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We consider the risk of a portfolio comprising loans, bonds, and financial instruments that are subject to possible default. In
particular, we are interested in performance measures such as the probability that the portfolio incurs large losses over a fixed
time horizon, and the expected excess loss given that large losses are incurred during this horizon. Contrary to the normal
copula that is commonly used in practice (e.g., in the CreditMetrics system), we assume a portfolio dependence structure
that is semiparametric, does not hinge solely on correlation, and supports extremal dependence among obligors. A particular
instance within the proposed class of models is the so-called t-copula model that is derived from the multivariate Student t
distribution and hence generalizes the normal copula model. The size of the portfolio, the heterogeneous mix of obligors,
and the fact that default events are rare and mutually dependent make it quite complicated to calculate portfolio credit
risk either by means of exact analysis or naïve Monte Carlo simulation. The main contributions of this paper are twofold.
We first derive sharp asymptotics for portfolio credit risk that illustrate the implications of extremal dependence among
obligors. Using this as a stepping stone, we develop importance-sampling algorithms that are shown to be asymptotically
optimal and can be used to efficiently compute portfolio credit risk via Monte Carlo simulation.
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1. Introduction
Market conditions over the past few years combined with
regulatory arbitrage have led to significant interest and
activity in trading and transferring of credit-related risk.
Because most financial institutions are exposed to multi-
ple sources of credit risk, a portfolio approach is needed to
adequately measure and manage this risk. One of the most
fundamental problems in this context is that of modeling
dependence among a large number of obligors (consisting,
for example, of companies to which a bank has extended
credit), and assessing the impact of this dependence on the
likelihood of multiple defaults and large losses.
The event of default for an individual obligor within the

portfolio is often captured using so-called threshold mod-
els. These models stipulate that an obligor defaults when
an appropriate state variable exceeds (or falls below) a
suitably chosen threshold. This idea underlies essentially
all models that descend from Merton’s seminal firm-value
work (cf. Merton 1974). The state variables associated with
each obligor are typically modeled using latent variables
that may arise from factor analysis, and thus summarize
common macroeconomic or industry-specific effects. The

dependence structure that governs the resulting multivari-
ate default distribution is called a copula function. In par-
ticular, a copula decouples the risk associated with the
portfolio dependence structure from the individual risks of
each obligor. Although there are numerous copula functions
that can serve such a purpose, the normal copula, which
assumes that the latent variables follow a multivariate nor-
mal distribution, is one of the most widely used models
in practice. It has been incorporated into many popular
risk-management systems such as J. P. Morgan’s Credit-
Metrics (cf. Gupton et al. 1997), Moody’s KMV system
(cf. Kealhofer and Bohn 2001), and is also prominently fea-
tured in the latest Basel accords that regulate capital alloca-
tion in banks (cf. Basel Committee on Banking Supervision
2002). See also Li (2000), the survey paper by Crouhy et al.
(2000), and the recent monograph by McNeil et al. (2005).
In recent years, empirical work has argued that financial

variables often exhibit stronger dependence than that cap-
tured in the correlation-based normal model. The stronger
linkage is often manifested in large joint movements. In
particular, in the credit risk context it has been argued that
the main source of risk in large balanced loan portfolios is
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the occurrence of many near simultaneous defaults—what
might be termed as “extreme credit risk.” These observa-
tions strongly suggest that in many instances the normal
copula may not be an adequate way to model dependencies.
An attractive alternative to the normal model is one based
on the multivariate Student t distributions, known as the
t-copula model. While generalizing the normal copula
model, the t-based model remains simple, parsimonious,
and analytically tractable. Recent work has shown that,
at least in certain instances, this model provides a better fit
to empirical financial data in comparison with the normal
copula (see, e.g., Mashal and Zeevi 2003).
Unlike the normal copula, the t-based model supports

extremal dependence between the underlying variables.
Roughly speaking, this means that variables may simultane-
ously take on very large (or small) values with nonnegligi-
ble probability; for further discussion, see Embrechts et al.
(2003). A useful interpretation of extremal dependence fol-
lows from the construction of a multivariate t distribution
as a ratio of a multivariate normal and the square root of a
scaled chi-squared random variable. When the denomina-
tor takes values close to zero, coordinates of the associated
vector of the t-distributed random variable may register
large co-movements (see further discussion in Embrechts
et al. 2003, Frey and McNeil 2003, and Glasserman et al.
2002). Hence, the chi-squared random variable plays the
role of a “common multiplicative shock.”
This paper is concerned with consequences of extremal

dependence on the risk of large heterogeneous credit port-
folios. The model that we stipulate builds on the latent
variable approach and blends in a common multiplicative
shock. The distributional assumptions we make are quite
general, and the model is, hence, reasonably flexible. One
can view the copula structure that arises from our model
as being essentially semiparametric, wherein a designated
parameter captures the extent of extremal dependence
present in the portfolio (roughly speaking, this parameter
governs the behavior of common shock distribution near
zero). The t-copula model discussed above is one partic-
ular instant that is contained within our model. The main
objective of this paper is to derive tractable procedures for
computing common risk measures such as the probability
of large portfolio losses and the expected shortfall, i.e., the
expected excess loss given that there are large portfolio
losses. The latter also plays an important role in the pricing
of various instruments such as credit baskets, collateral-
ized debt obligations, and options on credit baskets. The
approach we take is first to develop asymptotic approxima-
tions, which in turn form the basis for devising provably
efficient importance-sampling (IS) algorithms for estima-
tion of the above portfolio performance measures. In doing
so, we are also able to articulate in a mathematically precise
manner the effects of extremal dependence on the portfolio
risk, and contrast this to the more standard normal-based
theory.
The main contributions of this paper include the

following.

• We derive sharp asymptotics for two common risk
measures: the portfolio loss distribution and expected short-
fall (see Theorems 1 and 2). These results illustrate in a
precise manner how extremal dependence affects the port-
folio risk in a manner that is quite different from the normal
copula model .
• We construct two IS algorithms to efficiently esti-

mate the risk of a portfolio via simulation. The first is
an algorithm that uses an exponential twist, and the sec-
ond algorithm uses a variant of hazard-rate twisting (see,
e.g., Juneja and Shahabuddin 2006 for a discussion on
these importance-sampling techniques). Both algorithms
are shown to achieve maximal variance reduction in a suit-
able asymptotic sense: the first in the stronger sense of
bounded relative error (see Theorem 3), and the second in
the weaker sense of logarithmic efficiency (see Theorem 4).
The second algorithm has significant computational advan-
tages over the first.
Numerical results illustrate the asymptotic results and

performance of the algorithms, as well as their respective
merits.
Based on the results detailed above, we also contrast

the t-copula and the normal copula models in a simple
single-factor setting. When the inputs to both models are
identical, i.e., the obligors have the same marginal default
probabilities and latent variables have a correlation of 0<
! < 1, then we conclude the following: if the probabil-
ity of large losses is of order !"p# in the t-copula model,
then under the normal copula model it is of order !"p1/!2#.
This dramatic difference clearly illustrates the importance
of specifying the correct credit risk model. (See also the
discussion in Frey and McNeil 2001, which builds on sim-
ulation studies.)
This paper is organized as follows. This section ends

with a review of related literature that places the con-
tributions of this paper within the context of existing
work. Section 2 describes the model. Sections 3 and 4
contain our main results: the former derives the asymp-
totics and the latter describes the IS algorithms and inves-
tigates their performance. Section 5 presents numerical
results, and §6 contains some discussion and concluding
remarks. Proofs are relegated to two appendices that can
be found in the online companion: Appendix A contains
the proof of the main results and Appendix B gives proofs
of auxiliary results. The online companion can be found at
http://or.journal.informs.org/.

Related Literature and Positioning of This Paper.
Threshold-based models for portfolio credit risk are widely
used in practice; see, for example, CreditMetrics (cf. Gupton
et al. 1997) and Moody’s KMV system (cf. Kealhofer
and Bohn 2001), both of which use the normal copula
as a model for the portfolio dependence structure. The
recent work by Glasserman and Li (2003) develops large
deviation asymptotics for the probability of large losses,
and importance-sampling simulation procedures for homo-
geneous portfolios within the normal copula framework.
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Threshold models with nonnormal dependence structure
have recently been proposed and studied by Frey et al.
(2001) and Frey and McNeil (2003). The latter also for-
mulates nonnormal threshold models for credit portfolios
that are based on a mixing distribution; our common shock
model falls into this category. Frey and McNeil (2003) also
describes an approach to modeling seniority trenches. For
further references on this topic, see the recent monograph
by McNeil et al. (2005).
Although our work focuses on a general model for

extremal dependence, and in that sense is quite distinct
from the normal copula model studied in Glasserman and
Li (2003), it also shares several common threads with
their paper. As in Glasserman and Li (2003), our work
also develops an asymptotic regime, but in contrast to
their work, which derives logarithmic-scale large deviations
asymptotics, we establish sharp asymptotic approximations
that are more accurate. In addition, we develop these sharp
asymptotics for expected shortfall, a risk measure that is of
wide interest in practice. The IS techniques we develop in
this paper emphasize the common shock structure of our
model, and hence are significantly different from those in
Glasserman and Li (2003). Our exponential twisting IS pro-
cedure exhibits bounded relative error, a stronger notion of
asymptotic optimality than that established by Glasserman
and Li (2003), and we also explore further IS techniques
based on hazard-rate twisting that are much easier to imple-
ment, and yet enjoy good variance reduction properties. As
we indicate in §6.2, due to the common shock structure of
our model, the asymptotic analysis, as well as the proposed
importance-sampling techniques, generalize easily to the
multifactor model. In contrast, the work of Glasserman and
Li (2003) is restricted to the single-factor case, and does
not extend easily to a setting with multiple factors. Finally,
we derive IS algorithms for the expected shortfall of credit
portfolios, which can be used for both risk management
and pricing purposes and provide efficient computational
tools for large problems.
In the specific case of a t-copula, the recent work of

Schloegel and O’Kane (2005) uses an asymptotic approx-
imation for a homogeneous portfolio loss distribution, and
for this approximation derives explicit formulas for the
density of the loss distribution. The nature of the approx-
imation is based on the strong law of large numbers,
conditioned on the common shock variable (see also the
general asymptotic detailed in Frey and McNeil 2003,
Proposition 4.5). It is worth noting that these types of
approximations end up relying on the entire distribution
of the common shock in a potentially complicated man-
ner, and must typically be evaluated numerically. In par-
ticular, they do not explicitly articulate the effects of
extremal dependence that are present in t-copula models.
In contrast, our common shock model hinges on a more
general semiparametric assumption for the mixing distri-
bution, which encompasses several cases of practical inter-
est, including the t-copula. Unlike the work of Schloegel

and O’Kane (2005), our asymptotic approximation for the
tail of the loss distribution is simple enough to elucidate
the effects of extremal dependence in a precise and intu-
itive manner, and is also quite accurate and easy to com-
pute. Hence, by focusing on the tail distribution, one can
both generalize the scope of the model and obtain simpler
approximations.

2. Problem Formulation

2.1. The Portfolio Structure and Loss Distribution

Consider a portfolio of loans consisting of n obligors. Our
interest centers on the distribution of losses from defaults
over a fixed time horizon. The probability of default for
the ith obligor over the time horizon of interest is pi ∈
"0$1#, and is used as an input to our model. This value is
often set based on the average historical default frequency
of companies with similar credit profiles. The associated
exposure to default of counterparty i is assumed to be given
by ei > 0, that is, the default event results in a fixed and
given loss of ei monetary units. (We note that it is easy to
generalize the main results of the paper to the case where
the loss size is random under mild regularity conditions.)
To keep the analysis simple, we ignore degradation in the
quality of the loan, e.g., due to rating downgrades, but such
generalizations are straightforward.
For the determination of the portfolio loss distribution,

the specification of dependence between defaults is of
paramount importance. The dependence model that we con-
sider is closely related to the widely used CreditMetrics
model; see Gupton et al. (1997), Crouhy et al. (2000), and
Li (2000). In particular, we assume that there exists a vec-
tor of underlying latent variables %X1$ & & & $Xn' so that the
ith default occurs if Xi exceeds some given threshold xi
(the distributional assumptions related to the latent vari-
ables will be discussed in §2.2). The loss incurred from
defaults is then given by

L= e1"%X1 > x1'+ · · ·+ en"%Xn > xn'$ (1)

where "%·' is the indicator function. The threshold xi is cho-
sen according to the marginal default probabilities so that
#"Xi > xi# = pi. In this paper, our interest is in develop-
ing sharp asymptotics and efficient simulation techniques to
estimate the probability of large losses, #"L > x#, and the
expected excess loss conditioned on large portfolio losses
(commonly referred to as the expected shortfall of the port-
folio) given by Ɛ(L− x ! L> x), for a large threshold x.
The normal copula model that is widely used in the

financial industry and that forms the basis of the Credit-
Metrics and KMV models assumes that the vector of latent
variable follows a multivariate normal distribution. Hence,
the dependence between the default events is determined by
the correlation structure of the latent variables, in particu-
lar, the dependence structure of the vector ""%Xi > xi'$ & & & $
"%Xn > xn'# can be represented with a normal copula
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(cf. Embrechts et al. 2003). The underlying correlations are
often specified through a linear factor model

Xi = ci1Z1 + · · ·+ cidZd + ci*i$

where: (i) Z1$ & & & $Zd are i.i.d. standard normal random
variables that measure, for example, global, country, and
industry effects impacting all companies; (ii) ci1$ & & & $ cid are
the loading factors; (iii) *i is a normal random variable that
captures idiosyncratic risk, and is independent of the Zis;
and (iv) ci and the loading factors are chosen so that the
variance of Xi is equal to one (without loss of generality).
To keep the notation simple, we restrict attention to single-
factor models (d = 1); as we discuss in §6, the extension
of our analysis and results to multiple-factor models is not
difficult.
The multivariate normal that underlies CreditMetrics/

KMV provides a limited form of dependence between
obligors, which, in particular, may not assign sufficient
probability to the occurrence of many simultaneous defaults
in the portfolio. As indicated in the introduction, one of
the primary objectives of this paper is to extend the nor-
mal copula model to incorporate “stronger” dependence
among obligors, so that the corresponding dependence
structure is more in line with recently proposed models of
extremal dependence (see, e.g., Frey and McNeil 2001 and
Embrechts et al. 2003) and empirical findings (see, e.g.,
Mashal and Zeevi 2003), both of which suggest consid-
eration of t-copula models and the like over the normal
copula.

2.2. Extremal Dependence

Let (*i+ 1 ! i ! n) denote i.i.d. random variables and let
Z denote another random variable independent of (*i+ 1!
i! n). Fix 0<!< 1 and put

Xi =
!Z+

√

1−!2*i

W
$ i= 1$ & & & $ n$ (2)

where W is a nonnegative random variable independent of
Z and (*i+ 1! i ! n), and its probability density function
(p.d.f.) fW "·# satisfies

fW "w#= ,w-−1 + o"w-−1# as w ↓ 0$ (3)

for some constants , > 0 and - > 0. Here and in what
follows, we write h"x# = o"g"x## if h"x#/g"x# → 0 as
x→ 0 or as x→&, where the limit considered is obvious
from the context. If Z and %*i' are i.i.d. having a normal
distribution and W is removed from (2), then this model
reduces to a single-factor latent variable instance of Credit-
Metrics/KMV. As alluded to earlier, our aim is to model
economies where the dependence amongst obligor defaults
is primarily due to common shocks, and this is captured
in (3) through the random variable W . When W takes val-
ues close to zero, all the Xis are likely to be large, leading

to many simultaneous defaults. The parameter - measures
the likelihood of common shocks: smaller values imply a
higher probability that W takes values close to zero. This
class of models has recently been proposed in the context
of credit risk modeling (cf. Frey and McNeil 2001 and ref-
erences therein); in the particular instance where (Z$*i)
follow a bivariate normal distribution, this is often referred
to as a mean-variance normal mixture, with 1/W providing
the mixing distribution.

Example 1. Let W follow a Gamma(.$/) distribution,
with /, .> 0, whose p.d.f. is given by

fW "x#=
./x/−1

0"/#
e−.x$ x" 0&

Then, this distribution satisfies (3) with - = /, , =
.//0"/#.

Example 2. For a positive integer k, let W =
√

k−1Gamma"1/2$ k/2# so that

fW "x#=
2kk/2xk−1

2k/20"k/2#
e−kx2/2$ x" 0&

This p.d.f. satisfies (3) with - = k, ,= 2"k/2#k/2/0"k/2#.

Note that for / = k/2 and .= 1/2, the distribution dis-
cussed in Example 1 is chi-squared with k degrees of free-
dom (df). Note that when a linear combination of Z and
*i follows a normal distribution and W has the distribution
given in Example 2, then the vector (Xi+ 1! i! n) follows
a multivariate t-distribution, whose dependence structure is
given by a t-copula with k degrees of freedom.

Technical Assumptions. Let FZ"·# and F*"·# denote
the distribution functions of Z and *i, respectively. For
notational ease, let * denote a random variable independent
of W and Z with an identical distribution to *i. In what fol-
lows, we restrict Z and * to be light tailed, i.e., 1− FZ"x#
and 1 − F*"x# are both upper bounded by an exponen-
tially decaying term as x → &. Further, with regard to
the “noise” variable *, we make the following technical
assumption: the distribution of * possesses a probability
density function f*"·# such that f*"x# > 0 for all x ∈ %.
(The latter assumption is made to facilitate analysis and can
be generalized at the expense of further technical details.)
In what follows, we refer to (3) together with the above
conditions collectively as the distributional assumptions
associated with our model.

3. Large Portfolio Loss: Asymptotic
Analysis

Because it is virtually impossible to exactly compute the
probability of large portfolio losses and the associated
expected shortfall, we focus on an asymptotic regime that
is of practical interest and supports a tractable analysis.
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This regime is one where the portfolio of interest is com-
prised of a “large number” of obligors, each individual
obligor defaults with “small” probability, and the focus is
on “large” portfolio losses. The mathematical meaning of
these terms is spelled out in §3.1. Subsequently, in §3.2 we
describe the main results.

3.1. Preliminaries

Let f "x# denote an increasing function so that f "x#→&
as x → &. Fix n (the number of obligors in the port-
folio), and let %a1$ & & & $ an' be strictly positive constants.
Set the default thresholds for the individual obligors to be
xn
i = aif "n#, so that obligor i defaults if Xi > aif "n# and

obligors may have different marginal default probabilities.
The overall portfolio loss is given by

Ln = e1"%X1 >a1f "n#'+ · · ·+ en"%Xn > anf "n#'$ (4)

where ei, i = 1$ & & & $ n, is the exposure associated with the
ith obligor.
In §3.2, we analyze the probability that Ln takes on large

values when n is large; in particular, we focus on the prob-
ability of the event %Ln > nb' for b > 0. In §3.4, we extend
our analysis to develop sharp asymptotics for Ɛ(Ln − x !
Ln > x). We note that the regime we are focusing on here is
suitable for analyzing the risk of large portfolios in which
each obligor defaults with very small likelihood.
We assume that f "n# increases at a subexponential rate

so that f "n# exp"−.n# is a bounded sequence that con-
verges to zero as n→& for all .> 0. By suitably select-
ing the function f "n#, we can model portfolios of varying
credit ratings classes. For example, letting f "n# increase
polynomially in n, we can model a portfolio with high-
quality obligors, whereas if f "n# increases, say, at a loga-
rithmic rate, then the loans are considered more risky.
To deal with the heterogeneity among obligors, cap-

tured by the sequences %ei$ ai'
n
i=1, we impose the following

assumption.

Assumption 1. The nonnegative sequence ""ei$ ai#+ i" 1#
takes values in a finite set & , with cardinality !& !. In
addition, the proportion of each element "ej$ aj# ∈ & in
the portfolio converges to qj > 0 as n → & "so that
∑

j!!& ! qj = 1#.

In practice, the loan portfolio may be partitioned into a
finite number of homogeneous loans based on factors such
as industry, quality of risk, and exposure sizes. Assump-
tion 1 allows this flexibility. Although our analysis easily
generalizes to the case where each obligor corresponds to
the pair (ej$ aj ) with probability qj , and ej is a light-tailed
random variable, we avoid overburdening the notation by
simply assuming a constant exposure level ej , and that for a
given portfolio a fraction qj of the obligors corresponds to
class j . (In the remainder of the paper, we ignore the non-
integrality of qjn for simplicity and clarity of exposition.)

3.2. Sharp Asymptotics for the Probability of
Large Portfolio Losses

Let ē=∑

j!!& ! ejqj , i.e., the limiting average loss when all
the obligors default. Recall that the portfolio loss, Ln, is
given in (4). The following theorem derives a sharp asymp-
totic for the probability of large portfolio losses. The func-
tion w"z# used in the statement of the theorem is defined
in §3.5. Essentially, conditioned on Z = z, w"z# denotes
the threshold value so that for W ∈ "0$w"z#/f "n#), the
mean loss from the portfolio is greater than b; for W ∈
"w"z#/f "n#$&#, the mean portfolio loss is less than b.

Theorem 1. Fix 0 < b < ē, and let Assumption 1 as well
as the distributional assumptions on "Z$*$W# hold true.
Then,

f "n#-#"Ln > nb#→,

-

∫ &

−&
w"z#- dFZ"z# as n→&& (5)

We note that a similar result can be derived when f "n#
is not growing with n, in which case the probability of
large portfolio losses no longer vanishes asymptotically; see
further discussion in §6.2.

3.3. Discussion

Intuition and an Informal Proof Sketch. The proof
follows from behavior of W relative to the threshold w"z#.
On the event %W >w"Z#/f "n#', the mean portfolio loss is
less than b, and hence due to Chernoff’s bound the prob-
ability of large loss is exponentially decaying in n. The
event %0 <W < w"Z#/f "n#' is significant from the point
of view of large losses, and it occurs with probability

∫ &

−&
#
(

0<W !
w"z#

f "n#

)

dF "z#& (6)

Using the assumption given in (3), we have that

#"W !w"z#/f "n##≈
∫ w"z#/f "n#

0
,x-−1 dx (7)

≈ ,

-

(

w"z#

f "n#

)-

$ (8)

neglecting lower-order terms. Conditioned on the event
%0 < W < w"Z#/f "n#', the mean loss from the portfolio
is greater than b. Hence, due to the law of large numbers,
the event of large loss %Ln > nb' happens with probability
one in the limit as n→&. Plugging (8) into (6), the sharp
asymptotic (5) for the portfolio risk follows.

Implication of Extremal Dependence. Theorem 1
may be reexpressed as

#"Ln > nb#∼ 1
f "n#-

,

-

∫ &

−&
w"z#- dFZ"z#& (9)

(We say that an ∼ bn for nonnegative sequences (an+ n" 1)
and (bn+ n " 1) when an/bn → 1 as n→&.) Inspection
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of the expressions in Appendix A in the online companion
reveals that when ai ≡ a for all i, then w"z#= !"z− zb#/a
for some constant zb that depends on b. Hence, it is evi-
dent that the asymptotic behavior of the portfolio risk is
governed mostly by -, i.e., the likelihood that the com-
mon shock W takes values near the origin and obligors
tend to default simultaneously. In particular, as is evident in
the above asymptotic, smaller values of - lead to a higher
portfolio risk (because such values increase the propensity
for joint defaults in the portfolio). In contrast, the corre-
lation between obligors only affects the magnitude of the
constant premultiplier; as expected, higher values of cor-
relation increase the magnitude of this constant. We note
that even when obligor default probabilities are not identi-
cal (and characterized by different ais), the bounds on the
function w"z# are linearly dependent on ! (see the first sub-
section in the online companion). Thus, even in this case,
it is clear that the probability of large losses is far more
sensitive to - than to !. One consequence of this observa-
tion is that greater accuracy is needed in estimating - in
comparison to ! to get a reasonable approximation for the
probability of large portfolio losses. (For examples of such
estimation results in the context of the t-copula model, see
Mashal and Zeevi 2003.)

3.4. Sharp Asymptotics for the Expected Shortfall

Theorem 1 is the key to establishing an asymptotic for the
expected shortfall in Theorem 2. The function r"w$ z# used
in the statement of Theorem 2 is defined precisely in §3.5.
Essentially, r"w$ z# denotes the mean loss from the port-
folio conditioned on Z = z and W =w/f "n#. Let "Y #+ +=
max"0$ Y #.

Theorem 2. Fix 0 < b < ē, and suppose that Assumption
1 as well as the distributional assumptions on "Z$*$W#
hold true. Then,

Ɛ(Ln − nb ! Ln > nb)

n
→ 1"b$-# a.s.

as n→&, where

1"b$-# += -
∫ &
−&

∫ w"z#

0 "r"w$ z#− b#+w-−1 dwdFZ"z#
∫ &
−&w"z#- dFZ"z#

&

The theorem asserts that the expected shortfall grows
roughly linearly in the size of the portfolio n, i.e.,

Ɛ(Ln − nb ! Ln > nb)∼ n1"b$ -#&

The asymptotic may be briefly understood as follows:

Ɛ(Ln − nb ! Ln > nb)= Ɛ("Ln − nb#I"Ln > nb#)

P"Ln > nb#
& (10)

The asymptotic for the denominator is derived in Theo-
rem 1. The numerator may be asymptotically approximated
by noting that the set of values of W and Z, for which the

mean portfolio loss is less than b, contributes negligibly
to it (because, in that region, the probability of %Ln > nb'
decays exponentially with n). On the remaining set, the
portfolio loss amount may be replaced by its conditional
expectation (conditioned on the value of W and Z), and
because in this region W is small, its p.d.f. may be approx-
imated using (3).

3.5. Definitions of the Auxiliary Functions Used
in the Statements of the Main Theorems

Let

pw$z$ i += #
(

*i >
aiWf "n#−!Z

√

1−!2

∣

∣

∣

∣

W = w

f "n#
$Z= z

)

= #
(

*i >
aiw−!z
√

1−!2

)

&

Note that this probability is nondecreasing in z and is non-
increasing in w. Let

r"w$ z# +=
∑

j!!& !
ejqjpw$z$ j

= lim
n→&

1
n

n
∑

i=1

eipw$z$ i$ (11)

where the limit follows from Assumption 1. For w > 0,
r"w$ z# denotes the limiting average portfolio loss (as
n→&) when W = w/f "n# and Z = z. Note that r"w$ z#
is nondecreasing in z and nonincreasing in w.
Recall that ē = ∑

j!!& ! ejqj . Let zb denote the unique
value of z that solves

ē#
(

*"
−!z

√

1−!2

)

= b&

(Note that our assumption that * has a positive density
function on the real line ensures that there exists a unique
zb that solves the above equation.) The term zb assumes
significance in our analysis because for Z < zb, the event of
average loss exceeding b remains a rare event for all values
W > 0. Let w"z# be defined as the unique solution to

r"w$ z#= b& (12)

Note that w"z# is strictly positive for each z > zb. Note
also that for w!w"z#, under Pw$z the average loss amount
"1/n#

∑n
i=1 ei"%Xi > aif "n#' in the limit as n→& has mean

that is greater than or equal to b, and hence the probability
of large loss is no longer a rare event. We set w"z#= 0 for
z! zb.

4. Large Portfolio Loss:
Importance-Sampling Simulation

As we illustrate later in §5 through numerical examples,
the asymptotics presented in Theorems 1 and 2 can lead



Bassamboo, Juneja, and Zeevi: Portfolio Credit Risk
Operations Research 56(3), pp. 593–606, © 2008 INFORMS 599

to significant inaccuracies in assessing the probability of
large portfolio losses and the expected shortfall. Hence,
Monte Carlo methods become an attractive alternative to
accurately estimate these performance measures.
Because the probability of large portfolio losses is typ-

ically small, naive simulation would require a very large
number of runs to achieve a satisfactory variance for
the estimate. As in other rare event estimation problems,
importance sampling often provides an efficient means
of generating low-variance estimates, essentially by plac-
ing further probability mass on the rare event of inter-
est and then suitably unbiasing the resultant simulation
output. Our approach to estimating the expected shortfall
via Monte Carlo simulation exploits its ratio representa-
tion (10). Note that the samples generated to estimate the
numerator E"Ln − nb#I"Ln > nb# take positive value only
when large losses occur. Hence, the importance-sampling
technique that works well in estimating the probability of
large losses P"Ln > nb# may be expected to work well in
estimating E"Ln−nb#I"Ln > nb# as well. In §4.2, we show
that this is indeed the case. We first focus on efficiently
estimating P"Ln > nb# as n→&.

4.1. Importance Sampling for Loss Probability

For notational convenience, assume that Z and W have
probability density functions fZ"·# and fW "·#, respectively
(although in our analysis we do not require that the dis-
tribution of Z have a density function). Let (pj+ j !

!& !) denote the probabilities associated with the Bernoulli
variables ("%Xi > aif "n#'+ i ! n), as a function of the
generated Z and W . We suppress this dependence from
the notation for ease of presentation (this dependence is
explicitly displayed in the proofs given in Appendix A
in the online companion). For notational purposes, let
An = %Ln > nb' denote the event in which portfolio losses
exceed a level nb in a portfolio with n obligors. Sup-
pose that under an importance-sampling distribution we
generate samples of Z, W and the Bernoulli variables
("%Xi > aif "n#'+ i! n), and hence "%An', using density
functions f̃Z"·#, f̃W "·# and probabilities (p̃j + j ! !& !),
where the distribution of W may depend on the generated
value of Z, and the distribution of the Bernoulli success
probabilities may depend on the generated values of Z
and W (this dependence is also suppressed in the notation
here). Let *# denote the corresponding probability measure.
The sample output then equals L̃"%An', where L̃ denotes
the unbiasing likelihood ratio (Radon-Nikodym derivative
of # , the original probability measure, w.r.t. *# ) and equals

fZ"Z#fW "W#

f̃Z"Z#f̃W "W#

∏

j!!& !

(

pj

p̃j

)Yj qjn
(

1−pj

1− p̃j

)"1−Yj #qj n

$

where Yjqjn denotes the number of defaults in class j
obligors.
We now discuss two standard characterizations of perfor-

mance for importance-sampling estimators. The sequence

of estimators (L̃"%An'+ n" 1) under probability *# are said
to estimate the sequence of probabilities (#"An#+ n " 1)
with bounded relative error if

lim sup
n→&

√

*Ɛ(L̃2"%An')

#"An#
<&$

where *Ɛ denotes expectation with respect to the probability
distribution *# . Note that *Ɛ(L̃"%An')= #"An#. This, together
with the condition above, implies that the computational
effort needed to estimate the probability to a fixed degree
of relative accuracy remains bounded no matter how rare
the event is (i.e., independent of the value of n; see, e.g.,
Heidelberger 1995).
The sequence of estimators (L̃"%An'+ n" 1) under prob-

ability *# is said to be asymptotically optimal with respect
to the sequence of probabilities (#"An#+ n" 1) if

lim
n→&

log *Ɛ"L̃2"%An'#

log#"An#
= 2&

Because *Ɛ"L̃2"%An'# " "*Ɛ(L̃"%An')#
2 = #"An#

2, asymptotic
optimality implies asymptotic zero variance on a logarith-
mic scale. Note that if p̃ has bounded relative error, then it
is also asymptotically optimal.
As discussed in the previous section, the key to the

occurrence of the large loss events in the portfolio corre-
sponds to W taking small values so that the mean loss,
conditioned on W and Z, exceeds a level b. In §§4.1.1
and 4.1.2, we describe two different IS algorithms for esti-
mating #"An# that judiciously assign large probability to
this event to reduce simulation variance. The first algorithm
generates a new distribution of W by exponentially twisting
the original one (see, e.g., Heidelberger 1995 for an intro-
duction to exponential twisting). We prove that this results
in an estimator that has bounded relative error. The sec-
ond algorithm derives a new distribution for W by approxi-
mately hazard-rate twisting the original distribution of 1/W
(see Juneja and Shahabuddin 2002 for an introduction to
hazard-rate twisting), and we show that it results in an esti-
mator that is asymptotically optimal. This suggests that the
first algorithm may perform better than the second, and we
indeed observe this to be the case in our empirical exper-
iments reported in §5. We note that the second algorithm
may have significant implementation advantages that will
be discussed briefly in what follows.
When, conditional on (W$Z ), the mean loss is less

than b, it may be a good practice (although not essential
for the asymptotic optimality of the algorithms) to gener-
ate the corresponding Bernoulli random variables under an
exponentially twisted distribution so that the event An is
no longer rare, and the mean loss under the new distribu-
tion equals b. For any random variable X with p.d.f. fX"·#,
the associated distribution that is exponentially twisted by
parameter 2 has the form

exp"2x−3X"2##fX"x#$
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where 3X"·# denotes the log-moment generating func-
tion of X. For 2 " 0, let 3j"2# denote log"exp"2ej#pj +
"1−pj##. It is well known, and easily checked through dif-
ferentiation, that 3j"·# is strictly convex when 0< pj < 1
(see, e.g., Dembo and Zeitouni 1993). Let

p2
j =

3′
j "2#

ej
= exp"2ej#pj

exp"2ej#pj+"1−pj#
=exp"2ej−3j"2##pj$

where ej is the exposure to the jth obligor, and pj the
probability that the jth obligor defaults. Put 1 − p2

j =
exp"−3j"2##"1−pj#, and note that p2

j is strictly increasing
in 2. For the case where the mean loss

∑

j!!& ! ejqjpj < b,
consider the new default probabilities (p2∗

j + j ! !& !), where
2∗ > 0 is the unique solution to the equation

∑

j!!& !
ejqjp

2
j = b&

This choice of twisting parameter induces a probability dis-
tribution under which the mean loss is b, hence, the event
of incurring such loss in a sample is no longer rare. In
what follows, we suppress the dependence of 2∗ on w and
z in the notation, although it is noteworthy that 2∗ increases
with w and decreases with z.

4.1.1. An Algorithm Based on Exponential Twisting.
This algorithm consists of three stages. First, a sample of Z
is generated using the original distribution. Depending on
the value of Z, a sample of W is generated using appropri-
ate importance sampling. Depending on the value of sam-
ples of Z and W , samples of the Bernoulli variable "%Xi >
aif "n#' are generated for i ! n, using naive simulation or
importance sampling. For a fixed positive constant 4, put
-w"z#=max"4$w"z##.

Importance-Sampling Algorithm 1
Step 1. Generate a sample of Z according to the original

distribution FZ"·#.
Step 2. Generate a sample of W using the density f ∗

W

obtained by exponentially twisting fW with parameter
−2Z$n, where

2Z$n =
-f "n#

-w"Z# &

Later in the section, we justify this choice of the twisting
parameter based on asymptotic considerations.
Step 3. For each i ! n, generate samples of "%Xi >

aif "n#' independent of each other using the distribution:
p∗
i = pi if the mean loss under the generated W and Z is

greater than b; and using p∗
i = p2∗

i otherwise.

Let # ∗ denote the probability measure corresponding to
this algorithm and Ɛ∗ the expectation operator under this
measure. Again, let Yjqjn denote the number of class j

defaults in a single simulation run. The likelihood ratio is
then given by

L∗ = exp(2Z$nW +3W"−2Z$n#)

·
∏

j!!& !

(

pj

p∗
j

)Yj qjn
(

1−pj

1−p∗
j

)"1−Yj #qj n

& (13)

The main result of this section is the following.

Theorem 3. Under Assumption 1 and the distributional
assumptions on "Z$*$W#,

lim sup
n→&

f "n#2-Ɛ∗L2
∗"%An' <&& (14)

In view of Theorem 1, which provides the tail asymp-
totic for the probability of the event An = %Ln > nb', we
conclude that the proposed importance-sampling algorithm
has bounded relative error.

On the Choice of the Exponential Twisting Parameter
in Algorithm 1. Conditional on Z = z, our importance-
sampling problem essentially reduces to that of estimating
#"W ! w"z#/f "n## efficiently. If W is generated using a
distribution obtained by exponential twisting by an amount
−2 (2 > 0), then the associated likelihood ratio L =
exp(2W +3W"−2#) is upper bounded by

exp
[

2
w"z#

f "n#
+3W"−2#

]

on the set %W ! w"z#/f "n#'. It is a standard practice in
importance sampling to select a parameter 2 that minimizes
the uniform bound on the likelihood ratio because, e.g.,
this also minimizes the corresponding upper bound on the
second moment Ɛ∗(L2"%W !w"z#/f "n#'). Let 2̃ > 0 denote
the parameter minimizing 2"w"z#/f "n##+3W"−2#. Then,

3′
W "−2̃#=−w"z#

f "n#
&

Note that

3′
W "−2#=−

∫ &
0 we−2wfW "w#dw
∫ &
0 e−2wfW "w#dw

&

Suppose that fW "w#= ,w-−1. Then, it is easily seen that

∫ &

0
we−2wfW "w#dw= ,0"-+ 1#

2-

and
∫ &

0
e−2wfW "w#dw= ,0"-#

2-−1
&

It then follows that 3′
W "−2#=−-/2 and 2̃= -f "n#/w"z#.

In the more general setting when fW only satisfies (3),
2̃∼ -f "n#/w"z# as n→& is easily established, e.g., by the
use of Tauberian Theorems (see Feller 1970, pp. 442–445).
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Also note that 3′"2# denotes the mean of W under the
distribution obtained by exponentially twisting fW by an
amount 2. Hence, twisting by an amount −2Z$n roughly
sets the mean of W to equal w"z#/f "n#.
Recall that obligor i defaults if Xi " aif "n#. Equiv-

alently, this probability equals #"!Z +
√

1−!2*i −
Waif "n# > 0#. Glasserman et al. (2002) devised
exponential twisting-based importance-sampling techniques
that consider analogous probabilities. Our framework is dif-
ferent from theirs; and our approach, which focuses on
“making” W take small values, provides greater insight into
how the large losses occur.

4.1.2. An Algorithm Based on Hazard-Rate Twisting.
Let V = 1/W . Note that #"V ! x# = #"W " 1/x#, and
hence the p.d.f. of V , i.e., fV "·# satisfies the relation

fV "x#=
1
x2

fW "1/x#=
,

x-+1
"1+ o"1##$ (15)

where o"1#→ 0 as x→&. Define

f̄V "x#= fV "x#

for x! c1, and

f̄V "x#= "1− FV "c1##c
1/ log f "n#
1

1
log f "n#

1
x1+1/log f "n#

for x" c1, where c1 is chosen so that fV "x#/f̄V "x# remains
upper bounded by a constant for all x. The importance-
sampling algorithm builds on this new distribution for V ;
later in the section we justify our choice of f̄V "x#.

Importance-Sampling Algorithm 2
Step 1. Generate a sample of Z from the original FZ"·#

and generate a sample of V using f̄V "·#.
Step 2. For each i ! n, generate the samples of "%Xi >

aif "n#' independently with p̄i = pi, if the mean loss under
the generated V and Z is greater than b, and with p̄i = p2∗

i

otherwise.

Let .# denote the probability distribution corresponding
to this algorithm. Recall that Yjqjn denotes the number
of class j defaults. The likelihood ratio of # w.r.t. .# is
given by

L̄= fV "V #

f̄V "V #

∏

j!!& !

(

pj

p̄j

)Yj qjn
(

1−pj

1− p̄j

)"1−Yj #qj n

& (16)

We then have the following result.

Theorem 4. Under Assumption 1 and the distributional
assumptions on "Z$*$W#,

log .Ɛ(L̄2"%An')

log f "n#
→ − 2- as n→&& (17)

In particular, in view of Theorem 1 it follows that the
proposed importance-sampling algorithm is asymptotically
optimal in the sense that it achieves zero variance on the
logarithmic scale.

On the Choice of the Importance-Sampling Density.
The broad motivation for the density function defined above
is given in Juneja and Shahabuddin (2002), which dis-
cusses hazard-rate twisting. Reexpressing the p.d.f. fV "x#
as h"x# exp"−'"x##, where h"x# = fV "x#/"1 − FV "x##
denotes the hazard rate and '"x# = − log"1 − FV "x##
denotes the hazard function, the distribution corresponding
to hazard-rate twisting by an amount 2 has the p.d.f.

f 2
V "x#= h"x#"1− 2# exp"−"1− 2#'"x##&

(Note that the hazard-rate function ' is nondecreasing.)
The tail distribution function is given by exp"−"1 −
2#'"x##. Recall that conditioned on Z= z, our interest is
essentially in estimating the probability #"V > f "n#/w"z##
efficiently. Using the hazard-rate twisted distribution f 2

V ,
the associated likelihood ratio equals (1/"1 − 2## ·
exp"−23V "x#), and this is upper bounded by

1
"1− 2#

exp"−2'"f "n#/w"z###

on the set %V > f "n#/w"z#'. As in Algorithm 1, here we
also search for 2̃ that minimizes this bound. This value can
be seen to equal

2̃= 1−
(

'
(

f "n#

w"z#

))−1

&

Then, the IS tail distribution corresponding to hazard-rate
twisting by 2̃ equals

exp

[

− '"x#

'"f "n#/w"z##

]

& (18)

Note that

1− FV "x#∼
,

-x-
$

and hence '"x#∼ - log"x# as x→&.
Equation (18) suggests that our IS tail distribution func-

tion should be close to

exp
[

− - logx
-"log f "n#− logw"z##

]

= x−1/"log f "n#−logw"z##&

We achieve considerable simplification by ignoring
logw"z# in this expression (on the basis that this is typically
dominated by log f "n#). This is important because deter-
mining w"z# can be potentially computationally expensive.
Then, the corresponding p.d.f. equals

1
log f "n#

1
x1+1/log f "n#

&

This is quite similar to the p.d.f. proposed in Algorithm 2.
The p.d.f. f̄V "x# is set to fV "x# for x! c1 simply to prevent
the ratio fV "x#/f̄V "x# from “blowing up” for small values
of x. The potential for this type of behavior exists when
fV "x# is large or unbounded in this region. For ease of
implementation, one may select a p.d.f. different from fV
in this region as long as the ratio fV "x#/f̄V "x# remains
bounded from above for x! c1.
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4.2. Importance Sampling for Expected Shortfall

Denote the expected shortfall Ɛ(Ln − nb ! Ln > nb) by
."n$b#. We discuss how importance sampling may be
used to estimate this efficiently. In the interest of space,
we only analyze the exponential twisting-based impor-
tance-sampling Algorithm 1, described in §4.1.1, for
estimating ."n$b#. The analysis easily extends to impor-
tance-sampling Algorithm 2.
Using # ∗, generate m i.i.d. samples ("Li

n$L
i
∗#+ i!m) of

(Ln$L∗) and compute the following estimate:

/.m"n$b#=
∑m

i=1L
i
∗"L

i
n − nb#"%Li

n > nb'
∑m

i=1L
i
∗"%Li

n > nb'
&

Using the delta method (see, e.g., Serfling 1981), we note
that the following central limit theorem holds:

√
m( /.m"n$b#−."n$b#) ⇒ 5"n$b#( "0$1#

as m→&, where ⇒ denotes convergence in distribu-
tion, and

52"n$ b#= 52
1 "n$ b#

62
2"n$ b#

+ 62
1"n$ b#5

2
2 "n$ b#

64
2"n$ b#

+ 2
512"nb#61"n$ b#

63
2"n$ b#

$ (19)

with

61"n$ b#= *Ɛ(L∗"Ln − nb#"%Ln > nb')$

62"n$ b#= *Ɛ(L∗"%Ln > nb')$

52
1 "n$ b#= *Ɛ("L∗"Ln − nb##2"%Ln > nb')−62

1"n$ b#$

52
2 "n$ b#= *Ɛ(L2

∗"%Ln > nb')−62
2"n$ b#$

512"n$ b#= *Ɛ(L∗"Ln − nb#"%Ln > nb')−61"n$ b#62"n$ b#&

The definition of bounded relative error may be modified
to include the estimation of expected shortfall as follows:
The sequence estimators ( /.m"n$b#+ n" 1) under the prob-
ability measure # ∗ are said to estimate the sequence of per-
formance measures (."n$b#+ n" 1) with bounded relative
error if

lim sup
n→&

5"n$b#

."n$b#
<&&

Again, if this property holds, then the computational
effort (as measured by m) needed to construct a confidence
interval of ."n$b# with a fixed degree of relative accuracy
remains bounded in m.

Theorem 5. Under Assumption 1 and the distributional
assumptions on "Z$*$W#, the proposed IS algorithm based
on Algorithm 1 has bounded relative error for estimating
the expected shortfall ."n$b#.

5. Numerical Results
In this section, we compare the performance of Algo-
rithms 1 and 2 with each other and with naive simula-
tion, and investigate sensitivity to -, !, n, and b. The
broad conclusions are that both algorithms provide signif-
icant improvement over the performance of naive simu-
lation. This improvement increases as the event becomes
more rare (e.g., as - increases or as ! decreases). This
supports our theoretical conclusions that the relative per-
formance, as measured by the ratio of the standard devia-
tion of the estimate to the mean of the estimate, remains
well behaved in the two algorithms even as the probability
of large losses becomes increasingly rare. We observe that
Algorithm 1 provides about 6 to 10 times higher variance
reduction compared to Algorithm 2. As mentioned earlier,
Algorithm 2 is easier to implement; its per-sample compu-
tational effort was found to be on par with naive simulation,
whereas Algorithm 1 takes on average three times longer
in generating a sample compared to naive simulation.
Motivated by the t-copula model, we set the distribution

of W in our numerical experiments as in Example 2, the
random variable Z is chosen to follow a standard Normal
distribution (mean zero, variance one), and each *i is nor-
mally distributed with mean zero and variance nine. (We set
the value of variance to nine instead of one simply to ensure
that the loss probability is sufficiently large to be practically
relevant.) The random variables W , Z, and (*i+ i ! n) are
mutually independent so that X = "X1$ & & & $Xn# has a mul-
tidimensional Student t-distribution, with the dependence
structure given by a t-copula.

5.1. Implementation Issues

Recall that the p.d.f. of W has the form

fW "x#=
2kk/2xk−1

2k/20"k/2#
e−kx2/2$ x" 0&

For implementation of Algorithm 1, conditional on Z, we
need to generate samples from the distribution obtained by
exponentially twisting this p.d.f., i.e., from the p.d.f.

fW$2 "x#=
2kk/2xk−1

2k/20"k/2#
e−2x−kx2/2+3W "−2#$ x" 0& (20)

Recall that 3W"·# is the log-moment generating function
of W and 2= -f "n#/-w"Z#. Because the cumulative distri-
bution associated with this density function does not have
a closed form, it is not straightforward to use the inverse
transform methods to generate samples from this distribu-
tion. Instead, we use an acceptance-rejection algorithm to
generate these random variables, which increases the over-
all per-sample computational effort for Algorithm 1. Fur-
ther, we need to evaluate the moment-generating function
associated with this p.d.f. to update the likelihood ratio.
This is done using numerical integration. Because the latter
causes a computation burden, we compute it offline.
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Algorithm 2 is implemented by generating V using the
IS density

f̃V "x#=







0&025$ x ∈ (0$0&5)$
K

x1+1/ log f "n#
$ otherwise$

(21)

where K is the normalizing constant given by
log f "n#/21/ log f "n#. It is easy to generate from this density
using the inverse transform method. (The range (0$0&5)
and the choice of uniform density in this range is driven
by ease of implementation; results were not sensitive to
these choices.)

5.2. Performance of the Two Algorithms

In all the experiments in this subsection, for each set of
specified parameters, we generate 50,000 samples for Algo-
rithm 1 and 100,000 samples for Algorithm 2. Variance
under naive simulation is estimated indirectly by exploiting
the observation that for a Bernoulli random variable with
success probability p, the variance equals p"1− p#. Thus,
we use the probability estimated via Algorithm 1 to esti-
mate the variance of each sample under naive simulation.
We then estimate the variance reduction obtained by the
two algorithms, which is defined as the ratio of the variance
of the estimator under the importance-sampling measure to
the variance of the estimator under the original measure.
Table 1 shows the comparison of Algorithms 1 and 2

with naive simulation as - changes. The model param-
eters are chosen to be n = 250, f "n# = √

n, ! = 0&25,
b = 0&25, each ai = 0&5, and ei = 1. As mentioned ear-
lier, Algorithm 1 performs much better than Algorithm 2,
and both perform significantly better than naive simulation,
especially when - increases and the probability becomes
smaller.
Table 2 shows the comparison of Algorithms 1 and 2

with naive simulation as ! changes. Again, we set n= 250,
b= 0&25, and f "n#=√

n. The df is kept fixed at 12, each
ai = 0&5, and ei = 1.

Table 3 shows the comparison of Algorithms 1 and 2
with naive simulation as n changes. Again, we set df = 12,
b= 0&25, and f "n#=√

n. The correlation factor ! is kept
fixed at 0.25, each ai = 0&5, and ei = 1. In the last column,

Table 1. Performance of Algorithms 1 and 2 as a
function of the degrees of freedom -.

Algorithm 1 Algorithm 2

Prob. est. Var. Prob. est. Var.
df [95% C.I.] reduction [95% C.I.] reduction

4 8&08× 10−3 (±1&2%) 65 8&16× 10−3 (±2&2%) 10
8 2&39× 10−4 (±1&9%) 878 2&40× 10−4 (±3&6%) 124

12 1&06× 10−5 (±3&5%) 7$331 1&04× 10−5 (±5&3%) 1$291
16 6&08× 10−7 (±4&9%) 52$185 5&71× 10−7 (±7&2%) 12$935
20 4&51× 10−8 (±7&5%) 3&01× 105 4&27× 10−8 (±10&6%) 7&9× 104

Note. Variance reduction is measured relative to naive simulation.

Table 2. Performance of Algorithms 1 and 2 as a
function of correlation !.

Algorithm 1 Algorithm 2

Prob. est. Var. Prob. est. Var.
! [95% C.I.] reduction [95% C.I.] reduction

0.1 8&58× 10−6 (±1&9%) 26$013 8&77× 10−6 (±3&6%) 3$390
0.2 9&74× 10−6 (±2&5%) 13$134 1&01× 10−5 (±4&7%) 1$696
0.3 1&18× 10−5 (±3&5%) 5$158 1&18× 10−5 (±6&4%) 808
0.4 1&39× 10−5 (±6&2%) 1$332 1&50× 10−5 (±8&0%) 454

Note. Variance reduction is measured relative to naive simulation.

we show the value of the sharp asymptotic for the proba-
bility of large losses derived in Theorem 1. Note that for
n= 100, the discrepancy between the true probability as
estimated via importance sampling and the sharp asymp-
totic equals 16%. Further, we observe that as n increases,
the accuracy of the sharp asymptotic improves.
Table 4 shows the comparison of Algorithms 1 and 2

with naive simulation as b changes. Again, we set != 0&25,
df = 12, b = 0&25, and f "n#=√

n. The correlation factor
n is kept fixed at 250, each ai = 0&5 and ei = 1.

5.3. Expected Shortfall

In this section, we illustrate the accuracy of the expected
shortfall asymptote as the number of obligors becomes
large and study the efficacy of IS Algorithm 1 for estimat-
ing expected shortfall. Table 5 compares the accuracy of
the sharp asymptotic of expected shortfall derived in Theo-
rem 2 as a function of n. Model parameters are taken to be
- = 4, f "n#=√

n, != 0&25, each ai = 0&5, and b = 0&25.
The accuracy improves significantly for large values of n.
Note that for n= 100 and 250, the expected shortfall is in
the range that is of practical significance. However, in this
case, the asymptotic of the expected shortfall is not very
accurate.
Table 6 compares the performance of the IS Algorithm 1

with naive simulation for estimating expected shortfall as
- varies. The model parameters are n = 250, f "n# =√

n,
!= 0&25, b = 0&25, each ai = 0&5, and ei = 1. For each -,
we generate 50,000 samples under the original measure and
the IS measure. We then compute the variance reduction
obtained by the two algorithms, which is defined as the
ratio of the variance of the estimator under the importance-
sampling measure to the variance of the estimator under
the original measure. We also report the probability of
large loss, i.e., #"Ln > nb#. For df = 12 and df = 16, we
observed Ln < nb under naive simulation for all the 50,000
sample paths generated.

6. Discussion and Concluding Remarks
In this section, we first informally contrast the normal cop-
ula model with the t-copula model in a simple setting to
illustrate the strikingly different conclusions that the two
models may reach for certain parameters. This motivates
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Table 3. Performance of Algorithms 1 and 2 together with the sharp probability asymptotic derived
in Theorem 1 as a function of n.

Algorithm 1 Algorithm 2

n Prob. est. [95% C.I.] Var. reduction Prob. est. [95% C.I.] Var. reduction Asymptote

100 2&49× 10−3 (±3&2%) 29 2&57× 10−3 (±3&6%) 11 2&15× 10−3

250 1&06× 10−5 (±3&5%) 7$331 1&04× 10−5 (±5&3%) 1$291 8&80× 10−6

500 1&66× 10−7 (±3&1%) 4&5× 105 1&62× 10−7 (±6&9%) 49$740 1&37× 10−7

1,000 2&38× 10−9 (±3&3%) 2&9× 107 2&30× 10−9 (±7&2%) 3&2× 106 2&15× 10−9

Note. Variance reduction is measured relative to naive simulation.

the importance of selecting the correct credit risk model.
We then conclude with some possible extensions to our
analysis.

6.1. Contrasting t-Copula with Normal Copula

We first heuristically derive a sharp asymptotic for the
probability of large losses in the normal copula model. (For
brevity, we only provide a sketch of the argument, noting
that the conclusions can easily be made rigorous along the
lines of the proof of Theorem 1.) Recall that under the
standard normal copula model,

Xi = !Z+
√

1−!2*i$

where Z and *i have a standard normal distribution. Sup-
pose that obligor i defaults if Xi " g"n#, where now g"n#
is an increasing function such that g"n#/"logn#. → 0 for
some . > 0. Then, it is easily argued that on the event
%Z > g"n#/!+ zb' (where zb is a constant defined earlier
in §3.5), the mean loss from the portfolio will exceed b.
Hence, due to the law of large numbers, the large loss event
%Ln > nb' happens with probability one in the limit as
n→&. Otherwise, the large loss probability is decaying at
an exponential rate in n. The subexponential rate of decay
of #"Z > g"n#/!+zb# clearly dominates, and consequently
we have that

#"Ln > nb#∼ #"Z" g"n#/!+ zb#$

so that

lim
n→&

log#"Ln > nb#

g"n#
=− 1

2!2
& (22)

Table 4. Performance of Algorithms 1 and 2 as a
function of b.

Algorithm 1 Algorithm 2

Prob. estimate Var. Prob. estimate Var.
b [95% C.I.] reduction [95% C.I.] reduction

0.1 3&95× 10−3 (±1&8%) 57 4&01× 10−3 (±3&2%) 9
0.2 8&77× 10−5 (±2&4%) 1$493 8&83× 10−5 (±5&01%) 173
0.3 1&33× 10−7 (±4&0%) 36$594 1&29× 10−6 (±6&8%) 6$414

Note. Variance reduction is measured relative to naive simulation.

We are now in a position to compare the asymptotic
derived on the basis of the normal copula model with the
t-copula model. We fix common input data, i.e., ! and
the marginal probabilities of default pi for each obligor.
For simplicity, we assume that the marginal probability of
default for obligor i equals 7"n#, where 7"n# decays to zero
at a subexponential rate. Then, if

#
(

!Z+
√

1−!2*i

W
> f "n#

)

= 7"n#$

it can be seen that f "n#∼ c/7"n#1/- for some constant c.
Hence, from Theorem 1,

lim
n→&

log#"Ln > nb#

log 7"n#
= 1& (23)

Now consider the normal copula model. Because !Z +
√

1−!2*i has a standard normal distribution, it follows
that if

#"!Z+
√

1−!2*i > g"n##= 7"n#$

then g"n#∼−2 log 7"n#. Thus, from (22) we observe that

lim
n→&

log#"Ln > nb#

log 7"n#
= 1
!2
& (24)

When contrasting this with the t-copula model asymp-
totic in (23), one observes that because ! < 1, the normal
copula model underestimates the probability of large losses
compared to the t-copula model for large n. In particu-
lar, in the t-copula asymptotic, the correlation ! does not
affect the rate (and appears only as a multiplicative con-
stant), whereas in the normal copula case, the rate itself is
affected.

Table 5. The expected shortfall and its
asymptotic as a function of the
number of obligors (n).

n /."n$b# [95% C.I.] Asymptotic

100 5&4 (±1&3%) 4&8
250 13&0 (±1&3%) 12&3
500 24&9 (±1&5%) 24&4

1,000 48&8 (±1&6%) 48&8
2,000 95&3 (±1&7%) 97
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Table 6. Performance of IS Algorithm 1 for estimating
expected shortfall as a function of the degrees
of freedom -.

df /."n$b# [95% C.I.] Var. reduction #"Łn > nb#

4 13&20 (±1&5%) 62 8&06× 10−3

8 7&84 (±2&6%) 743 2&41× 10−4

12 5&81 (±4&1%) "∗# 1&07× 10−5

16 4&67 (±6&9%) "∗# 6&18× 10−7

Note. (∗) denotes that the event of interest was not observed in any
sample path using naive simulation. Variance reduction is mea-
sured relative to naive simulation.

We now verify this observation through a numerical
experiment. Set n = 100 and b = 0&1. For the standard
t-copula model, set f "n# = √

n, ai = 0&5, and ei = 1 for
all i. For each !, g"n# for the standard normal copula model
is chosen so that the single name default probability is
equal to that of the t-copula model. The probability of large
losses for both models, as ! varies, is estimated via sim-
ulation. The results are presented in Table 7. (Importance-
sampling techniques were used to efficiently estimate these
probabilities.) As indicated by (23) and (24), for small val-
ues of !, the normal copula model significantly underesti-
mates the loss probability compared to the t-copula model.

6.2. Possible Extensions

In this paper, we considered a common shock-based model
for measuring portfolio credit risk. This model generalizes
the t-copula model that is increasingly used for modelling
extremal dependence amongst obligors. We developed
sharp asymptotics and importance-sampling techniques to
estimate the probability of large losses and the expected
shortfall in this setting. We now list some of the possible
extensions of our analysis.

Multifactor Model. In our analysis for notational sim-
plicity, we restricted ourselves to a single-factor model. The
results generalize to the multifactor setting with

Xi =
ci1Z1 + · · ·+ cidZd + ci*i

W
$

where: (Z1$ & & & $Zd) are i.i.d. standard normal random vari-
ables, ci1$ & & & $ cid are the loading factors, and *i is a normal
random variable that captures idiosyncratic risk and is inde-
pendent of the Zis. For example, the sharp asymptotic in
Theorem 1 generalizes to

lim
n→&

f "n#-#"Ln > b#= ,

-

∫

z∈%d
w"z#- dFZ"z#$

Table 7. Large loss probability under t-copula- and
normal copula-based models.

! t-copula Normal copula

0.25 1&84× 10−3 (±3&1%) 5&16× 10−9 (±0&66%)
0.5 2&67× 10−3 (±4&7%) 1&41× 10−4 (±0&99%)
0.75 3&33× 10−3 (±6&3%) 2&15× 10−3 (±0&88%)

Note. The number in !·" represents the 95% confidence interval.

where FZ denotes the d-dimensional multivariate distribu-
tion of (Z1$ & & & $Zd), and for z ∈ %d, w"z# denotes the
threshold so that if w ∈ "0$w"z#/f "n##, the mean loss from
a portfolio conditional on Z = z and W = w is greater
than b. (When this is not true for any w" 0 for a given z,
w"z# is set to zero, as in the one-dimensional analysis.)

On the Role of the Function f "n#. The assumption
that f "n# increases without bound ensures that the prob-
ability of large portfolio losses diminishes as n increases.
The importance-sampling schemes developed in §5 are
geared toward efficient simulation of this probability, and
hinge on the asymptotes derived in §4. If f "n# was taken
to be constant, say, then a similar expression to that on the
right-hand side of (5) can be derived, but the probability
of large losses is no longer “small.” Our analysis further
assumed that f "n# increases at a subexponential rate and
Z is a light-tailed random variables. This ensures that the
rare event happens primarily when W takes small values,
whereas Z and the *i essentially do not play any role in
its occurrence. This implies that correlations and idiosyn-
cratic effects play less of a role in the occurrence of large
losses vis-a-vis the common shock. However, there can be
models where correlations and/or idiosyncratic effects play
an important role in the occurrence of the rare event. In
certain scenarios, one may expect these other models to
be more realistic, and hence are important extensions that
merit further investigation.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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