhip differences from firms

with one business segment. We control for inventory and total assets, and remove firm fixed effects.

Herfindal −1.53 −1.34 −0.91 −1.51 2.62 −0.94
(5.83) (2.64) (1.60) (1.45) (2.70) (2.59)

2 segments 5.29 3.45 −1.56 −1.76 0.91 0.82
(4.76) (2.42) (1.78) (1.20) (2.60) (2.75)

3 segments −1.61 −1.69 −4.09** 1.17 0.22 1.49
(4.87) (2.14) (1.74) (1.12) (2.65) (2.80)

4 segments −3.87 −1.88 −0.81 0.74 −5.11 0.89
(5.47) (2.76) (1.93) (1.46) (3.39) (2.94)

5 segments −2.38 −2.15 −3.44 −3.75* 1.83 2.08
(6.65) (3.52) (2.36) (2.02) (3.58) (3.53)

6 segments −0.98 −0.79 −3.58 −3.59 2.72 2.45
(8.46) (4.34) (2.95) (2.73) (4.60) (4.30)

7+ segments −15.41** −5.61 −4.59 −0.99 3.94 −7.56
(7.78) (4.19) (3.29) (3.19) (4.44) (4.68)

∗, ∗∗, and ∗∗∗ indicate significance levels p≤ .1, p≤ .05, and p≤ .01, respectively.
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