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Recent times have witnessed the emergence of large-scale, web-based service marketplaces where many small

service providers compete among themselves in catering to customers with diverse needs. Customers who

frequent these marketplaces seek quick resolutions and thus are usually willing to trade prices with waiting

times. The main goal of the paper is to discuss the role of the moderating firm in facilitating information

gathering, operational efficiency, and communication among agents. Surprisingly, operational efficiency may

be detrimental to the overall efficiency of the marketplace. Further, we show that to reap the “expected”

gains of operational efficiency, the moderating firm may need to complement the operational efficiency by

enabling communication among its agents. The study emphasizes the scale of such marketplaces and the

impact it has on the outcomes.
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1. Introduction

Recent times have witnessed the emergence of large-scale, web-based service marketplaces where

many small service providers (agents) compete among themselves in catering to customers with

diverse needs. Customers who frequent these marketplaces seek quick resolutions for their tempo-

rary problems and thus are usually willing to trade prices with waiting times. These marketplaces

are typically operated by an independent firm, which we shall refer to as the moderating firm. The

moderating firm establishes the infrastructure for the interaction between customers and agents.

In particular, it provides the customers and the agents with the information required to make

their decisions. These moderating firms vary with respect to their involvements in the marketplace.

They can introduce operational tools that specify how the customers and the agents are matched

together. For instance, while some of the moderating firms allow the customers to choose a specific

service provider directly, others allow customers to post their needs and let service providers apply,
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postponing the service provider selection decision of the customers until they obtain enough infor-

mation about agents’ availability. Moreover, moderating firms can introduce strategic tools that

allow communication and collaboration among the agents themselves. These different involvements

result in different economic and operational systems, and thus vary in their level of efficiency and

the outcomes for both customers and service providers.

A typical example of such a marketplace is oDesk.com, where around 1,000,000 programmers

compete to provide software solutions. oDesk.com allows for two types of interaction between

customers and service providers. Customers can go directly to a programmer and ask him to provide

the service. The customers are then queued for this specific agent. In this type of interaction, most

of the time is spent waiting for the agent to complete his previous jobs (36% of the waiting time

is spent from the moment the customer chooses the agent until the agent begins working.1). On

the other hand, oDesk.com also allows customers to post jobs and wait while agents apply for the

job. In this type of interaction, a negligible amount of time passes until more than 10 agents apply,

leaving the decision at the hands of the customer. Another large-scale, online service marketplace

is ServiceLive.com, which is a start-up owned by Sears Holding Company. ServiceLive.com (with

the slogan of “your price, your time”) caters to time and price-conscious customers and service

providers in the home repair and improvement arena. ServiceLive.com allows customers to choose

among multiple agents after naming their price and describing their project. This type of interaction

between customers and service providers is equivalent to the second one described for oDesk.com.

Both oDesk.com and ServiceLive.com receive 10% of the revenue obtained by the providers at

service completion. In both marketplaces, the moderating firms allow customers to browse among

tens of thousands of agents and communicate with different providers.

Both oDesk.com and ServiceLive.com are part of a growing industry of online service market-

places. Alok Aggarwal, the chairman of Evalueserve.com, a market research company in Saratoga,

CA, recently said “this market [the market for work outsourcing] is expected to grow 20% to $300

million in sales this year, with transactions between employers and the free-lancers totaling about

$1.8 billion” (Flandez, 2008, October 13). In line with this, Gary Swart, CEO of oDesk.com, said

that “the number of freelancers registered with the firm in America has risen from 28,000 at the

end of 2008 to 247,000 at the end of April” (The Economist, 2010, May 13).

Motivated by these online service marketplaces, we aim to study the moderating firm’s role in

the service marketplace where the objective of the individual players, customers as well as service

providers, is to maximize their own utility. We distinguish between three degrees of moderating

1 This is based on data obtained from oDesk.com for about 10000 randomly chosen transactions.
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firms’ involvement in such markets: (1) No-intervention: the moderating firm restricts its involve-

ment to providing the facility for agents to advertise their services and set their prices, and for

customers to compare the different agents. (2) Operational efficiency : the moderating firm provides

additional mechanisms that facilitate efficient matching between customers and service providers.

These mechanisms aim at reducing the inefficiency associated with having the right agent with the

right capability idle while a customer with similar needs is waiting in line for another agent. As

we will discuss, a system in which customers post their needs and name their price is an example

of such a mechanism, as well as a system in which the moderating firm provides real-time con-

gestion information. (3) Enabling Communication: the moderating firm may allow providers to

communicate among themselves and exchange information on prices and job requirements.

To study the different configurations possible in such marketplaces we consider a sequence of

related games where the set of possible strategies and the solution concepts vary to reflect the

different modes of interaction available in the marketplace, either between the customer and the

agents or between the agents themselves. Specifically, we study the following three games:

No-intervention Model: In this game, each agent chooses his price and operates as a single-

server queue. Customers then choose agents based on prices and waiting times. We characterize

the Subgame Perfect Nash equilibrium in this game.

Operational Efficiency Model: In this game, the mechanism introduced by the moderating

firm efficiently matches customers interested in purchasing the service at a particular price with

the available agents charging that or a lower price. This mechanism achieves the desired level of

efficiency by virtually grouping all agents charging the same price. In contrast to the no-intervention

model, customers do not need to commit to a specific agent upon their arrival.

Communication Enabled Model: In this game, agents can exchange information in a non-

committal, costless manner. As in the model with operational efficiency, all the agents charging

the same price are virtually grouped, and customers choose the price/sub-pool. We would be

interested in allowing limited pre-play communication among the agents within a noncooperative

structure; i.e., the agents are free to discuss their pricing strategies but not allowed to make binding

commitments. Ray (1996) claims that in such a case, Nash best-response is certainly a requirement

for self-enforceability but is not, in general, sufficient. Considerations of this sort have motivated the

notion of strong Nash equilibrium, see Aumann (1959), which requires stability against deviations

by every conceivable coalition. Following these ideas, we use a refinement of the Subgame Perfect

Nash Equilibrium concept that requires the equilibrium to be (limited size) coalition proof.

We next state our key findings along with the contributions of the paper:
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1. We appear to be the first to distinguish between tools aimed at increasing the operational

efficiency (which manifest themselves in different routing decisions) and tools aimed at changing

the nature of the strategic interaction by enabling communication (which manifest themselves in

different solutions concepts). We show these tools have a non-trivial impact on the outcomes for

all involved parties, thus creating an opportunity for the moderating firm to exploit these tools to

maximize its profit.

2. In analyzing a market with no-intervention, we show that there exists a unique symmetric

equilibrium. This result extends the existing results on markets with a small number of players.

However, in a marketplace with operational efficiency, we first show that any price but ones in

a neighborhood of the operating cost of agents fails to be sustained as a symmetric equilibrium

when supply exceeds demand. Further, when demand exceeds supply, we are able to show that

operational efficiency leads to multiple equilibria in markets with a sufficiently large number of

agents. In many of these equilibria, the emerging prices are lower than those arising in the market

with no-intervention. The fact that operational efficiency may lead to loss in profits for both the

agents and the moderating firm (even when supply is scarce) is counter-intuitive. The main intuition

behind this result is that the strong pooling benefits associated with operational efficiency serve

as a deterrent for deviation, practically from every price when demand exceeds supply. We also

show that the insights about the equilibrium outcome would be similar if we assumed that the

moderating firm achieves the desired operational efficiency by providing customers with real-time

congestion information.

3. We show that to overcome the deterioration of the profits discussed above, and to reap the

benefit that one expects from operational efficiency, the moderating firm can allow for communica-

tion among the agents, even if done through a non-binding mechanism. The main contribution of

this result is in showing that the operational efficiency needs to be complemented with the ability

to communicate in order to obtain desirable outcomes for the involved parties. These desirable

outcomes are only achievable in a marketplace where demand exceeds supply. Therefore, the contri-

bution is also in highlighting the fact that it is crucial to understand the specific market conditions

in terms of the ratio between demand and supply.

4. We also extend our model to study a setting in which agents are heterogeneous in terms of the

quality of their service and their operating costs. In particular, we consider a model with two types

of agents distinguished by the value they generate for the customers. Our results show that an

operational tool, which reduces the mismatch between demand and supply, may lower the profit of

a moderating firm unless it is complemented with the ability to communicate, and demand exceeds
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supply. Moreover, a model with heterogeneous agents allows us to discuss the impact of the market

composition on the equilibrium outcomes as well as the role of the moderating firm.

5. On the theoretical front, we introduce a new solution concept to study the communication

enabled market. This new solution concept captures the fact that agents are allowed to commu-

nicate prior to the game in order to achieve a non-binding agreement regarding their actions. We

refer to this new equilibrium concept as (δ, ε)-Market Equilibrium.

The rest of the paper is organized as follows: In §2, we present a literature review on the existing

work related to our paper. §3 introduces a basic model of the marketplace under consideration.

We introduce and analyze the no-intervention, the operational efficiency, and the communication

enabled models in §4, §5, and §6, respectively. In §7, we study the impact of heterogeneity among

agents on the market. Finally, §8 concludes the paper. All proofs are relegated to the appendix.

2. Literature Review

The previous work related with our paper can be divided into two categories. The first category

consists of research that studies the applications of queueing theory in service systems. The second

one consists of research focused on developing approximations to analyze complex service systems.

Service systems with customers, who are both price and time sensitive, have attracted the atten-

tion of researchers for many years. The analysis of such systems dates back to Naor’s seminal work

(See Naor, 1969), which analyzes customer behavior in a single-server queueing system. Motivated

by his work, many researchers study the pricing problem of a monopoly facing price- and delay-

sensitive customers in various settings (See De Vany (1976), Mendelson and Whang (1990), Afeche

and Mendelson (2004)). Another body of research that is motivated by Naor (1969) considers the

competition among service providers who make pricing and/or service capacity decisions. Luski

(1976) and Levhari and Luski (1978) focus on the competition between two firms under markovian

assumptions. Natural extensions of the competition models assume general service time distri-

butions, observable queue lengths, many firms, and multiple customer classes (See Loch (1991),

Li and Lee (1994), and Lederer and Li (1997)). We refer the reader to Hassin and Haviv (2003)

for an extensive summary of the early attempts to model price and service competition. More

recently, Cachon and Harker (2002) studies the competition between two firms offering substitute

but differentiated services. In another differentiated services setting, Allon and Federgruen (2007)

considers the price and waiting time as completely independent firm attributes by employing a

general demand model rather than a full-price model as in the previous papers. Most of the above

papers model the customer behavior implicitly via an exogenously given demand function. An



Çil et.al.
6 Large-scale Service Marketplaces

alternative approach is followed in Chen and Wan (2003), where authors examine the customers’

choice problem explicitly by embedding it into the firms’ pricing problem. Other notable exam-

ples focusing on the customers’ demand decision in competition models are Ha et al. (2003), and

Cachon and Zhang (2007).

The pricing and the capacity planning problem of the service systems can easily become ana-

lytically intractable when trying to study more complex models, such as a multi-server queueing

systems. Recognizing this difficulty, many researchers seek robust and accurate approximations to

analyze multi-server queues. Halfin and Whitt (1981) is the first paper that proposes and ana-

lyzes a multi-server framework. This framework is aimed at developing approximations, which

are asymptotically correct, for multi-server systems. It has been applied by many researchers to

study the pricing and service design problem of a monopoly in more realistic and detailed settings.

Armony and Maglaras (2004), and Maglaras and Zeevi (2005) are examples of recent work using

the asymptotic analysis to tackle complexity of these problems. Furthermore, Garnett et al. (2002),

Ward and Glynn (2003), and Zeltyn and Mandelbaum (2005) extends the asymptotic analysis of

markovian queueing system by considering customer abandonments.

The idea of using approximation methods can also be applied to characterize the equilibrium

behavior of the firms in a competitive environment. To our knowledge, Allon and Gurvich (2008)

is the first paper studying competition among complex queueing systems by using asymptotic

analysis to approximate the queueing dynamics. Another recent paper studying the equilibrium

characterization of a competitive marketplace using asymptotic analysis is Chen et al. (2008).

They consider a marketplace with multiple suppliers competing with each other over their prices

and target lead times. There are two main differences between these two papers and our work.

First, both of them study a service environment with a fixed number of decision makers (firms)

while the number of decision makers in our marketplace (agents) is growing. Second, they only

consider a competitive environment where the firms behave individually. In contrast, we study the

non-cooperative case as well as the case where the agents have a limited level of collaboration.

In the field of operations management (OM), the majority of the papers employing game-

theoretic foundations study non-cooperative settings. For an excellent survey, we refer to Cachon

and Netessine (2004). There is also a growing literature that studies the OM problems in the

context of cooperative game theory. Nagarajan and Sosic (2008) provide an extensive summary

of the applications of cooperative game theory in supply chain management. Notable examples

are the formation of coalitions among retailers to share their inventories, suppliers, and marketing
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powers (See Granot and Sosic (2005), Sosic (2006), and Nagarajan and Sosic (2007)). This body

of research is related with our work, where we look for the limited collaboration among agents.

Our work may also be viewed as related to the literature on labor markets that studies the wage

dynamics (See Burdett and Mortensen (1998), Manning (2003), Manning (2004), and Michaelides

(2010)). In both our model and labor economics literature, people or firms with service needs seek

an employee or an agent to perform the job they requested. In our model, service seekers trade-off

time they need to wait until their job starts and cost, the phenomenon generally disregarded in labor

economics literature. Further, our focus is on a market for temporary help, which means that the

engagement between sides ends upon the service completion. This stands in contrast to the labor

economics literature in which the engagement is assumed to be permanent. It is also important to

note the difference between interventions studied in our model and the ones in the labor economics

literature. Unlike the interventions we studied, which focus on improving operational efficiency,

the interventions discussed in labor economics are usually aimed at regulating wages directly. Our

paper also differs from the literature on market microstructure. This body of literature studies

market makers who can set prices and hold inventories of assets in order to stabilize markets (See

Garman (1976), Amihud and Mendelson (1980), Ho and Stoll (1983), and a comprehensive survey

by Biais et al. (2005)). However, the moderating firm considered in our paper has no direct price-

setting power and cannot respond to customers’ service requests. Furthermore, papers studying

market microstructure disregard the operational details such as waiting and idleness.

3. Model Formulation

Consider a service marketplace where agents and customers make their decisions in order to max-

imize their individual utilities. Customers’ need for the service is generated according to a Poisson

process with rate Λ. This forms the “potential demand” for the marketplace. A customer decides

whether to join the marketplace or not: If she decides not to join the system, her utility is zero. If

she joins the system, she decides who would process her job. The customers who join the market-

place form the “effective demand” for the marketplace. The exact nature of this decision depends

on the specific structure of the marketplace, decided upfront by the moderating firm. We shall

elaborate on the choices of customers in Sections 4-6. We assume that the service time required

to satisfy the requests of a given customer is exponentially distributed with rate µ. Without loss

of generality, we let µ= 1. When the service of a customer is successfully completed, she pays the

price of the service, earns a reward of R, and incurs a waiting cost of c per unit time until her

service commences.2 As the customers visiting the marketplace seek temporary help, a customer

2 Our model can also be used to study a setting where customers incurs waiting cost also during their service. One
can incorporate that by modifying the customer reward from R to R− c/µ.
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joining the system may become impatient while waiting for her service to start and abandon. In

this case, the abandoning customer does not pay any price or earn any reward, but she does incur

a waiting cost for the time she spends in the system. We assume that customers’ abandonment

times are independent of all other stochastic components and are exponentially distributed with

mean ma. Customers decide whether to request service or not and by whom to be served according

to their expected utility. The expected utility of a customer is based on the reward, the price and

the anticipated waiting time.

The above summarizes the demand arriving to the marketplace. Next, we discuss the service

provision in a marketplace with k ex-ante identical agents.3 The only decision of an agent is to

choose a price for his service; each agent makes this decision independently. Let (p1, . . . , pk) denote

the resulting price vector with pn being the price chosen by the nth agent. We normalized the

operating cost of the agents to zero for notational convenience. The expected revenue of an agent

depends on the price he chooses and his demand volume.

We refer to the ratio Λ/µk as the demand-supply ratio of the system and denote it by ρ. The

demand-supply ratio is a first order measure for the mismatch between aggregate demand and the

total processing capacity. Marketplaces vary with respect to their demand-supply ratio, ρ, and,

as we shall discuss, ρ has a significant impact on the market outcome. We broadly categorize

marketplaces into two: Buyer’s market where ρ≤ 1, and seller’s market where ρ> 1.

4. No-intervention Model

The essential role of the moderating firm in a large scale marketplace is to set up the infrastructure

for the interaction between players. This is crucial because all players have to be equipped with the

necessary information, such as prices to make their decisions, yet individual players cannot gather

this information on their own. When the moderating firm provides only the required information,

it has no impact on the strategic interaction taking place in the marketplace. We thus refer to

such a setting as the no-intervention model. We analyze the dynamics of a large-scale marketplace

in the no-intervention model not only to derive insights about the behavior of the self-interested

and competing players in such a system, but also to build a benchmark for the cases in which

the moderating firm introduces additional features which change the nature of the marketplace.

Therefore, in this section, we study the behavior of a marketplace where the moderating firm

confines itself to aggregating and providing information.

We model the strategic interaction between the agents and the customers as a sequential move

game. Given the setup of Section 3, along with the above mentioned role of the moderating firm,

3 We will discuss a model with heterogenous agents in Section 7.
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the agents first announce their prices. Each arriving customer observes these prices and decides

whether to request service or not. Further, if a customer decides to join the system, she also chooses

the agent who processes her service request. The service of a customer starts immediately if the

agent she chooses is available. Otherwise, she joins the queue in front of the agent and waits for

her service commences. We denote the fraction of customers choosing agent-n by Dn. Then, ΛDn

is the demand volume for agent-n.

More specifically, each agent’s operations can be modeled as an M/M/1+M queueing system4

where the arrival rate of customers depends on the strategies of customers and agents5. If the rate

of customers who request service from an agent charging price p is λ, the utility of a customer

requesting service from this agent is U(λ, p) = (R− p)[1− β(λ)]−W (λ)c, where β(λ), which will

be referred to as the abandonment function, is the probability of abandonment, and W (λ) is

the expected waiting time, in an M/M/1 + M system with arrival rate λ, service rate 1, and

abandonment rate 1/ma. Using queueing theory, the utility of customers can be rewritten as

U(λ, p) = (R− p+ cma)[1− β(λ)]− cma. Similarly, the revenue of that agent is V (λ, p) = pλ[1−

β(λ)]. It is important to note that V (λ, p) is the revenue rate of an agent, but throughout the

paper we will refer to it as the revenue for ease of exposition.

As we consider a sequential move game, we are interested in the Subgame Perfect Nash Equilib-

rium (SPNE) of the game. We begin by characterizing the equilibrium in the second stage game

where customers make their service requests given the agents’ pricing decisions. Then, based on

the second stage equilibrium, we derive the equilibrium of the first stage in which only agents make

pricing decisions.

Fixing the agents’ strategies (pn)kn=1, an arriving customer observes the agents’ prices and chooses

the agent who maximizes her utility, anticipating the behavior of all other customers. Therefore, in

equilibrium a customer chooses an agent only if the utility she obtains from him (weakly) dominates

her utility from any other agent. This is also known as “Nash Flow Equilibrium” (See Roughgarden,

2005) in the congestion games literature. We formally define the Customer Equilibrium as follows:

Definition 1 (Customers Equilibrium). Given (pn)kn=1, we say that (Dn)kn=1 is a Cus-

tomers Equilibrium if the following conditions are satisfied:

1. For any n with Dn > 0, we have that U(ΛDn, pn)≥U(ΛDm, pm)≥ 0, for all m≤ k.

4 +M notation denotes the exponential abandonment times.
5 Note that an agent can process more than one jobs at the same time in certain settings. In such settings, a processor
sharing model will be a more appropriate queueing model, yet these models are known to be significantly more
complex than our queueing model. Our model can be viewed as an approximation of such settings.
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2. If U(ΛDn, pn)> 0 for some n≤ k, then
k
∑

n=1

Dn = 1.

The first condition of the Customer Equilibrium requires that customers request service from

an agent in equilibrium only if that agent is one of their best alternatives. Moreover, the second

condition ensures that all customers join the system if it is possible to earn strictly positive utility

by requesting service from an agent. Customer Equilibrium exists by the continuity of the utility

functions and Rath (1992). In the following proposition, we show that for any given price vector,

the second stage game has a unique equilibrium.

Proposition 1. Given a price vector (pn)kn=1, there is a unique Customer Equilibrium.

Since the Customer Equilibrium is unique for any given price vector, we denote the fraction of

customers requesting service from agent-n in equilibrium by DCE
n (p1, . . . , pk) when (p1, . . . , pk) are

the prices announced by agents. DCE
n (p1, . . . , pk) is well defined in the light of Proposition 1.

We can now move to the first stage game which is played only among the agents. An equilibrium

in this stage requires that none of the agents can improve his revenues by deviating unilaterally

while taking the customers’ response into account. We formalize this in the following definition:

Definition 2 (Subgame Perfect Nash Equilibrium). Let (Dn, pn)kn=1 summarize the strat-

egy of all players in the market for all n= 1, . . . , k. Then, (Dn, pn)kn=1 is a SPNE if the following

conditions are satisfied:

1. Dn =DCE
n (p1, . . . , pk) for all n≤ k.

2. For any &≤ k, we have V (ΛD!, p!) =max
p′

V (ΛDCE
! (p1, . . . , p!−1, p′, p!+1, . . . , pk), p′).

The first condition requires that (Dn)kn=1 arises in equilibrium in the second stage game. The

second condition states that none of the agents has incentive to change his price. Note that agents

take into account the impact price changes have on the Customer Equilibrium, and thus on demand.

4.1. Characterization of SPNE

In this section, we our restrict attention to symmetric SPNE where all agents charge the same

price p in the first stage. This is a natural choice since all agents are identical. We will discuss

non-symmetric equilibria in Section 7.1.

A price p emerges in equilibrium in the first stage if a single agent chooses to charge p to maximize

his revenues given that all other agents announce p. When all other k − 1 agents announce p,

a generic agent, say agent-&, solves the following maximization problem to determine his best-

response:

max
p!≥0

p!ΛD
CE
! (p, . . . , p, p!, p, . . . , p)

[

1−β(ΛDCE
! (p, . . . , p, p!, p, . . . , p))

]

(1)
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In this problem, the objective function is the revenue of agent-& when he charges p! and the

remaining agents charge p. Thus, p is a symmetric equilibrium in the first stage game if it is a

solution to the above problem. We denote the symmetric SPNE by (D∗, p∗) where all agents charge

p∗ and each agent has a demand of ΛD∗, i.e. DCE
n (p, . . . , p) =D∗ for any n≤ k. We characterize

the symmetric SPNE in the following theorem:

Theorem 1. If β(λ) is concave, then there exists a symmetric SPNE. Furthermore, the sym-

metric SPNE is characterized as follows:

1. If Λ≥ kλ0, then the symmetric SPNE is (D∗, p∗) =
(

min{λmon,ρ}
Λ

,R+ cma − cma
1−β(min{λmon,ρ})

)

.

2. If Λ≤ kλ0, then the symmetric SPNE is (D∗, p∗) =

(

1/k, (R+ cma)− (R+cma)(k−1)
k

1−ν(ρ)
−1

)

.

Here λmon is the unique solution to 1− β(λ)− λβ′(λ) = cma
R+cma

, λ0 is the unique solution to (R+

cma)(k− 1)− cma
1−β(λ)

(

k
1−ν(λ)

− 1

)

= 0, and ν(λ) = λβ′(λ)
1−β(λ)

.

Similar to Theorems 1-3 in Chen and Wan (2003), the above result suggests that agents behave

as local monopolists and charge their monopoly prices when the arrival rate is sufficiently high.

Moreover, in this case, agents may choose not to cover the market completely. However, once

the arrival rate becomes less than λ0, the equilibrium price will be pushed down as the agents

are engaged in a cut-throat competition, where intensity of competition can be quantified by the

strictly positive utility left for customers in the equilibrium. It is also worth noting that utility of

customers in the equilibrium increases as the arrival rate decreases.

Remark 1. Concavity of the abandonment function, β(λ), is a sufficient condition for the exis-

tence of symmetric equilibrium. In Lemma 1 in Appendix A, we show that β(λ) is concave when

ma ≤ 1, i.e. abandonment rate is higher than service rate. Furthermore, conducting a numerical

study, we observe that β(λ) is concave even for 1 ≤ ma ≤ 2. However, for higher values of ma,

the function β(λ) is not concave in λ. This is not surprising given the complicated structure of

queueing systems with impatient customers. For instance, Armony et al. (2009) shows the difficulty

of proving the convexity of the expected head-count in the steady state of a system with customer

abandonments. Even though β(λ) is not concave, there can be a symmetric SPNE, and the above

theorem characterizes this symmetric equilibrium. Numerically, we see that the equilibrium candi-

date characterized above still emerges as the symmetric SPNE when β(λ) is not concave. In this

numerical study, we consider a marketplace where R= 1, c∈ {0.05,0.06, . . . ,0.2}, and k= 50. Then,

we study five scenarios that differ in the average abandonment time ma and lead to non-concave

β(λ). We assume ma ∈ {5,6, . . . ,10}. For each of these scenarios, we show that the price proposed

as equilibrium price in Theorem 1 is equilibrium by varying the arrival rate Λ on a grid from 10

to 50 with a step size of 1.
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5. Operational Efficiency Model

In the previous section, we characterized the market outcome in the absence of any intervention on

the part of the moderating firm. We now turn to discuss the impact of different mechanisms used

by the moderating firm. As we discussed in the introduction, the moderating firm may provide a

mechanism that improves the operational efficiency of the whole system by efficiently matching

customers and agents. This mechanism aims at reducing inefficiency due to the possibility of

having a customer waiting in line for a busy agent while an agent who can serve her is idle. This

efficiency improvement is equivalent to virtually grouping the agents charging the same price. For

instance, oDesk.com achieves this goal by allowing customers to post their needs and allowing

service providers to apply to these postings. When a customer posts a price on oDesk.com, agents

that are willing to serve a customer for that price apply to the customer’s posting, and among

these the customer will favor agents based on their immediate availability. The main driver of the

operational efficiency in this setting is the fact that customers no longer need to specify an agent

upon their arrival because the job posting mechanism allows customers to postpone their service

request decisions until they have enough information about the availability of the providers. There

are other mechanisms, such as providing real-time congestion information, that may be used to

achieve operational efficiency. We shall discuss the implications of providing real-time congestion

information in Section 5.2.

In this section, we modify the service marketplace considered in Section 4 by assuming that the

mechanism introduced by the moderating firm ensures that customers do not stay in line when

there is an idle agent willing to serve them by charging the price they want to pay or less. This

can be modeled as a queuing network where the agents announcing the same price are virtually

grouped together. Once each agent announces a price per customer to be served, we can construct

a resulting price vector (pn)Nn=1 where N ≤ k is the number of different prices announced by the

agents. We refer to the agents announcing the price pn as sub-pool-n and denote the number of

agents in the sub-pool-n by yn. Hence, (pn, yn)Nn=1 summarizes the strategy of all agents.

Under this mechanism, we model the customer decision making and experience as follows: If

there are different prices announced by the agents, i.e., N > 1, the customer chooses a sub-pool

from which she requests the service. We refer to the price charged by this sub-pool as the “preferred

price”. Each customer who decides to join the system enters the service immediately if there is

an available agent either in the sub-pool she chooses or in any sub-pool announcing a price less

than her preferred price. Moreover, the customer is served by the sub-pool offering the lowest

price among all available sub-pools. Otherwise, she waits in a queue in front of the sub-pool she
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chooses until an agent, who charges a price less than or equal to her preferred price, becomes

available. We denote the fraction of customers requesting service from sub-pool-n by Dn. In this

model of customer experience, there are two crucial features: 1) The service of an arriving customer

commences immediately when there are available agents charging less than or equal to her preferred

price, 2) If they have to wait, customers no longer wait for a specific agent rather for an available

agent.

As we model the marketplace as a queuing network, the operations of each sub-pool depend

on the operations of the other sub-pools. For instance, each sub-pool may handle customers from

the other sub-pools (giving priority to its “own” customers) while some of the other sub-pools are

serving its customers. Therefore, given the strategies of agents, (pn, yn)Nn=1, and the service decisions

of customers, (Dn)Nn=1, the expected utility of a customer choosing the sub-pool-& depends on all

of these decisions, and can be written as6:

U!(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN) = PServ!!
[

(R− p! + cma)(1−β!)− cma

]

+
∑

m #=!

PServ!m(R− pm),

where β!(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN) denotes the probability of abandonment in the sub-

pool-&, and PServ!m(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN) denotes the probability that a customer

choosing the sub-pool-& is served by the sub-pool-m when ΛDn is the rate of customer arrival to the

sub-pool-n for n= 1, . . . ,N . We want to note that for any sub-pool-&, PServ!m = 0 for any m such

that pm > p! since customer choosing sub-pool-& cannot be served by a sub-pool charging more than

p!. Furthermore, the revenue of an agent in sub-pool-& is: V!(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN) =

p!σ!(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN), where σ!(. . . ; . . . ; . . . ) is utilization of agents in sub-pool-&

when ΛDn is the rate of customer arrival to the sub-pool-n for n= 1, . . . ,N .

It is also worth noting that a marketplace operates as an M/M/k+M system when all agents

charge the same price. This allows us to employ the well-known limiting behavior of the multi-server

systems to characterize the market outcome. Furthermore, in the case, where the agents announce

different prices, we will show that the interdependency between the sub-pools announcing different

prices diminishes as the market grows. In fact, large-scale marketplaces operate “almost like” the

combination of independent multi-server systems.

The strategic interaction between the agents and the customers is modeled, as before, as a

sequential move game. However, we use a slightly different second stage equilibrium than the one

in Definition 1 since the customers decision and utility is changed by the new mechanism. The

6 Here, we assume that a customer choosing the sub-pool-! pays pm when she is served by sub-pool-m for m "= !. Our
results do not change as long as a customer choosing the sub-pool-! pays a price that is lower than p! when she is
served by sub-pool-m for m "= !.
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new customer equilibrium, which we refer to as Market Customer Equilibrium, uses the concept

of Nash Flow Equilibrium with the requirement that customers only care for the prices announced

by the sub-pools instead of individual prices.

Definition 3 (Market Customers Equilibrium). Given (pn, yn)Nn=1, we say that (Dn)Nn=1 is

a Market Customers Equilibrium (MCE) if the following conditions are satisfied:

1. For any & with D! > 0, we have that U!(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN)≥

Um(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN), for all m≤N .

2. If U!(D1, . . . ,DN ;p1, . . . , pN ;y1, . . . , yN)> 0 for some &≤N , then
N
∑

n=1

Dn = 1.

While MCE always exists by the continuity of the utility functions and Rath (1992), its unique-

ness cannot be guaranteed. For notational convenience, we shall assume that the best outcome

from the customer perspective arises when there are multiple MCE (In fact, it can be shown that

the limit of all MCE s is unique as the number of agents in the market grows). As the outcome is

assumed to be unique, we denote the fraction of customers requesting service from sub-pool-n in a

Market Customer Equilibrium by DMCE
n (p1, . . . , pN ;y1, . . . , yN) when (pn, yn)Nn=1 is a tuple of two

vectors whose components are the prices and the number of agents announcing them.

Agents make pricing decisions in the first stage of the game. Unlike the no-intervention model,

we need to account for two types of unilateral deviation of agents: an agent can either choose to

deviate by joining an existing sub-pool or announce a new price. Therefore, an equilibrium in the

first stage should be immune to any of these two deviations. One can show that, as the market

grows, there exists a profitable unilateral deviation from any price in a buyer’s market. In analyzing

such markets, we would like to highlight the following two observations: 1) The arising system

dynamic is too complex for exact analysis yet amenable to asymptotic analysis. 2) While a single

agent, indeed, may have profitable deviations from every price in a buyer’s market, the gains from

deviations are small and diminish as the market grows. Thus, following Dixon (1987) and recently

Allon and Gurvich (2008), we study a somewhat weaker notion of equilibrium, which allows us to

characterize the market outcome (if one exists), as the market grows even when Nash equilibrium

does not exist. To this end, we consider a sequence of marketplaces indexed by the number of

agents, i.e., there are k agents in the kth marketplace. The arrival rate in the kth marketplace is

assumed to be Λk = ρk. This ensures that the demand-supply ratio is constant along the sequence of

marketplaces. Then, in each market, we focus on an equilibrium concept, which requires immunity

against only deviations that improve the revenue of an agent by at least ε≥ 0 as formally stated

in Definition 4 (See below). We refer to ε as the level of equilibrium approximation. We denote
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the level of equilibrium approximation in the kth market by εk, and we assume that εk → 0 and

εk
√
k→∞ as k→∞. We study the behavior of the equilibrium along the sequence of marketplaces

we described above in order to derive the equilibrium in a marketplace with large number of agents.

Definition 4 (ε-Market Equilibrium). Let (Dk
n, p

k
n, y

k
n)

N
n=1 summarize the strategy of all

players in the kth market with yk
n > 0 for all n = 1, . . . ,N . Then, (Dk

n, p
k
n, y

k
n)

N
n=1 is an ε-Market

Equilibrium if the following conditions are satisfied:

1. Dk
n =DMCE

n (pk1 , . . . , p
k
N ;y

k
1 , . . . , y

k
N) for all n≤N .

2. For any & ≤ N and m ≤ N , we have that V!(Dk
1 , . . . ,D

k
N ;p

k
1 , . . . , p

k
N ;y

k
1 , . . . , y

k
N) ≥

V!(D̂k
1 , . . . , D̂

k
N ;p

k
1 , . . . , p

k
N ; ŷ

k
1 , . . . , ŷ

k
N)− εk, where ŷk

n = yk
n − 1 if n= &, ŷk

n = yk
n +1 if n=m, ŷk

n = yk
n

otherwise, and D̂k
n =DMCE

n (pk1 , . . . , p
k
N ; ŷ

k
1 , . . . , ŷ

k
N) for all n≤N .

3. For any &≤N and p′ (= pkn for all n= 1, . . . ,N , we have that V!(Dk
1 , . . . ,D

k
N ;p

k
1 , . . . , p

k
N ;y

k
1 , . . . , y

k
N)

≥ VN+1(D̂k
1 , . . . , D̂

k
N+1;p

k
1 , . . . , p

k
N , p

′; ŷk
1 , . . . , ŷ

k
N+1)−εk where ŷk

n = yk
n−1 if n= &, ŷk

n = 1 if n=N+1,

ŷk
n = yk

n otherwise, and D̂k
n =DMCE

n (pk1 , . . . , p
k
N , p

′; ŷk
1 , . . . , ŷ

k
N+1) for all n≤N +1.

The first condition in the above definition requires that the vector (Dk
n)

N
n=1 forms an equilibrium

among the customers if the agents choose the strategy (pkn, y
k
n)

N
n=1. The second and third conditions

characterize the equilibrium in the first stage game: The second condition states that an agent

cannot improve his revenue by more than εk when he joins an existing sub-pool, while the third

condition states that an agent cannot improve his revenue by more than εk when he introduces a

new sub-pool. We next turn to characterize the equilibrium in the kth marketplace. Note that if

εk ≡ 0 for all k, then the above definition reduces to that of the Nash Equilibrium.

5.1. Characterization of the Market Equilibrium

In this subsection, we study the symmetric equilibrium for the sequence of marketplaces we con-

structed above. As a first step towards characterizing the symmetric equilibrium, we derive the

revenues of agents when they announce the same price in the kth marketplace. As we noted before,

such a marketplace operates as an M/M/k+M system with arrival rate ΛkDMCE
1 (pk;k), service

rate 1, and abandonment rate 1/ma, where DMCE
1 (pk;k) is the Market Customer Equilibrium when

all k agents charge pk. Therefore, the revenue of an agent in this case is given by

V1(D
MCE
1 (pk;k);pk;k) = pρDMCE

1 (pk;k)[1−βM(ΛkDMCE
1 (pk;k);k)], (2)

where βM(λ;k) is probability of abandonment in M/M/k+M system with arrival rate λ, service

rate 1, and abandonment rate 1/ma.

In order to characterize an εk-symmetric Market Equilibrium, we need to verify that a single

agent does not have any incentive to deviate to a price other than pk in the kth marketplace. Recall
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that if an agent chooses p′ (= pk, this amounts to creating his own sub-pool, and his revenue is given

by V2(DMCE
1 (pk, p′;k− 1,1),DMCE

2 (pk, p′;k− 1,1);pk, p′;k− 1,1), where (DMCE
n (pk, p′;k− 1,1))2n=1

is the Market Customer Equilibrium given that k− 1 agents charge pk and one agent charges p′.

We then say that a price pk emerges as the symmetric εk-Market Equilibrium if

V1(D
MCE
1 (pk;k), p, k)≥ max

0≤p′≤R
V2(D

MCE
1 (pk, p′;k− 1,1),DMCE

2 (pk, p′;k− 1,1);pk, p′;k− 1,1)− εk, (3)

where the left-hand side is the revenues of agents when all agents charge pk, and the right-hand

side is the maximum revenue that a single agent can obtain by deviating from pk.

To understand the behavior of the market outcome in large markets, we shall first study the left-

hand side and then the right-hand side of (3) along the trajectory of marketplaces in which pk → p

as k→∞. While studying the left hand side, we distinguish between a buyer’s and a seller’s market.

In a buyer’s market where ρ≤ 1, customers experience negligible waiting times in a marketplace

with a large number of agents, even if all customers request service. Thus, in a buyer’s market,

all customers join the system in equilibrium as long as p <R since they obtain approximately the

utility of R− p by joining. Furthermore, the revenue of each agent is approximated by pρ. When

p = R, some of the customers may leave the market immediately depending on the convergence

rate of pk. Thus, pρ constitutes an upper bound for the revenue of each agent if p=R. In a seller’s

market where ρ> 1, it may still be true that all of the customers request service when p <R. In such

a case, customers obtain a strictly positive utility despite incurring a waiting cost. However, once

the aggregate demand is sufficiently high, some of the customers leave the market immediately due

to the high congestion level even if p <R. Regardless of how customers behave in the equilibrium,

the rate of customers requesting service in a seller’s market should, in equilibrium, be higher than

the processing capacity when p <R. Otherwise, a customer joining the system would earn strictly

positive utility while the customers who do not request service would obtain zero utility. Therefore,

agents are always “over-utilized” in a seller’s market and the revenue of each agent is approximately

p when p < R. Like in a buyer’s market, each agent may earn less than p when p=R depending

on the convergence rate of pk. The following proposition presents these results formally.

Proposition 2. Let DMCE
1 (pk;k) be the Market Customer Equilibrium when all agents charge

pk in the kth marketplace, and p <R. Then, we have that

lim
k→∞

DMCE
1 (pk;k) =min

{

1,
R− p+ cma

ρcma

}

.

Furthermore, lim
k→∞

V1(DMCE
1 (pk;k);pk;k) =

{

pρ if ρ≤ 1

p if ρ> 1
. When p=R, we have that

lim
k→∞

DMCE
1 (pk;k)≤min

{

1,
R− p+ cma

ρcma

}

, and lim
k→∞

V1(D
MCE
1 (pk;k);pk;k)≤

{

pρ if ρ≤ 1

p if ρ> 1
.
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After approximating the revenue of the agents when they charge the same price, we now focus

on the maximum revenue that an agent can obtain by creating his own sub-pool. As we did above,

we again distinguish between buyer’s and seller’s markets.

5.1.1. Buyer’s Market: When all agents charge the same price pk in a buyer’s market, we

next show that a single agent can improve his revenue when he decreases his price. Such a cut

will allow a single agent to serve not only his own customers but also the customers choosing the

price pk. In fact, he can approximately secure a revenue of pk following a small price cut as long

as the rate of customers requesting service is bounded away from zero when all agents charge pk,

i.e., lim
k→∞

DMCE
1 (pk;k)> 0. The following proposition proves this observation formally.

Proposition 3. Let V ′(pk;k) = max
0≤p′≤pk

V2(DMCE
1 (pk, p′;k−1,1),DMCE

2 (pk, p′;k−1,1);pk, p′;k−

1,1). Then, we have that lim inf
k→∞

V ′
k(p

k;k)> 0 when p > 0. Furthermore, when lim
k→∞

DMCE
1 (pk;k)> 0,

we have that lim
k→∞

V ′(pk;k) = p.

As we established in Proposition 2, the revenue of an agent when all agents charge the same

price pk can be bounded from above by pkρ in large marketplaces. Then, Proposition 3 implies that

any pk satisfying p(1− ρ)> εk cannot emerge as the equilibrium price of a symmetric εk-Market

Equilibrium for large k. Thus, as lim
k→∞

εk = 0, we obtain that any sequence of prices except the ones

with p= 0 cannot be sustained as the equilibrium price of a symmetric εk-Market Equilibrium along

the trajectory of marketplaces. Furthermore, we can show p = 0 can emerge as the approximate

equilibrium price in large marketplaces. We formalize these observations in the following theorem.

Theorem 2. In a buyer’s market with ρ< 1,

1. Let pk be a price emerging as the equilibrium price of a symmetric εk-Market Equilibrium in

the kth marketplace. Then, for any ξ > 0, we have that pk < ξ for large k.

2. p= 0 is an equilibrium price of a symmetric εk-Market Equilibrium in the kth marketplace,

for large k.

3. Let Πk
OE and Πk

NI be the total revenue generated in the kth marketplace with and without

operational efficiency, respectively. Then, for any ξ > 0, we have that Πk
OE

Πk
NI

< ξ for large k.

The above theorem states that if a moderating firm provides efficient matching in a buyer’s

market, the equilibrium outcome of the marketplace will converge to zero. As the profit of the firm

is the share of the revenue generated in the marketplace, providing efficient matching deteriorates

the profit of the firm compared to the no-intervention case as well as the revenue of the agents. In

fact, we show that the ratio between the total revenue generated in a marketplace under operational

efficiency and under the no-intervention converges to zero.
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In Section 7.2, we discuss the extension of the above theorem, which is based on showing that the

revenues of agents converges to zero even in a non-symmetric equilibrium. For a formal treatment,

see Proposition 9 in Authors (2011).

5.1.2. Seller’s Market: After discussing the impact of providing efficient matching in a

buyer’s market, we now focus on a seller’s market. Unlike in a buyer’s market, a single agent cannot

improve his revenue after a price cut since it does not improve his utilization significantly. Note

that agents are already “over-utilized,” and earning a revenue of pk while they are charging the

same price pk in a seller’s market. Therefore, in a seller’s market, the only possible profitable devi-

ation for a single agent is to increase his price in large enough marketplaces. In such a deviation,

a single agent loses some of his customers because of his high price, and he also loses the benefits

of efficient matching since he becomes an individual provider. Both of these factors will limit his

ability to make higher profit. In fact, the following proposition establishes an upper bound on the

asymptotic revenue which a single agent can generate by increasing his price.

Proposition 4. Let V ′(pk;k) = max
pk≤p′≤R

V1(DMCE
1 (p′, pk; 1, k − 1),DMCE

2 (p′, pk; 1, k− 1);p′, pk; 1, k− 1)

for any given sequence of prices pk with p <R. Then, in a seller’s market (ρ> 1), we have that

limsup
k→∞

V ′(pk;k)≤ (R+ cma)λ
∆(p;R)[1−β(λ∆(p;R))]−λ∆(p;R)(∆(p;R)+ cma),

where ∆(p;R) = max
{

0, R−p+cma
ρ

− cma

}

, and λ∆(p;R) is the unique solution to 1 − β(λ) −

λβ′(λ) = ∆(p;R)+cma
R+cma

.

When a single provider increases his price, we show that the demand for agents, who do not

change their prices, is almost the same as their original demand before deviation. Hence, the utility

of customers choosing the sub-pool consisting of k− 1 agents is ∆(p;R), which is the utility that

the customers obtain in the Market Customer Equilibrium in a large marketplace when all agents

charge pk. Then, to approximate the maximum post-deviation revenue, one can treat the deviating

agent as a monopoly whose customers have an outside option with the value of ∆(p;R). In fact,

the above proposition shows that this approximation constitutes an upper bound on the agent’s

post-deviation revenue. A monopoly always makes sure that the utility of customers is exactly

equal to their outside option, by setting the price to R+cma−∆(p;R)+cma
1−β(λ)

for any given target of

demand rate λ. He then picks λ, maximizing his revenue and sets his price accordingly. We refer

the reader to the proof of Proposition 4 for a more detailed discussion on the revenue maximization

problem of a monopoly.

Combining the two observations above, it is clear that in a large marketplace, a price pk emerges

as the symmetric εk-Market Equilibrium outcome if pk is greater than the profit of a monopoly

serving customers with outside option ∆(p;R). We state this result in the following theorem.
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Theorem 3. In a seller’s market (ρ> 1), let

p∈P(ρ;R)≡
{

p : p > (R+ cma)λ
∆(p;R)[1−β(λ∆(p;R))]−λ∆(p;R)(∆(p;R)+ cma), 0≤ p <R

}

,

where ∆(p;R), and λ∆(p;R) are defined as in Proposition 4. Then, any given sequence of prices pk

that converges to p as k→∞ emerges as the equilibrium price of a symmetric εk-Market Equilibrium

in the kth marketplace, for large k. Furthermore, for any ρ1 > ρ2, we have that P(ρ1;R)⊆P(ρ2;R).

The above theorem characterizes the set of symmetric εk-Market Equilibria for large market-

places. The theorem does not guarantee the uniqueness of such an equilibrium, i.e. P(ρ;R) may

not be a singleton. In fact, P(ρ;R) may consist of uncountably many prices. Furthermore, we show

that P(ρ;R) shrinks as ρ increases. As the demand-supply ratio increases, customers experience

significant waiting times even if they are served by a price-generated pool. Therefore, the level of

customer surplus that a deviating agent has to forego declines as ρ rises. As a result of this, a

single agent has more room to deviate and improve his revenue when demand is high. It is also

worth highlighting that a single agent has such a profitable deviation opportunity even though the

number of agents grows to infinity.

Characterizing the set of symmetric equilibria, P(ρ;R), is difficult in general. For illustrative

purposes, we consider the case where the abandonment rate is equal to the service rate. We show

that a similar structure holds for the settings when µ (=ma using a numerical study (See Authors

(2011)). The next corollary characterizes the correspondence P(ρ;R) as well as the asymptotic

behavior of the unique equilibrium price under the no-intervention model.

Corollary 1. Suppose the abandonment rate is equal to the service rate. Then, we have that

1. λ∆(p;R) = log
(

R+c
∆(p;R)+c

)

where ∆(p;R) is defined as in Proposition 4. Furthermore, the cor-

respondence P(ρ;R) defined in Theorem 3 can be expressed as

P(ρ;R) =

{

p : p >

[

R+ c−
(

1+ log

(

R+ c

∆(p;R)+ c

))

[∆(p;R)+ c]

]

,0≤ p <R,

}

.

2. lim
k→∞

pkNI = pNI ≡ (R+ c)min
{

1− ρ
eρ−1

,1− c
R
log

(

R+c
c

)

}

, where pkNI is the unique equilibrium

price under no-intervention setting in the kth marketplace.

Figure 1 displays the correspondence P(ρ;R) and the limit pNI . More specifically, the gray area

represents the prices that can emerge as the equilibrium price of a symmetric equilibrium in a large

marketplace and the bold curve depicts pNI . We observe that for all ρ> 1, the set P(ρ;R) is not

a singleton. In fact, we have a wide range of prices that can form an equilibrium. Furthermore,

many of the possible equilibrium prices in P(ρ;R) are lower than pNI . The intuition behind this

result is the following: In a marketplace where the moderating firm efficiently matches customers
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pNI

log
(

R+c
c

)

1 1+ log
(

R+c
c

) ρ

P(ρ;R)

R

R− log
(

R+c
c

)

c

p= (R+ c)
(

1− ρ

eρ−

)

Symmetric
ε-Market Equilibrium

Almost Zero
Revenue

Figure 1 The prices that form a symmetric market equilibrium as a function of the demand-supply mismatch

(ρ). The service rates and abandonment rates are assumed to be one.

and agents, a single agent, who deviates by increasing his price, loses benefits of efficient matching,

and thus cannot sustain the same quality of service (in terms of waiting times) as his “original”

pool. It turns out that the deviating agent cannot improve his “original” revenue by decreasing his

price either. Thus, in a seller’s market, the price-generated pool serves as a deterrent against single

agent deviations even if prices are unappealing from a system point of view. It is also important to

note that such lower prices lead to loss in total revenue for the marketplace compared to the no-

intervention setting. While one may expect operational efficiency tools to be a leverage for higher

revenues in the market, it is surprising to see that reducing the unnecessary waiting and idleness

present in a system with no-intervention may deteriorate the revenues.

When comparing the equilibrium prices in a market with and without operational efficiency, one

should also observe that operational efficiency does not only serve as a deterrent for deviations

from low prices but also prevents deviations from high prices for any level of demand-supply ratio.

Moreover, when the aggregate demand is sufficiently high, efficient matching always leads to higher

profits, although the equilibrium prices under operational efficiency may be slightly lower than the

unique equilibrium in a market without operational efficiency.

5.2. Supplying Real-Time Congestion Information

Up to this point we have studied the impact of a particular efficient matching mechanism which

aims at reducing the mismatch between customers and service providers. Considering the level of

technology that online marketplaces have, another way of achieving operational efficiency might

be to provide the real-time congestion information of each agent. This way, the firm would again

reduce the inefficiency due to unnecessary waits and idleness. Here, we discuss the impact of this

strategy on the market outcome.
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Buyer’s Market: Recall that in Proposition 3, we show that a single agent can improve his revenue

significantly by decreasing his price when the firm provides the efficient matching mechanism

described in the beginning of Section 5. The key driver of this result is the fact that demand for the

agent, who decreases his price, increases drastically. When the firm provides real-time congestion

information, a single agent has the same opportunity to improve his revenue after a price cut;

customers will always choose him whenever he is idle, and this leads to a significant demand increase

for him. Then, similar to Theorem 2, one can show that only the prices very close to zero emerge

as the equilibrium outcome in this setting. Hence, the impact of providing real-time congestion

data in a buyer’s market would be the same as the aforementioned matching mechanism.

Seller’s Market: As the aggregate demand exceeds the total processing capacity in a seller’s

market, the most profitable deviation, if any, for a single agent may be to increase his price when

the firm provides real-time congestion data. Proposition 4 shows that this is true under the efficient

matching mechanism described before. Unfortunately, when real-time congestion information is

available, the system dynamics of a marketplace arising after one agent increases his price is quite

complex, and thus it is analytically intractable. We perform a simulation study to better understand

whether a single agent can improve his revenue by changing his price when the moderating firm

provides real-time queue information.

In our simulation study, we consider a marketplace where each customer obtains a reward of

R = 1, incurs a waiting cost of c ∈ {0.01,0.02, . . . ,0.05} per unit time, and abandon the system

with rate of 1/ma ∈ {1/2,1,2}. We fix the number of agents k to be 25, the service rate µ to be 1,

and assume the arrival rate Λ is either 40, 50, or 60. For each of these different scenarios, we check

whether a single agent has an incentive to increase his price to p′ ∈ {0.01,0.02,0.03, . . . ,0.99} \ p

when all the remaining k− 1 agents still charge a price p∈ {0.1,0.2, . . . ,0.9}. We say p emerges as

the equilibrium price of a symmetric ε-Market Equilibrium, with ε= 0.01, if a single agent cannot

improve his revenue by more than 0.01 when he raises his price. To this end, for any given instance

(Λ, p, p′), we generate 10000 random customer arrivals. Upon each arrival, the customer observes

the number of customers waiting for each agent, and chooses the one which provides the highest

expected utility. Letting the number of customers waiting for agent-n by Qn, the expected utility

of the customer is R− pn − cE[W (Qn)], where E[W (Q)] is expected waiting time of an arriving

customer in an M/M/1 +M system with service rate 1 and abandonment rate 1/ma given that

there are Q customers in the queue. Whitt (1999) shows that E[W (Q)] =
Q
∑

j=0

1
1+j/ma

.

We estimate the utilization of agents by simulating four runs (The relative error in all cases was

less than 1%). Then, the revenue of the agent is his average utilization multiplied by the price he

charges.
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Λ= 40 Λ= 50 Λ= 60
p= 0.1 × × ×
p= 0.2 × × ×
p= 0.3 × × ×
p= 0.4 ! × ×
p= 0.5 ! ! ×
p= 0.6 ! ! !

p= 0.7 ! ! !

p= 0.8 ! ! !

p= 0.9 ! ! !

!: p is an equilibrium price,

×: p is not an equilibrium price.

(a)

Λ= 40 Λ= 50 Λ= 60
p= 0.1 N/A N/A N/A
p= 0.2 N/A N/A N/A
p= 0.3 N/A N/A N/A
p= 0.4 0.396 N/A N/A
p= 0.5 0.495 0.499 N/A
p= 0.6 0.593 0.598 0.600
p= 0.7 0.694 0.697 0.700
p= 0.8 0.790 0.798 0.799
p= 0.9 0.892 0.897 0.899
N/A: Not applicable.

(b)

Table 1 (a) Prices that can emerge as the equilibrium outcome and (b) the equilibrium revenues of agents when

the moderating firm provides real-time congestion information.

Table 1 summarizes the results of our simulation study when c = 0.03 and ma = 1. As in our

efficient matching model, there is a wide range of prices that can emerge as an equilibrium outcome

for a given arrival rate while the range shrinks as the arrival rate increases when the moderating

firm provides real-time congestion information. In other words, this simulation study provides

strong evidence for the fact that our particular operational efficiency model provides very similar

key insights as providing real-time congestion information does. In Section 6.3, we will further

analyze the model in which the firm provides real-time congestion information.

6. Communication Enabled Model

In this section, we continue to study the impact of different mechanisms used by the moderating

firm. As we mentioned in the introduction, the moderating firm may complement its operational

tool discussed in the previous section with a strategic tool, which changes the nature of the inter-

action among agents. In a marketplace such as oDesk.com, service providers are offered discussion

boards in which they are allowed to exchange information. Moreover, the market supports the

creation of affiliation groups, which are self-enforcing entities. We will thus focus on the impact of

enabling communication among agents on the market outcome.

The economics literature suggests that, when the players have the opportunity to perform non-

binding pre-play communication among themselves, the stability of an outcome can be threatened

by potential deviations formed by coalitions, even in noncooperative games. Following this idea, the

well-know notion of Strong Nash Equilibrium (SNE ) requires stability against deviations formed

by any conceivable coalitions (See Aumann (1959)). The main drawback of SNE is that many of

the games do not have any SNE.

In this section, we modify the marketplace we study in the previous section by assuming that

agents have opportunities to make non-binding communication prior to making their decisions, so
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that they can try to self-coordinate their actions in a mutually beneficial way, despite the fact that

each agent selfishly maximizes his own utility.

Echoing the ideas in the economics literature, allowing communication among agents changes

the equilibrium concept we use to characterize the outcome in the marketplace. We model this

by proposing a new equilibrium concept that allows several agents to deviate together. More

specifically, the new concept requires that a strategy of agents should be immune to any coalitions.

Since a marketplace tends to be large, e.g., there are hundreds of thousands of agents in oDesk.com,

one has to restrict the possible size of a coalition. We denote the largest fraction of agents that

is allowed to deviate together by δ ∈ (1/k,1]. As in Section 5, we focus on the deviations that

improve the revenues of agents at least by ε≥ 0. Furthermore, we again study the behavior of the

equilibrium along the sequence of marketplaces we described in Section 5. Recall that there are k

agents, the arrival rate is Λk = ρk, and the level of equilibrium approximation is εk, with the same

asymptotic properties as in Section 5, in the kth marketplace. We let δk be the largest fraction

of agents that is allowed to deviate together in the kth marketplace. We assume that δkk→∞ as

k→∞. This condition states that the number of agents allowed to deviate increases without bound

as the market size increases. We refer to our new equilibrium concept as (δ, ε)-Market Equilibrium

which is defined as follows:

Definition 5 ((δ, ε)-Market Equilibrium). Let (Dk
n, p

k
n, y

k
n)

N
n=1 summarize the strategy of all

players in the kth market with yk
n > 0 for all n= 1, . . . ,N . Then, (Dk

n, p
k
n, y

k
n)

N
n=1 is a (δk, εk)-Market

Equilibrium if the following conditions are satisfied:

1. Dk
n =DMCE

n (pk1 , . . . , p
k
N ;y

k
1 , . . . , y

k
N) for all n≤N .

2. For any &≤N , m≤N , and 0< d≤min{yk
! , +δkk,}, we have that V!(Dk

1 , . . . ,D
k
N ;p

k
1 , . . . , p

k
N ;y

k
1 ,

. . . , yk
N)≥ V!(D̂k

1 , . . . , D̂
k
N ;p

k
1 , . . . , p

k
N ; ŷ

k
1 , . . . , ŷ

k
N)−εk, where ŷk

n = yk
n−d if n= &, ŷk

n = yk
n+d if n=m,

ŷk
n = yk

n otherwise, and D̂k
n =DMCE

n (pk1 , . . . , p
k
N ; ŷ

k
1 , . . . , ŷ

k
N) for all n≤N .

3. For any & ≤ N , 0 < d ≤ min{yk
! , +δkk,}, and p′ (= pn for all n = 1, . . . ,N , we have

that V!(Dk
1 , . . . ,D

k
N ;p

k
1 , . . . , p

k
N ;y

k
1 , . . . , y

k
N) ≥ VN+1(D̂k

1 , . . . , D̂
k
N+1;p

k
1 , . . . , p

k
N , p

′; ŷk
1 , . . . , ŷ

k
N+1) − εk,

where ŷk
n = yk

n − d if n = &, ŷk
n = d if n = N + 1, ŷk

n = yk
n otherwise, and D̂k

n =

DMCE
n (pk1 , . . . , p

k
N , p

′; ŷk
1 , . . . , ŷ

k
N+1) for all n≤N +1.

The above definition is closely related to the definition of ε-Market Equilibrium in Section 5. The

key difference between these two equilibrium definitions is that (δ, ε)-Market Equilibrium allows a

group of agents to deviate by either forming a new sub-pool or joining an existing one. In fact, our

new equilibrium concept is a refinement of the ε-Market Equilibrium. Therefore, any (δ, ε)-Market
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Equilibrium is also a ε-Market Equilibrium. Employing the (δ, ε)-Market Equilibrium concept, we

expect that the set of prices that can be sustained as a ε-Market Equilibrium will shrink since (δ, ε)-

Market Equilibrium is more restrictive. Kalai (2004) and Gradwohl and Reingold (2008) study

large games and shows that all Nash Equilibria of certain large games are resilient to deviations

by coalitions. Such a phenomena does not exist in our model.7

6.1. Characterization of the (δ, ε)-Market Equilibrium

Similar to Section 5, we focus on the symmetric (δ, ε)-ME where all agents charge the same price.

The revenue of an agent when all agents charge the same price pk is the same as in (2), and thus

Proposition 2 establishes its asymptotic behavior.

In a buyer’s market with ρ< 1, we showed that only the prices in a small neighborhood of zero

can emerge as a symmetric ε-Market Equilibrium in large marketplaces. As a direct implication of

the fact that (δ, ε)-Market Equilibrium is a refinement of the ε-Market Equilibrium, any sequence

of prices that emerge as symmetric (δ, ε)-Market Equilibrium converges to zero as the market size

grows. Furthermore, we show that p= 0 can emerge as the equilibrium price in large marketplaces.

Theorem 4. Let pk be a price emerging as a symmetric (δk, εk)-Market Equilibrium in the kth

marketplace where ρ< 1. Then, for any ξ > 0, we have that pk < ξ for large k. Furthermore, when

lim
k→∞

δk = 0, p = 0 is an equilibrium price of a symmetric (δk, εk)-Market Equilibrium in the kth

marketplace, for large k.

In a seller’s market, Proposition 2 shows that the rate of customers requesting service will exceed

the processing capacity of agents when all agents charge a price lower than R. Therefore, customers

experience significant waiting times, and not only pay the price of the service but also incur a

strictly positive waiting cost. Then, we show that a small group of agents can use the fact that

customers pay an extra cost to increase their prices while ensuring that they are still “over-utilized”

after the price increase. Since this small group of agents increases their prices without hurting

their utilization, this deviation clearly improves their revenues (This is in contrast to the setting

in Section 5 where the utilization of a single agent does drop after a price decrease). Thus, in a

seller’s market, only the prices, which are very close to R, can emerge as the equilibrium price of a

symmetric (δ, ε)-Market Equilibrium in large marketplaces. To contrast this result with the result

in Theorem 3, it is worth noting that a single agent has only a limited opportunity to improve his

7 According to the definition in Gradwohl and Reingold (2008), a Nash Equilibrium is resilient to coalitions if players
cannot improve their revenues “too much” even after a coordinated deviation. In our setting, “too much” has to
be almost as much as the customer reward, R, in order to apply their results to our game. Clearly, this makes the
definition of resilience vacuous because none of the agents can increase his revenue by more than R.
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revenue by increasing his price as in most cases, the revenue improvement due to the price increase

is overcome by the drop in utilization. Therefore, without the communication opportunity, it was

possible to observe low prices as the market outcome even though demand exceeds supply.

Theorem 5. Let pk be a price emerging as a symmetric (δk, εk)-Market Equilibrium in the

kth marketplace where ρ > 1. Then, for any ξ > 0, we have that pk > R− ξ and DMCE
1 (pk;k) >

1/ρ− ξ for large k. Furthermore, there exists a sequence pk that forms a symmetric (δk, εk)-Market

Equilibrium in the kth marketplace, for large k.

The above result shows that agents can sustain a price, which extracts all of the customer surplus,

as the equilibrium outcome in a seller’s market. Moreover, it also implies that the marketplace

cannot be congested in the equilibrium even in a seller’s market since any level of congestion can

be capitalized by agents through a price increase.

Theorem 5 characterizes the unique limit of symmetric (δ, ε)-Market Equilibrium, but this result

can be extended by showing that R is indeed the unique limit of all possible (δ, ε)-Market Equilibria

as discussed in Section 7.3 (See Proposition 10 in Authors (2011) for a formal treatment).

6.2. Supplying Real-Time Congestion Information

In the previous subsection, we show that the moderating firm can ensure that agents charge prices

arbitrarily close to R in the equilibrium when it complements its efficient matching mechanism

with the ability to communicate in a seller’s market. Here we want to discuss whether the ability to

communicate leads to high equilibrium prices when the moderating firm provides real-time queue

information in order to reduce the mismatch between customers and agents. Note that we already

discuss that only the prices very close to zero can be sustained as an equilibrium in a buyer’s

market when the moderating firm provides real-time congestion information. Since we use a more

restrictive equilibrium concept when there is communication opportunity, there will not be any new

equilibrium in a buyer’s market if the moderating firm provides real-time congestion information

and allows agents to make pre-play communication.

In a seller’s market, as in Section 5.2, characterizing the equilibrium outcome in general is

again analytically intractable. However, considering a special case where δk = 1 for all k, we can

analytically show that allowing communication leads to higher equilibrium prices even when the

moderating firm provides real-time queue information.

Note that the operations of a marketplace, in which the firm provides real-time queue information

and all agents charge the same price, behave like a parallel server system where customers are
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joining the server with the shortest queue length, i.e. an M/M/k+M/JSQ system8. There is a

huge volume of literature studying such systems without customer abandonments, but none of these

papers provides an exact expression for the performance evaluation of the system in a general setting

(See Halfin (1985), Grassmann (1980), Blanc (1987), Nelson and Philips (1989)). Fortunately,

almost all of these studies highlight the close connection between an M/M/k/JSQ and an M/M/k

system, and show that they behave almost the same under certain conditions (For example of

the system size k becomes large). Motivated by these studies, we state the following proposition

by supposing that the performance of an M/M/k+M/JSQ system and an M/M/k+M system

are close to each other when k is large. We show that only the prices above a certain threshold,

which depends on R and ζ, which measures the gap in performance between an M/M/k+M/JSQ

system and an M/M/k+M system, can emerge as the equilibrium price in a marketplace in which

real-time queue information is provided. It is worth noting that if ζ is equal (or close) to zero, as

it is argued for the multi-server systems without customer abandonments, the above proposition

provides the same conclusion as Theorem 5.

Proposition 5. Let βJSQ(λ;k), and σJSQ(λ;k) be the probability of abandonment, and agent

utilization in a M/M/k +M/JSQ system with arrival rate λ, service rate 1, abandonment rate

1/ma. Suppose lim
k→∞

βJSQ(ρk;k)
βM (ρk;k)

<∞, and lim
k→∞

σJSQ(ρk;k)
ρ(1−βM (ρk;k))

> 1− ζ. Then, let pkinfo be a price emerg-

ing in a symmetric (δ, εk)-Market Equilibrium in the kth marketplace whit real-time congestion

information. If ρ> 1 and δk = 1, then for any ξ > 0, we have that pkinfo ≥R(1− ζ)− ξ for large k.

7. A Marketplace with Non-Identical Agents

In Section 3, we introduce a model where all of the agents in the marketplace are a priori identical.

However, it is natural to imagine that large service marketplaces attract service providers with

different skill sets, which provide their customers different values for the service. In this section,

we explore the robustness of the conclusions of the previous sections to the heterogeneity among

service providers.

To this end, we extend our original model by considering a marketplace where agents provide

the same service but in different quality levels, say low (L), and high (H). We assume αi fraction of

agents provide quality-i service for i ∈ {H,L} while there are still k agents in total. Furthermore,

we assume that customers value the service with respect to its quality. Particularly, customers earn

a reward of Ri when they are served by a quality-i agent for i ∈ {H,L} where RL ≤RH . We also

8 In this notation, k denotes the number of parallel and independent servers, and JSQ represents the policy used to
route arrivals to the servers.



Çil et.al.
Large-scale Service Marketplaces 27

distinguish the agents according to their operating costs. We assume the operating cost of quality-i

agents is wi for i∈ {H,L} where wL ≤wH . For notational convenience, we let wL = 0. We refer to

the difference between Ri and wi as the “quality-cost differential” of quality-i agents for i∈ {H,L}.

As in Section 3, the service rate is 1, arrival rate is Λ, abandonment rate is 1/ma, and waiting cost

is c.

In the next three subsections, we compare our findings in a model with identical agents with the

results for a model with non-identical agents. We will use a similar mode of analysis as in Sections

4-6. We also discuss how the composition of the marketplaces, i.e., the ratio between high-quality

and low-quality agents, affects the outcomes. We refer the reader to Authors (2011) for a detailed

discussion of our findings in this section.

7.1. No-intervention Model

In the model with non-identical agents, we again start with the behavior of the marketplace when

the moderating firm confines itself to setting up the necessary infrastructure. In such a setting,

each agent’s operations can still be modeled as an M/M/1+M queuing system. Note that as the

agents provide a different quality of service, the expected utility of a customer will depend on both

the price and the service quality of the agent who serves her. To account for that, we define the

“net reward” of a customer from a quality-i agent charging p as Ri − p for i∈ {H,L}.

As before, we focus on the symmetric SPNE. Since we have two groups of agents, we define the

symmetric equilibrium as one where all the high-quality agents charge pH and all the low-quality

agents charge pL. Then, a price pair (pH , pL) form a symmetric equilibrium price, if agents cannot

improve their revenues by charging a different price.

The equilibrium characterization in this model is very similar to the equilibrium in Theorem 1:

Agents may behave as local monopolists when the arrival rate is sufficiently high. Furthermore, once

the arrival rate is less than a certain threshold, customers observe lower prices, which allow them

to earn strictly positive utility, due to the intensified competition. However, we also encounter new

results when we allow for heterogeneous agents. First, unlike the identical agent model, we observe

that the main driver of equilibrium outcomes for certain parameters is not only the competition

between providers but also the fact that agents offer different quality of service. For instance, when

the demand rate is in a certain range and RH −wH ≥RL, high-quality agents charge a low price

and forego a significant customer surplus both because of the low demand and the fact that they

want to keep the low-quality agents out of the marketplace. We also show that it is possible to

have a continuum of symmetric equilibria, whereas we always have a unique symmetric equilibrium

with the identical agents.
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Intuitively, the group of agents with the higher quality-cost differential almost always serve more

customers and earn more revenue in the equilibrium. Moreover, if the arrival rate is low enough,

the market is covered solely by the group of agents with the higher quality-cost differential. These

findings illustrates that only the quality-cost differentials of the agents matter in the equilibrium.

Having two different groups of agents allows us to discuss the impact of the fraction of agents

with a certain quality, αH and αL, on the equilibrium outcomes. However, our equilibrium char-

acterization is not explicit enough to show this impact analytically. Therefore, we explore this

question by an extensive numerical study. The results of this study shows that revenues in a mar-

ketplace is deteriorated as a result of having more low-quality agents only when the operating cost

of providing high-quality service is significant (See Appendix S.4.1 for the details of the results).

The implications on the identical agent model: Our model with heterogeneous agents also

helps us to prove that the non-symmetric equilibrium may exist only for a small range of demand-

supply ratio ρ in the no-intervention model with identical agents. Furthermore, we show that this

range becomes negligible as the number of agents grow (For a more formal result, see Proposition

7 in Authors (2011)).

7.2. Operational Efficiency Model

We now turn our attention to a marketplace where the moderating firm aims at reducing the

unnecessary waits and idleness in the system through a matching mechanism. In particular, the

marketplace under this matching mechanism operates as a queuing system where all agents offering

the same net reward are virtually grouped together, regardless of the quality of their service. We

assume that customers decide which agents to choose based on the net reward and they treat

all agents as the same when they offer the same net reward because the nature of the tasks is

simple, benefits are tangible, features are clear, and thus rewards are easily quantifiable. Further,

one may view these tasks as commodities.9 We refer to agents announcing the same net reward as

a sub-pool.

In a marketplace with non-identical agents, the customer decision making and experience is the

same as in Section 5. Further, the Market Customer Equilibrium and ε-Market Equilibrium are

the natural extensions of the definitions in Section 5 to a marketplace with non-identical agents

and are, thus, omitted.

9 One may envision a model, in which customers strictly prefer high-quality agents even if they provide the same
net reward as low-quality agents. Such a model would require additional notation and analysis but our key findings,
namely providing operational efficiency may lead to profit loss and enabling communication may help to overcome
that loss, continue to hold.
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7.2.1. Characterization of the Market Equilibrium: We study the behavior of the equi-

librium in large marketplaces by considering the sequence of marketplaces we described in Section

5 along with the following assumption: the number of high-quality and low-quality agents are αHk

and αLk, respectively, in the kth marketplace. This ensures that the ratio of high and low-quality

agents is constant along the sequence of marketplaces.

When demand is sufficiently low in a buyer’s market, we show that the revenues of agents is

always in a small neighborhood of zero in large marketplaces. This result is similar to the one in the

model with identical agents. Furthermore, when demand exceeds the total capacity of agents with

high quality-cost differential in a buyer’s market, we show that there may be multiple equilibria.

However, similar to Section 5, most of these equilibrium prices may be very low compare to the

equilibrium outcome in the no-intervention model. Thus, providing tools to improve the operational

efficiency may still deteriorate the moderating firm’s profit. It is also worth noting that even the

best equilibrium outcome from the perspective of agents and the moderating firm may be worse

than the outcome in a no-intervention model in a buyer’s market.

In a seller’s market with non-identical agents, the pooling benefits associated with operational

efficiency will again serve as a deterrent for deviation as in the case of identical agents. Thus, there

will be multiple symmetric equilibria in a seller’s market as established in Theorem 3.

The implications on the identical agent model: One important implication of our results is

that any sequence of price pairs (pkH , p
k
L) with limits strictly greater than operating costs cannot be

an equilibrium in large marketplaces under the operational efficiency model. Using this observation,

we can show that in a buyer’s market with identical agents, the revenues of all agents in any non-

symmetric equilibrium (if exits), should be in a small neighborhood of zero in large marketplaces.

7.3. Communication Enabled Model

We now explore the impact of enabling communication among agents in a market with non-identical

agents. To this end, we study the behavior of the (δk, εk)-Market Equilibrium in large marketplaces

by considering the sequence of marketplaces described in the previous sub-section.

In Section 7.2, we show that the revenue of agents is always in a small neighborhood of zero

in large marketplaces when the total capacity of agents with high quality-cost differential exceed

demand. Since (δk, εk)-Market Equilibrium is a refinement of εk-Market Equilibrium, this equilib-

rium outcome is the only possible (δk, εk)-Market Equilibrium when demand is sufficiently low in

a buyer’s market.

We also establish that there are multiple symmetric εk-Market Equilibria when demand exceeds

the total capacity of agents with high quality-cost differential. It turns out pre-play communication
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help agents to sustain the best of these multiple equilibria in a buyer’s market. Finally, with the

help of pre-play communication, agents can sustain a price, which extracts all of the customer

surplus, when ρ> 1.

The implications on the identical agent model: Similar to previous results in this section,

our results in the non-identical agents model helps us to show that, even if there are any non-

symmetric equilibrium in a seller’s market with identical agents, the revenue of quality-i agents in

equilibrium should converge to Ri as well as the price they charge for i∈ {H,L}.

8. Conclusion

In this paper, we study a marketplace in which many small service providers compete with each

other in providing service to self-interested customers looking for temporary help. The main focus

of the paper is on the role of the moderating firm, which sets up the marketplace and creates

the infrastructure where agents and customers interact. To this end, we explore the impact of

different strategies employed by the moderating firm by considering three market models, where

the moderating firm has different degrees of involvement.

We characterize the market outcomes in each of these models. We observe that outcomes crit-

ically depend on the moderating firm’s involvement and market conditions, i.e., whether it is a

buyer’s or a seller’s market. Since different types of involvement of the moderating firm result in

different equilibrium prices and customer demand, the moderating firm aims to intervene in the

marketplace in order to make sure that the “right” prices and customer demand emerge in equi-

librium. Specifically, the moderating firm tries to maximize the revenues of agents since its profit

is a share of the agents’ revenues.

We show that when the firm ensures efficient operational matching and enables agent communi-

cation in a seller’s market, the natural upper-bound on the revenue generated in a marketplace10 is

asymptotically achievable, and thus, using these two tools together dominates any other strategy

from the moderating firm’s perspective in a seller’s market. We also show that efficient operational

matching in a buyer’s market leads to arbitrarily small total marketplace revenue compared to the

total revenue under the no-intervention model. Hence, using the matching mechanism we discuss in

this paper is not advisable in a buyer’s market despite the fact that it reduces the mismatch between

demand and supply. This result is somewhat counter-intuitive, because the efficiency improvement

due to better matching is not necessarily translated into additional profits. It seems other tools

10 In a given marketplace, the total revenues of the agents cannot exceed min{Λ, k}R since they cannot charge more
than R, and their effective demand is the minimum of their processing capacity and the aggregate demand.
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aimed at improving the operational efficiency, such as providing real-time queue information, will

have a similar impact on the moderating firm’s profit in a buyer’s market.

Both oDesk.com and ServiceLive.com are currently in their growth stage and have not achieved

their full potential in terms of demand for their services. However, both firms can and should

project the “mature” market conditions and decide on their appropriate measures to adopt. Given

the moderate level of congestion in oDesk.com, one may infer that the marketplace can be identified

as a seller’s market. Following the discussion before, oDesk.com’s decision to offer operational tools

complemented with strategic tools is well justified.

There are also other possible ways for a moderating firm to be involved in the marketplace

including contracting with agents or providing a suggested price. Particularly, the setting in which

the firm provides a suggested price can be viewed as pre-play communication and will indeed shrink

the set of equilibria. However, these type of interactions between the moderating firm and agents

are outside the scope of this paper as these settings are not a market per-se anymore. In such

environments, the firm would decide on prices as well as the allocation of agents to customers.

While modeling operational efficiency, we assume that agents give priority to their own cus-

tomers. One may consider an extension of our model in which agents are allowed to choose both

priority and prices, simultaneously. The equilibria that arise in our model with fixed priority rule

would still be sustained in such an extended game. Hence, the main spirit of our findings, namely,

the fact that providing operational efficiency may lead to profit loss, would not change. Additional

equilibria would be possible in the extended model only when demand exceeds supply.
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Çil et.al.
34 Large-scale Service Marketplaces

Ray, I. 1996. Coalition-proof correlated equilibirum: A definition. Games and Economic Behavior 17 56–79.

Roughgarden, T. 2005. Selfish Routing and the Price of Anarchy . The MIT Press.

Sosic, G. 2006. Transhipment of inventories among retailers: Myopic vs. farsighted staility. Management

Science 52 1491–1508.

The Economist. 2010, May 13. Work in the digital age: A clouded future. The Economist

Http://www.economist.com/node/16116919.

Ward, A. R., P. W. Glynn. 2003. Diffusion approximation for a markovian queue with reneging. Queueing

Systems 43 103–128.

Zeltyn, S., A. Mandelbaum. 2005. Call centers with impatient customers: Many-server asymptotics of the

M/M/n+G queues. Queueing Systems 51 361–402.

We provide the formal presentations and the proofs of the supplementary lemmas used in the appendix in

Authors (2011).

Appendix A: Proofs in Section 4

A.1. Proof of Proposition 1

Suppose there are two Customer Equilibrium, say (Dn)kn=1 and (D′
n)

k
n=1, given (pn)kn=1 with pn <R for some

n (When pn =R for all 1≤ n≤ k, the unique equilibrium is clearly Dn = 0 for all 1≤ n≤ k.). Let

S = {n≤ k :Dn > 0}, and S′ = {n≤ k :D′
n > 0}.

As we show in Lemma 2, we have that S = S′. Then, let U(ΛDn, pn) = u for any n∈ S and U(ΛD′
n, pn) = u′

for any n∈ S′. Since S = S′ and Dn (=D′
n for some n∈ S, we have that u (= u′. WLOG, assume u> u′. This

implies that
k
∑

n=1
Dn <

k
∑

n=1
D′

n ≤ 1. However, since
k
∑

n=1
Dn < 1, we have that u′ <u= 0 which is a contradiction.

A.2. Proof of Theorem 1

Existence and uniqueness of λmon and λ0: After a birth-death chain analysis of an M/M/1+M system

with arrival rate λ, service rate 1, and abandonment rate 1/ma, we have that β(λ) = 1 − g(λ)
λ(1+g(λ)) , and

W (λ) =maβ(λ) where a0 = 1, an = 1
n−1∏

i=0
(1+i/ma)

= mn
a

n−1∏

i=0
(ma+i)

for any n≥ 1, and g(λ) =
∞
∑

n=1
anλn.

Observe that 1− β(λ)− λβ′(λ) is strictly decreasing in λ since λ[1− β(λ)] is strictly concave by Lemma

1.4. Moreover, lim
λ→0

[

1−β(λ)−λβ′(λ)

]

= lim
λ→0

g′(λ)
[1+g(λ)]2 = 1 since lim

λ→0
g(λ) = 0, and lim

λ→0
g′(λ) = 1. It is also true

that lim
λ→∞

[

1−β(λ)−λβ′(λ)

]

≤ 0 since lim
λ→∞

β(λ) = 1. Therefore, it is clear that λmon exists and it is unique.

Let z(λ) = (R+ cma)(k − 1)− cma
1−β(λ)

(

k
1−ν(λ) − 1

)

. Then, z(λ) is strictly decreasing in λ since ν(λ) and

β(λ) are strictly increasing in λ by Lemma 1. Moreover, z(λmon) = cma
1−β(λmon) − (R+ cma)< 0. Therefore, it

is clear that λ0 exists, it is unique, and λ0 < kλmon.
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Necessary conditions for the symmetric equilibrium: The best response problem of agent-& in (1)

can be rewritten as follows:

max
p"≥0,D"≥0,D−"≥0

p!ΛD! [1−β(ΛD!)]

s.to

(R− p! + cma) [1−β(ΛD!)]− cma ≥ 0

(R− p! + cma) [1−β(ΛD!)] = (R− p+ cma) [1−β(ΛD−!)]

D! +(k− 1)D−! ≤ 1

In this new problem, we state the conditions of the Customer Equilibrium as the constraints of the prob-

lem. In other words, for any (D!,D−!) satisfying the constraints, we have that D! =DCE
! (p, . . . , p, p!, p, . . . , p)

and D−! = DCE
n (p, . . . , p, p!, p, . . . , p) for any n (= &. We denote the solution to the above problem by

(D!(p),D−!(p), p!(p)) for a given p.

After some algebra and using the FOCs of the above problem, any symmetric SPNE (D,p) should satisfy

the following conditions:

D=
min{λmon,Λ/k}

Λ
, p=R+ cma −

cma

1−β(min{λmon,Λ/k})
⇔ Λ≥ λ0

D= 1/k, p= (R+ c)−
(R+ c)(k− 1)

k

1−Λ/kβ′(Λ/k)
1−β(Λ/k)

− 1
⇔ Λ< λ0.

Sufficient conditions for the symmetric equilibrium: Lemma 3 in the technical appendix establishes

the existence of the symmetric SPNE when β(λ) is concave.

Appendix B: Proofs in Section 5

B.1. Proof of Proposition 2

To prove Proposition 2, we first argue that lim inf
k→∞

DMCE
1 (pk;k) ≥min

{

1, R−p+cma

ρcma

}

when p < R. Suppose

on the contrary that the result does not hold. Then, there exists a convergent subsequence of DMCE
1 (pk;k),

say DMCE
1 (pk;k) (we do not use a new notation for the subsequence for notational convenience), such that

lim
k→∞

DMCE
1 (pk;k) = lim inf

k→∞
DMCE

1 (pk;k)<min

{

1,
R− p+ cma

ρcma

}

,

since DMCE
1 (pk;k) ∈ [0,1] for any k = 1,2, . . . . Let D̃ = lim

k→∞
DMCE

1 (pk;k). Then using the fact that system

behaves as a multi-server queue when all the agents charge the same price, we have that

lim
k→∞

U1(D
MCE
1 (pk;k);pk;k) = lim

k→∞
(R− pk + cma)

(

1−βM(ΛkDMCE
1 (pk;k);k)

)

− cma

=
R− p+ cma

max{D̃ρ,1}
− cma > cma − cma = 0,

where the equality holds by Lemma 4 and the last inequality holds since D̃(p) < min
{

1, R−p+cma

ρcma

}

and

p < R. Therefore, there exists a K∗ such that for any k >K∗, we have U1(DMCE
1 (pk;k);pk;k)> 0 whereas

DMCE
1 (pk;k)< 1. However, this contradicts with the definition of Market Customer Equilibrium.
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We now argue that limsup
k→∞

DMCE
1 (pk;k) ≤ min

{

1, R−p+cma

ρcma

}

. To do this it is sufficient to show

limsup
k→∞

DMCE
1 (pk;k) ≤ R−p+cma

ρcma
since DMCE

1 (pk;k) ≤ 1 for any k. Suppose on the contrary that the result

does not hold. Then, there exists a convergent subsequence of DMCE
1 (pk;k), say DMCE

1 (pk;k), such that

lim
k→∞

DMCE
1 (pk;k) = limsup

k→∞
DMCE

1 (pk;k)>
R− p+ cma

ρcma

,

since DMCE
1 (p;k)∈ [0,1] for any k= 1,2, . . . .

Let D̃= lim
k→∞

DMCE
1 (pk;k). Then, observe that

lim
k→∞

U1(D
MCE
1 (pk;k);pk;k) = lim

k→∞
(R− pk + cma)

(

1−βM(ΛkDMCE
1 (pk;k), k)

)

− cma

=
R− p+ cma

max{D̃ρ,1}
− cma < cma − cma = 0,

where the equality holds by Lemma 4 and the last inequality holds since ρD̃(p)> R−p+cma

cma
≥ 1. Therefore,

there exists a K∗ such that for any k >K∗, we have U1(DMCE
1 (pk;k);pk;k)< 0. However, this contradicts

with the definition of Market Customer Equilibrium since DMCE
1 (pk;k)> 0 for large k.

Once we establish that lim
k→∞

DMCE
1 (pk;k) =min

{

1, R−p+cma

ρcma

}

, we have that lim
k→∞

[1−βM(ΛkDMCE
1 (pk;k);k)] =

1
max{ρmin{1,R−p+cma

ρcma },1} by Lemma 4. Finally, combining these two, we have that lim
k→∞

V1(DMCE
1 (pk;k);pk;k) =

pmin{ρ,1}.

Note that we don’t use p < R to argue that limsup
k→∞

DMCE
1 (pk;k) ≤ min

{

1, R−p+cma

ρcma

}

. Therefore,

min
{

1, R−p+cma

ρcma

}

is the upper-bound for the fraction of customers requesting service in the limit, regardless

of p. As a direct implication of that the upper-bound for the revenues of the agents in the limit is pmin{ρ,1}.

B.2. Proof of Proposition 3

We start proving the proposition by considering the case p <R. Note that lim
k→∞

DMCE
1 (pk;k)> 0 when p <R

by Proposition 2. Thus, for the case where p < R, we need to show that lim
k→∞

V ′(pk;k) = p. Note that this

statement is trivially true when p= 0. In order to prove Proposition 3 for p > 0, we consider a deviation by

a single agent where he decreases his price by an arbitrary small amount ε> 0.

Let Dpool(k) = DMCE
1 (pk, p − ε;k − 1,1) and Done(k) = DMCE

2 (pk, p − ε;k − 1,1). We first argue that

lim inf
k→∞

Dpool(k)+Done(k)≥min{1,1/ρ} for any p <R. We prove this claim by contradiction, so that we sup-

pose lim inf
k→∞

Dpool(k) +Done(k)<min{1,1/ρ}. Then, there should exist convergent subsequences of Dpool(k)

and Done(k) such that lim
k→∞

Dpool(k) +Done(k)<min{1,1/ρ}. Using this observation, and letting Pone(k) =

PServ12
(

Dpool(k),Done(k);pk, p− ε;k− 1,1
)

for notational convenience, we have that

lim
k→∞

U1

(

Dpool(k),Done(k);p
k, p− ε;k− 1,1

)

=
(

1− lim
k→∞

Pone(k)
)[

(R− p+ cma)
[

1− lim
k→∞

β1

(

Dpool(k),Done(k);p
k, p− ε;k− 1,1

)]

− cma

]

+(R− p+ ε) lim
k→∞

Pone(k)

≥ (R− p+ cma)
[

1− lim
k→∞

β1

(

Dpool(k),Done(k);p
k, p− ε;k− 1,1

)]

− cma

≥ (R− p+ cma)
[

1− lim
k→∞

βM(ΛkDpool(k);k− 1)
]

− cma =R− p > 0,

where the second inequality holds since some customers choosing sub-pool-1 may be served by sub-pool-2,

and the last equality holds since lim
k→∞

ΛkDpool(k)

k−1 <min{1,ρ}≤ 1. However, this contradicts with the definition
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of the customer equilibrium since we suppose lim
k→∞

Dpool(k)+Done(k)< 1, i.e. some customers choose not to

request service for sufficiently large k. Hence, we should have that lim inf
k→∞

Dpool(k)+Done(k)≥min{1,1/ρ}.

Then using the fact that lim inf
k→∞

Dpool(k)+Done(k)≥min{1,1/ρ}, we have that

lim inf
k→∞

V2

(

Dpool(k),Done(k);p
k, p− ε;k− 1,1

)

= (p− ε) lim inf
k→∞

σ2

(

Dpool(k),Done(k);p
k, p− ε;k− 1,1

)

≥ (p− ε) lim
k→∞

Λk
(

Dpool(k)+Done(k)
)

1+Λk
(

Dpool(k)+Done(k)
) = p− ε,

where the inequality holds by Lemma 5. Note that the revenue of a single agent after the deviation we

propose is less than the optimal deviation V ′(pk;k), and thus we have that

lim inf
k→∞

V ′(pk;k)≥ lim inf
k→∞

V2

(

Dpool(k),Done(k);p
k, p− ε;k− 1,1

)

≥ p− ε.

Finally, our claim holds since ε can be arbitrarily small and V ′(pk;k)≤ pk by construction.

Now, we consider the case where p=R and lim inf
k→∞

DMCE
1 (pk;k) = D̃ > 0 (Note that ρD̃≤ 1 by Proposition

2). This time, we will show that lim inf
k→∞

Dpool(k) +Done(k) ≥ D̃. As above, we assume the contrary. Then,

there exists a subsequence of Dpool(k) such that lim inf
k→∞

Dpool(k) = D̃pool < D̃. Then, we have that

U1

(

Dpool(k),Done(k);p
k, pk − ε;k− 1,1

)

≥ (R− pk + cma)
[

1−βM(ΛkDpool(k);k− 1)
]

− cma,

> (R− pk + cma)
[

1−βM(ΛkDMCE
1 (pk;k);k)

]

− cma ≥ 0,

for large k, where the strict inequality holds since βM(ΛkDpool(k);k − 1) . ζ1(ρD̃poole1−ρD̃pool)k and

βM(ΛkDMCE
1 (pk;k);k). ζ2(ρD̃e1−ρD̃)k for some constants ζ1 and ζ2 by Theorem 5 in Zeltyn and Mandel-

baum (2005) and the fact that ρD̃≤ 1. Note that
(ρD̃poole

1−ρD̃pool )k

(ρD̃e1−ρD̃)k
→ 0 as k→ 0 since D̃pool < D̃ and xe1−x

is strictly increasing in x for any x < 1. However, this contradicts with the definition of the customer equi-

librium since we suppose lim
k→∞

Dpool(k) +Done(k)< 1, i.e. some customers choose not to request service for

sufficiently large k. Hence, we should have that lim inf
k→∞

Dpool(k)+Done(k)≥ D̃. Using this result, we can again

show that the utilization of the deviating agent will converge to one, and thus his revenue will be R− ε.

Finally, we need to show that lim
k→∞

V ′(pk;k) > 0 when p = R and lim inf
k→∞

DMCE
1 (pk;k) = 0. Consider a

deviation where a single agent cuts his price and charge R/2. Let, λ̂ solves (R/2+cma)[1−β(λ)] = cma. There

exists such λ̂ since β(λ) is increasing in λ and lim
λ→∞

β(λ) = 1. Then, by construction Λk
(

Dpool(k)+Done(k)
)

≥

λ̂ because otherwise the customer choosing the deviating agent would earn a strictly positive utility while

Dpool(k) +Done(k)< 1 for large k, and that would be a contradiction. Therefore, using Lemma 5, we have

that

lim
k→∞

V ′(pk;k)≥R/2
λ̂

1+ λ̂
> 0.

B.3. Proof of Theorem 2

1. We prove this claim by contradiction. Thus, we suppose that there exists a ξ > 0 and a sequence of

equilibrium prices pk such that pk ≥ ξ for all k. Then, there should exists a subsequence of pk such that

lim
k→∞

pk = p ≥ ξ > 0. Let V ′(pk;k) = max
0≤p′≤pk

V2(DMCE
1 (pk, p′;k − 1,1),DMCE

2 (pk, p′;k − 1,1);pk, p′;k − 1,1).

When ρ< 1 and lim
k→∞

DMCE
1 (pk;k)> 0, we have that

lim inf
k→∞

V ′(pk;k) = p > ρp≥ lim
k→∞

V1(D
MCE
1 (pk;k);pk;k)+ lim

k→∞
εk,
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by Proposition 3, and by the definition of εk. Then, for sufficiently large k, we should have that V ′(pk;k)>

V1(DMCE
1 (pk;k);pk;k) + εk, which implies that pk cannot emerge as the equilibrium price of a symmetric

ε-Market Equilibrium for large k.

Similarly, when lim
k→∞

DMCE
1 (pk;k) = 0 (and thus, lim

k→∞
V1(DMCE

1 (pk;k);pk;k) = 0), we have that

lim inf
k→∞

V ′(pk;k)> 0 = lim
k→∞

V1(D
MCE
1 (pk;k);pk;k)+ lim

k→∞
εk,

by again Proposition 3 and the fact that p≥ ξ > 0. Thus, for sufficiently large k, we should again have that

V ′(pk;k) > V1(DMCE
1 (pk;k);pk;k) + εk, which implies that pk cannot emerge as the equilibrium price of a

symmetric ε-Market Equilibrium for large k.

2. To prove this claim, we suppose, on the contrary, that p= 0 cannot be a symmetric equilibrium, so that

there is a sequence p̂k such that a single agent can improve his revenue by increasing his price to p̂k in the kth

marketplace. Let Upool(k) and Udev(k) be the utility of customers choosing price zero and p̂k, respectively.

As we suppose that the deviating agent improves his revenue, strictly positive fraction of customers should

pick him, and thus we should have that Udev(k)≥Upool(k) for any k. Using this observation we have that

(R− p̂k)[1−P12(k)] +RP12(k)≥Udev(k)≥Upool(k)≥ (R− cma)(1−βM(ρk;k− 1))− cma,

where P12(k) is the probability that a customer picking p̂k is served by the agents charging zero in the

kth marketplace. The first inequality above holds since customers, who pick p̂k and served by the deviating

agents, may abandon, and the last inequality holds since agents charging zero may not serve all customers,

and they give priority to their own customers. Since ρ< 1 and using Theorem 5.1 Zeltyn and Mandelbaum

(2005), we have that Upool(k) converges to R with an exponential speed, i.e. there exists a constant ζ such

that Upool(k) =R− e−ζk. Then, the above inequality implies that p̂k[1−P12(k)]≤ e−ζk.

Note that the revenue of the agent deviating, say Vdev(k), in the kth marketplace is less than ρkp′
k[1−P12(k)]

since the rate of customer he can serve cannot be greater than ρk[1−P12(k)]. As a result of this observation,

we have that

Vdev(k)≤ ρke−ζk ⇒
Vdev(k)

εk
≤

ρke−ζk

εk
→ 0 as k→∞,

where the convergence holds since εk
√
k→∞ and eζkk−3/2 →∞ as k→∞. Since Vdev(k)

εk
converges to zero,

we should have that Vdev(k)< εk for large k, which contradicts with the fact that p̂k is a profitable deviation.

Hence, p= 0 should emerge as the equilibrium price of a symmetric εk-Market Equilibrium for large k.

3 Let λ0
k be the constant λ0 defined in the kth marketplace in the no-intervention model. Then, we have

that

(R+ cma)
k− 1

k
−

c

1−β(λ0
k/k)

(

1−β(λ0
k/k)

1−β(λ0
k/k)−λ0

k/kβ′(λ0
k/k)

−
1

k

)

= 0.

Using that equation we have that lim
k→∞

λ0
k/k= λmon. Thus, we have that

lim
k→∞

pk
NI =







(R+ c)
[

1− 1−β(ρ)−ρβ′(ρ)
1−β(ρ)

]

if ρ≤ λmon

(R+ c)
[

1− c
(R+c)(1−β(λmon))

]

if ρ> λmon,
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where pk
NI is the unique equilibrium price under no-intervention setting. Furthermore, we have that the

utilization of a single agent in the no-intervention model converges to ρ
[

1−β(ρ)] when ρ≤ λmon and λmon
[

1−

β(λmon)] otherwise. Thus, it is clear that the revenue of an agent converges to a strictly positive limit, say

v̄, under the no-intervention model. Furthermore, by part 1, the revenue of an agent under the operational

efficiency model is less than ξv̄ for large k. Thus, we have that Πk
OE

Πk
NI

< kξv̄
kv̄

< ξ for large k.

B.4. Proof of Proposition 4

Consider the following problem

Π(p) = max
p≤p′≤R,λ≥0

p′λ[1−β(λ)]

s.to (R− p′ + cma)[1−β(λ)]≥∆(p;R)+ cma

One can easily show that Π(p) =max
λ

(R+ cma)λ[1−β(λ)]−λ[∆(p;R)+ cma]. Then, by using the FOC,

we have that Π(p) = (R+ cma)λ∆(p;R)[1− β(λ∆(p;R))]− λ∆(p;R)(∆(p;R) + cma), where λ∆(p;R) solves

1−β(λ)−λβ′(λ) = ∆(p;R)+cma

R+cma
.

Now, we are ready to prove Proposition 4. For notational convenience, let

p̂(k) = arg max
pk≤p′≤R

V1(DMCE
1 (p′, pk; 1, k−1),DMCE

2 (p′, pk; 1, k−1);p′, pk; 1, k−1), λ(k) =ΛkDMCE
1 (p̂(k), pk; 1, k−

1), and Dpool(k) =DMCE
2 (p̂(k), pk; 1, k− 1). Observe that for any k= 1,2, . . . ,

p̂(k) ∈ [0,R], λ(k)∈ [0,λ], Dpool(k)∈ [0,1], V ′(pk;k)∈ [0,R],

where λ is defined as in Lemma 6. Then, there exists a convergent subsequence of V ′(pk;k), which is denoted

by V ′(pk;k) (for notational convenience), such that lim
k→∞

V ′(pk;k) = limsup
k→∞

V ′(pk;k). Moreover, p̂(k), λ(k),

Dpool(k) have convergent subsequences, and we let p̃dev = lim
k→∞

p̂(k), λ̃= lim
k→∞

λ(k), and D̃pool = lim
k→∞

Dpool(k).

Then, by the continuity of β(λ) and definition of Market Customer Equilibrium, we have that

(R− p̃dev + cma)[1−β(λ̃)] = lim
r→∞

(R− p̂(k)+ cma)[1−β(λ(k))] = lim
k→∞

U1

(

λ(k)/Λk,Dpool(k); p̂(k), p
k; 1, k− 1

)

+ cma

= lim
k→∞

U2

(

λ(k)/Λk,Dpool(k); p̂(k), p
k; 1, k− 1

)

+ cma =
(R− p+ cma)

ρD̃pool

=∆(p;R)+ cma,

where the second equality follows by Lemmas 6.2 and 6.3, and the last two equalities holds by Lemmas 6.5

and 6.6. Therefore, (p̃dev, λ̃) satisfy the constraint in the limit problem. And, this implies that

limsup
k→∞

V ′(pk;k) = p̃devλ̃
(

1−β(λ̃)
)

≤Π(p).

B.5. Proof of Theorem 3

We first show that when ρ> 1, a single provider, who cuts his price, cannot improve his revenue by more than

εk for large enough k. Thus, the only possible profitable deviation for a single agent is to increase his price for

large enough, yet finite, k. To argue that let V cut(pk;k) = max
0≤p′≤pk

V2(DMCE
1 (pk, p′;k− 1,1),DMCE

2 (pk, p′;k−

1,1);pk, p′;k−1,1) for any given sequence pk with limit p <R. Note that ρ lim
k→∞

DMCE
1 (p;k)> 1 by Proposition

2. Therefore, using Theorem 6.1 in Zeltyn and Mandelbaum (2005), we have that the revenue of an agent

converges to p exponentially as k → ∞ when all agents charge pk in a seller’s market, i.e there exists a
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constant ζ such that V1(DMCE
1 (pk;k);pk;k) = pk(1− e−ζk). Using this observation, for large enough k, we

have that

V1(D
MCE
1 (pk;k);pk;k) = pk(1− e−ζk)≥ pk −Re−ζk > pk − εk ≥ V cut(p;k)− εk.

The second inequality holds for large enough k because lim
k→∞

e−ζk

εk
= 0 by our assumption of lim

k→∞
εk
√
k =∞

and the fact that lim
k→∞

eζk/
√
k =∞. This implies that a single agent cannot have a profitable deviation by

decreasing his price in large marketplaces. Hence, in order to verify that a price can emerge as an equilibrium

outcome of a symmetric εk-Market Equilibrium, it is sufficient to check any single agent deviation where the

agent increases his price.

Let V ′(pk;k) = max
pk≤p′≤R

V1(DMCE
1 (p′, pk; 1, k − 1),DMCE

2 (p′, pk; 1, k − 1);p′, pk; 1, k − 1). Since p ∈ P(ρ;R),

we have that

lim
k→∞

V1(D
MCE
1 (pk;k);pk;k) = p > (R+ cma)λ

∆(p;R)[1−β(λ∆(p;R))]−λ∆(p;R)(∆(p;R)+ cma)

≥ limsup
k→∞

V ′(pk;k),

where the last inequality holds by Proposition 4. Hence, for sufficiently large k, we have that V ′(pk;k) <

V1(DMCE
1 (pk;k);pk;k), which implies that pk can emerge as the equilibrium price of a symmetric εk-Market

Equilibrium for large k.

Monotonicity of P(ρ;R): Let Π(p,ρ) = max
λ

(R+ cma)λ[1− β(λ)]− λ[∆(p;R) + cma]. We first want to

note that Π(p,ρ) is increasing in ρ for all p since ∆(p;R) is decreasing in ρ. Now, suppose ρ1 > ρ2 and

p∈P(ρ1;R). Then, we have that p∈P(ρ1;R)⇒ p >Π(p,ρ1)≥Π(p,ρ2)⇒ p∈P(ρ2;R), where the inequality

holds since Π(p,ρ) is increasing in ρ. Hence, we have that P(ρ1;R)⊆P(ρ2;R).

Appendix C: Proofs in Section 6

C.1. Proof of Theorem 4

We showed, in Theorem 2, that pk < ξ for large k for any ξ > 0 even we allowed for only single agent

deviations. Thus, it is only necessary to argue that p= 0 is an equilibrium price. In fact, the proof of such a

claim is the same as the proof of Theorem 2.2: Suppose there is a sequence p̂k such that δk fraction of agents

can improve his revenue by increasing his price to p̂k in the kth marketplace while the remaining agents

charge zero. Then, as in the proof of Theorem 2.2, we can show that the revenue of the deviating agents

should converge to zero in an exponential rate since we assume δk → 0. However, εk converges to zero in a

slower rate. Hence, p= 0 should emerge as the equilibrium price of a symmetric (δk, εk)-Market Equilibrium

for large k. It is worth noting that we could only show the existence of equilibrium for ρ< 1− δ̃ if lim
k→∞

δk = δ̃

for some δ̃> 0.

C.2. Proof of Theorem 5

Before proving the theorem, we first state the following proposition. The proof of this proposition can be

seen in the technical appendix. This proposition simply proves that a group of agents can improve their

revenues by increasing their prices in a seller’s market when they are allowed to deviate together.
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Proposition 6. In a seller’s market (ρ > 1), we have that lim inf
k→∞

DMCE
1 (k)

δk
≥ 1

ρ
, where DMCE

n (k) =

DMCE
n (p̂k, pk; +δkk,, k−+δkk,), lim

k→∞
pk = p <R, lim

k→∞
p̂k = p′, and p < p′ <min

{

R,p+
(

1− 1
ρ

)

(R− p+ cma)
}

.

Furthermore, we have that lim
k→∞

V1(DMCE
1 (k),DMCE

2 (k); p̂k, pk; +δkk,, k−+δkk,) = p′.

We prove the theorem by supposing on the contrary that the result does not hold. Then, we can find a

convergent sequence of equilibrium prices pk such that lim
k→∞

pk ≤ R − ξ < R. Let p = lim
k→∞

pk. Then, using

Proposition 6, agents can improve their utility by increasing their price to p′ in a marketplace with sufficiently

large number of agents. However, this contradicts with the fact that pk is a (δk, εk)-Market Equilibrium.

Hence, for any given ξ > 0, there should exists a large K such that pk >R− ξ for any k >K.

We show the claim on the customer equilibrium by contradiction as well. Thus, we assume that there exists

a ξ > 0 such that DMCE
1 (pk;k)≤ 1/ρ− ξ for all k. This implies that there is a sequence of equilibrium prices

pk such that lim
k→∞

DMCE
1 (pk;k)< 1/ρ. Furthermore, note that lim

k→∞
pk =R by our claim on prices. Then, by

Proposition 3, the limiting revenue of a single agent cutting his price is R whereas his revenue before the

deviation is at most R(1− ξρ). As ξ > 0, this implies that the revenue of an agent cutting his price is strictly

greater than his revenue before the deviation for large k. This contradicts with the definition of equilibrium,

and thus, we should have that lim
k→∞

DMCE
1 (pk;k)≥ 1/ρ.

To show the existence of the equilibrium sequence, let pk =R+ cma− cma
1−βM (k;k) . By construction, we have

that DMCE
1 (pk;k) = 1/ρ, and thus the revenue of agents charging pk, say V k, is R − (R + cma)βM(k;k).

By Zeltyn and Mandelbaum (2005) Theorem 5, V k converges to R with a rate of 1/
√
k, i.e. there exists a

constant ζ such that V k =R− ζ/
√
k. Then, using the fact that lim

k→∞

1
εk

√
k
= 0, we have that εk > ζ/

√
k for

large k which implies that V k+ εk >R for large k. Since agents cannot obtain a revenue strictly greater than

R after a deviation, the proposed sequence is clearly a (δk, εk)-Market Equilibrium for large k.

C.3. Proof of Proposition 5

Let Dinfo(pk;k) be the fraction of customers requesting service when all agents charge pk with limit p <

R in a marketplace where the moderating firm provides real-time congestion information. We first argue

that lim
k→∞

Dinfo(pk;k) > 1/ρ when ρ > 1. The proof is very similar to the proof of Proposition 8: We sup-

pose lim
k→∞

Dinfo(pk;k) ≤ 1/ρ. Then, we would have that lim
k→∞

βM(ΛkDinfo(pk;k);k) = 0, which implies that

lim
k→∞

βinfo(ΛkDinfo(p;k);k) = 0. As the customers would not abandon, they would not wait as well, and thus

the expected utility of each customer would be arbitrarily close to R − p > 0 as k grows. However, this

would be a contradiction because all customers should request service when the expected utility of customers

requesting service is strictly positive.

Once we establish that lim
k→∞

Dinfo(pk, k)> 1/ρ, we have that the limits of the revenue of the agents charging

pk when the firm provides real-time information, say Vinfo(pk;k), can be written as follows:

lim
k→∞

Vinfo(p
k;k) = p lim

k→∞
σinfo(p

k;k)> p(1− ζ) lim
k→∞

σM(pk;k) = p(1− ζ).

Now we prove our claim by contradiction. Thus, we suppose there exists a sequence of prices pk
info such that

pk
info <R(1− ζ)− ξ for all k. Then, there must be a convergent subsequence pk

info with lim
k→∞

pk
info <R(1− ζ).
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Let p = lim
k→∞

pk
info. Then, consider a deviation where all agents charge p′ > p/(1− ζ) (Such a deviation is

possible since p/(1− ζ)<R). As we show above, the revenue of agents will be arbitrarily close to p′(1− ζ)

which is strictly greater than p. Note that agents revenue cannot be higher than p when everybody charges

p. Therefore, for large k, we have that agents improve their profits by raising their prices to p′. However, this

contradicts with the definition of equilibrium. Hence, for any ξ > 0, we should have that pk
info ≥R(1− ζ) for

large k.
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SUPPORTING DOCUMENT
This supporting document presents all the supplementary results in the paper and their proofs.

It also provides the extended version of the analysis of a marketplace with non-identical agents. It

will be available as a part of a working paper.

Appendix S.1: No-intervention (Identical Agents)
S.1.1. Lemma 1

In order to solve the single agent’s problem and characterize the equilibrium, the probability of

abandonment function has to satisfy some technical properties. Some of these technical require-

ments are shown as in the following lemma.

Lemma 1. 1. β(λ) is continuous and continuously twice differentiable.

2. β(λ) is strictly increasing in λ for any λ> 0.

3. ν(λ) is strictly increasing in λ for any λ> 0.

4. λ(1−β(λ)) is strictly increasing and concave in λ for any λ> 0.

5. If ma ≤ 1, then β(λ) is concave in λ.

Proof:

1. After a birth-death chain analysis of an M/M/1+M system with arrival rate λ, service rate

1, and abandonment rate 1/ma, we have that

β(λ) = 1− g(λ)

λ(1+ g(λ))
, and W (λ) =maβ(λ),

where a0 = 1, an = 1
n−1∏

i=0
(1+i/ma)

= mn
a

n−1∏

i=0
(ma+i)

for any n ≥ 1, and g(λ) =
∞
∑

n=1

anλn. As in Ward and

Glynn (2003), g(λ) can be written as g(λ) = [λma]1−maeλma

λma
∫

0

t1−mae−tdt.

The above representation of g(λ) is clearly continuous and continuously twice differentiable, so

that β(λ) is also continuous and continuously twice differentiable. Furthermore, using the above

representation,

g′(λ) = ma[1+ g(λ)]− (ma− 1)
g(λ)

λ
=

∞
∑

n=0

(n+1)an+1λ
n

g′′(λ) = mag
′(λ)− (ma− 1)

[

g′(λ)

λ
− g(λ)

λ2

]

=
∞
∑

n=0

(n+1)(n+2)an+2λ
n.
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2. Observe that

dβ(λ)

dλ
= −λg′(λ)− g(λ)(1+ g(λ))

λ2(1+ g(λ))2
.

Since g(λ)> 0 for any λ> 0, it is sufficient to show that g(λ)(1 + g(λ))− λg′(λ)> 0, and this

holds as follows

λg′(λ)− g(λ) =
∞
∑

n=1

(n− 1)anλ
n.

[g(λ)]2 =
∞
∑

n=1

λn

(

n−1
∑

k=1

an−kak

)

>
∞
∑

n=1

(n− 1)anλ
n,

where the inequality holds since an−kak >an.

3 Observe that
λβ′(λ)

1−β(λ)
= 1− λg′(λ)

g(λ)[1+ g(λ)]
.

Therefore, we have that

d

dλ

[

λβ′(λ)

1−β(λ)

]

=−
λg(λ)

[

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2
]

+ g′(λ)

[

g(λ)[1+ g(λ)]−λg′(λ)

]

[

g(λ)[1+ g(λ)]

]2 .

Since g(λ)> 0 for any λ> 0, it is sufficient to show that

λg(λ)

[

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2
]

+ g′(λ)

[

g(λ)[1+ g(λ)]−λg′(λ)

]

< 0.

As we show above, g(λ)(1+ g(λ))−λg′(λ)> 0. Therefore, we have that

λg(λ)

[

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2
]

+ g′(λ)

[

g(λ)[1+ g(λ)]−λg′(λ)

]

<

λg(λ)

[

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2
]

+2g′(λ)

[

g(λ)[1+ g(λ)]−λg′(λ)

]

= [1+ g(λ)]

[

g(λ)[λg′′(λ)+ 2g′(λ)]− 2λ[g′(λ)]2
]

(4)

Using the definition of g(λ) and its derivatives, we have that

g(λ)[λg′′(λ)+ 2g′(λ)] =
∞
∑

n=1

λn

[

n
∑

k=1

(n+1− k)(n+2− k)akan+1−k

]

.

Similarly, we also have that

2λ[g′(λ)]2 =
∞
∑

n=1

λn

[

n
∑

k=1

(n+1− k)kakan+1−k

]

.
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Combining these two equalities, we obtain that

g(λ)[λg′′(λ)+ 2g′(λ)]− 2λ[g′(λ)]2 =
∞
∑

n=1

λn

[

n
∑

k=1

(n+1− k)(n+2− 3k)akan+1−k

]

= 2λ3(a1a3− a2
2)+

∞
∑

n=4

λn

[

n
∑

k=1

(n+1− k)(n+2− 3k)akan+1−k

]

.

Let sk = (n+2)(n+1)− 6k(n+1− k) for any 1≤ k≤ #n
2
$, and

s$n2 %+1 =

{

−(n+1)(n− 1)/4 if n is odd

0 if n is even.

Then, we have that
$n2 %+1
∑

k=0

skakan+1−k =
n+1
∑

k=0

(n+1− k)(n+2− 3k)akan+1−k.

Following observations can be proven easily.

1.
$n2 %+1
∑

k=0

sk =
n+1
∑

k=0

(n+1− k)(n+2− 3k) = 0.

2. sk−1 ≥ sk for any 2≤ k≤ #n
2
$.

3. s1 = (n− 2)(n− 1)≥ 0, s$n2 %+1 ≤ 0 for any n> 3.

4. s$n2 % =

{

−(n2− 13)/2 if n is odd

−(n+2)(n/2− 1) if n is even
. Therefore, s$n2 % < 0 for any n> 3.

5. For any n> 3, there exists k̄n < #n2 $ such that sk̄n ≥ 0≥ sk̄n+1.

Using the above observations and akan+1−k <ak+1an−k for any k≤ #n
2
$,

$n2 %+1
∑

k=0

skan+1−kak <
k̄n
∑

k=0

skan+2−k̄nak̄n +

$n2 %+1
∑

k=k̄n+1

skan+2−k̄nak̄n = 0,

which implies that g(λ)[λg′′(λ)+ 2g′(λ)]− 2λ[g′(λ)]2 < 0. Finally by Equation 4, we have that

λg(λ)

[

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2
]

+ g′(λ)

[

g(λ)[1+ g(λ)]−λg′(λ)

]

< 0.

4. Let f(λ) = λ(1−β(λ)) for notational simplicity. First, observe that

df(λ)

dλ
=

g′(λ)

[1+ g(λ)]2
> 0,

since g(λ) is strictly increasing in λ. Moreover, we have that

d2f(λ)

dλ2
=

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2

[1+ g(λ)]3
.

Therefore, f(λ) is concave in λ if and only if g′′(λ)[1+ g(λ)]− 2[g′(λ)]2 < 0. In the previous parts,

we show that

λg(λ)

[

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2
]

+ g′(λ)

[

g(λ)[1+ g(λ)]−λg′(λ)

]

< 0

g(λ)[1+ g(λ)]−λg′(λ)> 0.

Combining these two inequalities, and using the fact that g(λ)> 0 for any λ> 0, we have that

g′′(λ)[1+ g(λ)]− 2[g′(λ)]2 < 0.
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5. Using β′(λ) in part 2, we have that

β′′(λ) =
λ[1+ g][2gg′−λg′′]− 2

[

1+ g+λg′
][

g[1+ g]−λg′
]

[

λ[1+ g]
]3

=
2λg′[λg′+1+ g]− [1+ g]

[

λ2g′′+2g[1+ g]
]

[

λ[1+ g]
]3 .

Therefore, we need to show 2λg′[λg′ + 1+ g]− [1 + g]
[

λ2g′′ + 2g[1 + g]
]

< 0 in order to show the

concavity of β(λ). Using the definition of g(λ) and its derivative, we have that

2λg′[λg′+1+ g] = 2λ

[

1+ g+(ma− 1)[1+ g− g/λ]

][

λ[1+ g] +λ(ma− 1)[1+ g− g/λ] + 1+ g

]

= 2λ2(λ+1)[1+ g]2 +2λ(2λ+1)(ma− 1)[1+ g][1+ g− g/λ]

+2
[

λ(ma− 1)[1+ g− g/λ]
]2
,

[1+ g]
[

λ2g′′+2g[1+ g]
]

= [1+ g]

[

λ2ma

[

1+ g+
(ma− 1)(λ− 1)

λ
[1+ g− g/λ]

]

+2g[1+ g]

]

= [2g+λ2ma][1+ g]2 +λ(λ− 1)ma(ma− 1)[1+ g][1+ g− g/λ].

Combining above equations, we have that

2λg′[λg′+1+ g]− [1+ g]
[

λ2g′′+2g[1+ g]
]

= [1+ g]2
[

λ2(2−ma)+ 2λ− 2g
]

+λ(ma− 1)[1+ g][1+ g− g/λ][4λ+2−ma(λ− 1)]

+2
[

λ(ma− 1)[1+ g− g/λ]
]2

= [1+ g]2
[

λ2(2−ma)+ 2λ− 2g
]

+λ(λ+1)(2+ma)(ma− 1)[1+ g][1+ g− g/λ]

−2λ(ma− 1)2g[1+ g− g/λ]

≤ [1+ g]

[

[1+ g]
[

λ2(2−ma)+ 2λ− 2g
]

+ [1+ g− g/λ][λ(λ+1)(2+ma)(ma− 1)]

]

= [1+ g]

[

[1+ g]
[

λ2m2
a +λma(ma +1)− 2g

]

− g
[

(λ+1)(2+ma)(ma− 1)
]

]

= [1+ g]

[

[1+ g]
[

λ2m2
a +λma(ma +1)−ma(ma +1)g

]

−g
[

[1+ g][2−ma(ma +1)]+ (λ+1)(2+ma)(ma− 1)
]

]

= [1+ g]

[

[1+ g]ma(ma +1)
[

a2λ
2 +λ− g

]

− g
[

g−λ
]

[2−ma(ma +1)]

]

< 0,

when ma ≤ 1 because a2λ2 +λ− g < 0, g > λ for any λ> 0, and 2−ma(ma +1)≥ 0 when ma ≤ 1.
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S.1.2. Lemma 2

Lemma 2. We have that S = S′.

Proof:

Let pmax = max
n∈S

pn, and p′max = max
n∈S′

pn. Note that if an agent attracts some demand, then all

agents charging a lower price should also attract some demand. Therefore, we can write

S = {n≤ k : pn ≤ pmax}, and S′ = {n≤ k : pn ≤ p′max},

and it is enough to show pmax = p′max. Suppose NOT, WLOG assume pmax < p′max, i.e. |S|< |S′|.

Then, we have that

0<R− p′max ≤U(ΛDn, pn) for any n∈ S,

since p′max <R and by the definition of Customer Equilibrium. The above inequality implies that
k
∑

n=1

Dn = 1. Then, since |S|< |S′|, there exits an n∗ ∈ S such that Dn∗ >D′
n∗ (Otherwise, we would

have that
k
∑

n=1

D′
n > 1.) However, this leads to the following contradiction

R− p′max ≤U(ΛDn∗ , pn∗)<U(ΛD′
n∗ , pn∗)≤R− p′max.

Hence pmax = p′max.

S.1.3. Lemma 3

Lemma 3. Let

p=











R+ cma− cma
1−β(min{λmon,Λ/k}) if Λ≥ λ0

(R+ cma)− (R+cma)(k−1)
k

1−
Λ/kβ′(Λ/k)
1−β(Λ/k)

−1
if Λ< λ0,

and suppose β(λ) is concave. Then, we have that p#(p) = p, i.e. the best response of a single agent

is p.

Proof:

Recall that the best response problem of agent-# can be rewritten as follows:

max
p"≥0,D"≥0,D−"≥0

p#ΛD# [1−β(ΛD#)]

s.to

(R− p# + cma) [1−β(ΛD#)]− cma ≥ 0

(R− p# + cma) [1−β(ΛD#)] = (R− p+ cma) [1−β(ΛD−#)]

D# +(k− 1)D−# ≤ 1

and the FOC of this problem are:

λD#− η1− η2 = 0, (5)
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λp![1−β(λD!)]−λ2p!D!β
′(λD!)−λ2D!(R− p! + cma)β

′(λD!)− η3 = 0, (6)

η2λ(R− p+ cma)β
′(λD−!)− (k− 1)η3 = 0, (7)

η1
(

(R− p! + cma)[1−β(λD!)]− cma

)

= 0, (8)

η3(1−D!− (k− 1)D−!) = 0, (9)

η1,η3 ≥ 0. (10)

where η1, η2, and η3 are the Lagrangian multipliers of the constraints 1, 2, and 3 of the best

response problem of agent-$, respectively. Moreover, we denote the solution to the above problem

by (D!(p),D−!(p), p!(p)) for a given p.

Case-1 (Λ≥ kλmon): When p=R+ cma − cma
1−β(λmon)

, it is feasible for a single agent to charge

its monopoly price which is exactly R+ cma− cma
1−β(λmon)

. Then, we have that p!(p) = p, and thus p

is clearly the symmetric equilibrium in this case.

Case-2 (λ0 ≤Λ< kλmon):

Claim 1. Let (D!(p),D−!(p), p!(p)) be the solution of single agent’s best response problem when

all other agents charge the price p. If p = R + cma − cma
1−β(Λ/k)

, then we have that (R − p!(p) +

cma)[1−β(ΛD!(p))] = cma.

Proof:

Suppose NOT. Then, we have that η1 = 0 and this implies that η3 > 0. Moreover, we also have that D−!(p)<
1/k. Since D!(p)+ (k− 1)D−!(p) = 1 when η3 > 0, D−!(p)< 1/k implies that D!(p)> 1/k.

Let T = Λ/kβ′(Λ/k)
1−β(Λ/k) for notational simplicity. Then, using FOC, we have that

η2
cma

1−β(Λ/k)
β′(ΛD−!(p)) = (k− 1)η3/Λ

= (k− 1)[p∗n(p)[1−β(ΛD!(p))]− (R+ cma)ΛD!(p)β
′(ΛD!(p))]

≤ (k− 1)(R+ cma)[1−β(ΛD!(p))−ΛD!(p)β
′(ΛD!(p))]− (k− 1)cma

< (k− 1)(R+ cma)[1−β(Λ/k)−Λ/kβ′(Λ/k)]− (k− 1)cma

= (k− 1)(R+ cma)(1−T )[1−β(Λ/k)]− (k− 1)cma,

where first inequality holds since p!(p)≤R+cma− cma

1−β(ΛD!(p))
, second inequality holds sinceD!(p)> 1/k and

λ[1−β(λ)] is strictly concave. Using the facts that η2 =ΛD!(p)>Λ/k, D−!(p)< 1/k, and β(λ) is increasing
and concave, the above inequality implies that

Tcma < η2
cma

1−β(Λ/k)
β′(ΛD−!(p))< (k− 1)(R+ cma)(1−T )[1−β(Λ/k)]− (k− 1)c

⇒ (1−T )[1−β(Λ/k)]

[

(R+ cma)(k− 1)− c

1−β(Λ/k)

(

k

1−T
− 1

)]

> 0

⇒ z(Λ)> 0,

which is a contradiction since Λ≥ λ0 and z(λ) is decreasing in λ.

!

Using the above claim, we will argue that η3 > 0. If η3 = 0, we would have that p!(p) = R +

cma− cma
1−β(λmon)

and ΛD!(p) = λmon since the customer surplus is zero by the above claim. However,
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this would imply that D!(p)+ (k− 1)D−!(p) =
λmon

Λ
+ k−1

k
> 1 which is a contradiction. Hence, we

should have that η3 > 0.

Finally, η3 > 0 and the above claim jointly imply that D!(p) =D−!(p) = 1/k. Therefore, if p=

R+ cma− cma
1−β(Λ/k)

, then we will have that D!(p) = 1/k and p!(p) =R+ cma− cma
1−β(Λ/k)

under the

assumption that β(λ) is concave.

Case 3 (Λ< λ0):

Claim 2. Let (D!(p),D−!(p), p!(p)) be the solution of single agent’s best response problem when

all other agents charge the price p. If p=R+ cma− (R+cma)(k−1)
k

1−T −1
, then we have that (R− p!(p)+

cma)[1−β(ΛD!(p))] =∆, where

∆=
(R− p)(k− 1)[1− ν(Λ/k)][1−β(Λ/k)]

k− 1+ ν(Λ/k)
.

Proof:

Suppose (R− p!(p)+ cma)[1−β(ΛD!(p))]<∆. Then, we have that D−!(p)> 1/k since

(R− p+ cma)[1−β(Λ/k)] =∆>= (R− p+ cma)[1−β(ΛD−!(p))].

Moreover D−!(p)> 1/k implies that D!(p)< 1/k since D!(p)+ (k− 1)D−!(p)≤ 1.

Then, using FOC (6), we have that

η2 =

(

(k− 1)

(R− p+ cma)β′(ΛD−!)

)

η3
Λ

>

(

(k− 1)

(R− p+ cma)β′(Λ/k)

)

η3
Λ
,

where the inequality holds since D−! > 1/k and β(λ) is concave. Moreover, using (7), we have that

η3
Λ

= p!(p)[1−β(ΛD!(p))]−ΛD!(R+ cma)β
′(ΛD!(p))

> (R+ cma)[1−β(ΛD!(p))−ΛD!β
′(ΛD!(p))]−∆

= (R+ cma)[1− ν(ΛD!(p))][1−β(ΛD!(p))]−∆
> (R+ cma)[1− ν(Λ/k)][1−β(Λ/k)]−∆

where the first inequality holds since p!(p) =R+cma− ∆
1−β(ΛD!(p))

, the second inequality holds since D!(p)<
1/k and [1− ν(Λ/k)][1−β(Λ/k)] is the derivative of λ[1−β(λ)], which is strictly concave.

Using these two observations, and the facts that η2 ≤ ΛD!(p) < Λ/k (since η1 ≥ 0) and R− p+ cma =
∆

1−β(Λ/k) , we have that

Λ/k >

(

(k− 1)
∆

1−β(Λ/k)β
′(Λ/k)

)

[

R+ cma)[1− ν(Λ/k)][1−β(Λ/k)]−∆

]

⇒R+ cma)[1− ν(Λ/k)][1−β(Λ/k)]−∆

(

k− 1+ ν(Λ/k)

k− 1

)

< 0

⇒∆>
(R− p)(k− 1)[1− ν(Λ/k)][1−β(Λ/k)]

k− 1+ ν(Λ/k)
=∆,

which is clearly a contradiction. Hence, we should have that (R− p!(p)+ cma)[1−β(ΛD!(p))]≥∆.

Now, we suppose (R − p!(p) + cma)[1− β(ΛD!(p))] > ∆. As the same as above (only by reversing the
inequality signs and using the fact that η1 = 0 since ∆> cma), we can again have a contradiction. Therefore,
we should have that (R− p!(p)+ cma)[1−β(ΛD!(p))] =∆.
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!

As a direct implication of the above claim, we have that D−! = 1/k since (R − p+ cma)[1 −

β(ΛD−!)] =∆. Furthermore, since ∆> 0, we have that D! = 1/k since D!+(k−1)D−! = 1. Finally,

we have that p! = p since D! = 1/k and (R− p! + cma)[1−β(ΛD!)] =∆.

Appendix S.2: Operational Efficiency (Identical Agents)
S.2.1. Lemma 4

Lemma 4. Consider two convergent sequences of non-negative numbers ak and bk such that

lim
k→∞

ak = ã, akk≤ ak+1(k+1), and lim
k→∞

bk = b̃. Then, we have that

lim
k→∞

(

1−βM
(

bkk;akk
))

=
1

max{b̃ρ/ã,1}
.

Proof:

When ak = 1 for any k, the result follows by Theorem 1 in Garnett et al. (2002).

Now, we prove the result for the case when ak #= 1 for any k. Consider any convergent subse-

quence of {β(bkk, akk)}∞k=1, say {β(bk(r)k(r), ak(r)k(r))}∞r=1. WLOG we can assume that ak(r)k(r)<

ak(r+1)k(r+1) for any r= 1,2, . . . (If not consider a subsequence which satisfies that condition).

Let N(r) = ak(r)k(r) and b̂N(r) = bk(r)/ak(r) for any r= 1,2, . . . . Then, we have that

β(bk(r)k(r), ak(r)k(r)) = β(b̂N(r)N(r),N(r)),

for any r= 1,2, . . . . Observe that lim
r→∞

bN(r) = b̃/ã. Therefore, we have that

lim
r→∞

β(b̂N(r)N(r),N(r)) =max{0,1− ã/b̃},

by Theorem 1 in Garnett et al. (2002). This shows that any convergent subsequence of

{β(bkk, akk)}∞k=1 converges to the same limit, max{0,1 − ã/b̃}. Since β(bkk, akk) ∈ [0,1], it also

converges to that limit.

S.2.2. Lemma 5

Lemma 5. For any λ1 +λ2 ≤Λ, and p′ < p, we have that σ2(λ1,λ2;p, p′;k− 1,1)≥ λ1+λ2
1+λ1+λ2

.

Proof:

Let πn be the steady state probability of having n customers in sub-pool-2 which consists of a

single agent. By the birth-death chain analysis, we have that

πn =
λ2

1+ (n− 1)/ma
for any n> 1,

π1 = (λ1 +λ2)π0,
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π0 =
1

1+ (λ1 +λ2)
g(λ2)
λ2

,

where g(λ) =
∞
∑

n=1

λn

n−1∏

i=0
(1+i/ma)

. Note that

π0 ≤
1

1+λ1 +λ2

since g(λ)/λ≥ 1 for any λ≥ 0. Using this observation, we have that

σ2(λ1,λ2;k− 1,1) = 1−π0 ≥ 1− 1

1+λ1 +λ2
=

λ1 +λ2

1+λ1 +λ2
.

S.2.3. Lemma 6

Lemma 6. Let DMCE
n (k) =DMCE

n (p̂k, pk; 1, k− 1) for n= 1,2 in the kth marketplace where p̂k >

pk, lim
k→∞

pk = p, lim
k→∞

p̂k = p̂, p≤ p̂ < R and ρ> 1. Then, the following statements are true.

1. lim inf
k→∞

ΛkDMCE
2 (k)

k−1
> 1.

2. lim
k→∞

PServ12(DMCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) = 0.

3. Suppose λ̃= lim
k→∞

ΛkDMCE
1 (k), then we have that

lim
k→∞

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) = βM(λ̃; 1)

4. There exists a K∗ such that ΛkDMCE
1 (k) ≤ λ̄ for any k > K∗, where λ̄ <∞ is the unique

solution to

1−βM(λ; 1) = cma
R+cma

.

5. Suppose D̃= lim
k→∞

DMCE
2 (k), then we have that

lim
k→∞

β2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) = 1− 1

ρD̃
.

6. lim
k→∞

DMCE
2 (k) =min

{

1, R−p+cma
ρcma

}

.

Proof:

1. Suppose NOT. Then, there exists a subsequence such that

lim
k→∞

ΛkDMCE
2 (k)

k− 1
≤ 1.

We first want to note that

β2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)≤ βMM1(ΛkDMCE
2 (k), k− 1).
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where βMM1(λ, k) is the probability of abandonment in M/M/1+M system with arrival rate λ,

service rate k, and abandonment rate 1/ma. Since lim
k→∞

ΛkDMCE
2 (k)

k−1
≤ 1, we have that

lim
k→∞

β2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)≤ lim
k→∞

βMM1(ΛkDMCE
2 (k), k− 1) = 0, (11)

where the last equality is due to Ward and Glynn (2003). Using this result, we have that

lim
k→∞

U2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) =R− p > 0, (12)

which implies that utility of customers choosing the price pk is strictly positive for large k, so

that we should have DMCE
1 (k) +DMCE

2 (k) = 1 for large k by the definition of Market Customer

Equilibrium. Furthermore, using the fact that the rate of arrival to sub-pool-2 is equal to the rate

of departure (either by service or abandonment), we have that

ΛkDMCE
1 (k)PServ12(D

MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)+ΛkDMCE
2 (k)

= (k− 1)σ2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)+ΛkDMCE
2 (k)β2(D

MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1).

Dividing both sieds by Λk, the above equation implies that

PServ12(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)
[

DMCE
1 (k)+DMCE

2 (k)
]

≤ k− 1

Λk
σ2(D

MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)+DMCE
2 (k)β2(D

MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1).

Letting k go to infinity, we have that

lim
k→∞

PServ12(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) ≤ 1

ρ
. (13)

For notational convenience, we let P̂pool(k) = PServ12(DMCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1), and

βone(k) = β1(DMCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1). Then, we have that

lim
k→∞

U1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)

=
[

1− lim
k→∞

P̂pool(k)
]

lim
k→∞

[

(R− p̂k + cma)[1−βone(k)]− cma

]

+(R− p) lim
k→∞

P̂pool(k)

≤
[

1− lim
k→∞

P̂pool(k)
]

lim
k→∞

[

(R− p̂k + cma)[1−βM(Λk;k)]− cma

]

+(R− p) lim
k→∞

P̂pool(k)

≤
(

1− 1

ρ

)

[

(R− p+ cma)/ρ− cma

]

+
1

ρ
(R− p)

<

(

1− 1

ρ

)

[

(R− p)/ρ
]

+
1

ρ
(R− p)

<R− p, (14)

where the first inequality holds since DMCE
1 (k)+DMCE

2 (k) = 1 for large k and customers choosing

the deviating agent has to wait customers choosing pk (thus the system after deviation is less
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efficient for customers choosing the deviating agent than its multi-server equivalent), and the second

inequality holds since p′ ≥ p, lim
k→∞

[1− βM(Λk;k)] = 1/ρ (as shown in Lemma 4) and by (13), and

the last two strict inequality holds as ρ> 1.

Combining (12) and (14), we have that

U1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)<U2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1),

for large k. However, this contradicts with the definition of Market Customer Equilibrium since

lim
k→∞

DMCE
1 (k) = 1− lim

k→∞
DMCE

2 (k)≥ 1− 1

ρ
> 0.

Hence, we should have that lim
k→∞

ΛkDMCE
2 (k)

k−1
> 1.

2. Let πn be the steady-state probability of having n customers in sub-pool-2, πH
n be the steady-

state probability of having n customers in a hypothetical sub-pool-2 which serves customers from

sub-pool-1 only upon their arrival, and πM
n be the steady-state probability of having n customers

in an M/M/(k− 1) +M system with arrival rate ΛkDMCE
2 (k), service rate 1, and abandonment

rate 1/ma. By studying the birth-death chain of all these systems, we have that

k−1
∑

n=0

πn ≤
k−1
∑

n=0

πH
n =

k−1
∑

n=0

[

Λk(DMCE
1 (k)+DMCE

2 (k))
]n−k+1

(k−1)!

n!

k−1
∑

n=0

[

Λk(DMCE
1 (k)+DMCE

2 (k))
]n−k+1

(k−1)!

n!
+

∞
∑

n=k

[

ΛkDMCE
2 (k)

]n−k+1

n−k+1∏

i=1
(k+i/ma)

≤

k−1
∑

n=0

[

ΛkDMCE
2 (k)

]n−k+1
(k−1)!

n!

k−1
∑

n=0

[

ΛkDMCE
2 (k)

]n−k+1
(k−1)!

n!
+

∞
∑

n=k

[

ΛkDMCE
2 (k)

]n−k+1

n−k+1∏

i=1
(k+i/ma)

=
k−1
∑

n=0

πM
n ,

where the first inequality holds since the rate pushing the number of customers towards k− 1 is

lower in the hypothetical sub-pool-2, and the second inequality holds since x
x+A

, where A> 0 is a

constant, is increasing in x.

Using the above relation, we have that

lim
k→∞

PServ12(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) = lim
k→∞

k−1
∑

n=0

πn

≤ lim
k→∞

k−1
∑

n=0

πM
n = 0,

where the last equality holds since lim inf
k→∞

ΛkDMCE
2 (k)

k−1
> 1.
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3. We first want to note that

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)≤ βM(ΛkDMCE
1 (k); 1)

because some of the customer choosing p̂k may be served by sub-pool-2. Therefore, it is sufficient

to show that

lim inf
k→∞

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)≥ βM(λ̃; 1).

To show that we consider a hypothetical situation where any customer choosing the price p̂k is

duplicated when there is an idle agent in sub-pool-2, and one of these copies goes to sub-pool-2

while the other one is colored and goes to sub-pool-1. Furthermore, any non-colored customer in

sub-pool-1 has service priority.

This hypothetical sub-pool-1 operates as M/M/1+M system with arrival rate ΛkDMCE
1 (k), so

that total abandonment rate is ΛkDMCE
1 (k)βM(ΛkDMCE

1 (k); 1). Moreover, the abandonment rate

of non-colored customers is the same as the abandonment rate in the real sub-pool-1. Then, we

have that

ΛkDMCE
1 (k)βM(ΛkDMCE

1 (k); 1) =Λkβ1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)+Λkβcolor(k),

where Λkβcolor(k) is the rate that colored customers abandon the hypothetical system. It is clear

that Λkβcolor(k)≤ΛkPServ12(DMCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1). Thus, we have that

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) ≥ βM(ΛkDMCE
1 (k); 1)

−PServ12(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1). (15)

Finally, letting k→∞ and using part 2 provide the result we want.

4. We prove our claim by contradiction. Thus, we suppose that there exists a sub-sequence

of {ΛkDMCE
1 (k)}∞k=1 such that ΛkDMCE

1 (k) > λ̄ for any k. Note that λ <∞ since we have that

lim
λ→∞

βM(λ; 1) = 1, and c > 0.

Let PServ12(k) = PServ12(DMCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k−1) for notational convenience. Then,

we have that

U1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)

≤
[

(R− p̂k + cma)
[

1−βM(ΛkDMCE
1 (k); 1)+PServ12(k)

]

− cma

]

[

1−PServ12(k)
]

+(R− pk)PServ12(k)

<

[

(R− p̂k + cma)
[

1−βM(λ̄,1)+PServ12(k)
]

− cma

]

[

1−PServ12(k)
]

+(R− pk)PServ12(k),
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where the first inequality holds by (15), and the second one holds since ΛkDMCE
1 (k)> λ̄.

Since PServ12(k) converges to zero by part 2 and by the definition of λ̄, the above inequality

implies that U1(DMCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1)< 0 for sufficiently large k. However, this con-

tradicts with the definition of Market Customer Equilibrium. Hence, there should be a K∗ such

that ΛkDMCE
1 (k)≤ λ̄ for any k >K∗.

5. Similar to part 2, we let πn be the steady-state probability of having n customers in sub-pool-

2. By the birth-death chain analysis, we have that
[

k− 1+ (n− k+1)/ma

]

πn =ΛkDMCE
2 (k)πn−1,

for any n> k− 1. Furthermore, we have that

β2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; 1, k− 1) =
∞
∑

n=k

(n− k+1)/ma
πn

ΛkDMCE
2 (k)

=
∞
∑

n=k

[

πn−1−
(k− 1)πn

ΛkDMCE
2 (k)

]

=

(

∞
∑

n=k

πn

)

(

1− k− 1

ΛkDMCE
2 (k)

)

+πk−1.

Then, the result follows by letting k→∞ and using the fact from part 2 that lim
k→∞

k−1
∑

n=0

πn = 0.

6. Once we establish part 5, the proof of this part is very similar to the proof in Proposition 2. We

first show that lim inf
k→∞

DMCE
2 (k)≥min

{

1, R−p+cma
ρcma

}

. This is true because otherwise we would have

that customers choosing sub-pool-2 earn strictly positive utility whileDMCE
1 (k)+DMCE

2 (k)< 1 and

this would contradicts with the definition of MCE. Furthermore, we show that limsup
k→∞

DMCE
2 (k)≤

min R−p+cma
ρcma

. This is also true because otherwise we would have that customers choosing sub-pool-2

earn strictly negative utility while DMCE
2 (k)> 0, which contradicts with the definition of MCE.

S.2.4. Proof of Corollary 1

1. Using the birth-death chain analysis of the corresponding analysis, one can show that β(λ) =

λeλ−eλ+1
λeλ

when ma = 1. Then, λ∆(p;R) solves

e−λ =
∆(p;R)+ c

R+ c
,

which implies that λ∆(p;R) = log
(

R+c
∆(p)+c

)

. Once we have λ∆(p;R), P(ρ;R) can be written as in

the corollary immediately.

2. As we showed in the proof of Theorem 2.3

lim
k→∞

pkNI =







(R+ c)
[

1− 1−β(ρ)−ρβ′(ρ)
1−β(ρ)

]

if ρ≤ λmon

(R+ c)
[

1− c
(R+c)(1−β(λmon))

]

if ρ> λmon

Furthermore, using the fact that β(λ) = λeλ−eλ+1
λeλ

, we can obtain the result in the corollary.
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S.2.5. Numerical Study to Derive P(ρ;R) for ma != µ

Figure 2 illustrates P(ρ;R) for the settings where µ !=ma. We provide the graphs by fixing c= 1

but we carry out the numerical study for other values of c as well.
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Figure 2 Any price above the curve is in P(ρ;R), and thus it forms a symmetric ε-Market Equilibrium. For both

examples, R= 1, c= 0.1, µ= 1. For (a), ma = 2. For (b), ma = 0.5.

Appendix S.3: Communication Enabled Model (Identical Agents)

S.3.1. Lemma 7

Lemma 7. Let DMCE
n (k) = DMCE

n (p̂k, pk; "δkk#, k − "δkk#) for n = 1,2 in the kth marketplace,

where lim
k→∞

pk = p, lim
k→∞

p̂k = p′, p < p′ <R and ρ> 1. Then, the following statements are true.

1. lim inf
k→∞

ΛkDMCE
2 (k)

k−%δkk& > 1.

2. lim
k→∞

PServ12(DMCE
1 (k),DMCE

2 (k); "δkk#, k−"δkk#) = 0.

3. lim
k→∞

β1(DMCE
1 (k),DMCE

2 (k); "δkk#, k−"δkk#) =min
{

0,1− 1
ρD̃1

}

, when D̃1 = lim
k→∞

DMCE
1 (k)

δk
.

4. Suppose D̃2 = lim
k→∞

DMCE
2 (k) and δ̃= lim

k→∞
δk, then we have that

lim
k→∞

β2(D
MCE
1 (k),DMCE

2 (k); "δkk#, k−"δkk#) = 1− 1− δ̃

ρD̃2

.

Proof:

Proof of this lemma is very similar to the proof of Lemma 6.

1. Suppose NOT. Then, there exists a subsequence such that

lim
k→∞

ΛkDMCE
2 (k)

k−"δkk# ≤ 1.

Since lim
k→∞

ΛkDMCE
2 (k)

k−%δkk& ≤ 1, we have that

lim
k→∞

β2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#)≤
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lim
k→∞

βMM1(ΛkDMCE
2 (k), k−"δkk#) = 0, (16)

where βMM1(λ, k) is the probability of abandonment in M/M/1+M system with arrival rate λ,

service rate k, and abandonment rate 1/ma. Using this result, we have that

lim
k→∞

U2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#) =R− p > 0.

Thus, we have that DMCE
1 (k)+DMCE

2 (k) = 1 for large k.

Furthermore, using the fact that the rate of arrival to sub-pool-2 is equal to the rate of departure

(either by service or abandonment) and (16), we have that

lim
k→∞

PServ12(D
MCE
1 (k),ΛkDMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#) ≤ 1

ρ
.

Combining the above observations with the fact that p′ > p, we have that

U1(D
MCE
1 (k),ΛkDMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#)<U2(D
MCE
1 (k),ΛkDMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#),

for large k. However, this contradicts with the definition of Market Customer Equilibrium. Hence,

we should have that lim
k→∞

ΛkDMCE
2 (k)

k−%δkk& > 1.

2. Let πn be the steady-state probability of having n customers in sub-pool-2, and πM
n be the

steady-state probability of having n customers in an M/M/(k − "δkk#) +M system with arrival

rate ΛkDMCE
2 (k), service rate 1, and abandonment rate 1/ma. By studying the birth-death chain

of both systems, we have that

lim
k→∞

PServ12(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#) = lim
k→∞

k−%δkk&
∑

n=0

πn

≤ lim
k→∞

k−%δkk&
∑

n=0

πM
n = 0,

where the last equality holds since lim inf
k→∞

ΛkDMCE
2 (k)

k−%δkk& > 1.

3. To prove our claim, we first show that

lim
k→∞

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; "δkk#, k−"δk#) = lim
k→∞

βM(ΛkDMCE
1 (k); "δkk#).

Note that β1(DMCE
1 (k),DMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#)≤ βM(DMCE
1 (k); "δkk#), since some of the

customers choosing sub-pool-1 can be served by sub-pool-2. Therefore, it is sufficient to show that

lim inf
k→∞

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; "δkk#, k−"δkk#)≥ lim
k→∞

βM(ΛkDMCE
1 (k); "δkk#).
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To show that we consider a hypothetical situation where any customer choosing the price p̂k is

duplicated when there is an idle agent in sub-pool-2, and one of these copies goes to sub-pool-2

while the other one is colored and goes to sub-pool-1. Furthermore, any non-colored customer in

sub-pool-1 has service priority.

This hypothetical sub-pool-1 operates as M/M/!δkk"+M system with arrival rate ΛkDMCE
1 (k),

so that total abandonment rate is ΛkDMCE
1 (k)βM(ΛkDMCE

1 (k); !δkk"). Moreover, the abandonment

rate of non-colored customers is the same as the abandonment rate in the real sub-pool-1. Then,

we have that

ΛkDMCE
1 (k)βM(ΛkDMCE

1 (k); !δkk") = ΛkDMCE
1 (k)β1(D

MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk")

+ΛkDMCE
1 (k)βcolor(k),

where βcolor(k) is the probability that colored customers abandon the hypothetical system. It is

clear that βcolor(k)≤ PServ12(DMCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk"). Thus, we have that

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk") ≥ βM(ΛkDMCE
1 (k); !δkk")

−PServ12(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk").

Then, using this inequality and part 2, we have that

lim inf
k→∞

β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δk") ≥ lim
k→∞

βM(ΛkDMCE
1 (k); !δkk").

Finally the result holds since lim
k→∞

βM(ΛkDMCE
1 (k); !δkk") =max

{

0,1− 1
ρD̃1

}

by Lemma 4.

4. Similar to part 2, we let πn be the steady-state probability of having n customers in sub-pool-2.

By the birth-death chain analysis, we have that

β2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk") =





∞
∑

n=k−$δkk%+1

πn





(

1− k−!δkk"
ΛkDMCE

2 (k)

)

+πk.

Then, the result follows by letting k→∞ and using the fact from part 2 that lim
k→∞

k−$δkk%
∑

n=0

πn = 0.

S.3.2. Proof of Proposition 6

Similar to the proofs before, we prove our claim by contradiction. Hence, we suppose that

lim inf
k→∞

DMCE
1 (k)

δk
< 1

ρ
. Then, there exists a convergent subsequence of DMCE

1 (k) such that D̃1 =

lim
k→∞

DMCE
1 (k)

δk
< 1

ρ
.

For notational convenience, we let

Pδ(k) = PServ12(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk")
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βδ(k) = β1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk").

Then, using the fact that D̃1 < 1/ρ, Lemma 7.2, and Lemma 7.3, the limit of the expected utility

of customers choosing the providers charging p̂k can be written as

lim
k→∞

U1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk")

=
(

1− lim
k→∞

Pδ(k)
)(

(R− p′+ cma)
[

1− lim
k→∞

βδ(k)
]

− cma

)

+ lim
k→∞

(R− pk)Pδ(k)

=R− p′ > 0. (17)

which implies that the expected utility of customers choosing the price p̂k is strictly positive

for large k, so that we should have lim
k→∞

DMCE
1 (k) +DMCE

2 (k) = 1 by the definition of customer

equilibrium. Moreover, using the fact that D̃1 < 1/ρ, we have that lim
k→∞

DMCE
2 (k)≥ 1− δ̃/ρ where

δ̃ = lim
k→∞

δk. Then, using Lemma 7.3, the limit of the expected utility of customers choosing the

providers charging pk can be written as

lim
k→∞

U2(D
MCE
1 (k), DMCE

2 (k); p̂k, pk; !δkk", k−!δkk")

= (R− p+ cma)
[

1− lim
k→∞

β2(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk")
]

− cma

≤ (R− p+ cma)
1− δ̃

ρ− δ̃
− cma. (18)

Combining (17) and (18), we have that

lim
k→∞

U2(D
MCE
1 (k), DMCE

2 (k); p̂k, pk; !δkk", k−!δkk")≤ (R− p+ cma)
1− δ̃

ρ− δ̃
− cma ≤ (R− p+ cma)

1

ρ
− cma

<R− p′ = lim
k→∞

U1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk"),

which implies that customers strictly prefer providers charging p̂k over the ones charging pk for

large k. However, this contradicts with the definition of customer equilibrium since lim
k→∞

DMCE
2 (k)>

1− δ̃/ρ> 0. Therefore, we should have that lim inf
k→∞

DMCE
1 (k)

δk
≥ 1

ρ

Furthermore, using the fact that lim inf
k→∞

DMCE
1 (k)

δk
≥ 1

ρ
, Lemma 7.2, and Lemma 7.3, we have that

lim inf
k→∞

V1(D
MCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk") = lim inf
k→∞

p′ρDMCE
1 (k) [1−Pδ(k)] [1−βδ(k)]≥ p′.

Finally, the result about the profit of the providers charging p̂k holds since the revenue of an agent

cannot exceed the price he charges , i.e. V1(DMCE
1 (k),DMCE

2 (k); p̂k, pk; !δkk", k−!δkk")≤ p̂k.
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Appendix S.4: A Marketplace with Non-Identical Agents (Extended
Version)

In Section 3, we introduce a model where all of the agents in the marketplace are a priori identical,

and thus customers earn a reward of R when their service is completed, regardless of the agent

performing the service. However, it is natural to imagine that large service marketplaces attract

service providers with different skill sets, which provide their customers different values for the

service. In this section, we explore the robustness of the conclusions of the previous sections to the

heterogeneity among service providers.

To this end, we extend our original model by considering a marketplace where agents provide

the same service but in different quality levels, say low (L), and high (H). We assume αi fraction of

agents provide quality-i service for i ∈ {H,L} while there are still k agents in total. Furthermore,

we assume that customers value the service with respect to its quality. Particularly, customers earn

a reward of Ri when they are served by a quality-i agent for i ∈ {H,L} where RL ≤RH . We also

distinguish the agents according to their operating costs. We assume the operating cost of quality-i

agents is wi for i∈ {H,L} where wL ≤wH . For notational convenience, we let wL = 0. We refer to

the difference between Ri and wi as the “quality-cost differential” of quality-i agents for i∈ {H,L}.

As in Section 3, the service rate is 1, arrival rate is Λ, abandonment rate is 1/ma, and waiting cost

is c.

In our model with identical agents, our major results are: 1) When the moderating firm does

not intervene in the marketplace, the symmetric equilibrium price will be the outcome of a pure

competition model and increases as the demand increases. 2) Providing operational efficiency alone

may deteriorate the profit of the moderating firm. 3) Complementing operational efficiency with

a strategic tool, which allows communication among service providers, helps the moderating firm

to achieve the “expected benefit” of the efficient matching in a seller’s market. In the next three

subsections, we compare these findings with the results for a model with non-identical agents. We

will use a similar mode of analysis as in Sections 4-6. We also discuss how the composition of the

marketplaces, i.e., the ratio between high-quality and low-quality agents, affects the outcomes.

S.4.1. No-intervention Model

In the model with non-identical agents, we again start with the behavior of the marketplace when

the moderating firm confines itself to setting up the necessary infrastructure. In such a setting,

each agent’s operations can still be modeled as an M/M/1+M queuing system.

As the agents provide a different quality of service, the expected utility of a customer will not

only depend on the price announced by the agent who serves her but also the reward she earns
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after being served by this particular agent. To account for that, we define the “net reward” of a

customer from a quality-i agent charging p as Ri− p for i∈ {H,L}. Then, if the rate of customers

who request service from an agent offering a net reward of r is λ, the expected utility of a customer

requesting service from this agent is UN(λ, r) = (r+cma)[1−β(λ)]−cma. Furthermore, the revenue

of that agent is V N
i (λ, p) = (p−wi)λ[1−β(λ)] if he is a quality-i agent for i∈ {H,L}.

The formal definitions of the Customer Equilibrium and Sub-Game Perfect Nash Equilibrium can

be trivially adopted to our new model and are, thus, omitted. We denote the Customer Equilibrium

by DCE
n (r1, . . . , rkH , rkH+1, . . . , rk) when (p1, . . . , pkH ), i.e. the first kH element of the price vector,

are the prices announced by the high-quality agents, (pkH+1, . . . , pk), i.e. the last kL element of the

price vector, are the prices announced by the low-quality agents, and rn is the net reward offered

by agent-n for any n= {1, . . . , k}. Note rn =RH − pn if n≤ kH while rn =RL− pn if n> kH .

S.4.1.1. Characterization of SPNE: As before, we focus on the symmetric SPNE. Since we

have two groups of agents, we define the symmetric equilibrium as one where all the high-quality

agents charge pH and all the low-quality agents charge pL. Then, a price pair (pH , pL) form a

symmetric equilibrium price, if they satisfy:

pH ∈ argmax
p!≥wH

(p!−wH)ΛD
CE
! (r1, . . . ,RH − p!, . . . , rkH , rkH+1, . . . , rk)

×
[

1−β(ΛDCE
! (r1, . . . ,RH − p!, . . . , rkH , rkH+1, . . . , rk))

]

, (19)

pL ∈ argmax
p!≥wL

(p!−wL)ΛD
CE
! (r1, . . . , rkH , rkH+1, . . . ,RL− p!, . . . , rk)

×
[

1−β(ΛDCE
! (r1, . . . , rkH , rkH+1, . . . ,RL− p!, . . . , rk))

]

, (20)

where for any n %= #, rn =RH − pH if n≤ kH while rn =RL− pL otherwise. Note that the objective

function in (19) is the revenue of a high-quality agents when he deviates and charge p!. Hence, (19)

is the best-response problem of a high-quality agent. Similarly, (20) is the best-response problem

of a low-quality agent.

We denote the symmetric SPNE by (D∗
H ,D

∗
L;p

∗
H , p

∗
L) where all the quality-i (low-quality) agents

charge p∗i and each quality-i agent has a demand of ΛD∗
i for i = {H,L}. We also denote the

equilibrium revenue of quality-i agents by V ∗i . Solving the best-response problems in (19) and (20)

for any given (pH , pL), we characterize the symmetric SPNE in the following theorem.

Theorem 6. Suppose RH − wH ≥ RL. If β(λ) is concave and β′(λ)
1−β(λ)

is decreasing in λ, then

there exists a symmetric SPNE. Furthermore, the symmetric SPNE is characterized as follows:

1. If Λ> kHλmon
H +kLλmon

H , then the symmetric SPNE is (D∗
i ;p

∗
i ) =

(

λmon
i
Λ

;Ri + cma− cma
1−β(λmon

i )

)

for i∈ {H,L}. Furthermore, D∗
H ≥D∗

L, and V ∗H ≥ V ∗L .
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2. If Λ(0)≤Λ≤ kHλmon
H +kLλmon

H , then the symmetric SPNE is (D∗
i ;p

∗
i ) =

(

D̃iΛ;Ri + cma− cma
1−β(D̃i)

)

for i∈ {H,L}, where (D̃L, D̃H)∈ {(x, y) : ÛL(x, y)≤ 0, ÛH(x, y)≤ 0, kLx+ kHy=Λ}.

3. If Λ(RL)<Λ<Λ(0), then the symmetric SPNE is

(D∗
i ;p

∗
i ) =



D̂i(Λ)/Λ;Ri + cma−
(Ri + cma−wi)

[

ki− 1+ kjϑ(D̂i(Λ), D̂j(Λ))
]

ki+kjϑ(D̂i(Λ),D̂j(Λ))

1−ν(D̂i(Λ))
− 1



 ,

for i, j ∈ {H,L} and j $= i. Furthermore, D∗
H ≥D∗

L and V ∗H ≥ V ∗L .

4. If kHλ
RL
H ≤Λ≤Λ(RL), then the symmetric SPNE is

(D∗
H ,D

∗
L;p

∗
H , p

∗
L) =

(

1/kH ,0;RH + cma−
RL + cma

1−β(Λ/kH)
, p

)

.

where p≤RL, and p= 0 when Λ>kHλ
RL
H .

5. If Λ< kHλ
RL
H , then the symmetric SPNE is

(D∗
H ,D

∗
L;p

∗
H , p

∗
L) =

(

1/kH ,0;RH + cma− (RH + cma−wH)

(

kH − 1
kH

1−ν(Λ/kH )
− 1

)

,0

)

.

Here λmon
i is the unique solution to 1−β(λ)−λβ′(λ) = cma

Ri+cma−wi
for i∈ {H,L}, λRL

H is the unique

solution to (RH + cma−wH)(kH − 1)− RL+cma
1−β(λ)

(

kH
1−ν(λ)

− 1

)

= 0,

(D̂L(Λ), D̂H(Λ)) = {(x, y) : ÛL(x, y) = ÛH(x, y), kLx+ kHy=Λ}

ÛL(x, y) = (RL + cma)

[

1− ν(x)

1+ ν(x)
kL+kHϑ(x,y)−1

]

(1−β(x))− cma,

ÛH(x, y) = (RH + cma−wH)

[

1− ν(y)

1+ ν(y)
kH+kLϑ(y,x)−1

]

(1−β(y))− cma,

ϑ(x, y) = yν(x)
xν(y)

, and Λ(u) is the unique solution to ÛH(D̂L(Λ), D̂H(Λ)) = u.

The above equilibrium characterization is very similar to the equilibrium in Theorem 1: Agents

may behave as local monopolists when the arrival rate is sufficiently high, whereas once the arrival

rate is less than Λ(0), the competition between agents is intensified. As a result of intensified

competition, customers observe lower prices, which allow them to earn strictly positive utility.

However, we also encounter new results when we allow for heterogeneous agents. First, unlike

the identical agent model, we observe that the main driver of equilibrium outcomes for certain

parameters is not only the competition between providers but also the fact that agents offer different

quality of service. For instance, when the demand rate is between kHλ
RL
H and Λ(RL), high-quality

agents charge a low price and forego a significant customer surplus both because of the low demand

and the fact that they want to keep the low-quality agents out of the marketplace. Furthermore,
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there is a continuum of symmetric equilibria when the demand rate is between Λ(0) and kHλmon
H +

kLλmon
H , whereas we always have a unique symmetric equilibrium with the identical agent. Although

the prices charged by different groups of agents vary in these equilibria, the expected utility of

customers is always zero.

Note that high-quality agents almost always serve more customers and earn more revenue in the

equilibrium. Moreover, if the arrival rate is less than Λ(RL), the market is covered solely by the

high-quality providers. These findings stem from our assumption that high-quality agents have a

higher quality-cost differential, i.e., RH −wH ≥RL. The above theorem establishes that only the

quality-cost differentials of the agents matter in the equilibrium. In other words, a marketplace

where high quality agents have an operating cost of wH , and generate a reward of RH is the same as

a marketplace where high quality agents have no operating cost, and generate a reward of RH−wH

in terms of equilibrium outcome. Therefore, if the quality-cost differential of the low-quality agents

were higher, the same equilibrium characterization would hold with the only exception that low-

quality agents would earn more revenue.

Having two different groups of agents allows us to discuss the impact of the fraction of agents

with a certain quality, αH and αL, on the equilibrium outcomes. However, the equilibrium char-

acterization in Theorem 6 is not explicit enough to show this impact analytically. Therefore, we

explore this question by an extensive numerical study. As Figure 3 illustrates, the equilibrium prices

and revenues decrease as we have more high-quality agents in the marketplace when RH −wH ≥

RL. On the other hand, having more high-quality agents let the prices and revenues go up when

RH−wH ≤RL. In other words, revenues in a marketplace is deteriorated as a result of having more

low-quality agents only when the operating cost of providing high-quality service is significant.

The implications on the identical agent model: The equilibrium characterization in The-

orem 6 also helps us to prove that the non-symmetric equilibrium may exist only for a small range

of demand-supply ratio ρ in the no-intervention model with identical agents. Furthermore, we show

that this range shrinks to zero as the number of agents grow. The following proposition presents

these results formally:

Proposition 7. When the moderating firm does not intervene in a marketplace with k identical

agents, the symmetric equilibrium described in Theorem 1 is the unique equilibrium when ρ $∈

[λ0,λmon]. Furthermore, we have that

lim
k→∞

λ0 = λmon.
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Figure 3 Equilibrium prices and revenues as a function of the number of high-quality agents, kH . For all examples

Λ= 80, k= 100, RH = 1, RL = 0.8, wL = 0, c= 0.05, ma = 1. In (a) wH = 0.1, in (b) wH = 0.3.

S.4.2. Operational Efficiency Model

After studying a marketplace where there is no intervention by the moderating firm, we now

turn our attention to a marketplace where the moderating firm aims at reducing the unnecessary

waits and idleness in the system through a matching mechanism. The matching mechanism that

the moderating firm provides achieves such an operational efficiency improvement by allowing

customers to postpone their agent selection. In particular, the marketplace under this matching

mechanism operates as a queuing system where all agents offering the same net reward are virtually

grouped together, regardless of the quality of their service. We assume that customers decide which

agents to choose based on the net reward and they treat all agents as the same when they offer the

same net reward because the nature of the tasks is simple, benefits are tangible, features are clear,

and thus rewards are easily quantifiable. Further, one may view these tasks as commodities.11

Once each agent announces a price per customer to be served, we can construct a resulting net

11 One may envision a model, in which customers strictly prefer high-quality agents even if they provide the same
net reward as low-quality agents. Such a model would require additional notation and analysis but our key findings,
namely providing operational efficiency may lead to profit loss and enabling communication may help to overcome
that loss, continue to hold.
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reward vector (rn)Nn=1 where N ≤ k is the number of different net rewards announced by the agents.

As before, we refer to agents announcing rn as sub-pool-n, and denote the number of agents of

quality-i in the sub-pool-n by yin for i ∈ {H,L}. Hence, (rn, yHn, yLn) summarizes the strategy of

all agents.

In a marketplace with non-identical agents, the customer decision making and experience is the

same as in Section 5, and we still denote the fraction of customers requesting service from the

sub-pool-n by Dn. Given the decisions of customers and agents, the expected utility of a customer

choosing sub-pool-! is

U!(D1, . . . ,DN ; r1, . . . , rN ;y1, . . . , yN) = PServ!!
[

(r! + cma)(1−β!)− cma

]

+
∑

m !=!

PServ!mrm,

where yn = yHn+yLn, β!(D1, . . . ,DN ; r1, . . . , rN ;y1, . . . , yN) denotes the probability of abandonment

in the sub-pool-!, and PServ!m(D1, . . . ,DN ; r1, . . . , rN ;y1, . . . , yN) denotes the probability that a

customer choosing the sub-pool-! is served by the sub-pool-m when ΛDn is the rate of customer

arrival to the sub-pool-n for n= 1, . . . ,N . Note that the expected utility of customers depends on

the total number of agents in a sub-pool instead of the number of agents with different service

quality, because all agents are treated equally by the customers as long as they offer the same

net reward. Furthermore, the revenue of a quality-i agent in sub-pool-! for i ∈ {H,L} is (p! −

wi)σ!(D1, . . . ,DN ; r1, . . . , rN ;y1, . . . , yN), where σ!(D1, . . . ,DN ; r1, . . . , rN ;y1, . . . , yN) is utilization of

agents in sub-pool-! when ΛDn is the rate of customer arrival to the sub-pool-n for n= 1, . . . ,N .

The Market Customer Equilibrium and ε-Market Equilibrium are again the natural extensions

of the definitions in Section 5 to a marketplace with non-identical agents and are, thus, omitted.

We denote the fraction of customers requesting service from sub-pool-n in a Market Customer

Equilibrium byDMCE
n (r1, . . . , rN ;y1, . . . , yN) when (rn, yHn, yLn)

N
n=1 is a tuple of three vectors whose

components are the net rewards and the number of agents announcing them, and yn = yHn + yLn.

We study the behavior of the equilibrium in large marketplaces by considering the sequence of

marketplaces we described in Section 5 along with the following assumption: the number of high-

quality and low-quality agents are αHk and αLk, respectively, in the kth marketplace. This ensures

that the ratio of high and low-quality agents is constant along the sequence of marketplaces.

S.4.2.1. Characterization of the Market Equilibrium: Here we characterize the sym-

metric equilibrium along the trajectory of marketplaces introduced above. As a first step, we derive

the revenue of agents when all the quality-i agents for i∈ {H,L}, charge the same price pki in the

kth marketplace where pki → pi as k→∞.
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Proposition 8. Let V MCE
H (pkH , p

k
L;k) and V MCE

L (pkH , p
k
L;k) be the revenue of an high-quality

and a low-quality agent, respectively, when all the high-quality agents charge pkH and all the low-

quality agents charge pkL in the kth marketplace. If Ri − pi > Rj − pj for some i, j ∈ {H,L} with

i #= j, then we have that

lim
k→∞

V MCE
i (pkH , p

k
L;k) =

{

ρ
αi
(pi−wi) if ρ≤ αi,

pi−wi if ρ> αi.

Furthermore, when pj <Rj, we have that

lim
k→∞

V MCE
j (pkH , p

k
L;k) =















0 ρ≤ (Ri−pi+cma)αi
Rj−pj+cma

,
(

ρ
αj
− (Ri−pi+cma)αi

(Rj−pj+cma)αj

)

(pj −wj)
(Ri−pi+cma)αi
Rj−pj+cma

< ρ≤ R̄
Rj−pj+cma

,

pj −wj ρ> R̄
Rj−pj+cma

,

and when pj =Rj, we have that

lim
k→∞

V MCE
j (pkH , p

k
L;k) ≤















0 ρ≤ (Ri−pi+cma)αi
cma

,
(

ρ
αj
− (Ri−pi+cma)αi

cmaαj

)

(pj −wj)
(Ri−pi+cma)αi

cma
< ρ≤ R̄

cma
,

pj −wj ρ> R̄
cma

,

where R̄= (RH − pH)αH +(RL− pL)αL + cma.

The above proposition establishes that the group of agents offering the higher limiting net reward

will always be over-utilized as long as the total demand exceeds their capacity. On the other hand,

the group offering the lower net reward will be under-utilized unless ρ is sufficiently high. It is

worth highlighting that the net reward does not depend on the operating cost of the agents, and

thus the customer equilibrium is independent of the operating cost of an agent.

Using the above proposition, the group offering the lower limiting net reward will always be

“under-utilized” in a buyer’s market since R̄
Rj−pj+cma

> 1> ρ in a buyer’s market for j ∈ {H,L},

such that Ri − pi > Rj − pj with i ∈ {H,L} and i #= j. In other words, ρ cannot be high enough

to let the group offering the lower net reward to be over-utilized in a buyer’s market. It turns out

this will create an opportunity for the members of that group to improve their revenue by slightly

decreasing their price if it is strictly greater than their operating cost. Therefore, we cannot have

any symmetric equilibrium where the agents with different quality offer a different level of net

reward and both of them earn strictly positive revenue. Furthermore, when they offer the same

level of net reward in the limit, at least one group of agents will be “under-utilized” along the

trajectory of marketplaces since ρ< 1. Then, we show that there will always be room for a single

agent to improve his revenue in a buyer’s market. Hence, in a buyer’s market, we can only have an

equilibrium where only one group of agents (high or low) can earn positive revenue in the limit.
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In fact, Theorem 7 below establishes that group of agents with the higher quality-cost differential

can earn positive revenue when demand exceeds their capacity.

The above proposition also states that both of the groups can be over-utilized when they offer

different level of limiting net reward in a seller’s market. In this case, cutting the price does not

help the agents to improve their revenues. However, we show that in this setting, an agent from

the group offering the higher net reward will have an opportunity to increase his price and improve

his revenue. Thus, even in a seller’s market, it will not be possible to see a symmetric equilibrium

where the agents with different quality offer a different level of net reward. Finally, when all agents

offer the same level of limiting net reward in a seller’s market, the pooling benefits associated with

operational efficiency will again serve as a deterrent for deviation as in the case of identical agents.

Thus, there will be multiple symmetric equilibria in a seller’s market as established in Theorem 3.

We formally present these observations in the following result:

Theorem 7. Suppose Ri − wi > Rj − wj for some i, j ∈ {H,L} with i #= j. Let (pki , p
k
j ) be a

price pair emerging as the equilibrium price pair of a symmetric εk-Market Equilibrium in the kth

marketplace.

1. If ρ< αi, then for any ξ > 0, we have that pki <wi+ξ for large k. Furthermore, any price pair

(pi, pj), with pi =wi, emerges as the equilibrium price pair of a symmetric εk-Market Equilibrium

in the kth marketplace for large k.

2. If αi < ρ< 1, then

(a) For any ξ > 0, we have either one of the following

(i) pki <max

{

wi, (Ri−Rj +wj)− (Rj −wj + cma)

[

ρ

αi
− 1

]}

+ ξ for large k,

(ii) |pki − (Ri−Rj +wj)|< ξ, and pkj <wj + ξ for large k.

(b) Any given sequence of price pairs (p̃ki , p̃
k
j ) emerges as the equilibrium price pair of a εk-

symmetric Market Equilibrium in the kth marketplace for large k, when p̃ki converges to p̃i as

k→∞, p̃i ∈P(ρ/αi,Ri−wi) and wi ≤ p̃i < (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]

,

(c) There exists sequence of prices p̂ki such that p̂ki <Ri−Rj +wj, lim
k→∞

p̂ki =Ri−Rj +wj, and

(p̂ki ,wj) is the equilibrium price pair of a symmetric εk-Market Equilibrium in the kth marketplace

for large k.

3. If ρ> 1, then

(a) Any given sequence of price pairs (p̃ki , p̃
k
j ) emerges as the equilibrium price pair of a

symmetric εk-Market Equilibrium in the kth marketplace for large k, when p̃ki converges to p̃i as

k→∞ for i∈ {H,L}, p̃j ∈P(ρ,Rj) and p̃i = p̃j +Ri−Rj +wj,
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(b) For any ξ > 0, we have that pki <max
{

wi, (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]}

+ξ

for large k when pi "= pj +Ri−Rj +wj.

When we focus on the case where i=H and j = L, the above theorem shows that high-quality

agents can only charge a price very close to their operating costs in a symmetric equilibrium

when demand is low, and in such a setting, only the high-quality agents can serve customers

since customers strictly prefer high-quality agents. Thus, the revenue of all agents is in a small

neighborhood of zero in large marketplaces when demand is low. This result is similar to the one

in the model with identical agents. On the other hand, when demand is sufficiently high, namely

ρ> αH , there are multiple symmetric equilibria. The only significant difference here is that there

may be multiple equilibria even in a buyer’s market as long as demand exceeds the total capacity

of high-quality agents. However, similar to Section 5, most of these equilibrium prices may be very

low compared to the equilibrium outcome in the no-intervention model. Thus, providing tools to

improve the operational efficiency may still deteriorate the moderating firm’s profit. It is also worth

noting that the best equilibrium outcome from the perspective of agents and the moderating firm is

the one where the high-quality agents charge almost RH−RL when αH < ρ< 1. Even this outcome

may be worse than the outcome in a no-intervention model as long as RH and RL are close to each

other. In fact, this outcome is equivalent to the almost zero price equilibrium when RH −wH #RL

and wH = 0.

When we consider the case where i=L and j =H, we would have similar results where the role

of high- and low-quality agents are flipped. For instance, the total capacity of the low-quality agent

would determine where we have multiple equilibria in a buyer’s market, and only the low-quality

agents would serve customers in all of these equilibria. Furthermore, the only apparent impact of

αH and αL is that the region where the agents charge their operating costs in equilibrium expands

by any increase in αH when RH −wH >RL.

The implications on the identical agent model: One important result in the above theorem

is that any sequence of price pairs (pkH , p
k
L) with both pH >wH and pL > 0 cannot be an equilibrium

in large marketplaces. This result holds even for the setting where RH − wH = RL and wH = 0.

Using this observation, we can argue that there cannot be any non-symmetric equilibrium where

agents earn positive revenue in the operational efficiency model with identical agents. Thus, even

if there are any non-symmetric equilibrium in a buyer’s market with identical agents, the revenue

of all agents should be almost zero.

Proposition 9. Let (pk1 , . . . , p
k
N) be a price vector emerging as the equilibrium price vector of

an εk-Market Equilibrium in the kth marketplace in the operational efficiency model with identical
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agents where pk1 < pk2 < · · ·< pkN . Then for any ξ > 0, we have that pk1 < ξ and V k
n < ξ for large k,

where V k
n is the revenue of agents charging pkn in the kth marketplace.

S.4.3. Communication Enabled Model

As in the model with identical agents, we finally explore the impact of enabling communication

among agents in a market with non-identical agents. To this end, we study the behavior of the

(δk, εk)-Market Equilibrium in large marketplaces by considering the sequence of marketplaces

described in the previous sub-section.

In Theorem 7, we show that the revenue of agents is always in a small neighborhood of zero

in large marketplaces when the total capacity of agents with high quality-cost differential exceed

demand. Since (δk, εk)-Market Equilibrium is a refinement of εk-Market Equilibrium, this equilib-

rium outcome is the only possible (δk, εk)-Market Equilibrium when demand is sufficiently low in

a buyer’s market.

Theorem 7 also establishes that there are multiple symmetric εk-Market Equilibria when ρ

exceeds the capacity of agents with higher quality-cost differential. In most of these equilibria,

agents with higher quality-cost differential will be over-utilized, and thus will have an opportunity

to capitalize on this congestion when pre-play communication is allowed as we discussed in Section

6. However there is limit for that capitalization in a buyer’s market. Namely, when Ri−wi >Rj−wj

for some i, j ∈ {H,L} with i #= j, quality-i agents cannot charge a price higher than Ri−Rj +wj

because of the threat of quality-j agents. It turns out such a threat does not exist in a seller’s

market. Hence, agents can sustain a price, which extracts all of the customer surplus, when ρ> 1.

We summarize these results in the following theorem:

Theorem 8. Suppose Ri−wi >Rj−wj for some i, j ∈ {H,L} with i #= j. Let (pkH , p
k
L) be a price

pair emerging in a symmetric (δk, εk)-Market Equilibrium in the kth marketplace.

1. If ρ< αi, then for any ξ > 0, we have that pki <wi+ξ for large k. Furthermore, when lim
k→∞

δk =

0, there exists a sequence (pki , p
k
j ) that forms a symmetric (δk, εk)-Market Equilibrium in the kth

marketplace, for large k.

2. If αi < ρ < 1, then for any ξ > 0, we have that |pki − (Ri − Rj + wj)| < ξ and pkj < ξ for

large k. Furthermore, when lim
k→∞

δk = 0, there exists a sequence (pki , p
k
j ) that forms a symmetric

(δk, εk)-Market Equilibrium in the kth marketplace, for large k when lim
k→∞

δk = 0.

3. If ρ > 1, then for any ξ > 0, we have that pki > Ri − ξ for i ∈ {H,L} and large k. Further-

more, there exists a sequence (pki , p
k
j ) that forms a symmetric (δk, εk)-Market Equilibrium in the

kth marketplace, for large k.
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The implications on the identical agent model: Similar to the previous results in this

section, the above theorem helps us to show that, even if there are any non-symmetric equilibrium

in a seller’s market with identical agents, the revenue of agents in equilibrium should converge to

R as well as the price they charge.

Proposition 10. Let (pk1 , . . . , p
k
N), where N > 1, be an equilibrium price vector of an (δk, εk)-

Market Equilibrium in the kth marketplace with identical agents. If ρ> 1, then for any ξ > 0, we

have that pkn >R− ξ for all n∈ {1, . . . ,N} and large k.

Appendix S.5: Proofs in Section S.4
S.5.1. Proof of Theorem 6

The proof for the equilibrium characterization is again used the approach we used in the identical

agent setting. The rigorous proof can be seen in the Technical Appendix. Here, we only give the

proofs for the claims that equilibrium demand for the high-quality agents and their equilibrium

revenue is higher, i.e. D∗
H ≥D∗

L, and V ∗H ≥ V ∗L , for regions 1 and 3.

Region 1 (Λ > kHλmon
H + kLλmon

L ): In this case both groups solves the following monopoly

problem:

max
p≥wi,λ≥0

(p−wi)λ [1−β(λ)]−λcma

s.to

(Ri− p+ cma) [1−β(λ)]− cma ≥ 0,

which can be reduced to max
λ≥0

(Ri + cma−wi)λ [1−β(λ)]. Note that Ri−wi is a parameter of this

optimization problem, and by the envelope theorem the value of the optimum and the optimal

solution are both increasing in Ri−wi. Therefore, our claim holds since RH −wH ≥RL.

Region 3 (Λ(RL)< Λ< Λ(0)): We first want to note that y(x)> x where y(x) is the unique

solution for ÛL(x, y) = ÛH(x, y) for any given x by Lemma 15 in the Technical Appendix. Thus,

we should have that ΛD∗
H >ΛD∗

L by their definition.

Furthermore, we have that ΛD∗
H < λmon

H since

ÛH(x,λ
mon
H ) = (RH + cma−wH)





cma
RH+cma

1+
ν(λmon

H )

kL+kHϑ(λmon
H ,x)−1



− cma < 0,

for any 0≤ x≤ λmon
L . Then, using the optimal prices p∗H and p∗L, we have that

V ∗H = (RH + cma−wH)ΛD
∗
H(1−β(ΛD∗

H))−ΛD∗
H(ÛH(ΛD

∗
L,ΛD

∗
H)+ cma)

≥ (RH + cma−wH)ΛD
∗
L(1−β(ΛD∗

L))−ΛD∗
L(ÛH(ΛD

∗
L,ΛD

∗
H)+ cma)
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≥ (RL + cma)ΛD
∗
L(1−β(ΛD∗

L))−ΛD∗
L(ÛH(ΛD

∗
L,ΛD

∗
H)+ cma) = V ∗L ,

where the first inequality holds since (RH + cma − wH)λ(1− β(λ))− λcma is increasing for any

λ≤ λdom
H , and the second one holds since RH −wH ≥RL.

S.5.2. Proof of Proposition 7

We prove our claim by contradiction. Therefore, we suppose there exists a non-symmetric equilib-

rium where N > 1 groups of agents charge different prices, i.e., there exists a price vector (p∗n)
N
n=1

arising as the equilibrium outcome.

When we let RH = RL = R and wH = 0 in Theorem 6, the equilibrium characterization shows

that each group should charge the same price in part 1 and 3. Note that Λ(0) = λ0, and λmon
H =

λmon
L = λmon by definition and the fact that RH = RL = R. Furthermore, we do not have part 4

and 5 since RH =RL =R. Hence, as a corollary of Theorem 6, we cannot have a non-symmetric

equilibrium with N = 2.

N > 2 requires extra arguments. Similar to the additional functions in Theorem 6, we define N

different functions:

Û!(x1, . . . , xN) = (R+ cma)







1− ν(x!)

1+ ν(x!)
k!−1+

∑

n !=!
knϑ(x!,xn)







[

1−β(x!)
]

− cma,

for any $∈ {1, . . . ,N}.

We first focus on the case where ρ< λ0. Let D∗
n be the fraction of customers picking an agent

charging p∗n in the equilibrium. We now argue that U(ΛD∗
n, p

∗
n) > 0 for all n ∈ {1, . . . ,N}, i.e.

customer utility is strictly positive in the equilibrium. To see that suppose customer utility is zero

on the contrary. Then as in Case-2 of the proof of Theorem 6, we can show that it is necessary to

have Û!(ΛD∗
1 , . . . ,ΛD

∗
N)≤ 0.

Without loss of generality, assume D∗
1 > · · ·>D∗

N . This implies that D∗
N < 1/k because otherwise

we would have that
n
∑

n=1

knD∗
n > 1. Furthermore, note that ϑ(x, y)> 1 when x< y as β′(x)/(1−β(x))

is assumed to be decreasing. Hence, we have that ϑ(ΛD∗
N ,ΛD

∗
n)> 1 for all n∈ {1, . . . ,N}. Moreover,

since D∗
N < 1/k and both β(x) and ν(x) are decreasing, we have that

[

1− ν(ΛD∗
N)
][

1−β(ΛD∗
N)
]

>
[

1− ν(Λ/k)
][

1−β(Λ/k)
]

Combining these observations, we have that

ÛN(ΛD
∗
1 , . . . ,ΛD

∗
N)> ÛN(ρ, . . . ,ρ)> 0,
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where the last inequality holds since ρ< λ0 and ÛN(λ0, . . . ,λ0) = 0 by definition of λ0.

Once we have that customer utility will be strictly positive in the equilibrium, we can show that

utility of customers picking the agent charging p∗n will be Ûn(ΛD∗
1 , . . . ,ΛD

∗
N) in the equilibrium.

Moreover, all customers request service. This means that, (D∗
n)

N
n=1 should solve that

Û1(ΛD
∗
1 , . . . ,ΛD

∗
N) = · · ·= ÛN(ΛD

∗
1 , . . . ,ΛD

∗
N), and

n
∑

n=1

knD
∗
n = 1.

We prove our claim for ρ< λ0 by showing that the unique solution to the above system is D∗
n = 1/k

for all n ∈ {1, . . . ,N}. First, it is easy to see that D∗
n = 1/k solves the above system of equations

by the definition of Ûn functions. Suppose there exists another vector (D1, . . . ,DN) which solves

these equations. Without loss of generality, assume D1 > · · ·>DN . As we mentioned above, this

implies that

ÛN(ΛD1, . . . ,ΛDN)> ÛN(ρ, . . . ,ρ)> Û1(ΛD1, . . . ,ΛDN).

This is a contradiction. Therefore, the only solution to above equation system is D∗
n = 1/k for all

n ∈ {1, . . . ,N}. So far, we assume that agents charge N different prices, and concluded that they

attract the same demand. However, this contradicts with the definition of Customer Equilibrium.

Hence, our assumption of non-symmetric equilibrium is wrong for ρ< λ0.

Now, we show that there cannot be any non-symmetric equilibrium where agents charge N > 2

different prices when ρ> λmon. It is very easy to argue that a single agent always attracts a demand

less than λmon (demand of a monopolist) in the equilibrium because otherwise he would have

opportunity to deviate and behave like a monopolist. Hence, we should have that ΛD∗
n ≤ λmon for

all n∈ {1, . . . ,N}. This implies that
n
∑

n=1

knD∗
n < 1 since Λ> kλmon. Then, as in the proof of Case-1

of Theorem 6, we can show that
n
∑

n=1

knD∗
n < 1 implies that ΛD∗

n = λmon for any n∈ {1, . . . ,N}. The

intuition is that there are customers not requesting service as
n
∑

n=1

knD∗
n < 1, so that there is room

for any single agent to behave like a monopolist.

S.5.3. Proof of Proposition 8

Lemma 8. In the kth marketplace, let

DH(k) = DMCE
1 (RH − pkH ,RL− pkL;αHk,αLk)

DL(k) = DMCE
2 (RH − pkH ,RL− pkL;αHk,αLk)

βH(k) = β1(DH(k),DL(k);RH − pkH ,RL− pkL;αHk,αLk)

βL(k) = β2(DH(k),DL(k);RH − pkH ,RL− pkL;αHk,αLk)
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PHL(k) = PServ12(DH(k),DL(k);RH − pkH ,RL− pkL;αHk,αLk)

PLH(k) = PServ21(DH(k),DL(k);RH − pkH ,RL− pkL;αHk,αLk),

where lim
k→∞

pki = pi ≤Ri for i∈ {H,L}. the, when Ri−pi >Rj−pj for some i, j ∈ {H,L} with i $= j,

the following statements are true:

1. If ρ≤ αi, we have that lim
k→∞

Di(k)+Pji(k)Dj(k) = 1.

2. If ρ> αi, we have that

(a) lim inf
k→∞

ΛkDi(k)
αik

> 1.

(b) lim
k→∞

Pji(k) = 0.

(c) lim
k→∞

βj(k) =max
{

0,1− αj

ρD̃j

}

, when D̃j = lim
k→∞

Dj(k).

(d) lim
k→∞

βi(k) = 1− αi
ρD̃i

, when D̃i = lim
k→∞

Di(k).

3. If ρ> αi, we have that

lim
k→∞

Di(k) =max

{

min

{

1,

(

Ri− pi + cma

Rj − pj + cma

)

αi

ρ

}

,min

{

Ri− pi + cma

R̄
αi,

(

Ri− pi + cma

cma

)

αi

ρ

}}

.

4. If ρ< R̄
cma

and pj <Rj, we have that

lim
k→∞

Dj(k) = 1− lim
k→∞

Di(k).

Furthermore, lim
k→∞

Dj(k)≤ 1− lim
k→∞

Di(k) when pj =Rj.

5. If ρ≥ R̄
cma

and pj <Rj, we have that

lim
k→∞

Dj(k) =

(

Rj − pj + cma

cma

)

αj

ρ
.

Furthermore, lim
k→∞

Dj(k)≤
(

Rj−pj+cma

cma

)

αj

ρ
when pj =Rj.

The proof this lemma can be seen in the Technical Appendix.

Revenue of Group-i: Using the above lemma, we have that

lim
k→∞

V MCE
i (pkH , p

k
L;k) = lim

k→∞
(pi−wi)

ρDi(k)

αi
[1−βi(k)] + lim

k→∞
(pi−wi)

ρPji(k)Dj(k)

αi
= (pi−wi)min{ρ/αi,1}.

Revenue of Group-j: Using the above lemma, we have that lim
k→∞

Dj(k) = 0 when ρ ≤
(Ri−pi+cma)αi
Rj−pj+cma

. Therefore, the revenue goes to zero.

Furthermore, when (Ri−pi+cma)αi
Rj−pj+cma

< ρ≤ R̄
Rj−pj+cma

, we have that lim
k→∞

ρDj(k) =
(

ρ− (Ri−pi+cma)αi
Rj−pj+cma

)

≤

αj. Therefore, we have that lim
k→∞

βj(k) = 0, and

lim
k→∞

V MCE
j (pkH , p

k
L;k) = lim

k→∞
(pj −wj)

ρDj(k)

αj
[1−βj(k)] =

(

ρ

αj
− (Ri− pi + cma)αi

(Rj − pj + cma)αj

)

(pj −wj),

when pj <Rj. When pj =Rj, the above expression is an upper-bound for the agent revenues since

lim
k→∞

Dj(k)≤ 1− lim
k→∞

Di(k).

Finally, when ρ> R̄
Rj−pj+cma

, we have that lim
k→∞

ρDj(k)> αj, and thus the limit of the revenue

goes to pj −wj when pj <Rj. When pj =Rj, pj −wj is an upper-bound for the agent revenues.
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S.5.4. Supplementary Claims for the Proof of Theorem 7

Lemma 9. For any (pkH , p
k
L), where lim

k→∞
pki = pi for i ∈ {H,L}, 1 < Ri−pi+cma

Rj−pj+cma
< ρ

αi
, for some

i, j ∈ {H,L} with i "= j, and pj <Rj, we have that

lim
k→∞

Videv(k) = pi−wi + ε, lim
k→∞

Vjdev(k) = pj −wj − ε,

where ε< (Ri − pi)− (Rj − pj), Videv(k) is the profit of a quality-i agent charging pi + ε when all

other quality-i providers charge pki , and all quality-j providers charge pkj ,and Vjdev(k) is the profit

of a quality-j agent charging pj − ε when all other quality-i providers charge pi, and all quality-j

providers charge pj. Furthermore, the same result holds even when pj =Rj as long as the limiting

revenue of quality-j agents is strictly positive before deviation.

The proof of the lemma can be seen in the Technical Appendix.

Lemma 10. For any given sequence of price pairs (pkH , p
k
L), where lim

k→∞
pkH = pH , lim

k→∞
pkL = pL,

and RH − pH =RL− pL > 0, we have that

lim
k→∞

Videv(k) = pi− ε−wi, for i∈ {H,L}

where 0 < ε <min{0, pi −wi} and Videv(k) is the profit of a quality-i agent charging pi − ε when

all other low-quality providers charge pkL, and all other high-quality providers charge pkH in the kth

marketplace. Furthermore, the same result holds even when RH − pH =RL− pL = 0 as long as the

limiting revenue of all agents is strictly positive before deviation.

The proof of the lemma can be seen in the Technical Appendix.

Lemma 11. If p ∈ P(ρ;R), where P(ρ;R) is defined as in Theorem 3, then for any ε > 0, we

have that

(p+ ε)∈P(ρ;R+ ε).

The proof of the lemma can be seen in the Technical Appendix.

S.5.5. Proof of Theorem 7

1. We prove this claim by contradiction. Thus, we assume that there exists a ξ > 0 such that pki ≥ ξ

for any k. This implies that there exists a sequence of equilibrium price pairs with limits satisfying

pi >wi. Following a case-by-case analysis, we show that this assumption leads to a contradiction:

i. (Ri−pi =Rj−pj): In this case, the utilization of quality-i agents cannot be higher

than ρ/αi even though all customer request service from them. Thus, the upper-bound for their

limiting revenue is ρ/αi(pi−wi). However, Lemma 10 establishes that a quality-i agent can secure
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a revenue of pi − wi − ε when he cuts his price by ε as long as pj < Rj or the limiting revenue

of all agents is positive before the deviation. Clearly, for any ε< (1− ρ/αi)(pi −wi), this kind of

deviation improves his profit. For the sequence of prices resulting zero limiting revenue for at least

one group of agents (which can only happen when Ri − pi = Rj − pj = 0), any single agent from

this group can improve his revenue by trivially deviating to Rj/2 as discussed rigorously in the

proof of Proposition 3. Hence, any sequence of price pairs with limits satisfying Ri− pi =Rj − pj

cannot emerge as an equilibrium price pair.

ii. (Rj−pj >Ri−pi): In this case, we have two sub-cases:

* ρ≤ Rj−pj+cma

Ri−pi+cma
αj: As we show in Lemma 8, the profit of a quality-i provider is zero as

k goes to infinity. However, when a quality-i provider deviates to charge a price p′ <Ri−Rj + pj,

he becomes the least expensive provider, and always attracts strictly positive demand (Similar to

the discussion at the end of the proof of Proposition 3). This kind of deviation clearly improves

his profit. Therefore, in large systems any sequence of price pairs with limits satisfying this sub-

case cannot emerge as an equilibrium price pair (Note that there always exists a p′ > wi since

Ri−wi >Rj −wj. When Ri−wi =Rj −wj, the above proof holds only for pj >wj).

** ρ>
Rj−pj+cma

Ri−pi+cma
αj: In Lemma 9, we show that a quality-j provider can increase his

price while keeping him fully-utilized whenever the limiting revenue of quality-i agents is strictly

positive or pi < Ri. This kind of deviation clearly improves his profit. On the other hand, if the

limiting revenue of quality-i agents is zero and pi =Ri, a quality-i provider can deviate to charge a

price p′ < (Ri−Rj +wj)+(Rj−wj +cma)
[

1− αj

ρ

]

. As a result of this deviation he always attracts

strictly positive demand because the utility of customers would be (Rj − pj + cma)αj/ρ − cma

(which is strictly less than Ri − p′ even if pj = wj) if all of them chose quality-j agents. This

kind of deviation clearly improves his profit compared to his revenue before deviation, which is

zero in the limit. Therefore, in large systems any sequence of price pairs with limits satisfying

this sub-case cannot emerge as an equilibrium price pair (Note that p′ >wi is always true, even if

Ri−wi =Rj −wj, since ρ> αj. thus, we do not use our assumption of Ri−wi >Rj −wj.).

iii. (Ri−pi >Rj−pj): In Lemma 8.1, we show that quality-i providers are under-utilized

since ρ< αi. Then, as we rigorously show in Section 5, any single-provider can cut his price by a

small amount, and he can make sure he will be fully-utilized in a sufficiently large system. Clearly,

this kind of deviation improves his profit, so that any sequence of price pairs with limits satisfying

this case cannot emerge as an equilibrium price pair.

2.a) (Characterization of the limit): As in part 1, we prove this claim by contradiction.

Thus, we assume that there exists a ξ > 0 such that (pki , p
k
j ) violates both conditions for any k.
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This implies that there exists a sequence of equilibrium price pairs with limits satisfying pi >

max
{

wi, (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]}

, except Ri−pi =Rj−pj =Rj−wj. Following

a case-by-case analysis, we show that this assumption leads to a contradiction:

i. (Ri−pi =Rj−pj <Rj−wj): In this case, the utilization of at least one group of agents

(either low or high) should be less than ρ since the total rate of customers requesting service cannot

exceed the total rate of customers. WLOG, suppose the utilization of quality-j agents is less than

ρ. Then, the upper-bound for their limiting revenue is ρpj. However, Lemma 10 establishes that a

quality-j agent can secure a revenue of pj − ε when he cuts his price by ε as long as pj <Rj or the

limiting revenue of agents is positive before the deviation. Clearly, for any ε< (1− ρ)pj, this kind

of deviation improves his profit Furthermore, the sequence of prices resulting zero limiting revenue

for quality-j agents (can happen only when pj = Rj) can be ruled out as in Part 1.i. Thus, any

sequence of price pairs with limits satisfying this case cannot emerge as an equilibrium price pair.

(Note that we do not use our assumption of Ri−wi >Rj −wj.)

ii. (Rj−pj >Ri−pi): First note that pi ≥max
{

wi, (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]}

since pi >Ri−Rj +wj in this case. Then any sequence of price pairs with limits satisfying this case

cannot emerge as an equilibrium price as in part 1.ii. (Note that we do not use our assumption of

Ri−wi >Rj −wj here as well.)

iii. (Ri−pi >Rj−pj): In this case, we have two sub-cases:

* ρ≤ Ri−pi+cma

Rj−pj+cma
αi: As we show in Lemma 8, the profit of a quality-j provider is zero as

k goes to infinity. Furthermore, since pi > (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]

, the expected

utility of customers converges to a limit, which is strictly less than Rj−wj. The lower bound on pi

also implies that pj >wj in this case. Then, we can argue that when a quality-j provider deviates

to charge a price p′ such that Rj −Ri + pi < p′ < Rj + cma − (Ri − pi + cma)
αi
ρ
≤ pj, he always

attracts strictly positive demand (Note that Rj + cma− (Ri−pi+ cma)
αi
ρ
>wj by the lower bound

on pi.). The reasoning for this argument is similar to previous claims:
1. Demand for quality-i agents exceeds their capacity after the deviation of quality-j agent.
2. Therefore, all customers picking the deviating agent should be served by him.
3. Some customers should pick the deviating agents because otherwise customers’ utility would be less than Rj − p′ since

(Ri− pi + cma)
αi
ρ
− cma <Rj − p′.

This kind of deviation clearly improves his profit. Therefore, in large systems any sequence of price

pairs with limits satisfying this sub-case cannot emerge as an equilibrium price pair.

** ρ> Ri−pi+cma

Rj−pj+cma
αi: In Lemma 9, we show that a quality-i provider can increase his price

while ensuring a revenue strictly greater than pi when pj <Rj or the limiting revenue of agents is

positive before the deviation. This kind of deviation clearly improves his profit. On the other hand,

if the limiting revenue of quality-j agents is zero and pj =Rj, a quality-j provider can deviate to
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charge a price p′ such that Rj −Ri + pi < p′ < pj and always attract strictly positive demand. The

reasoning for this argument is similar to previous claims:
1. Demand for quality-i agents exceeds their capacity after the deviation of quality-j agent.
2. Therefore, all customers picking the deviating agent should be served by him.
3. Moreover, since ρ>

Ri−pi+cma

cma
αi when pj =Rj , not all customers will request service, and thus the utility of customers

after deviation will be zero.
4. Hence, some customers should request service from the deviating agent since Rj −p′ > 0. To be more specific, pick u> 0,

let λ̄> 0 solves (R− p′)(1−β(λ̄)) = u. Then, the utility of customers picking the deviating agent would be at least u when his
demand is less than λ̄ for large k. Thus, the demand for the deviating agent should be more than λ̄ for large k.

This kind of deviation clearly improves his profit since all quality-j agents earn zero when pj =Rj.

Therefore, in large systems any sequence of price pairs with limits satisfying this sub-case cannot

emerge as an equilibrium price pair. (Note that we do not use our assumption of Ri−wi >Rj−wj

here as well.)

2.b) (Existence of the multiple equilibria): We prove that the proposed price pair emerges

as the equilibrium price as in the proof of Theorem 3. First, we want to note that quality-j agents

will always be out of the market for large k since p̃i < (Ri −Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]

implies that the expected utility of customers converges to a limit, which is strictly greater than

Rj −wj. Thus, they cannot improve their revenues.

Furthermore, in order to show that even the quality-i agents cannot improve their revenues, we

let V ′i (k) be the maximum profit that a quality-i provider can get by increasing his price. Note

that we do not consider a deviation where a quality-i agent cuts his price because quality-i agents

are already over-utilized. Let ∆H(p;R) =max
{

0, R−p+cma
ρ

αi− cma

}

. Then, we can show that

limsup
k→∞

V ′i (k) ≤ max
λ

(Ri + cma−wi)λ[1−β(λ)]−λ(∆H(p̃i;Ri)+ cma)

≤ max
λ

(Ri + cma−wi)λ[1−β(λ)]−λ(∆H(p̃i;Ri−wi)+ cma),

where the first inequality holds as in the proof of Proposition 4, and the second one holds since

∆H(p;R) is increasing in R. Then, as in the proof of Theorem 3, quality-i agents do not have a prof-

itable deviation since p̃i ∈P(ρ/αi,Ri−wi)⇒ p̃i >max
λ

(Ri + cma−wi)λ[1− β(λ)]−λ(∆H(p̃i;Ri−

wi)+ cma).

2.c) (Existence of the sequence converging to Ri−Rj+wj): Let p̂ki be a sequence converg-

ing to Ri−Rj +wj with a rate of 1/
√
k such that p̂ki =Ri + cma−

Rj−wj+cma

1−βM (αik;αik)
. By construction,

the quality-i agents, who charge p̂ki , attracts a demand rate of αik when all quality-i agents charge

p̂ki and all quality-j agents charge zero. Furthermore, their utilization will be very close to 1 as k

grows. To be more specific, their utilization will converge to 1 with a rate of 1/
√
k by Theorem 5

in Zeltyn and Mandelbaum (2005). Hence, the revenue of a quality-i agent will be in the form of

Ri−Rj −wi+wj − ζ2/
√
k, where ζ2 is a constant, given that all quality-i agents charge p̂ki and all

quality-j agents charge zero.
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As we assume that 1
εk
√
k
→ 0, we should have that Ri−Rj−wi+wj−ζ2/

√
k+εk >Ri−Rj−wi+

wj for large k. This implies that a quality-i agent should charge more than Ri−Rj +wj in order

to ensure a profitable deviation. However, a high quality agent would become the most expensive

agent while there is ample capacity to serve customers when he follows such a deviation, and thus

his demand would be zero. Therefore, quality-i agents do not have a profitable deviation from this

price pair. The same would happen if a quality-j agent would increase his price.

3. The proof to rule out any sequence of price pairs with limits satisfying Ri − p̃i $=Rj − p̃j is

the same as the proof in part 2.a. Furthermore, we prove that the proposed price pairs emerge as

the equilibrium price as in the proof of Theorem 3. Note that p̃j ∈ P(ρ,Rj) implies that p̃j <Rj,

and thus both groups of agents should be over-utilized given all quality-q agents charge pkq for

q ∈ {H,L} in the kth marketplace. Hence, it is again enough to just focus on the price increase as

a possible profitable deviation.

We let V ′q (k) be the maximum profit that a quality-q provider can get by increasing his price for

q ∈ {H,L}. Then, we have that

limsup
k→∞

V ′q (k) ≤ max
λ

(Rq + cma−wq)λ[1−β(λ)]−λ(∆(p̃q;Rq)+ cma)

≤ max
λ

(Rq + cma)λ[1−β(λ)]−λ(∆(p̃q;Rq)+ cma)

= (Rq + cma)λ
∆(p̃q;Rq)[1−β(λ∆(p̃q;Rq))]−λ∆(p̃q;Rq)(∆(p̃q;Rq)+ cma),

where the first inequality holds as in the proof of Proposition 4, and the second one holds since

wq ≥ 0 for q ∈ {H,L}. Then, as in the proof of Theorem 3, quality-j providers do not have a

profitable deviation since p̃j ∈ P(ρ,Rj). Moreover, quality-i providers do not have a profitable

deviation, either since p̃j ∈P(ρ,Rj) implies that p̃i ∈P(ρ,Ri) by Lemma 11.

S.5.6. Proof of Proposition 9

We prove this claim by contradiction. Thus, we assume that there exists a ξ > 0 such that pk1 ≥

ξ > 0 for any k. This implies that there exists a sequence of price vectors (pk1 , . . . , p
k
N) with limits

(p1, . . . , pN), where pn > 0 for all n ∈ {1, . . . ,N}. Suppose αn fraction of agents charge pkn for all

n ∈ {1, . . . ,N} in the kth marketplace. We will show that a single agent will have a profitable

deviation from this strategy for large k.

When N = 2, we can use the results of Theorem 7 by letting RH = RL = R and wH = wL = 0

because this theorem states that any price vector, where different class of agents charge different

strictly positive prices, cannot emerge as the equilibrium price for large k (Note that we do not

use our assumption of RH −wH >RL to rule out sequences with limit pL > 0. It is only required
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for the case of pL = 0). However, N > 2 needs extra arguments. Suppose there exists a sequence of

equilibirum price vectors (pk1 , . . . , p
k
N) with limits (p1, . . . , pN) and N > 2 for any k.

We first need to characterize the revenue of agents given the price vector (pk1 , . . . , p
k
N) and the

fraction of agents charging these prices (α1, . . . ,αN). Let (V k
1 , . . . , V

k
N) be the the revenue of agents

in the kth marketplace. Then very similar to Proposition 8, we can show that for any "∈ {1, . . . ,N}

lim
k→∞

V k
! =















0 if ρ< ρ0!

p!
(

ρ−ρ0!
α!

)

if ρ∈ [ρ0! ,ρ
0
! +α!]

p! if ρ> ρ0! +α!,

where ρ01 = 0, and ρ0! =

!−1∑

n=1
(R−pn+cma)αn

R−p!+cma
for all "> 1. Note that we always have that lim

k→∞
V k
1 > 0 as

ρ> 0. Furthermore, either of the following two cases also holds always:

1. lim
k→∞

V k
N = 0: In such a case, we would have that agents charging pN earn zero revenue while

the revenue of agents charging p1 is strictly positive. This would contradicts with the definition

of εk-Market Equilibrium because a single agent from sub-pool-N could improve his revenue by

charging an arbitrarily small price less than p1 > 0.

2. lim
k→∞

V k
N > 0 and lim

k→∞
V k
n = pn for all n<N : In this case, sub-pool-(N − 1) earns strictly more

than sub-pool-n for all n < N − 1 since p1 < · · · < pN . Then this creates an opportunity for any

single agent in sub-pool-1 to improve his revenue by increasing his price as in the proof of Lemma

9. Thus, this case also contradicts with the definition of εk-Market Equilibrium.

As both of these cases lead to a contradiction, our assumption that (pk1 , . . . , p
k
N) is equilibrium

for any k is wrong, and thus the lowest price should converge to zero. As a direct implication of

that we have that lim
k→∞

V k
1 = 0. Moreover, we also need to have that lim

k→∞
V k
n = 0 for n> 1 because

otherwise any single agent in sub-pool-1 would have an opportunity to improve his revenue and

that would contradict with the definition of εk-Market Equilibrium.

S.5.7. Supplementary Claims for the Proof of Theorem 8

Lemma 12. Suppose Ri − wi > Rj − wj for some i, j ∈ {H,L} with i #= j. Then, if ρ > αi, we

have that

lim
k→∞

V ′i (k) = pi + ε−wi,

where V ′i (k) is the profit of the δ fraction of high-quality providers charging pi + ε when all other

quality-q providers charge pkq for q ∈ {H,L} with 0< ε<min
{

Ri−Rj +wj − pi,
(

1− α
ρ

)

(Ri− pi + cma)
}

and lim
k→∞

pki = pi ≤max
{

wi, (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]}

.
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Lemma 13. In a seller’s market (ρ> 1), for any sequence of price pairs (pkH , p
k
L), where lim

k→∞
pki =

pi for i∈ {H,L} and RH − pH =RL− pL > 0, we have that

lim
k→∞

V ′i (k) = pi + ε−wi,

where V ′i (k) is the profit of the δ fraction of quality-i providers charging pi+ ε for i∈ {H,L} when

all other high-quality providers charge pkH , and all low-quality providers charge pkL, and 0 < ε <

min
{

Ri− pi,
(

1− 1
ρ

)

(Ri− pi + cma)
}

.

S.5.8. Proof of Theorem 8

1. The fact that pki <wi + ξ for large k holds directly by Theorem 7.1.

Existence: The existence of the sequence holds as in the proof of Theorem 4. Similar to this

proof, we can only show the existence of such a sequence for ρ< αi− δ̃ if lim
k→∞

δk = δ̃> 0.

2. We have already shown that any sequence of price pairs with limits (pi, pj), where

pi > max
{

wi, (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]}

, except Ri − pi = Rj − pj = Rj −

wj, can not be an equilibrium in a large marketplace in Theorem 7.2.a. Further-

more, Lemma 12 provides a profitable deviation for a small group of agent when pi ≤

max
{

wi, (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]}

. Hence, any sequence of price pairs with lim-

its (pi, pj) cannot emerge as the equilibrium price pair of a symmetric (δk, εk)-Market Equilibrium

in large marketplaces even if pi ≤max
{

wi, (Ri−Rj +wj)− (Rj −wj + cma)
[

ρ
αi
− 1
]}

. Hence, the

only possible limit for a sequence of equilibrium prices (pki , p
k
j ) is (Ri−Rj +wj,0).

Existence: The existence of the sequence holds as in the proof of Theorem 7.2.c when we have

lim
k→∞

δk = 0. If lim
k→∞

δk = δ̃> 0, we can show the existence of such a sequence only for ρ< 1− δ̃.

3. Any sequence of price pairs with limit pi $=Ri−Rj +pj can not emerge as a price pair in large

marketplaces as shown in part 2, and thus we are only left with the case where pi =Ri−Rj + pj.

Furthermore, we rule out all the sequences with limit pj <Rj by Lemma 13.

Existence: The existence of the sequence also holds as in Theorem 5.

S.5.9. Proof of Proposition 10

We first want to note that the equivalent of our claim is that lim
k→∞

pkn = R for all n ∈ {1, . . . ,N}.

To prove this result, it is sufficient to show that the given sequence of equilibrium prices always

converge to one price, i.e. lim
k→∞

pkn = p̃ for all n ∈ {1, . . . ,N}. Then, using Theorem 5, we should

have that p̃=R.

To prove that lim
k→∞

pkn = p̃ for all n ∈ {1, . . . ,N}, suppose lim
k→∞

pkn = p̃n, where p̃n $= p̃m for any

n $=m, n ∈ {1, . . . ,N}, m ∈ {1, . . . ,N} (Note that prices can also converge to N ′ <N limits. The



Çil et.al.
Large-scale Service Marketplaces 39

proof for such a case is the same). First, we note that the case such that p̃n > 0 for all n∈ {1, . . . ,N}

is already ruled out in Proposition 9. The only case that is remained to be ruled out is that p̃1 = 0

by assuming p̃1 < · · ·< p̃N without loss of generality. Observe that in such a case demand for sub-

pool-1 exceeds the capacity of the sub-pool as ρ> 1. Therefore, there is always room for a group

of agents to increase their prices and improve their revenues as we show in Lemma 12. Hence, this

case also cannot be true.

Appendix S.6: No-intervention (Non-Identical Agents)
S.6.1. Supplementary Claims to Characterize SPNE

Lemma 14. Let

ÛL(x, y) = (RL + cma)

[

1− ν(x)

1+ ν(x)
kL+kHϑ(x,y)−1

]

(1−β(x))− cma,

ÛH(x, y) = (RH + cma−wH)

[

1− ν(y)

1+ ν(y)
kH+kLϑ(y,x)−1

]

(1−β(y))− cma,

where ν(x) = xβ′(x)
1−β(x)

, and ϑ(x, y) = yν(x)
xν(y)

. Then, we have that

1. ∂ÛL(x,y)
∂x

< 0. Furthermore, ∂ÛL(x,y)
∂y

> 0 when ∂ϑ(x,y)
∂x

< 0.

2. ∂ÛH (x,y)
∂y

< 0. Furthermore, ∂ÛH (x,y)
∂x

> 0 when ∂ϑ(x,y)
∂x

< 0.

Proof:

1. We have shown that both ν(x) and β(x) are strictly increasing in x in Lemma 1. Using these observations,
it is sufficient to show that ν(x)

kL+kHϑ(x,y)−1 is increasing in x in order to prove that ∂ÛL(x,y)
∂x

< 0.

Let h(x, y) = ν(x)
kL+kHϑ(x,y)−1 . Then, observe that

∂h(x, y)

∂x
=

ν′(x)[kL + kHϑ(x, y)− 1]− kHν(x)
[

∂ϑ(x,y)
∂x

]

[kL + kHϑ(x, y)− 1]2

=
ν′(x)[kL + kHϑ(x, y)− 1]− kH

yν(x)
ν(y)

[

ν′(x)
x
− ν(x)

x2

]

[kL + kHϑ(x, y)− 1]2

=
ν′(x)[kL + kHϑ(x, y)− 1]− kHxϑ(x, y)

[

ν′(x)
x
− ν(x)

x2

]

[kL + kHϑ(x, y)− 1]2

=
ν′(x)[kL− 1]+ kHϑ(x, y)

ν(x)
x

[kL + kHϑ(x, y)− 1]2
≥ 0.

Furthermore, after simple algebra we have that

∂ÛL(x, y)

∂y
=

(

ÛL(x, y)+ cma

1+ ν(y)
kH+kLϑ(y,x)−1

)(

kHν(x)
∂ϑ(x,y)

∂y

[kL + k+Hϑ(x, y)]2

)

= −
(

ÛL(x, y)+ cma

1+ ν(y)
kH+kLϑ(y,x)−1

)(

kHν(x)
∂ϑ(x,y)

∂x

[kL + k+Hϑ(x, y)]2

)

≥ 0,

whenever ∂ϑ(x,y)
∂x

≤ 0.

2. The proof is very similar to the proof of Part 1.

!
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The demand for High-Quality Agents given the demand for Low-Quality Agents:

Lemma 15. Let y(x) = {y : ÛL(x, y) = ÛH(x, y)}. Suppose ∂ϑ(x,y)
∂x

< 0. Then, we have that

1. y(x) is a singleton and y(x)≥ x.

2. y(x) is strictly increasing in x.

3. UL

(

x, y(x)
)

is strictly decreasing in x.

4. Let λdom
H be the unique solution to

1−β(x)−xβ′(x) =
RL + cma

RH + cma−wH
.

Then, there exists a ΛRL ≤ kHλdom
H such that y(0) =ΛRL/kH .

Proof:

1. Note that for any given 0≤ x <∞, we have that ÛH(x,0) =RH −wH since ν(0) = 0, and ÛL(x,0)≤RL.
Using these observations, we have that

ÛH(x,0)− ÛL(x,0)≥RH −wH −RL ≥ 0.

Moreover, for any given 0≤ x<∞, we have that lim
y→∞

ÛH(x, y) =−cma, and lim
y→∞

ÛL(x, y)>−cma. Thus,

we have that
lim
y→∞

[

ÛH(x, y)− ÛL(x, y)
]

< 0.

Then, the claim holds since we have that

∂ÛH(x, y)

∂y
− ∂ÛL(x, y)

∂y
< 0,

by Lemma 14.

Finally, we have that y(x)≥ x since ∂ÛL(x,y)
∂y

> 0, ∂ÛH(x,y)
∂y

< 0, and

ÛL(x,x) = (RL + cma)
1− ν(x)

1+ ν(x)
kL+kH−1

(1−β(x))− cma

≤ (RH + cma−wH)
1− ν(x)

1+ ν(x)
kL+kH−1

(1−β(x))− cma = ÛH(x,x).

2. For any given x, and ε> 0, note that

ÛL(Λ(x+ ε), y(x)) < ÛL(x, y(x)) = ÛH(x, y(x)) < ÛH(Λ(x+ ε), y(x)),

since ∂ÛL(x,y)
∂x

< 0, and ∂ÛH(x,y)
∂x

> 0 by Lemma 14.

Now, suppose y(x) ≥ y(x+ ε) for some x ≥ 0, and ε > 0. Then, using the above observation, we would
have that

ÛL(Λ(x+ ε), y(x+ ε))≤ ÛL(Λ(x+ ε), y(x)) < ÛH(Λ(x+ ε), y(x))≤ ÛH(Λ(x+ ε), y(x+ ε)),

since ∂ÛL(x,y)
∂y

> 0, and ∂ÛH(x,y)
∂y

< 0 again by Lemma 14. However, this contradicts with the definition of
y(x). Hence, we should have that y(x)< y(x+ ε).

3. We prove this claim by contradiction. Therefore, we suppose there exists some x1, and x2 such that
x1 <x2, and

ÛL

(

x1, y(x1)
)

≤ ÛL

(

x2, y(x2)
)

. (21)
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Then, we would have that

ÛL

(

x2, y(x2)
)

≥ ÛL

(

x1, y(x1)
)

= (RL + cma)

[

1− ν(x1)

1+ ν(x1)
kL+kHϑ(x1,y(x1))−1

]

[1−β(x1)]− cma

> (RL + cma)

[

1− ν(x2)

1+ ν(x2)
kL+kHϑ(x1,y(x1))−1

]

[1−β(x2)]− cma,

where the inequality holds since both ν(x) and β(x) are strictly increasing in x. Then, the above inequality
implies that

(RL + cma)

[

1− ν(x2)

1+ ν(x2)
kL+kHϑ(x2,y(x2))−1

]

[1−β(x2)]− cma

= ÛL

(

x2, y(x2)
)

> (RL + cma)

[

1− ν(x2)

1+ ν(x2)
kL+kHϑ(x1,y(x1))−1

]

[1−β(x2)]− cma

⇒ ϑ(x2, y(x2))> ϑ(x1, y(x1)). (22)

Note that by Equation 21, we also have that

ÛH

(

x1, y(x1)
)

≤ ÛH

(

x2, y(x2)
)

.

Furthermore, as we show above, we have that

ÛH

(

x2, y(x2)
)

≥ ÛH

(

x1, y(x1)
)

= (RH + cma−wH)

[

1− ν(y(x1))

1+ ν(y(x1))
kL+kHϑ(y(x1),x1)−1

]

[1−β(y(x1))]− cma

> (RH + cma−wH)

[

1− ν(y(x2))

1+ ν(y(x2))
kL+kHϑ(y(x1),x1)−1

]

[1−β(y(x2))]− cma

⇒ ϑ(y(x2), x2)> ϑ(y(x1), x1). (23)

where the inequality holds since both ν(x) and β(x) are strictly increasing in x, and y(x) is strictly increasing
in x.

Finally, by combining Equations 22 and 23, we have that

1 = ϑ(x2, y(x2))ϑ(y(x2), x2)> ϑ(x1, y(x1))ϑ(y(x1), x1) = 1,

which is a contradiction. Hence, ÛL(x, y(x)) is strictly decreasing in x.

4. We first want to note that ÛH(0,0) =RH ,

ÛH(0,λ
dom
H ) = (RH + cma−wH)





RL+cma

RH+cma−wH

1+
ν(λdom

H
)

kH+kLϑ(λdom
H

,0)−1



− cma ≤RL,

and ∂ÛH(x,y)
∂y

< 0. Therefore, there exists a unique ΛRL ≤ kHλdom
H such that

ÛH(0,Λ
RL/kH) =RL.

Furthermore, we have that ÛL(0, y) =RL for any y≥ 0. Hence, it is clear that y(0) =ΛRL/kH .

!
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Candidate for the Customer Equilibrium with Positive Surplus:

Proposition 11. For any given Λ, let

(

D̂L(Λ), D̂H(Λ)
)

=
{

(x, y) : ÛL(x, y) = ÛH(x, y), kLx+ kHy=Λ
}

.

If ∂ϑ(x,y)
∂x

< 0, then the following statements are true:

1. If Λ≥ΛRL, then

(a) D̂L(Λ) is a singleton, and D̂L(ΛRL) = 0.

(b) D̂L(Λ) is strictly increasing in Λ.

(c) ÛL

(

D̂L(Λ), D̂H(Λ)
)

is strictly decreasing in Λ.

2. Let Λmon = kHλmon
H + kLλmon

L , where λmon
i , i= {L,R}, is the unique solution to

1−β(x)−xβ′(x) =
cma

Ri + cma−wi
.

Then, we have that ÛL

(

D̂L(Λmon), D̂H(Λmon)
)

< 0.

3. For any given 0≤ u≤RL, there exists a Λ(u) such that ÛL

(

D̂L(Λ(u)), D̂H(Λ(u))
)

= u. Fur-

thermore, Λ(u) is strictly decreasing in u, and Λ(0)< kHλmon
H + kLλmon

L .

Proof:

1. a) Note that y(0) =ΛRL/kH , and kLx+kHy(x) is strictly increasing in x by Lemma 15. Hence, it is clear
that there exists a unique D̂L(Λ) such that

kLD̂L(Λ)+ kHy(D̂L(Λ)) =Λ,

for any given Λ≥ΛRL .

Also note that D̂L(ΛRL) = 0.

b) By definition, for any Λ1 <Λ2, we have that

kLD̂L(Λ1)+ kHy(D̂L(Λ1))< kLD̂L(Λ2)+ kHy(D̂L(Λ2)).

Then, the claim follows since kLx+ kHy(x) is strictly increasing in x by Lemma 15.

c) Our claim follows since D̂L(Λ) is strictly increasing in Λ as shown in part 2, and ÛL

(

x, y(x)
)

is
strictly decreasing in x by Lemma 15.3.

2. We prove this result by contradiction. Therefore, we suppose

ÛL

(

D̂L(Λ
mon), D̂H(Λ

mon)
)

≥ 0,

Observe that

ÛL

(

λmon
L , y(λmon

L )
)

= (RL + cma)





cma

RL+cma

1+
ν(λmon

L
)

kL+kHϑ(λmon
L

,y(λmon
L

))−1



− cma

=
cma

1+
ν(λmon

L
)

kL+kHϑ(λmon
L

,y(λmon
L

))−1

− cma < 0.

and this inequality implies that D̂L(Λmon)< λmon
L since ÛL

(

x, y(x)
)

is decreasing in x by Lemma 15.3. We
also have that

D̂H(Λ
mon)> λmon

H
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since kLD̂L(Λmon)+ kHD̂H(Λmon) =Λmon.

Furthermore, observe that

ÛH(x,λ
mon
H ) = (RH + cma−wH)





cma

RH+cma

1+
ν(λmon

H
)

kL+kHϑ(λmon
H

,x)−1



− cma < 0,

for any 0≤ x≤ λmon
L . Then, we have that

ÛH

(

D̂L(Λ
mon), D̂H(Λ

mon)
)

< ÛH

(

D̂L(Λ
mon),λmon

H

)

< 0≤ ÛL

(

D̂L(Λ
mon), D̂H(Λ

mon)
)

,

since D̂H(Λmon) > λmon
H and ∂ÛH(x,y)

∂y
< 0. However, this contradicts with the definition of

(

D̂L(Λmon), D̂H(Λmon)
)

.

3. Note that we have

ÛL

(

D̂L(Λ
RL), D̂H(Λ

RL)
)

= RL,
ÛL

(

D̂L(Λ
mon), D̂H(Λ

mon)
)

< 0,

where the first equality holds since D̂L(ΛRL) = 0 and D̂H(ΛRL) =ΛRL/kH , and we prove the second one in
part 2. Therefore, it is clear that Λ(RL) =ΛRL , where ΛRL is defined as in Lemma 15.

Finally our claim holds since ÛL

(

D̂L(Λ), D̂H(Λ)
)

is strictly decreasing in Λ as we show in part 1.c.

!

Corollary 2. For any given Λ<Λ(0), if ∂ϑ(x,y)
∂x

< 0, then we have that

{(x, y) : ÛL(x, y)≤ 0, ÛH(x, y)≤ 0, kLx+ kHy=Λ, x≥ 0, y≥ 0}= ∅.

Proof:

Note that since Λ<Λ(0), we have that

ÛL

(

D̂L(Λ), D̂H(Λ)
)

= ÛH

(

D̂L(Λ), D̂H(Λ)
)

> 0,

as we shown in Proposition 11. Furthermore, since kLx+ kHy=Λ, we have two possible cases:

1. x≥ D̂L(Λ), and y≤ D̂H(Λ): In this case, we have that

ÛH(x, y)≥ ÛH

(

D̂L(Λ), D̂H(Λ)
)

> 0

since ∂UH(x,y)
∂y

< 0, and ∂UH(x,y)
∂x

> 0. Therefore, this case cannot be in the set we defined above.

2. x≤ D̂L(Λ), and y≥ D̂H(Λ): In this case, we have that

ÛL(x, y)≥ ÛL

(

D̂L(Λ), D̂H(Λ)
)

> 0

since ∂ÛL(x,y)
∂x

< 0, and ∂ÛL(x,y)
∂y

> 0. Therefore, this case also cannot be in the set we defined above. Hence,
the above set is empty.

!

S.6.2. Single-Agent Best Response

Given that kH − 1 high-quality agents charge pH , and kL low-quality agents charge pL, a single

high-quality agents, say agent-", solves the following problem to find his best response:

max
p%≥wH , D%≥0, DH≥0, DL≥0

(p#−wH)ΛD# [1−β(ΛD#)]
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s.to

(RH − p! + cma) [1−β(ΛD!)]− cma ≥ 0

(RH − p! + cma) [1−β(ΛD!)] = (RH − pH + cma) [1−β(ΛDH)]

(RH − pH + cma) [1−β(ΛDH)]≥ (RL− pL + cma) [1−β(ΛDL)]

D! +(kH − 1)DH + kLDL ≤ 1

DL ≥ 0

Any the symmetric SPNE (DL,DH ;pL, pH) should satisfy the following FOC:

ΛDH − η1H − η2H = 0, (24)

Λ(pH −wH)[1−β(ΛDH)]−Λ2DH(R+ cma−wH)β
′(ΛDH)− η4H = 0, (25)

(η2H − η3H )Λ(RH − pH + cma)β
′(ΛDH)− (kH − 1)η4H = 0, (26)

η3HΛ(RL− pL + cma)β
′(ΛDL)− kLη4H + η5H = 0, (27)

η1H
(

(RH − pH + cma)[1−β(ΛDH)]− cma

)

= 0, (28)

η3H
(

(RH − pH + cma)[1−β(ΛDH)]− (RL− pL + cma)[1−β(ΛDL)]
)

= 0, (29)

η4H (1− kLDL− kHDH) = 0, (30)

η5HDL = 0, (31)

η1H , η3H , η4H , η5H ≥ 0, (32)

where η1H , η2H , η3H , η4H , and η5H are the Lagrangian multipliers of the constraints 1, 2, 3, 4, and

5 of the best response problem of agent-#, respectively. Furthermore, given any symmetric SPNE

(DL,DH ;pL, pH), we denote the expected utility of a customer choosing the price pi for i∈ {H,L}

by USPNE
i (DL,DH ;pL, pH).

Claim 3. Given any symmetric SPNE (DL,DH ;pL, pH), we have that

1. DH > 0.

2. USPNE
H (DL,DH ;pL, pH)<RL ⇔DL > 0.

Proof:

1. Suppose NOT, i.e. DH = 0. Note that DH = 0 implies that V (ΛDH , pH) = 0, and UL(ΛDL, pL)<RL since
all customers choose low-quality providers whose service can only give a reward of RL. Consider the case
where a single high-quality agent deviates and charge a price p < RH −UL(ΛDL, pL)−wH . It is clear that
some of the customers should choose this agent after deviation since he would be the cheapest agent if all
customers would still choose only low-quality providers. Furthermore, it is apparent that the deviating high-
quality agent will earn a strictly positive profit after deviation. However, this contradicts with the definition
of SPNE. Hence, We should have DH > 0.

2. Suppose NOT. First note that DL = 0 implies that V (ΛDL, pL) = 0. Consider the case where a single
low-quality agent deviates and charge a price p <RL−USPNE

H (DL,DH ;pL, pH). It is clear that some of the
customers should choose this agent after deviation since he would be the cheapest agent if all customers
would still choose only high-quality providers. Furthermore, it is apparent that the deviating low-quality
agent will earn a strictly positive profit after deviation. However, this contradicts with the definition of
SPNE. Hence, We should have DL > 0.
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!

In the remaining of the proof, we perform a case-by-case analysis to show that

• kHDH + kLDL < 1⇔Λ> kHλmon
H + kLλmon

L .

•
USPNE

H (DL,DH ;pL, pH) = 0,
and

kHDH + kLDL = 1
⇔Λ(0)≤Λ≤ kHλmon

H + kLλmon
L .

• 0<USPNE
H (DL,DH ;pL, pH)<RL ⇔Λ(RL)<Λ<Λ(0).

• USPNE
H (DL,DH ;pL, pH) =RL⇔ kHλ

RL
H ≤Λ≤Λ(RL).

• USPNE
H (DL,DH ;pL, pH)>RL⇔Λ< kHλ

RL
H .

Note that to prove the above ⇔ statements, it is sufficient to show the ⇒ statements because

⇒ statements cover all possible values for Λ.

Case-1 (kHDH + kLDL < 1): Note that in this case, we have that USPNE
H (DL,DH ;pL, pH) = 0,

so that DL > 0. Then, we have that

kHDH + kLDL < 1 ⇒ η4H = 0

⇒ η3H = 0 (Since η5H = 0)

⇒ η2H = 0 (Since η4H = 0)

⇒ η1H =ΛDH > 0

⇒ pH =RH + cma−
cma

1−β(ΛDH)
⇒ (RH + cma−wH)

[

1−β(ΛDH)−ΛDHβ
′(ΛDH)

]

= cma (Since η4H = 0)

⇒ DH =
λmon
H

Λ
.

Similarly, we can show that kHDH + kLDL < 1⇒DL = λmon
L
Λ

. Combining these observations, we

have that

kHDH + kLDL < 1⇒Λ> kHλ
mon
H + kLλ

mon
L .

Case-2 (USPNE
H (DL,DH ;pL, pH) = 0, and kHDH +kLDL = 1): As in the previous case, we have

that DL > 0. We first want to note that

USPNE
H (DL,DH ;pL, pH) = 0 ⇒ pH =RH + cma−

cma

1−β(ΛDH)

⇒
η4H
Λ

= (RH + cma−wH)
[

1−β(ΛDH)−ΛDHβ
′(ΛDH)

]

− cma

⇒ DH ≤
λmon
H

Λ
,
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where the last statement holds since η4H ≥ 0 and by the definition of λmon
H .

Similarly, we can show DL ≤ λmon
L
Λ

in this case. Then, we have that

USPNE
H (DL,DH ;pL, pH) = 0,

and
kHDH + kLDL = 1

⇒Λ≤ kHλ
mon
H + kLλ

mon
L .

Furthermore, since pH =RH + cma− cma
1−β(ΛDH )

, and pL =RL + cma− cma
1−β(ΛDL)

, we have that

η2H = η3H +
(kH − 1)[1−β(ΛDH)]

cmaΛβ′(ΛDH)
η4H

=

[

kL[1−β(ΛDL)]

cmaβ′(ΛDL)
+

(kH − 1)[1−β(ΛDH)]

cmaΛβ′(ΛDH)

]

η4H

=

[

kH − 1+ kLϑ(ΛDH ,ΛDL)

cma
β′(ΛDH )

1−β(ΛDH )

]

[

(RH + cma−wH)[1− ν(ΛDH)][1−β(ΛDH)]− cma

]

,

where the last equality holds by Equation 25.

Then, using Equation 24, we have that

η1H = ΛDH −

[

kH − 1+ kLϑ(ΛDH ,ΛDL)

cma
β′(ΛDH )

1−β(ΛDH )

]

[

(RH + cma−wH)[1− ν(ΛDH)][1−β(ΛDH)]− cma

]

=

[

−(RH + cma−wH)[1− ν(ΛDH)][1−β(ΛDH)]
[

kH − 1+ kLϑ(ΛDH ,ΛDL)
]

+cma

[

kH − 1+ kLϑ(ΛDH ,ΛDL)+ ν(ΛDH)
]

]

1

cma
β′(ΛDH )

1−β(ΛDH )

= −ÛH(ΛDL,ΛDH)

[

kH − 1+ kLϑ(ΛDH ,ΛDL)+ ν(ΛDH)

cma
β′(ΛDH )

1−β(ΛDH )

]

.

Similarly, we have that

η1L =−ÛL(ΛDL,ΛDH)

[

kL− 1+ kHϑ(ΛDL,ΛDH)+ ν(ΛDL)

cma
β′(ΛDL)

1−β(ΛDL)

]

.

As a part of FOC, we should have that η1H ≥ 0, and η1L ≥ 0. Then, using above observations,

we have that

ÛH(ΛDL,ΛDH) ≤ 0

ÛL(ΛDL,ΛDH) ≤ 0.

Finally, using these inequalities and Corollary 2, we have that

USPNE
H (DL,DH ;pL, pH) = 0,

and
kHDH + kLDL = 1

⇒Λ≥Λ(0).
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Case-3 (0<USPNE
H (DL,DH ;pL, pH)<RL): First, observe that

η2H = η3H +
(kH − 1)

Λ(RH − pH + cma)β′(ΛDH)
η4H

=

[

kL
Λ(RL− pL + cma)β′(ΛDL)

+
(kH − 1)

Λ(RH − pH + cma)β′(ΛDH)

]

η4H

=

[

kH − 1+ kLϑ(ΛDH ,ΛDL)

(RH − pH + cma)β′(ΛDH)

][

(pH −wH)[1−β(ΛDH)]−ΛDH(R+ cma−wH)β
′(ΛDH)

]

,

where the last equality holds since RH−pH+cma
RL−pL+cma

= 1−β(ΛDL)
1−β(ΛDH )

, and by Equation 25.

Furthermore, we have that η1H = 0, and this implies that η2H =ΛDH . Therefore, we have that

pH = (RH + cma−wH)

[

kH + kLϑ(ΛDH ,ΛDL)
]

ν(ΛDH)

kH − 1+ kLϑ(ΛDH ,ΛDL)+ ν(ΛDH)
+wH

= RH + cma−
(RH + cma−wH)

[

kH − 1+ kLϑ(ΛDH ,ΛDL)
]

kH+kLϑ(ΛDH ,ΛDL)
1−ν(ΛDH )

− 1

Then, using this equation, we have that

USPNE
H (DL,DH ;pL, pH) =

(RH + cma−wH)
[

kH − 1+ kLϑ(ΛDH ,ΛDL)
]

kH − 1+ kLϑ(ΛDH ,ΛDL)− ν(ΛDH)

[

1− ν(ΛDH

][

1−β(ΛDH)
]

− cma

=
(RH + cma−wH)

[

1− ν(ΛDH

][

1−β(ΛDH)
]

1+ ν(ΛDH )
kH−1+kLϑ(ΛDH ,ΛDL)

− cma

= ÛH(ΛDL,ΛDH),

where ÛH(ΛDL,ΛDH) is defined in Lemma 14.

Similarly, we can also show that

pL =RL + cma−
(RL + cma)

[

kL− 1+ kHϑ(ΛDL,ΛDH)
]

kL+kHϑ(ΛDL,ΛDH )
1−ν(ΛDL)

− 1

USPNE
L (DL,DH ;pL, pH)) = ÛL(ΛDL,ΛDH).

Note that we have USPNE
H (DL,DH ;pL, pH) =UL(ΛDL, pL), and kLDL+kHDH = 1 by the defini-

tion of Customer Equilibrium. Using the above observations, we have that

(ΛDL,ΛDH)∈ {(x, y) : ÛL(x, y) = ÛH(x, y), kLx+ kHy=Λ}.

Then, by Proposition 11, (ΛDL,ΛDH) is unique, and ΛDL = D̂L(Λ), and ΛDH = D̂H(Λ). Further-

more,

0<USPNE
H (DL,DH ;pL, pH) = ÛH(D̂L(Λ), D̂H(Λ))<RL ⇒Λ(RL)<Λ<Λ(0).
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Case-4 (USPNE
H (DL,DH ;pL, pH) = RL): First, we want to note that η1H = 0 since

USPNE
H (DL,DH ;pL, pH)> 0, and this implies that η2H =ΛDH . Furthermore, in this case, we have

pH =RH + cma − RL+cma
1−β(ΛDH )

, and DH = 1/kH since USPNE
H (DL,DH ;pL, pH) =RL. Then, by Equa-

tions 25 and 26, we have that

η3H = η2H −
(kH − 1)

Λ(RH − pH + cma)β′(Λ/kH)
η4H

= Λ/kH −

[

(kH − 1)

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

]

[

(RH + cma−wH)
[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

− (RL + cma)

]

=

[

(RL + cma)
[

kH − 1+ ν(Λ/kH)
]

− (RH + cma−wH)(kH − 1)
[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

]

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

= −
[

(RH + cma−wH)(kH − 1)− RL + cma

1−β(Λ/kH)

(

kH − 1+ ν(Λ/kH)

1− ν(Λ/kH)

)]

[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

= −
[

(RH + cma−wH)(kH − 1)− RL + cma

1−β(Λ/kH)

(

kH
1− ν(Λ/kH)

− 1

)]

[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

= −zRL(Λ/kH)

[

[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

]

,

where zRL(λ) = (RH + cma−wH)(kH − 1)− RL+cma
1−β(λ)

(

kH
1−ν(λ)

− 1
)

.

Note that we have η3H ≥ 0. Thus,

USPNE
H (DL,DH ;pL, pH) =RL ⇒ zRL(Λ/kH)≤ 0 ⇒Λ≥ kHλ

RL
H , (33)

since zRL(λ) is strictly decreasing in λ (as 1 − β(λ) and 1 − ν(λ) are strictly decreasing), and

zRL(λRL
H ) = 0.

Moreover, observe that for any Λ > kHλ
RL
H , we have that η3H > 0. This implies that for any

Λ>kHλ
RL
H , 3rd contraint is binding, so that we have U(0, pL) =RL, i.e. pL = 0. Then, again using

the Equations 25-27, we have that

η2H = η3H +
(kH − 1)

Λ(RH − pH + cma)β′(Λ/kH)
η4H

=

[

kL
Λ(RL− pL + cma)β′(0)

+
(kH − 1)

Λ(RH − pH + cma)β′(Λ/kH)

]

η4H − η5H

=

[

kH − 1+ kLϑ(0,Λ/kH)

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

]

[

(RH + cma−wH)
[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

− (RL + cma)

]

− η5H .

Then, using the fact that η2H =Λ/kH , we have that

η5H =

[

kH − 1+ kLϑ(0,Λ/kH)

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

]

[

(RH + cma−wH)
[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

− (RL + cma)

]

−Λ/kH



Çil et.al.
Large-scale Service Marketplaces 49

=

[

(RH + cma−wH)
[

kH − 1+ kLϑ(0,Λ/kH)
][

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

−(RL + cma)
[

kH − 1+ kLϑ(0,Λ/kH)+ ν(Λ/kH)
]

]

1

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

=





(RH + cma−wH)

[

kH−1+kLϑ(0,Λ/kH )
]

[

kH−1+kLϑ(0,Λ/kH )+ν(Λ/kH )
]

[

1− ν(Λ/kH)
][

1−β(Λ/kH)
]

−(RL + cma)





×

[

kH − 1+ kLϑ(0,Λ/kH)+ ν(Λ/kH)

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

]

=
[

ÛH(0,Λ/kH)−RL

]

[

kH − 1+ kLϑ(0,Λ/kH)+ ν(Λ/kH)

(RL + cma)
β′(Λ/kH )

1−β(Λ/kH )

]

.

Note that we have η5H ≥ 0. Thus,

USPNE
H (DL,DH ;pL, pH) =RL ⇒ ÛH(0,Λ/kH)≥RL ⇒Λ≤Λ(RL), (34)

since ∂ÛH (x,y)
∂y

< 0, ÛH(D̂L(Λ(RL)), D̂H(Λ(RL))) = RL, D̂L(Λ(RL)) = 0, and D̂H(Λ(RL)) =

Λ(RL)/kH . Finally combining (33) and (34), we have that

USPNE
H (DL,DH ;pL, pH) =RL ⇒ ΛRL

H ≤Λ≤ΛRL .

Case-5 (USPNE
H (DL,DH ;pL, pH)>RL): As in the previous case, we have that η1H = 0, η2H =

ΛDH , and DH = 1/kH . Moreover, in this case, we have η3H = 0 since USPNE
H (DL,DH ;pL, pH) >

RL ≥USPNE
L (DL,DH ;pL, pH)). Then, using Equations 25 and 26, we have that

η2H =
kH − 1

Λ(RH − pH + cma)β′(Λ/kH)
η4H

=

(kH − 1)

[

(pH −wH)
[

1−β(Λ/kH)
]

−Λ/kH(RH + cma−wH)β′(Λ/kH)

]

(RH − pH + cma)β′(Λ/kH)
.

Using η2H =Λ/kH , this equation implies that

pH =
(RH + cma−wH)Λβ′(Λ/kH)

(kH − 1)
[

1−β(Λ/kH)
]

+Λ/kHβ′(Λ/kH)
+wH

=
(RH + cma−wH)kH

kH−1
ν(Λ/kH )

+1
+wH

= RH + cma− (RH + cma−wH)

(

1− kH
kH−1

ν(Λ/kH )
+1

)

= RH + cma− (RH + cma−wH)

(

(kH − 1)
[

1− ν(Λ/kH)
]

kH − 1+ ν(Λ/kH)

)

= RH + cma− (RH + cma−wH)

(

kH − 1
kH

1−ν(Λ/kH )
− 1

)

.
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Furthermore, since USPNE
H (DL,DH ;pL, pH)>RL, we have that

USPNE
H (DL,DH ;pL, pH)) = (RH + cma−wH)

(

(kH − 1)
[

1−β(Λ/kH)
]

kH
1−ν(Λ/kH )

− 1

)

− cma >RL

⇒
[

(RH + cma−wH)(kH − 1)− RL + cma

1−β(Λ/kH)

(

kH
1− ν(Λ/kH)

− 1

)]

1−β(Λ/kH)
kH

1−ν(Λ/kH )
− 1

> 0

⇒ zRL(Λ/kH)> 0 ⇒Λ< kHλ
RL
H .

S.6.3. Sufficiency for the Equilibrium

Lemma 16. Let (p∗H , p
∗
L) be the equilibrium prices defined in Theorem 6. then, the best response

of a quality-i agent is p∗i when all the other quality-i agents charge p∗i and all quality-j agents

charge p∗j for i, j ∈ {H,L}.

Proof of the Lemma: Given that kH − 1 high-quality agents charge pH , and kL low-quality

agents charge pL, a single high-quality agents, say agent-$, solves the following problem to find his

best response:

max
p!≥0, D!≥0, DH≥0

p"ΛD" [1−β(ΛD")]

s.to

(RH − p" + cma) [1−β(ΛD")]− cma ≥ 0

(RH − p" + cma) [1−β(ΛD")] = (RH − pH + cma) [1−β(ΛDL)]

(RH − pH + cma) [1−β(ΛDH)]≥ (RL− pL + cma) [1−β(ΛDL)]

D" +(kH − 1)DH + kLDL ≤ 1

DL ≥ 0

and the FOC of this problem are:

ΛDH − η1H − η2H = 0, (35)

Λp"[1−β(ΛD")]−Λ2DH(R+ cma)β
′(ΛD")− η4H = 0, (36)

(η2H − η3H )Λ(RH − pH + cma)β
′(ΛDH)− (kH − 1)η4H = 0, (37)

η3HΛ(RL− pL + cma)β
′(ΛDL)− kLη4H + η5H = 0, (38)

η1H
(

(RH − p" + cma)[1−β(ΛD")]− cma

)

= 0, (39)

η3H
(

(RH − pH + cma)[1−β(ΛDH)]− (RL− pL + cma)[1−β(ΛDL)]
)

= 0, (40)

η4H (1− kLDL− kHDH) = 0, (41)

η5HDL = 0, (42)

η1H , η3H , η4H , η5H ≥ 0, (43)

where η1H , η2H , η3H , η4H , and η5H are the Lagrangian multipliers of the constraints 1, 2, 3, 4, and

5 of the best response problem of agent-$, respectively. Moreover, we denote the solution to the

above problem by (D"(p),DL(p),DH(p), p"(p)) for a given p= (pH , pL).
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Case-2 (Λ0 ≤Λ≤Λmon): Similar to the sufficiency proof in the identical providers case, we first

show that given (p∗H , p
∗
L) as in Theorem 6, single high-quality provider will not leave any surplus

to the customers when Λ0 ≤Λ≤Λmon.

Claim 4. Let (D!(p),DL(p),DH(p), p!(p)) be the solution of single agent’s best response problem

when all other agents charge the price p. If p= (p∗H , p
∗
L) as described in Theorem 6, then we have

that (RH − p!(p)+ cma)[1−β(ΛD!(p))] = cma.

Proof:

Suppose NOT. Then, we have that η1 = 0 and this implies that η3 > 0. Moreover, we have that ΛDH(p)<
ΛD∗

H since (RH −pH + cma)[1−β(ΛD∗
H)] = cma and we suppose that the deviating provider offers a strictly

positive utility to customers. Similarly, we have that ΛDL(p)<ΛD∗
L.

Then, using the fact that D!(p)+(kH−1)DH(p)+kLDL(p) = 1 when η3 > 0, we have that ΛD!(p)>ΛD∗
H

since ΛDL(p)<ΛD∗
L and ΛDH(p)<ΛD∗

H .

Note that using (37) and (38), we have that

η2H
= η3H

+
(kH − 1)[1−β(ΛD∗

H)]

cmaΛβ′(ΛDH(p))
η4H

=

[

kL[1−β(ΛD∗
L)]

cmaβ′(ΛDL(p))
+

(kH − 1)[1−β(ΛD∗
H)]

cmaΛβ′(ΛDH(p))

]

η4H
− η5H

[1−β(ΛD∗
L)]

cmaβ′(ΛDL(p))

≤





kH − 1+ kLϑ(ΛD∗
H ,ΛD

∗
L)

cma
β′(ΛD∗

H
)

1−β(ΛD∗
H
)





η4H

Λ
,

where the inequality holds since ΛDL(p) < ΛD∗
L, ΛDH(p) < ΛD∗

H , and β(λ) is concave. Moreover, using
(37)and the fact that p!(p)≤RH + cma− cma

1−β(ΛD!(p))
, we have that

η4H

Λ
≤
(

(RH + cma)[1− ν(ΛDH(p))][1−β(ΛDH(p))]− cma

)

<

(

(RH + cma)[1− ν(ΛD∗
H)][1−β(ΛD∗

H)]− cma

)

,

where the second inequality holds since ΛD!(p)>ΛD∗
H and [1−ν(λ)][1−β(λ)] is the derivative of λ[1−β(λ)],

which is a strictly concave function.

Combining these two observations with the fact that η2H
=ΛD!(p) (since η1H

= 0), we have that

ΛD∗
H < η2H

<





kH − 1+ kLϑ(ΛD∗
H ,ΛD

∗
L)

cma
β′(ΛD∗

H
)

1−β(ΛD∗
H
)





(

(RH + cma)[1− ν(ΛD∗
H)][1−β(ΛD∗

H)]− cma

)

⇒−ÛH

(

ΛD∗
L,ΛD

∗
H

)

[

kH − 1+ kLϑ(ΛDH ,ΛDL)+ ν(ΛDH)

cma
β′(ΛDH)

1−β(ΛDH)

]

< 0

⇒ ÛH

(

ΛD∗
L,ΛD

∗
H

)

> 0.

However, this is a contradiction since UH

(

ΛD∗
L,ΛD

∗
H

)

≤ 0 by definition. !

The above claim proves that DH(p) =D∗
H , and DL(p) =D∗

L since customer utility is zero in the

best-response problem of a single high-quality provider. Moreover, another implication of the above

claim is that η4H > 0, i.e. all customers request service, as we discussed in the identical providers

setting. Hence, we have that D! =D∗
H and p! = p∗H . The proof of the fact that the best-response

for a low-quality provider is p∗L is the same and omitted.
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Case-3 (ΛRL ≤ Λ < Λ0): In this case, we first show that customer surplus is positive in the

best-response problem of a single high-quality provider.

Claim 5. Let (D!(p),DL(p),DH(p), p!(p)) be the solution of single agent’s best response problem

when all other agents charge the price p. If p= (p∗H , p
∗
L) as described in Theorem 6, then we have

that (RH − p!(p)+ cma)[1−β(ΛD!(p))] =∆, where

∆=
(RH + cma)

[

kH − 1+ kLϑ(D̂H(Λ),ΛDL)
]

kH+kLϑ(D̂H (Λ),ΛDL)

1−ν(D̂H (Λ))
− 1

[1−β(D̂H(Λ))].

Proof:

Suppose (RH − p!(p)+ cma)[1−β(ΛD!(p))]<∆. Then, we have that ΛDi(p)> D̂i(Λ) for i∈ {H,L} since

(Ri− pi + cma)[1−β(D̂i(Λ))] =∆> (Ri− pi + cma)[1−β(ΛDi(p))],

where the inequality holds by the fact that Ui

(

D̂L(Λ), D̂H(Λ)
)

> 0 for any Λ<Λ0. Moreover, ΛDi(p)> D̂i(Λ)
implies that ΛD!(p)< D̂H(Λ) since D!(p)+ (kH − 1)DH(p)+ kLDL(p) = 1.

Then using (37) and (38), we have that

η2H
= η3H

+
(kH − 1)

Λ(RH − pH + cma)β′(ΛDH(p))
η4H

=

[

kL

Λ(RL− pL + cma)β′(ΛDL(p))
+

(kH − 1)

Λ(RH − pH + cma)β′(ΛDH(p))

]

η4H

>

(

kH − 1+ kLϑ(D̂H(Λ),ΛDL)

(RH − pH + cma)β′(D̂H(Λ))

)

η4H

Λ
,

where the inequality holds since ΛDL(p)> D̂L(Λ), ΛDH(p)> D̂H(Λ), and β(λ) is concave. Moreover, using
(37)and the fact that p!(p)>RH + cma− cma

1−β(ΛD!(p))
, we have that

η4H

Λ
>

(

(RH + cma)[1− ν(ΛDH)][1−β(ΛDH)]− cma

)

>

(

(RH + cma)[1− ν(D̂H(Λ))][1−β(D̂H(Λ))]− cma

)

,

where the second inequality holds since ΛD!(p)< D̂H(Λ) and [1− ν(λ)][1− β(λ)] is the derivative of λ[1−
β(λ)], which is a strictly concave function.

Combining these two observations with the fact that η2H
≤ ΛD!(p)< D̂H(Λ) (since η1H

≥ 0), and RH −
pH + cma =

∆
1−β(D̂H(Λ))

, we have that

D̂H(Λ)>

(

kH − 1+ kLϑ(D̂H(Λ), D̂L(Λ))
∆

1−β(D̂H(Λ))
β′(D̂H(Λ))

)

(

(RH + cma)[1− ν(D̂H(Λ))][1−β(D̂H(Λ))]−∆

)

⇒ (RH + cma)[1− ν(D̂H(Λ))][1−β(D̂H(Λ))]−∆
kH − 1+ kLϑ(D̂H(Λ), D̂L(Λ))+ ν(D̂H(Λ))

kH − 1+ kLϑ(D̂H(Λ), D̂L(Λ))
< 0

⇒∆>
(RH + cma)

[

kH − 1+ kLϑ(D̂H(Λ), D̂L(Λ))
]

kH+kLϑ(D̂H(Λ),D̂L(Λ))
1−ν(D̂H(Λ))

− 1
[1−β(D̂H(Λ))] =∆

Hence, we should have that (RH − p!(p)+ cma)[1−β(ΛD!(p))]≥∆.

Now, we suppose (RH − p!(p) + cma)[1− β(ΛD!(p))] >∆. As the same as above (only by reversing the
inequality signs), we can again have a contradiction. Therefore, we should have that (RH − p!(p)+ cma)[1−
β(ΛD!(p))] =∆.
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!

Once we have the above claim, it is clear that ΛDi(p) = D̂i(Λ) for i∈ {H,L}. Moreover, the claim

also implies that all customers request service since ∆> cma as Λ<Λ0. Hence, we also have that

ΛD!(p) = D̂H(Λ), and p!(p) = p∗H . Similarly, proving a claim as above for the low-quality providers,

we can show that the best-response of a low-quality provider is p∗L given (p∗H , p
∗
L).

Case-4 (ΛRL
H ≤Λ≤ΛRL): In this case, we first show that customer surplus is exactly RL in the

best-response problem of a single high-quality provider.

Claim 6. Let (D!(p),DL(p),DH(p), p!(p)) be the solution of single agent’s best response problem

when all other agents charge the price p. If p= (p∗H , p
∗
L) as described in Theorem 6, then we have

that (RH − p!(p)+ cma)[1−β(ΛD!(p))] =RL + cma.

Proof:

Suppose (RH − p!(p)+ cma)[1−β(ΛD!(p))]<RL + cma. Then, we have that D!(p)> 1/kH since

(RH − p∗H + cma)[1−β(Λ/kH)] =RL + cma > (RH − p∗H + cma)[1−β(ΛDH(p))].

Moreover, DH(p)> 1/kH implies that D!(p)< 1/kH since D!(p)+ (kH − 1)DH(p)+ kLDL(p)≤ 1.

Then using (37) and (38), we have that

η2H
=

[

kL

Λ(RL− pL + cma)β′(ΛDL(p))
+

(kH − 1)

Λ(RH − pH + cma)β′(ΛDH(p))

]

η4H

>

[

kL

Λ(RL + cma)β′(0)
+

(kH − 1)

Λ(RH − pH + cma)β′(Λ/kH)

]

η4H

=

(

kH − 1+ kLϑ(Λ/kH ,0)

(RH − pH + cma)β′(Λ/kH)

)

η4H

Λ
,

where the inequality holds since DL(p) ≥ 0, pL ≥ 0, DH(p) > 1/kH , and β(λ) is concave, and the equality
holds since (RH − p∗H + cma)[1 − β(Λ/kH)] = RL + cma. Moreover, using (37)and the fact that p!(p) >
RH + cma− cma

1−β(ΛD!(p))
, we have that

η4H

Λ
>

(

(RH + cma−wH)[1− ν(Λ/kH)][1−β(Λ/kH)]− (RL + cma)

)

,

where the inequality holds since D!(p)< 1/kH and [1− ν(λ)][1−β(λ)] is the derivative of λ[1−β(λ)], which
is a strictly concave function.

Combining these two observations with the fact that η2H
≤ ΛD!(p) < Λ/kH (since η1H

≥ 0), and RH −
p∗H + cma =

RL+cma

1−β(Λ/kH) , we have that

(RH + cma−wH)[1− ν(Λ/kH)][1−β(Λ/kH)]− (RL + cma)
kH − 1+ kLϑ(Λ/kH ,0)+ ν(Λ/kH)

kH − 1+ kLϑ(Λ/kH ,0)
< 0

⇒ ÛH(0,Λ/kH)<RL,

However, this is a contradiction because by the definition of Λ(RL) since we have that ÛH(0,Λ/kH)≥RL for
any Λ≤Λ(RL).

Now, suppose (RH − p!(p) + cma)[1− β(ΛD!(p))]> RL + cma. Then, we have that DL(p) = 0, DH(p)<
1/kH , and D!(p)> 1/kH . Using these and other properties we used in previous proofs, we have that

η2H
<

(

kH − 1
RL+cma

1−β(Λ/kH)β
′(Λ/kH)

)

η4H

Λ
η4H

Λ
< (RH + cma)[1− ν(Λ/kH)][1−β(Λ/kH)]− (RL + cma).
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Combining these observations, and the fact that η2H
>Λ/kH , we have that

(RH + cma)[1− ν(Λ/kH)][1−β(Λ/kH)]− (RL + cma)
kH − 1+ ν(Λ/kH)

kH − 1
> 0

⇒ zRL(Λ)> 0.

However, this is a contradiction because zRL(Λ) is decreasing in Λ, so that by the definition of ΛRL , we have
zRL(Λ)≤ 0 for any Λ≥ΛRL

H .

Hence, we should have that (RH − p!(p)+ cma)[1−β(ΛD!(p))] =RL + cma.

!

Similar to other case, the direct implication of the above claim is that D!(p) = 1/kH , and p! = p∗H .

Furthermore, it can be shown that the solution of the best-response problem of a low-quality agent

is D!(p) = 1/kL, and p! = p∗L in a very similar way.

Case-5 (Λ < ΛRL
H ): In this case, only the high-quality providers are in the market,

so the proof is very similar to the proof in the identical agents model. Letting ∆ =

(RH+cma−wH )(kH−1)[1−ν(Λ/kH )][1−β(Λ/kH )]
kH−1+ν(Λ/kH )

, we can show that any high-quality provider leaves ∆− cma

surplus in his best-response, and this established the result. The proof of this claim suppose this is

not true and come up with contradictions as in the proof of Case-3 of the identical agents model.

Appendix S.7: Operational Efficiency (Non-Identical Agents)
S.7.1. Proof of Lemma 8

Here, we only present the proof for i=L, j =H. For notational convenience, we let rik =Ri− pik

and ri =Ri− pi for i∈ {H,L}.

1. To prove our claim, it is sufficient to show that lim inf
k→∞

DL(k) +PHL(k)DH(k) = 1. We prove

this claim by contradiction. Thus, we suppose lim inf
k→∞

DL(k) + PHL(k)DH(k)< 1 on the contrary.

Then, we have convergent subsequences DL(k), DH(k), PHL such that

lim
k→∞

DL(k)+PHL(k)DH(k)< 1

lim
k→∞

ΛkDL(k)

αLk
< 1,

where the second inequality holds since ρ≤ αL.

Similar to the proof of Lemma 6.1, we have that

lim
k→∞

βL(k)≤ lim
k→∞

βMM1(ΛkDL(k),αLk) = 0,

where the last equality is due to Ward and Glynn (2003). Using this result, we have that

lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = rL > 0, (44)
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which implies that utility of customers choosing the price pL is strictly positive for large k, so

that we should have lim
k→∞

DH(k) +DL(k) = 1 by the definition of Market Customer Equilibrium.

Furthermore, we have that

lim
k→∞

PHL(k)< 1

since lim
k→∞

DL(k)+PHL(k)DH(k)< 1. Then, we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk)

= lim
k→∞

[

1−PHL(k)
]

[

(rH + cma)
[

1−βH(k)
]

− cma

]

+ lim
k→∞

PHL(k)(rL)

≤ lim
k→∞

[

1−PHL(k)
]

(rH)+ lim
k→∞

PHL(k)(rL)< rL, (45)

where the first inequality holds since βH(k)≥ 0, and the second one holds since lim
k→∞

PHL(k)< 1.

Then, combining 44 and 45, we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk)< lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk)

which implies that customers are strictly better-off by choosing sub-pool-2 over sub-pool-1 for

sufficiently large k. This contradicts with the definition of customer equilibrium since lim
k→∞

DH >

0, i.e. customers choose sub-pool-1 in sufficiently large systems. Hence, we should have that

lim inf
k→∞

DL(k)+PHL(k)DH(k) = 1.

2.a) (The proof is very similar to the proof of Lemma 6.1 )

We again prove our claim by contradiction. Thus, we suppose that lim inf
k→∞

ΛkDL(k)
αLk

≤ 1. Then, there

exists a convergent subsequence such that

lim inf
k→∞

ΛkDL(k)

αLk
≤ 1.

Similar to the proof of Lemma 6.1, we have that

lim
k→∞

βL(k)≤ lim
k→∞

βMM1(ΛkDL(k),αLk) = 0,

where the last equality is due to Ward and Glynn (2003). Using this result, we have that

lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = rL > 0,

which implies that utility of customers choosing the price pLk
is strictly positive for large k, so

that we should have lim
k→∞

DH(k) +DL(k) = 1 by the definition of Market Customer Equilibrium.

Furthermore, using the fact that the rate of arrival to sub-pool-2 is equal to the rate of departure

(either by service or abandonment), we have that

ΛkDH(k)PHL(k)+ΛkDL(k) = αLkσ2(DH(k),DL(k); rHk
, rLk

;αHk,αLk)+ΛkDL(k)βL(k).
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Dividing both sides by Λk, the above equation implies that

PHL(k)
[

DH(k)+DL(k)
]

≤ αLk

Λk
σ2(DH(k),DL(k); rHk

, rLk
;αHk,αLk)+DL(k)βL(k).

Letting k go to infinity, we have that

lim
k→∞

PHL(k) ≤
αL

ρ
< 1.

Then, as in the proof of Part a, we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk)< lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk)

which implies that customers are strictly better-off by choosing sub-pool-2 over sub-pool-1 for

sufficiently large k. This contradicts with the definition of customer equilibrium since

lim
k→∞

DH(k) = 1− lim
k→∞

DL(k)≥ 1− αL

ρ
> 0,

i.e. customers choose sub-pool-1 in sufficiently large systems. Hence, we should have that

lim inf
k→∞

ΛkDL(k)
αLk

> 1.

2.b) The proof is almost the same as the proof of Lemma 6.2.

2.c) To prove our claim, we first show that

lim
k→∞

βH(k) = lim
k→∞

βM(ΛkDH(k);αHk).

Note that βH(k)≤ βM(ΛkDH(k);αHk), since some of the customers choosing sub-pool-1 can be

served by sub-pool-2. Therefore, it is sufficient to show that

lim inf
k→∞

βH(k)≥ lim
k→∞

βM(ΛkDH(k);αHk).

We prove this claim as in the proof of Lemma 7.3. We consider a hypothetical situation where any

customer choosing the price pH is duplicated when there is an idle agent in sub-pool-2, and one of

these copies goes to sub-pool-2 while the other one is colored and goes to sub-pool-1. Furthermore,

any non-colored customer in sub-pool-1 has service priority.

This hypothetical sub-pool-1 operates as M/M/αHk+M system with arrival rate ΛkDH(k), so

that total abandonment rate is ΛkDH(k)βM(ΛkDH(k);αHk). In other words, we have that

ΛkDH(k)β
M(ΛkDH(k);αHk) =ΛkDH(k)βH(k)+ΛkDH(k)β

color(k),

where βcolor(k) is the probability that colored customers abandon the hypothetical system.
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In the hypothetical sub-pool-1, the abandonment rate of non-colored customers is the same as

the abandonment rate in the real sub-pool-1. Moreover, since some of the colored customers can

be served before abandoning the system, we have that βcolor(k)≤ PHL(k). Thus, we have that

βH(k) ≥ βM(ΛkDH(k);αHk)−PHL(k).

Then, using this result and part ii, we have that

lim inf
k→∞

βH(k)≥ lim
k→∞

βM(ΛkDH(k);αHk).

Finally the result holds since lim
k→∞

βM(ΛkDH(k);αHk) =max
{

0,1− αH
ρD̃H

}

by by Lemma 4.

2.d) (The proof is very similar to the proof of Lemma 6.5 )

We let πn be the steady-state probability of having n customers in sub-pool-2. Then, we have that

βL(k) =
∞
∑

n=αLk+1

(n−αLk+1)/ma
πn

ΛkDL(k)

=

(

∞
∑

n=αLk+1

πn

)

(

1− αLk

ΛkDL(k)

)

+παLk.

Then, the result follows by letting k→∞ and using the fact from part ii that lim
k→∞

αLk
∑

n=0

πn = 0.

3. Let Deq
L =max

{

min
{

1,
(

rL+cma
rH+cma

)

αL
ρ

}

,min
{

rL+cma
R̄

αL,
(

rL+cma
cma

)

αL
ρ

}}

.

Liminf: We first show that lim inf
k→∞

DL(k) ≥ Deq
L by contradiction. Thus, we suppose that

lim inf
k→∞

DL(k)<Deq
L . Then, there exists a convergent subsequence such that

D̃L := lim
k→∞

DL(k)<Deq
L .

Using this inequality and the fact that ρDeq
L > αL (since ρ> αL), we have that

lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = (rL + cma)

[

1− lim
k→∞

βL(k)

]

− cma

= (rL + cma)min

{

1,
αL

ρD̃L

}

− cma

> (rL + cma)
αL

ρDeq
L

− cma

≥ min

{

rH ,max

{

R̄

ρ
− cma,0

}}

≥ 0,

which implies that utility of customers choosing the price pL is strictly positive for large k, so

that we should have lim
k→∞

DH(k) +DL(k) = 1 by the definition of Market Customer Equilibrium.

Furthermore, we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = (rH + cma)min

{

1,
αH

ρ− ρD̃L

}

− cma
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≤ (rH + cma)min

{

1,
αH

ρ− ρDeq
L

}

− cma

≤ min

{

rH ,max

{

R̄

ρ
− cma,0

}}

< lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk)

which implies that customers are strictly better-off by choosing sub-pool-2 over sub-pool-1 for

sufficiently large k. This contradicts with the definition of customer equilibrium since

lim
k→∞

DH(k) = 1− lim
k→∞

DL(k)> 1−Deq
L ≥ 0,

i.e. customers choose sub-pool-1 in sufficiently large systems. Hence, we should have that

lim inf
k→∞

DL(k)≥Deq
L .

Limsup: Now, we show that limsup
k→∞

DL(k)≤Deq
L . Note that Deq

L = 1 when rL+cma
rH+cma

≥ ρ
αL

, so that

this is claim is obviously true. Thus, it sufficient to show that limsup
k→∞

DL(k) ≤ Deq
L in the case

where Deq
L < 1.

As above, we show this claim by contradiction. Therefore, we suppose that limsup
k→∞

DL(k)>Deq
L .

Then, there exists a convergent subsequence such that

D̃L := lim
k→∞

DL(k)>Deq
L .

Using this inequality, we have that

lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = (rL + cma)
αL

ρD̃L

− cma

< min

{

rH ,max

{

R̄

ρ
− cma,0

}}

. (46)

Furthermore, letting D̃H = lim
k→∞

DH(k) and using parts 2.b and 2.c, we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = (rH + cma)min

{

1,
αH

ρD̃H

}

− cma

≥ (rH + cma)min

{

1,
αH

ρ− ρDeq
L

}

− cma

≥ min

{

rH ,max

{

R̄

ρ
− cma,0

}}

. (47)

Combining (46) and (47), we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk)> lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk)

which implies that customers are strictly better-off by choosing sub-pool-1 over sub-pool-2 for suf-

ficiently large k. This contradicts with the definition of customer equilibrium since lim
k→∞

DL(k)>

0, i.e. customers choose sub-pool-2 in sufficiently large systems. Hence, we should have that

limsup
k→∞

DL(k)≤Deq
L .
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4. Note that lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk) ≥ min
{

rj,
R̄

cma

}

> 0 when ρ < R̄
cma

and

rj > 0 by part 3. Thus, we should have that the total rate of customers requesting is equal to 1.

Furthermore, the statement for rj = 0 is trivially true.

5. Liminf: We first show that lim inf
k→∞

DH(k)≥
(

rH+cma
cma

)

αH
ρ

by contradiction. Thus, we suppose

that lim inf
k→∞

DH(k)<
(

rH+cma
cma

)

αH
ρ
. Then, there exists a convergent subsequence such that

D̃H := lim
k→∞

DH(k)<

(

rH + cma

cma

)

αH

ρ
.

Using this inequality, we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = (rH + cma)min

{

1,
αH

ρD̃H

}

− cma

> (rH + cma)
cma

rH + cma
− cma

= 0= lim
k→∞

U2(DH(k),DL(k); rHk
, rLk

;αHk,αLk),

where the last equality holds since lim
k→∞

DL(k) =
(

rL+cma
cma

)

αL
ρ

when ρ≥ R̄
cma

by part 3. The above

inequality which implies that customers are strictly better-off by choosing sub-pool-1 over sub-

pool-2 for sufficiently large k. This contradicts with the definition of customer equilibrium since

lim
k→∞

DL(k)> 0,

i.e. customers choose sub-pool-2 in sufficiently large systems. Hence, we should have that

lim inf
k→∞

DH(k)≥
(

rH+cma
cma

)

αH
ρ
.

Limsup: Now, we show that limsup
k→∞

DH(k) ≤
(

rH+cma
cma

)

αH
ρ
. As above, we show this claim by

contradiction. Therefore, we suppose that limsup
k→∞

DL(k)>
(

rH+cma
cma

)

αH
ρ
. Then, there exists a con-

vergent subsequence such that

D̃H := lim
k→∞

DH(k)>

(

rH + cma

cma

)

αH

ρ
.

Using this inequality, we have that

lim
k→∞

U1(DH(k),DL(k); rHk
, rLk

;αHk,αLk) = (rH + cma)
αH

ρD̃H

− cma

< (rH + cma)
cma

rH + cma
− cma = 0.

which implies that customers are getting strictly negative utility by choosing sub-pool-1 for suf-

ficiently large k. This contradicts with the definition of customer equilibrium since we suppose

lim
k→∞

DH(k) > 0, i.e. customers choose sub-pool-1 in sufficiently large systems. Hence, we should

have that limsup
k→∞

DH(k)≤
(

rH+cma
cma

)

αH
ρ
.
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S.7.2. Proof of Lemma 9

We only the give the proof of lim
k→∞

Videv(k) = pi + ε for i = L, j =H. As we need to prove some

claims before proving the claim in Lemma 9, we state the lemma in a different way as above.

Then we prove the new version of Lemma 9. For notational convenience, we let rki =Ri− pik and

ri =Ri− pi for i∈ {H,L}. The proof for the other three cases are the same.

Restatement of Lemma 9: Consider a sequence of marketplaces indexed by the number of
agents, i.e. there are k agents in the kth marketplace, and assume that arrival rate in the kth

marketplace is Λk = ρk for some 0< ρ< 1.

DH(k) = DMCE
1 (rkH , rL− ε, rkL;αHk,1,αLk− 1)

DLdev
(k) = DMCE

2 (rkH , rL− ε, rkL;αHk,1,αLk− 1)
DL(k) = DMCE

3 (rkH , rL− ε, rkL;αHk,1,αLk− 1)
PHL(k) = PServ13(DH(k),DLdev

(k),DL(k); r
k
H , rL− ε, rkL;αHk,1,αLk− 1)

PHLdev
(k) = PServ12(DH(k),DLdev

(k),DL(k); r
k
H , rL− ε, rkL;αHk,1,αLk− 1)

PLdevL(k) = PServ23(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

where lim
k→∞

rki = ri ≥ 0 for i∈ {H,L}, and 1< rL+cma
rH+cma

< ρ
αL

. Then, we have that

1. lim inf
k→∞

ΛkDL(k)
kL

> 1.

2. lim
k→∞

PHL(k)+PLdevL(k) = 0.

3. lim
k→∞

DH(k)PHLdev
(k) = 0.

4. lim
k→∞

DLdev
(k) = 0.

5. lim
k→∞

β1

(

DH(k),DLdev
(k),DL(k); rkH , rL− ε, rkL;αHk,1,αLk− 1

)

=max
{

0,1− αH
ρD̃H

}

,

where D̃H = lim
k→∞

DH(k).

6. lim
k→∞

β3

(

DH(k),DLdev
(k),DL(k); rkH , rL− ε, rkL;αHk,1,αLk− 1

)

= 1− αL
ρD̃L

,

where D̃L = lim
k→∞

DL(k).

7. lim
k→∞

DL(k) =Deq
L ,

where Deq
L =max

{

min
{

1,
(

rL+cma
rH+cma

)

αL
ρ

}

,min
{

rL+cma
R̄

αL,
(

rL+cma
cma

)

αL
ρ

}}

.

8. lim
k→∞

VLdev
(k) = pL + ε,

where ε < rL − rH , and VLdev
(k) is the profit of a low-quality charging pL + ε when all other

low-quality providers charge pLk
, all high-quality providers charge pHk

in the kth marketplace, and
rH > 0.

9. lim
k→∞

VLdev
(k) = pL + ε,

where ε< rL− rH , and VLdev
(k) is the profit of a low-quality charging pL+ ε when all other low-

quality providers charge pLk
, all high-quality providers charge pHk

in the kth marketplace, rH = 0,
and the limiting revenue of high-quality agents is strictly positive before deviation.

Proof:

1. We prove our claim by contradiction. Hence, we suppose that lim inf
k→∞

ΛkDL(k)
kL

≤ 1 on the con-

trary. Then, there exists a convergent subsequence of DL(k) such that

lim
k→∞

ΛkDL(k)

kL
≤ 1.

Next, similar to the proof of Lemma 6.1, we have that

lim
k→∞

β3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)≤ lim

k→∞
βMM1(ΛkDL(k),αLk) = 0,
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where βMM1(λ, k) is the probability of abandonment in M/M/1+M system with arrival rate λ,

service rate k, and abandonment rate 1/ma. Since lim
k→∞

ΛkDL(k)
kL

≤ 1 we have the above result due

to Ward and Glynn (2003). Using this result, we have that

lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) = rL > 0, (48)

which implies that utility of customers choosing the price pL is strictly positive for large k, so

that we should have lim
k→∞

DH(k) +DHdevL(k) +DL(k) = 1 by the definition of Market Customer

Equilibrium.

Now, we argue that lim
k→∞

PHL(k)DH(k) = lim
k→∞

DH(k). In order to prove that it is enough to

show lim
k→∞

PHL(k) = 1 whenever lim
k→∞

DH(k)> 0. To show that we suppose lim
k→∞

PHL(k)< 1 when

lim
k→∞

DH(k)> 0. Then, we have that

lim
k→∞

U1(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

≤
[

1− lim
k→∞

PHL(k)
]

(rL− ε)+
[

lim
k→∞

PHL(k)
]

(rL)

< rL

= lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1).

However, this is a contradiction because customers are strictly better of by choosing sub-pool-3 for

large k while lim
k→∞

DH(k)> 0. Hence, we have that lim
k→∞

PHL(k)DH(k) = lim
k→∞

DH(k). Similarly, we

can show that lim
k→∞

PLdevL(k)DLdev
(k) = lim

k→∞
DLdev

(k).

Furthermore, using the fact that the rate of arrival to sub-pool-3 is equal to the rate of departure

(either by service or abandonment), we have that

ΛkDH(k)PHL(k)+ΛkDHdevL(k)PLdevL(k)+ΛkDL(k)

= kLσ3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

+ΛkDL(k)β3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1).

Dividing both sides by Λk and letting k→∞, the above equation implies that

1 = lim
k→∞

DH(k)+DHdevL(k)+DL(k) = lim
k→∞

DH(k)PHL(k)+DHdevL(k)PLdevL(k)+DL(k)

=
αL

ρ
lim
k→∞

σ3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)≤ αL

ρ
< 1,

where the second equality holds since lim
k→∞

PHL(k)DH(k) = lim
k→∞

DH(k), and lim
k→∞

PLdevL(k)DLdev
(k) =

lim
k→∞

DLdev
(k). The above inequality is a clear contradiction. Hence, we should have that

lim inf
k→∞

ΛkDL(k)
kL

> 1.
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2. The proof is very similar to the proof of Lemma 6.2.

Let πn be the steady-state probability of having n customers in sub-pool-2, and πM
n be the

steady-state probability of having n customers in an M/M/αLk + M system with arrival rate

ΛkDL(k), service rate 1, and abandonment rate 1/ma. By studying the birth-death chain of both

systems, we have that

αLk
∑

n=0

πn ≤

αLk
∑

n=0

[

Λk(DH (k)+DLdev
(k)+DL(k))

]n−αLk
(αLk)!

n!

αLk
∑

n=0

[

Λk(DH (k)+DLdev
(k)+DL(k))

]n−αLk
(αLk)!

n!
+

∞
∑

n=αLk+1

[

ΛkDL(k)
]n−αLk

n−αLk∏

i=1
(k+i/ma)

≤

αLk
∑

n=0

[

ΛkDL(k)
]n−αLk

(αLk)!

n!

αLk
∑

n=0

[

ΛkDL(k)
]n−αLk

(αLk)!

n!
+

∞
∑

n=αLk+1

[

ΛkDL(k)
]n−αLk

n−αLk∏

i=1
(k+i/ma)

=
αLk
∑

n=0

πM
n ,

where the inequality holds since x
x+A

, where A> 0 is a constant, is increasing in x.

Using the above relation, we have that

lim
k→∞

PHL(k)+PLdevL(k) = lim
k→∞

αLk
∑

n=0

πn ≤ lim
k→∞

αLk
∑

n=0

πM
n = 0,

where the last equality holds since lim inf
k→∞

ΛkDL(k)
αLk

> 1.

3. Using the fact that the rate of arrival to sub-pool-2 is equal to the rate of departure (either

by service or abandonment), we have that

ΛkDH(k)PHLdev
+ΛkDLdev

= σ2

(

DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1

)

+ΛkDLdev
β2

(

DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1

)

,

which implies that

DH(k)PHLdev
=

1

Λk
+DLdev

[

β2

(

DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1

)

− 1
]

≤ 1

Λk
.

Then, we obtain the result by letting k→∞.

4. Note it is sufficient to show that lim
k→∞

DLdev
(k) = 0. We prove this claim by contradiction.

Hence, we suppose that lim
k→∞

DLdev
(k)> 0 on the contrary. Then, there exists a convergent subse-

quence of DLdev
(k) such that

D̃Ldev
:= lim

k→∞
DLdev

(k)> 0.
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Using this observation and the fact that lim
k→∞

PLdevL = 0 from part 2, we have that

lim
k→∞

U2(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

= (rL + ε)
[

1− lim
k→∞

β2(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

]

− cma

≤ (rL + ε)
[

1− lim
k→∞

βM(ΛkDLdev
(k),1)

]

− cma =−cma,

where the inequality holds since some of customers choosing sub-pool-1 may be served by sub-

pool-2, and the last equality holds since the probability of abandonment goes to 1 in a single server

system as the arrival rate goes to infinity. The above inequality implies that the expected utility of

customers choosing sub-pool-2 is strictly negative for sufficiently large k. However, this contradicts

with the definition of customer equilibrium since lim
k→∞

DLdev
(k) > 0. Hence, we should have that

limsup
k→∞

DLdev
(k) = 0.

5. (The proof is very similar to the proof of Lemma 8 part 2.c)

As in Lemma 8.b.iii, it is sufficient to show that lim inf
k→∞

β1(DH(k),DLdev
(k),DL(k); rkH , rL −

ε, rkL;αHk,1,αLk− 1)≥ 1− αH
ρ
. We prove this claim by considering a hypothetical situation where

any customer choosing the price pH is duplicated when there is an idle agent in sub-pool-2 or in

sub-pool-3, and one of these copies goes to either sub-pool-2 or sub-pool-3 while the other one is

colored and goes to sub-pool-1. Furthermore, any non-colored customer in sub-pool-1 has service

priority.

This hypothetical sub-pool-1 operates as M/M/kH +M system with arrival rate ΛkDH(k), so

that total abandonment rate is ΛkDH(k)βM(ΛkDH(k), kH). In other words, we have that

ΛkDH(k)β
M(ΛkDH(k), kH) = ΛkDH(k)β1(DH(k),DLdev

(k),DL(k); r
k
H , rL− ε, rkL;αHk,1,αLk− 1)

+ΛkDH(k)β
color(k),

where βcolor(k) is the probability that colored customers abandon the hypothetical system.

In the hypothetical sub-pool-1, the abandonment rate of non-colored customers is the same as

the abandonment rate in the real sub-pool-1. Moreover, since some of the colored customers can

be served before abandoning the system, we have that βcolor(k)≤ PHLdev
(k) + PHL(k). Thus, we

have that

β1(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) ≥ βM(ΛkDH(k), kH)−PHLdev

(k)−PHL(k).

Finally, we have that

lim inf
k→∞

β1(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) ≥ lim

k→∞
βM(ΛkDH(k), kH) = 1− αH

ρD̃H

,

by using part 2 and 3, and the fact that D̃H > αH
ρ
.
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6. (The proof is very similar to the proof of Lemma 8 part 2.4)

We let πn be the steady-state probability of having n customers in sub-pool-2. Then, we have that

β3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) =

(

∞
∑

n=αLk+1

πn

)

(

1− αLk

ΛkDL(k)

)

+παLk.

Then, the result follows by letting k→∞ and using the fact from part 2 that lim
k→∞

αLk
∑

n=0

πn = 0 due

to the fact that lim
k→∞

ΛkDL(k)
αLk

> 1.

7. Liminf : We first show that lim inf
k→∞

DL(k) ≥ Deq
L by contradiction. Thus, we suppose that

lim inf
k→∞

DL(k)<Deq
L . Then, there exists a convergent subsequence such that

D̃L := lim
k→∞

DL(k)<Deq
L .

Using this inequality, we have that

lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) = (rL + cma)

αL

ρD̃L

− cma

> (rL + cma)
αL

ρDeq
L

− cma

≥min

{

rH ,max

{

R̄

ρ
− cma,0

}}

≥ 0,

which implies that utility of customers choosing the price pL is strictly positive for large k, so that we

should have lim
k→∞

DH(k)+DL(k) = 1 by the definition of Market Customer Equilibrium. Using this

observation, we have that lim
k→∞

DH(k)> 1−D̃L ≥ 1−Deq
L ≥ 0, which implies that lim

k→∞
PHLdev

(k) = 0

by part 3. Furthermore, we show that lim
k→∞

PHL(k) = 0 in part 2. Combining these observations, we

have that

lim
k→∞

U1(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) = (rH + cma)min

{

1,
αH

ρ− ρD̃L

}

− cma

≤min

{

rH ,max

{

R̄

ρ
− cma,0

}}

< lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

which implies that customers are strictly better-off by choosing sub-pool-3 over sub-pool-1 for suf-

ficiently large k. This contradicts with the definition of customer equilibrium since lim
k→∞

DH(k)>

0, i.e. customers choose sub-pool-1 in sufficiently large systems. Hence, we should have that

lim inf
k→∞

DL(k)≥Deq
L .

Limsup: Now, we show that limsup
k→∞

DL(k) ≤ min
{

1,
(

rL+cma
rH+cma

)

αL
ρ

}

. Note that Deq
L < 1 since

rL+cma
rH+cma

≥ αL
ρ
.
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As above, we show this claim by contradiction. Therefore, we suppose that limsup
k→∞

DL(k)>Deq
L .

Then, there exists a convergent subsequence such that

D̃L := lim
k→∞

DL(k)>Deq
L .

Using this inequality, we have that

lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) = (rL + cma)

αL

ρD̃L

− cma

<min

{

rH ,max

{

R̄

ρ
− cma,0

}}

. (49)

Furthermore, letting D̃H = lim
k→∞

DH(k) and using part 5 and the fact some of the customers

choosing sub-pool-1 may be served by other pools, we have that

lim
k→∞

U1(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)≥ (rH + cma)min

{

1,
αH

ρD̃H

}

− cma

≥ (rH + cma)min

{

1,
αH

ρ− ρDeq
L

}

− cma

≥min

{

rH ,max

{

R̄

ρ
− cma,0

}}

. (50)

Combining (49 ) and (50), we have that

lim
k→∞

U1(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

> lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1)

which implies that customers are strictly better-off by choosing sub-pool-1 over sub-pool-2 for suf-

ficiently large k. This contradicts with the definition of customer equilibrium since lim
k→∞

DL(k)>

0, i.e. customers choose sub-pool-2 in sufficiently large systems. Hence, we should have that

limsup
k→∞

DL(k)≤Deq
L .

8. To prove this claim, we first show that

lim
k→∞

DH(k) = min

{

1−Deq
L ,

(

rH + cma

cma

)

αH

ρ

}

> 0.

Once we show this result, then the utilization of the low-quality provider charging pL + ε will

converge to 1 since all customers choosing high-quality providers first visit him.

We first consider the case where ρ< R̄
cma

. In this case, we have that

lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) = (rL + cma)

αL

ρDeq
L

− cma

≥ min{R̄
ρ
− cma, rH}> 0.
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Hence, we should have that lim
k→∞

DH(k) +DLdev
(k) +DL(k) = 1, and it implies that lim

k→∞
DH(k) =

1−Deq
L by part 4.

Now, we focus on the case where ρ≥ R̄
cma

. We first want to note that

lim
k→∞

U3(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αHk,1,αLk− 1) = 0

by using part 7. As before, we prove our claim by arguing that
(

rH + cma

cma

)

αH

ρ
≤ lim inf

k→∞
DH(k)≤ limsup

k→∞
DH(k)≤

(

rH + cma

cma

)

αH

ρ
. (51)

Suppose lim inf
k→∞

DH(k)<
(

rH+cma
cma

)

αH
ρ
. Then, the expected utility of customers from high-quality

pool would converge to a strictly positive limit. This would mean that customers strictly prefer

high-quality pool over providers charging pL for large k. However, this would contradict with the

definition of the customer equilibrium since lim
k→∞

DL(k)> 0.

Now, we suppose limsup
k→∞

DH(k) >
(

rH+cma
cma

)

αH
ρ
. Then, the expected utility of customers from

high-quality pool would converge to a strictly negative limit. However, this would contradict with

the definition of the customer equilibrium since we suppose limsup
k→∞

DH(k)> 0.

Thus, (51) holds, and we have that lim
k→∞

DH(k) =
(

rH+cma
cma

)

αH
ρ

when ρ≥ R̄
cma

.

9. First note that we have that

lim
k→∞

Dpre
H (k) = D̃pre

H > 0,

where Dpre
H (k) is the rate of customers choosing high-quality agents before a single agent cuts his

price (Otherwise high-quality agents couldn’t have a strictly positive revenue in the limit). Also

note that D̃pre
H ≤ 1−Deq

L by Lemma 8.

Under this situation, we will show that the total rate of customers requesting service from the

high-quality agents after the deviation is strictly positive. In particular, we show that

lim
k→∞

DH(k) = D̃≥ αHD̃
pre
H > 0.

We prove this claim by contradiction. Thus, we suppose D̃ < αHD̃
pre
H , on the contrary. Then,

there should exists a convergent subsequences of {DH(k)}∞k=1 such that

lim
k→∞

DH(k) = D̃ < αHD̃
pre
H .

Using this observation, for large k, we have that

U1(DH(k),DLdev
(k),DL(k); r

k
H , rL− ε, rkL;αjk− 1,αik,1)
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=
[

1−PHL(k)−PHLdev
(k)
][

(rkH + cma)
(

1−βH(k)
)

− cma

]

+PHLdev
(k)(rL− ε)+PHL(k)r

k
L

≥
[

1−PHL(k)
][

(rkH + cma)
(

1−βH(k)
)

− cma

]

+PHL(k)r
k
L

≥
[

1−PHL(k)
][

(rkH + cma)
(

1−βM(ΛkDH(k);αHk)
)

− cma

]

+PHL(k)r
k
L

≥
[

1−P pre
HL (k)

][

(rkH + cma)
(

1−βM(ΛkDH(k);αHk)
)

− cma

]

+P pre
HL (k)r

k
L

>
[

1−P pre
HL (k)

][

(rkH + cma)
(

1−βM(ΛkDpre
H (k);k)

)

− cma

]

+P pre
HL (k)r

k
L

≥
[

1−P pre
HL (k)

][

(rkH + cma)
(

1−βpre
H (k)

)

− cma

]

+P pre
HL (k)r

k
L ≥ 0,

where P pre
HL (k) is the probability with which a customer choosing high-quality agents is served by

low-quality agents, and βpre
H (k) is the probability of abandonment for customers choosing quality-

H agents in the equilibrium before deviation. We also denote the probability of abandonment for

customers choosing quality-H agents in the equilibrium after deviation by βH(k).

The first inequality holds since rL − ε > rkH . The second inequality holds since not all of the

customers choosing high-quality agents are served by high-quality agents. The third inequality

holds since the probability with which a customer choosing high-quality agents is served by low-

quality agent is higher after the deviation as a result of our assumption that D̃ < αHD̃
pre
H and by

parts 4 and 7.

The forth inequality holds since D̃ < αHD̃
pre
H and by the fact that βM(ΛkDH(k);αHk) #

(

ρD̃/αHe−(1−ρD̃/αH )
)k
, βM(ΛkDH(k)pre;k)#

(

ρD̃pre
H e−(1−ρD̃pre

H )
)k
, and

(

ρD̃/αHe−(1−ρD̃/αH )
)k

(

ρD̃pre
H e

−(1−ρD̃
pre
H

)
)k → 0 as

k→∞ similar to what we discuss in the proof of Proposition 3. Finally, the fifth inequality holds

since we βM(ΛkDH(k)pre;k) is the probability of abandonment in a hypothetical system where the

customers choosing high-quality agents are served by k agents instead of αHk. This hypotheti-

cal system always serves more of the customers choosing the high-quality agents(or, equivalently,

causes less abandonment) because in the real system customers choosing the high-quality agents

can be served by low-quality agents only if they don’t serve their own customers.

The above inequality implies that customers obtain strictly positive utility for large k. However,

this contradicts with the definition of customer equilibrium since

lim
k→∞

DH(k)+DLdev
(k)+DL(k)< αHD̃

pre
H +Deq

L ≤ αH(1−Deq
L )+Deq

L < 1,

i.e. some customers don’t request service for large k (The above inequality holds since 0< D̃pre
H ≤

1−Deq
L ). Hence, we should have that lim

k→∞
DH(k) = D̃≥ αHD̃

pre
H > 0.

As a direct implication of this result, we have that the utilization of the deviating agents converges

to 1 as k grows (as in the proof of Proposition 3), so that his revenue converges to the price he

charges minus his operating cost, pL + ε−wL.
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S.7.3. Proof of Lemma 10

In this proof, we only consider the case where Ri − pki ≥ Rj − pkj for all k for some i, j ∈ {H,L}

with i $= j. Furthermore, the below proof focuses on the deviation of a quality-j agent. The proof

for the deviation of a quality-i agent is the same.

Similar to the proof of Lemma 9, we let ri =Ri− pi, rki =Ri− pki for all i= {H,L}, and

Dj(k) = DMCE
1 (rkj , r

k
i , rj + ε;αjk− 1,αik,1)

Di(k) = DMCE
2 (rkj , r

k
i , rj + ε;αjk− 1,αik,1)

Djdev(k) = DMCE
3 (rkj , r

k
i , rj + ε;αjk− 1,αik,1)

Pjjdev(k) = PServ13(Dj(k),Di(k),Djdev(k); r
k
j , r

k
i , rj + ε;αjk− 1,αik,1)

Pji(k) = PServ12(Dj(k),Di(k),Djdev(k); r
k
j , r

k
i , rj + ε;αjk− 1,αik,1)

Pijdev(k) = PServ23(Dj(k),Di(k),Djdev(k); r
k
j , r

k
i , rj + ε;αjk− 1,αik,1)

βj(k) = β1(Dj(k),Di(k),Djdev(k); r
k
j , r

k
i , rj + ε;αjk− 1,αik,1)

βi(k) = β2(Dj(k),Di(k),Djdev(k); r
k
j , r

k
i , rj + ε;αjk− 1,αik,1)

for notational convenience.

S.7.3.1. pi <Ri: The proof of this case is very similar to the proof of Proposition 3. We mainly

show that the rate of customers requesting service after the deviation of a single agent will be

strictly positive in the limit, and this guarantees a 100% utilization for the deviating agents as it

is rigorously shown in Lemma 5. Particularly, we show that

lim inf
k→∞

Dj(k)+Di(k)+Djdev(k) = D̃≥min{αi/ρ,1}.

We prove this claim by contradiction. Thus, we suppose D̃ < min{αi/ρ,1}, on the contrary.

Then, there should exists a convergent subsequences of {Dj(k)}∞k=1 and {Di(k)}∞k=1 such that

lim
k→∞

Dj(k)+Di(k)+Djdev(k) = D̃ <min{αi/ρ,1}< 1.

Using this observation, we have that

lim
k→∞

U2(Dj(k),Di(k),Djdev(k); r
k
j , r

k
i , rj + ε;αjk− 1,αik,1)

=
(

1− lim
k→∞

Pijdev(k)
)(

lim
k→∞

(rki + cma))
(

1−βi(k)
)

− cma

)

+ lim
k→∞

Pijdev(k)(rj + ε)

≥ lim
k→∞

(rki + cma))
(

1−βi(k)
)

− cma

≥ lim
k→∞

(rki + cma))
(

1−βM(Λk(Dj(k)+Di(k));αik)
)

− cma = ri > 0,

where the first inequality holds rj + ε> rki for large k, the second inequality holds since some of

the customers choosing quality-j can be served by quality-j agents and some of the customers
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choosing quality-i can be served by the deviating agent, and finally the equality holds since D̃ <

min{αi/ρ,1} < 1. This result implies that customers obtain strictly positive utility for large k.

However, this contradicts with the definition of customer equilibrium since lim
k→∞

Dj(k) +Di(k) +

Djdev(k) < 1, i.e. some customers don’t request service for large k. Hence, we should have that

lim inf
k→∞

Dj(k)+Di(k)+Djdev(k) = D̃≥min{αi/ρ,1}.

As a direct implication of this result, we have that the utilization of the deviating agents converges

to 1 as k grows (as in the proof of Proposition 3), so that his revenue converges to the price he

charges minus his operating cost, pj − ε−wj.

S.7.3.2. pi =Ri: First note that we have that

lim
k→∞

Dpre
j (k) = D̃pre

j > 0, and lim
k→∞

P pre
ji (k) = P̃ pre

ji > 0,

where Dpre
j (k) is the rate of customers choosing quality-j agents and P pre

ji (k) is the probability

with which a customer choosing quality-j before a single agent cuts his price (Otherwise quality-j

agents couldn’t have a strictly positive revenue in the limit).

Under this situation, we will show that the total rate of customers requesting service after the

deviation is strictly positive. In particular, we show that

lim
k→∞

Dj(k)+Di(k)+Djdev(k) = D̃≥ αiD̃
pre
j (1− P̃ pre

ji )> 0.

We prove this claim by contradiction. Thus, we suppose D̃ < αiD̃
pre
j (1− P̃ pre

ji ), on the contrary.

Then, there should exists a convergent subsequences of {Dj(k)}∞k=1 and {Di(k)}∞k=1 such that

lim
k→∞

Dj(k)+Di(k)+Djdev(k) = D̃ < αiD̃
pre
j (1− P̃ pre

ji ).

Using this observation, for large k, we have that

U2(Dj(k),Di(k),Djdev(k); r
k
j , r

k
i , rj + ε;αjk− 1,αik,1)

=
(

1−Pijdev(k)
)(

(rki + cma))
(

1−βi(k)
)

− cma

)

+Pijdev(k)(rj + ε)

≥ (rki + cma)
(

1−βM(Λk(Dj(k)+Di(k));αik)
)

− cma

= rki − (rki + cma)β
M(Λk(Dj(k)+Di(k));αik)

> rki − (rki + cma)β
M(ΛkDj(k)

pre(1−Pji(k)
pre);k)

(

1−Pji(k)
pre
)

=
(

1−Pji(k)
pre
)

(

(rki + cma)
(

1−βM(ΛkDj(k)
pre(1−Pji(k)

pre);k)
)

− cma

)

+Pji(k)
prerki

≥
(

1−Pji(k)
pre
)

(

(rkj + cma)
(

1−βpre
j (k)

)

− cma

)

+Pji(k)
prerki ≥ 0,
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where βpre
j (k) is the probability of abandonment for customers choosing quality-j agents in the

equilibrium before deviation. The first inequality holds since not all of the customers choosing non-

deviating agents are served by quality-i agents. The second inequality holds since D̃ < αiD̃
pre
j (1−

P̃ pre
ji ) and by the fact that βM(Λk(Dj(k)+Di(k));αik)"

(

ρD̃/αie−(1−ρD̃/αi)
)k
, βM(ΛkDj(k)pre(1−

Pji(k)pre);k) "
(

ρD̃pre
j (1− P̃ pre

ji )e−(1−ρD̃pre
j (1−P̃pre

ji )))k, and

(

ρD̃/αie
−(1−ρD̃/αi)

)k

(

ρD̃pre
j (1−P̃pre

ji )e
−(1−ρD̃

pre
j (1−P̃

pre
ji ))

)k → 0 as

k→∞ as we discuss in the proof of Proposition 3. Finally, the third inequality holds since we

βM(ΛkDj(k)pre(1−Pji(k)pre);k) is the probability of abandonment in a hypothetical system where

the arrival rate is equal to the fraction of customers choosing quality-j and served by quality-

j agents while the capacity is k instead of αjk. This hypothetical system always serves more

customers (or, equivalently, causes less abandonment).

The above inequality implies that customers obtain strictly positive utility for large k. However,

this contradicts with the definition of customer equilibrium since lim
k→∞

Dj(k)+Di(k)+Djdev(k)< 1,

i.e. some customers don’t request service for large k. Hence, we should have that lim inf
k→∞

Dj(k) +

Di(k)+Djdev(k) = D̃≥ αiD̃
pre
j (1− P̃ pre

ji ).

As a direct implication of this result, we have that the utilization of the deviating agents converges

to 1 as k grows (as in the proof of Proposition 3), so that his revenue converges to the price he

charges minus his operating cost, pj − ε−wj.

S.7.4. Proof of Lemma 11

For notational convenience, let λ∆
ε (p;R) = λ∆(p+ ε;R+ ε), and ∆ε(p;R) =∆(p+ ε;R+ ε). Note

that ∆ε(p;R) =∆(p;R). Then, since p ∈ P(ρ;R), and λ∆(p;R) = argmax
λ≥0

(R+ cma)λ[1− β(λ)]−

λ[∆(p;R)+ cma], we have that

p > (R+ cma)λ
∆(p;R)[1−β(λ∆(p;R))]−λ∆(p;R)(∆(p;R)+ cma)

≥ (R+ cma)λ
∆
ε (p;R)[1−β(λ∆

ε (p;R))]−λ∆
ε (p;R)(∆ε(p;R)+ cma)

≥ (R+ ε+ cma)λ
∆
ε (p;R)[1−β(λ∆

ε (p;R))]−λ∆
ε (p;R)(∆ε(p;R)+ cma)

−ελ∆
ε (p;R)[1−β(λ∆

ε (p;R))]

≥ (R+ ε+ cma)λ
∆
ε (p;R)[1−β(λ∆

ε (p;R))]−λ∆
ε (p;R)(∆ε(p;R)+ cma)− ε,

where the last inequality holds since λ[1− β(λ)] is the utilization of a provider, and we have that

λ[1−β(λ)]≤ 1 by definition. Using the above observation, we have that

p+ ε> (R+ ε+ cma)λ
∆
ε (p;R)[1−β(λ∆

ε (p;R))]−λ∆
ε (p;R)(∆ε(p;R)+ cma),

which means (p+ ε)∈P(ρ;R+ ε).
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Appendix S.8: Communication Enabled Model (Non-Identical Agents)
S.8.1. Proof of Lemma 12

We prove this claim for the setting RH − wH > RL − wL. For notational convenience we let δ̃ =

lim
k→∞

δk, rki =Ri− pki for i∈ {H,L}, r′ =RH − pH + ε, and

DL(k) = DMCE
1 (rkL, r

′, rkH ;αLk, #δkk$,αHk−#δkk$)

D′
H(k) = DMCE

2 (rkL, r
′, rkH ;αLk, #δkk$,αHk−#δkk$)

DH(k) = DMCE
3 (rkL, r

′, rkH ;αLk, #δkk$,αHk−#δkk$)

PLH′ = PServ12(DL(k),D
′
H(k),DH(k); r

k
L, r

′, rkH ;αLk, #δkk$,αHk−#δkk$)

PLH = PServ13(DL(k),D
′
H(k),DH(k); r

k
L, r

′, rkH ;αLk, #δkk$,αHk−#δkk$)

PH′H = PServ23(DL(k),D
′
H(k),DH(k); r

k
L, r

′, rkH ;αLk, #δkk$,αHk−#δkk$).

Before proving the above claim, we want to note that lim
k→∞

DH(k)>
α−δ̃
ρ
, and only the customers

choosing sub-pool-3 can be served in sub-pool-3, i.e. lim
k→∞

PLH(k)+PH′H(k) = 0. The proof of these

claims are the same as the proofs of Lemma 9.1 and Lemma 9.2, respectively.

To prove the above claim, we first show that lim inf
k→∞

D′H (k)

δk
≥ 1

ρ
. In order to prove that by contra-

diction, we suppose lim inf
k→∞

D′H (k)

δk
< 1

ρ
. Then, there exists a convergent subsequence of D′

H(k) such

that lim
k→∞

D′H (k)

δk
< 1

ρ
. As we argue in the proof of previous claims, the above assumption implies that

the probability of abandonment in sub-pool-2 becomes negligible as k becomes large. (See Lemma

6.1) As a direct implication of this fact, we have that

lim
k→∞

U2(DL(k),D
′
H(k),DH(k); r

k
L, r

′, rkH ;αLk, #δkk$,αHk−#δkk$)≥ r′ >RL−wL > 0,

which implies that lim
k→∞

DL(k) +D′
H(k) +DH(k) = 1, i.e. all customers request service in a large

marketplace, by the definition of the customer equilibrium. It also implies that lim
k→∞

PLH′DL(k) =

DL(k), i.e. all of the customers choosing sub-pool-1 will be served by sub-pool-2, since the expected

utility from sub-pool-2 exceeds RL−wL. (A similar proof can be seen in the proof of Lemma 9.1)

Furthermore, using the above observations, and considering the balance equation of sub-pool-2,

we have that

lim
k→∞

DL(k)+D′
H(k) = lim

k→∞
PLH′DL(k)+ lim

k→∞
D′

H(k)≤
δ

ρ
,

which implies that lim
k→∞

DH(k)≥ 1− δ̃/ρ. However, this leads to the following contradiction:

lim
k→∞

U3(DL(k),D
′
H(k),DH(k); r

k
L, r

′, rkH ;αLk, #δkk$,αHk−#δkk$)

= (rH + cma)
αH − δ̃

ρ− δ̃
− cma < (rH + cma)

αH

ρ
− cma



Çil et.al.
72 Large-scale Service Marketplaces

< r′ ≤ lim
k→∞

U2(DL(k),D
′
H(k),DH(k); r

k
L, r

′, rkH ;αLk, "δkk#,αHk−"δkk#).

Hence, we should have that lim inf
k→∞

D′H (k)

δk
≥ 1

ρ
. Once we have that we can further show that

lim
k→∞

PLH′DL(k) = 0 (as in Lemma 9.3), and the probability of abandonment in the sub-pool-2

converges to 1− δ
ρD̃′H

when D̃′
H = lim inf

k→∞
D′

H(k) (as in Lemma 9.5)

Using these result, we have that

lim inf
k→∞

V ′H(k) ≥ (pH + ε+wH)

× lim inf
k→∞

ΛkD′
H(k)

"δkk#

[

1− lim inf
k→∞

β2(DL(k),D
′
H(k),DH(k); r

k
L, r

′, rkH ;αLk, "δkk#,αHk−"δkk#)
]

= pH + ε+wH .

Finally, the result holds since V ′H(k)≤ pH + ε+wH by definition.

S.8.2. Proof of Lemma 13

In this proof, we only consider a convergent subsequence of (pkH , p
k
L) where Ri − pki ≥Rj − pkj for

some i, j ∈ {H,L} with i (= j. Here, we show that a δ fraction of quality-i agents can improve their

revenues by charging pi + ε. The same proof holds for quality-j agents.

For notational convenience we let δ̃= lim
k→∞

δk, rki =Ri− pki for i∈ {H,L}, r′ =Ri− pi− ε, and

D′
i(k) = DMCE

1 (r′, rkj , r
k
i ; "δkk#,αjk,αik−"δkk#)

Dj(k) = DMCE
2 (r′, rkj , r

k
i ; "δkk#,αjk,αik−"δkk#)

Di(k) = DMCE
3 (r′, rkj , r

k
i ; "δkk#,αjk,αik−"δkk#)

Pi′j = PServ12(D
′
i(k),Dj(k),Di(k); r

′, rkj , r
k
i ; "δkk#,αjk,αik−"δkk#)

Pi′i = PServ13(D
′
i(k),Dj(k),Di(k); r

′, rkj , r
k
i ; "δkk#,αjk,αik−"δkk#)

Pji = PServ23(D
′
i(k),Dj(k),Di(k); r

′, rkj , r
k
i ; "δkk#,αjk,αik−"δkk#).

Before proving the above claim, we want to note that lim
k→∞

Di(k)>
α−δ̃
ρ
, and only the customers

choosing sub-pool-3 can be served in sub-pool-3, i.e. lim
k→∞

Pi′i(k) + Pji(k) = 0. The proof of these

claims are the same as the proofs of Lemma 9.1 and Lemma 9.2, respectively.

To prove our claim, we first show that lim inf
k→∞

D′i(k)

δk
≥ 1

ρ
. In order to prove that by contradic-

tion, we suppose lim inf
k→∞

D′i(k)

δk
< 1

ρ
. Then, there exists a convergent subsequence of D′

i(k) such that

lim
k→∞

D′i(k)

δk
< 1

ρ
. As a direct implication of this, we have that

lim
k→∞

U1(D
′
i(k),Dj(k),Di(k); r

′, rkj , r
k
i ; "δkk#,αjk,αik−"δkk#) = r′ > 0,

which implies that lim
k→∞

D′
i(k)+Dj(k)+Di(k) = 1, i.e. all customers request service in a large mar-

ketplace, by the definition of the customer equilibrium. Furthermore, this implies that lim
k→∞

Dj(k)+
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Di(k) = 1 − δ̃/ρ since lim
k→∞

D′i(k)

δk
< 1

ρ
. Then, we should have that either lim

k→∞
Dj(k) ≥ αj or

lim
k→∞

Di(k) ≥ αi − δ̃ (or both) holds because otherwise we would have that lim
k→∞

Dj(k) +Di(k) =

1− δ̃< 1− δ̃/ρ. Combining this with the observation that sub-pool-3 serves only its customers, we

have either

lim
k→∞

U3(D
′
i(k),Dj(k),Di(k); r

′, rkj , r
k
i ; #δkk$,αjk,αik−#δkk$)

= (ri + cma)
αi− δ̃

ρ lim
k→∞

Di(k)
− cma ≤ (ri + cma)

1

ρ
− cma < r′.

or

lim
k→∞

U2(D
′
i(k),Dj(k),Di(k); r

′, rkj , r
k
i ; #δkk$,αjk,αik−#δkk$)

≤ (rj + cma)
αj

ρ lim
k→∞

Dj(k)
− cma ≤ (ri + cma)

1

ρ
− cma < r′.

Both of these results contradicts with the definition of the Customer Equilibrium. Hence, we should

have that lim inf
k→∞

D′
i(k)≥ δ

ρ
. Finally, as in the above lemmas, we have that

lim inf
k→∞

V ′i (k) ≥ (pi + ε−wi) lim inf
k→∞

ΛkD′
i(k)

#δkk$
×
[

1− lim inf
k→∞

β2(D
′
i(k),Dj(k),Di(k); r

′, rkj , r
k
i ; #δkk$,αjk,αik−#δkk$)

]

= pi + ε−wi.

Finally, the result holds since V ′i (k)≤ pi + ε−wi by definition.


