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Abstract

This paper proves that there does not exist an asymptotically optimal state-independent change-of-measure for estimating
the probability that a random walk with heavy-tailed increments exceeds a “high” threshold before going below zero. Explicit
bounds are given on the best asymptotic variance reduction that can be achieved by state-independent schemes.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Importance sampling (IS) simulation has proven to
be an extremely successful method in efficiently esti-
mating certain rare events associated with light-tailed
random variables; see e.g., [15,11] for queueing ap-
plications, and [10] for applications in financial en-
gineering. (Roughly speaking, a random variable is
said to be light-tailed if the tail of the distribution de-
cays at least exponentially fast.) The main idea of IS
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algorithms is to perform a change-of-measure, then
estimate the rare event in question by generating in-
dependent identically distributed (iid) copies of the
underlying random variables (rv’s) according to this
new distribution. Roughly speaking, a “good” IS dis-
tribution should assign high probability to realizations
of the rv’s that give rise to the rare event of interest
(while simultaneously not reducing by too much the
probability of more likely events).

Recently, heavy-tailed distributions have become
increasingly important in explaining rare event related
phenomena in many fields including data networks and
teletraffic models (see e.g., [14]), and insurance and
risk management (cf. [9]). Unlike the light-tailed case,
designing efficient IS simulation techniques in the
presence of heavy-tailed random variables has proven
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to be quite challenging. This is mainly due to the fact
that the manner in which rare events occur is quite dif-
ferent than that encountered in the light-tailed context
(see [2] for further discussion).

In this paper we highlight a fundamental diffi-
culty in applying IS techniques in the presence of
heavy-tailed random variables. For a broad class
of such distributions having polynomial-like tails,
we prove that if the constituent random variables
are independent under an IS change-of-measure
then this measure cannot achieve asymptotic opti-
mality. (Roughly speaking, a change-of-measure is
said to be asymptotically optimal, or efficient, if it
asymptotically achieves zero variance on a loga-
rithmic scale; a precise definition is given in Sec-
tion 2.) In particular, we give explicit asymptotic
bounds on the level of improvement that state-
independent IS can achieve vis-a-vis naïve simula-
tion. These results are derived for the following two
rare events.

(i) A negative drift random walk (RW) Sn=∑n
i=1 Xi

exceeding a large threshold before taking on a
negative value (see Theorem 1).

(ii) A stable GI/GI/1 queue exceeding a large thresh-
old within a busy cycle (see Theorem 2). This
analysis builds on asymptotes for the maximum
of the queue length process (see Proposition 1).

The above probabilities are particularly important
in estimating steady-state performance measures
related to waiting times and queue lengths in single-
server queues, when the regenerative ratio rep-
resentations is exploited for estimation (see e.g.,
[11]).

Our negative results motivate the development
of state-dependent IS techniques (see e.g., [13]). In
particular, for the probabilities that we consider the
zero variance measure has a straightforward “state-
dependent” representation. In the random walk setting
this involves generating each increment Xi using a
distribution that depends on the position of the RW
prior to that, i.e., the distribution of Xi depends on
Si−1 = ∑i−1

j=1 Xj . For a simple example involving an
M/G/1 queue, we illustrate numerically how one can
exploit approximations to the zero-variance measure
(see Proposition 2) to develop state-dependent IS
schemes that perform reasonably well.

1.1. Related literature

The first algorithm for efficient simulation in the
heavy-tailed context was given in [3] using con-
ditional Monte Carlo. Both [4] and [12] develop
successful IS techniques to estimate level crossing
probabilities of the form P(maxn Sn > u), for random
walks with heavy tails, by relying on an alternative
ladder height based representation of this probabil-
ity. (Our negative results do not apply in such cases
since the distribution that is being “twisted” is not
that of the increment but rather that of the ladder
height.) It is important to note that the ladder height
representation is only useful for a restricted class of
random walks where each Xi is a difference of a
heavy tailed random variable and an exponentially
distributed random variable. The work in [7] also
considers the level crossing problem and obtains
positive results for IS simulation in the presence
of Weibull-tails. They avoid the inevitable variance
build-up by truncating the generated paths. However,
even with truncation they observe poor results when
the associated random variables have polynomial
tails.

Recently, in [5] it was shown that performing a
change in parameters within the family of Weibull
or Pareto distributions does not result in an asymp-
totically optimal IS scheme in the random-walk or
in the single server queue example. In [5] the au-
thors also advocate the use of cross-entropy meth-
ods for selecting the “best” change-of-measure for
IS purposes. Our paper provides further evidence
that any state-independent change-of-measure (not
restricted to just parameter changes in the original
distribution) will not lead to efficient IS simulation
algorithms. We also explicitly bound the loss of ef-
ficiency that results from restricting use to iid IS
distributions.

1.2. The remainder of this paper

In Section 2, we briefly describe IS and the notion
of asymptotic optimality. Section 3 describes the main
results of the paper. In Section 4 we illustrate numer-
ically the performance of a state-dependent approx-
imate zero variance change-of-measure for a simple
discrete time queue. Proofs of the main results (The-
orems 1 and 2) are given in Appendix A. For space
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considerations we omit the proof of secondary results
(Propositions 1 and 2), the details of which can be
found in [6].

2. Importance sampling and asymptotic
optimality

2.1. Two rare events

2.1.1. Random walk
Consider a probability space (!,F, P) and a ran-

dom walk Sn = ∑n
m=1 Xm, S0 = 0 where X1, X2, . . .

are iid copies of X. We assume that EX < 0, and we
denote the cumulative distribution function of X by F.
Define " to be the time at which the random walk first
goes below zero, i.e.,

" = inf{n!1 : Sn < 0}.

Let #= E", and Mn = max0"m"n Sm. The probability
of interest is $u = P(M" > u). To estimate this proba-
bility by naïve simulation, we generate m iid samples
of the function I{M">u} and average over them to get
an unbiased estimate $̂m

u . The relative error of this es-
timator (defined as the ratio of standard deviation and
mean) is given by

√
(1 − $u)/m$u. Since $u → 0 as

u → ∞, the number of simulation runs must increase
without bound in order to have fixed small relative
error as u becomes large.

Consider another probability distribution P̃ on
the same sample space such that the sequence
{X1, X2, . . .} is iid under P̃ with marginal distribu-
tion F̃ , and F is absolutely continuous w.r.t. F̃ . Let
Tu = inf{n : Sn !u}. Define

Zu = LuI{M">u}, (1)

where

Lu =
min{",Tu}∏

i=1

dF(Xi)

dF̃ (Xi)
,

and let Ẽ[·] be the expectation operator under P̃. Then,
using Wald’s likelihood ratio identity (see [16, Propo-
sition 2.4]), we have that Zu under measure P̃ is an un-
biased estimator of the probability P(M" > u). Thus,
we can generate iid samples of Zu under the measure
P̃, the average of these would be an unbiased estimate

of $u. We refer to P̃ as the IS change-of-measure and
Lu as the likelihood ratio. In many cases, by choosing
the IS change-of-measure appropriately, we can sub-
stantially reduce the variance of this estimator.

Note that a similar analysis can be carried out to get
an estimator when the sequence {X1, X2, . . .} is not
iid under P̃. The likelihood ratio Lu in that case can
be expressed as the Radon–Nikodyn derivative of the
original measure w.r.t. the IS measure restricted to the
appropriate stopping time.

2.1.2. Queue length process
The second rare event studied in this paper is that

of buffer overflow during a busy cycle. Consider a
GI/GI/1 queue, and let the inter-arrival and service
times have finite means %−1 and &−1, respectively. Let
Q(t) represent the number of customers in the system
(in queue and in service) at time t under FCFS (first
come first serve) service discipline. Assume that the
busy cycle starts at time t = 0, i.e., Q(0−) = 0 and
Q(0) = 1, and let " denote the end of the busy cycle,
namely

" = inf{t !0 : Q(t−) > 0, Q(t) = 0}.

Let the cumulative distribution of inter-arrival times
and service times be F and G, respectively. Let Si

be the service time of the ith customer and Ai be
the inter-arrival time for the (i + 1)th customer. The
probability of interest is $u =P(max0" t "" Q(t)!u).
(We assume that u > 1 is integer-valued for simplicity.)
Again we note that $u → 0 as u → ∞; to estimate
this probability efficiently we can use IS.

Let the number of arrivals until the queue length
exceeds (or is equal to) level u − 1 be

M = inf

{

n!1 :
n∑

i=1

Ai <

n−u+2∑

i=1

Si

}

.

Let N(t) represent the number of arrivals up until time
t. Then N(") is the number of customers arriving dur-
ing a busy period. Let F̃ and G̃ be the cumulative IS
distributions of inter-arrival and service times, respec-
tively. Then, again using Wald’s likelihood ratio iden-
tity, Zu under the measure P̃ is an unbiased estimator
for the probability P(max0" t "" Q(t) > u), where

Zu = LuI{M "N(")}, (2)
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and

Lu =
M∏

i=1

dF(Ai)

dF̃ (Ai)

M−u+2∏

j=1

dG(Sj )

dG̃(Sj )
.

2.2. Asymptotic optimality

Consider a sequence of rare-events indexed by a
parameter u. Let Iu be the indicator of this rare event,
and suppose E[Iu] → 0 as u → ∞ (e.g., for the first
rare event defined above, Iu = I{M">u}). Let P̃ be an
IS distribution and L be the corresponding likelihood
ratio. Put Zu = LIu.

Definition 1 (asymptotic optimality Heidelberger
[11]). A sequence of IS estimators is said to asymp-
totically optimal if

log Ẽ[Z2
u]

log Ẽ[Zu]
→ 2 as u → ∞. (3)

Note that Ẽ[Z2
u]! (̃E[Zu])2 and log Ẽ[Zu] < 0,

therefore for any sequence of IS estimators we have

lim sup
u→∞

log Ẽ[Z2
u]

log Ẽ[Zu]
"2.

Thus, loosely speaking, asymptotic optimality implies
minimal variance on logarithmic scale. Bucklew [8]
uses the term efficiency to describe this property of a
simulation-based estimator.

3. Main results

3.1. Random walk

Consider the random walk defined in Section 2.1.
We assume that the distribution of X satisfies
log P(X > x)

log x
→ − ' and

log P(X < − x)

log x

→ − ( as x → ∞, (4)

where ' ∈ (1, ∞) and ( ∈ (1, ∞]. Further, we assume
that P(X > x) ∼ 1 − B(x) as x → ∞, for some
distribution B on (0, ∞) which is subexponential, that
is, it satisfies

lim sup
x→∞

1 − (B ∗ B)(x)

1 − B(x)
"2,

(cf. [9]). We write f (u) ∼ g(u) as u → ∞ if
f (u)/g(u) → 1 as u → ∞. Thus, distributions with
regularly varying tails are a subset of the class of
distributions satisfying our assumptions. (Regularly
varying distributions have 1 − F(x) = L(x)/x',
where ' > 1 and L(x) is slowly varying; for fur-
ther discussion see [9, Appendix A.3].) Note that (4)
allows the tail behavior on the negative side to be
lighter than polynomial as ( = ∞ is permitted. We
denote the cumulative distribution function of X by
F. From [2] it follows that

P(M" > u) ∼ #P(X > u) as u → ∞, (5)

where # is the expected time at which the random walk
goes below zero. Consider the IS probability distribu-
tion P̃ such that the sequence {X1, X2, . . .} is iid under
P̃ with marginal distribution F̃ , and F is absolutely
continuous w.r.t. F̃ . Let P be the collection of all such
probability distributions on the sample space (!,F).
Let Zu be an unbiased estimator of P(M" > u) defined
in (1). We then have the following result.

Theorem 1. For any P̃ ∈ P

lim sup
u→∞

log Ẽ[Z2
u]

−' log u
"2 − min(', ()

'(1 + min(', ())
,

where ' and ( are defined in (4).

3.1.1. Intuition and proof sketch
The proof follows by contradiction. We consider

two disjoint subsets B and C of the “rare set” A={) :
M" > u} and use the fact that Ẽ[L2

uI{A}]! Ẽ[L2
uI{B}]+

Ẽ[L2
uI{C}]. The first subset, B, consists of sample paths

where the first random variable is “large” and causes
the random walk to immediately exceed level u. As-
suming that the limit in the above equation exceeds
2 − min(', ()/('(1 + min(', ())), we obtain a lower
bound on the probability that X exceeds u under the IS
distribution F̃ . The above, in turn, restricts the mass
that can be allocated below level u. We then consider
the subset C which consists of sample paths where the
Xi’s are of order u$ for i =2, . . . , 'u1−$( followed by
one “big” jump. By suitably selecting the parameter
$ and the value of X1, we can show that Ẽ[L2

uI{C}] is
infinite, leading to the desired contradiction.
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3.2. Queue length process

Consider a GI/GI/1 queue described in Section
2.1 with service times being iid copies of S and
inter-arrival times being iid copies of A. Put *(x) :=
− log P(S > x) = − log(1 − G(x)). Assume that

*(x)

log x
→ ' as x → ∞, (6)

where ' ∈ (1, ∞), and (S − A) has a subexponential
distribution. We then have the following logarithmic
asymptotics for the buffer overflow probability in a
busy cycle.

Proposition 1. Let assumption (6) hold. Then,

lim
u→∞

log P(max0" t "" Q(t) > u)

log u
= −'.

Recall that F̃ and G̃ are the cumulative IS dis-
tribution of inter-arrival and service times, respec-
tively, and an unbiased estimator for the probability
P(max0" t "" Q(t) > u) is Zu defined in (2). Let P̃ be
the product measure generated by (F̃ , G̃), and let D
be the collection of all such measures.

Theorem 2. For any P̃ ∈ D

lim sup
u→∞

log Ẽ[Z2
u]

−' log u
"2 − 1

1 + '
.

The basic idea of the proof is similar to that sketched
immediately following Theorem 1.

3.3. Discussion

1. Theorems 1 and 2 imply that for our class
of heavy-tailed distributions no state-independent
change-of-measure can be asymptotically optimal,
since by Definition 1 such a distribution must satisfy

lim inf
u→∞

log Ẽ[Z2
u]

−' log u
!2.

Note that Theorems 1 and 2 hold even when the IS
distribution is allowed to depend on u, and Theo-
rem 2 continues to hold when the inter-arrival time
distribution is changed in a state-dependent manner.
(The proof is a straightforward modification of the one
given in Appendix A.)

2. The bounds given in Theorems 1 and 2 indicate
that the asymptotic inefficiency of the “best” state-
independent IS distribution is more severe the heavier
the tails of the underlying distributions are. As these
tails become lighter, a state-independent IS distribu-
tion may potentially achieve near-optimal asymptotic
variance reduction.

4. A state-dependent change-of-measure

In this section we briefly describe the Markovian
structure of the “state-dependent” zero variance mea-
sure in settings that include the probabilities that we
have considered. To keep the analysis simple we focus
on a discrete state process. As an illustrative example,
we consider the probability that the queue length in an
M/G/1 queue exceeds a large threshold u in a busy
cycle. Here we develop an asymptotic approximation
for the zero variance measure and empirically test the
performance of the corresponding IS estimator. (Such
approximations of the zero variance measure can be
developed more generally, see [6].)

4.1. Preliminaries and the proposed approach

Consider a Markov process (Sn : n!0) taking inte-
ger values. Let {pxy} denote the associated transition
matrix. Let A and R be two disjoint sets in the state
space, e.g., A may denote a set of non-positive integers
and R may denote the set {u, u + 1, . . .} for a large
integer u. For any set B, let "B = inf{n!1 : Sn ∈ B}.
Let Jx = P("R < "A|S0 = x) for an integer x. In this
set up, the zero variance measure for estimating the
probability Js0 , for s0 !1, admits a Markovian struc-
ture with transition matrix

p∗
xy = pxyJy

Jx
,

for each x, y (see e.g., [1]). The fact that the transition
matrix is stochastic follows from first step analysis.
Also note that {"R < "A} occurs with probability one
under the p∗ distribution, and the likelihood ratio,
due to cancellation of terms, equals Js0 along each
generated path. Thus, if good approximations can
be developed for Jx for each x, then the associated
approximation of the zero variance measure may
effectively estimate Js0 .



256 A. Bassamboo et al. / Operations Research Letters 35 (2007) 251–260

4.2. Description of the numerical example

For the purpose of our numerical study, we consider
the M/G/1 queue observed at times of customer de-
partures. The arrival stream is Poisson with rate % and
service times are iid copies of S having Pareto distri-
bution with parameter ' ∈ (1, ∞), i.e.,

P(S!x) =
{

x−' if x!1
1 otherwise

}
.

Let Yn denote the number of arrivals during the service
of the nth customer. Note that {Yn} are iid, and con-
ditioned on the first service time taking a value s, Y1
is distributed as a Poisson random variable with mean
%s. We assume that E[Y1] < 1 to ensure that the system
is stable. Let Xn =Yn − 1, Sn =∑n

i=1 Xi with S0 =x,
and "0=inf{n!1 : Sn "0}. Then "0 denotes the length
of a busy cycle that commences with x customers in
the system, and for 1"n""0, Sn denotes the number
in the system at the departure of the nth customer. Let
"u = inf{n!1 : Sn !u}. The event of interest is that
the number of customers in the system exceeds level
u during the first busy cycle, conditioned on S0 = x.
We denote this probability by Jx(u)=P("u < "0|S0 =
x). The following proposition provides an asymptotic
for Jx(u). Here, F denotes the distribution function
of X1.

Proposition 2. For all ( ∈ (0, 1)

J'(u((u) ∼ E["0]
[∫ u

x=(1−()u
(1 − F(x)) dx

]

as u → ∞. (7)

Table 1
Performance of the state-dependent IS estimator for the probability of exceeding level u in a busy cycle: simulation results are for u= 100
and 1000, using 500, 000 simulation runs

u ' + = 0.3 + = 0.5 + = 0.8

2 3.31 × 10−6 ± 0.019% [1.97] 2.43 × 10−5 ± 0.050% [1.86] 1.00 × 10−4 ± 0.837% [1.26]
100 9 1.57 × 10−23 ± 0.051% [1.97] 1.52 × 10−20 ± 0.119% [1.93] 5.12 × 10−19 ± 2.409% [1.79]a

19 4.70 × 10−48 ± 0.080% [1.98] 5.30 × 10−42 ± 0.543% [1.94]a 4.58 × 10−39 ± 4.182% [1.89]a

2 3.19 × 10−8 ± 0.006% [1.99] 2.25 × 10−7 ± 0.015% [1.98] 8.16 × 10−7 ± 0.079% [1.84]
1000 9 1.02 × 10−32 ± 0.007% [2.00] 9.21 × 10−30 ± 0.032% [1.99] 2.49 × 10−28 ± 0.103% [1.96]

19 7.22 × 10−68 ± 0.022% [2.00] 6.72 × 10−62 ± 0.041% [2.00] 3.30 × 10−59 ± 0.403% [1.96]

The ±X represents 95% confidence interval, and [Y ] represents the ratio defined in (3) with 2 being the asymptotically optimal value.
aThe actual probability, which is calculated using first step analysis, lies outside the 95% confidence interval.

This suggests that Jx(u) ≈ E["0]g(x), where
g(x) = ∑u

z=u−x P(X1 !z). Therefore, a reasonable
approximation for the zero variance measure would
have transition probabilities

p̃xy = P(X1 = y − x)g(y)∑∞
z=x−1 P(X1 = z − x)g(z)

for x!1 and y!x − 1. These probabilities are easy
to compute in this simple setting.

Note that in the existing literature no successful
methodology exists for estimating J1(u) by simulating
(X1, X2, . . .) under an IS distribution. As mentioned
in the Introduction, [4,12] estimate the related level
crossing probabilities by exploiting an alternative lad-
der height based representation.

4.3. The simulation experiment

We estimate the exceedence of level u in a busy
cycle for the following cases: u = 100 and 1000; tail
parameter values ' = 2, 9 and 19; and traffic inten-
sities + = 0.3, 0.5 and 0.8. (The traffic intensity +
equals %'/(' − 1).) The number of simulation runs in
all cases is taken to be 500, 000. To test the precision
of the simulation results, we also calculate the prob-
abilities of interest, J1(u), using first step analysis.
Results in Table 1 illustrate the following points. First,
the accuracy of the proposed IS method decreases as
the traffic intensity increases, and/or the tail becomes
“lighter.” Second, accuracy for the problem involving
buffer level 1000 is better than the case of buffer level
100, in accordance with the fact that we are using a
“large buffer” asymptotic approximation to the zero
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variance measure. Finally, the relative error on loga-
rithmic scale is quite close to the best possible value
of 2, hence we anticipate that our proposed IS scheme
might be asymptotically optimal. (In [6] performance
of an adaptive version of this algorithm is shown to
give further improvement in the performance of the
IS estimator.) The rigorous derivation of such results
and their generalizations to continuous state space is
left for future work.

Appendix A. Proofs of the main results

We use the following simple lemma repeatedly in
the proof of the main results.

Lemma 1. Let P and P̃ be two probability distribu-
tion on the same sample space (!,F). Then for any
set A ∈ F if P is absolutely continuous w.r.t. P̃ on
the set A, then

P2(A)"P̃(A)

∫

A

dP

dP̃
dP. (8)

Proof. Fix a set A ∈ F. Using the Cauchy–Schwartz
inequality, we have
(∫

A

dP

dP̃
dP̃

)2

"P̃(A)

∫

A

(
dP

dP̃

)2

dP̃.

Rearranging terms we get (8). #

Proof of Theorem 1. Let

*+(x) := − log P(X > x), (9)

*−(x) := − log P(X < − x). (10)

Assumption (4) on the distribution of X states that

*+(x)

log x
→ ',

*−(x)

log x
→ ( as x → ∞ (11)

and ' ∈ (1, ∞) and ( ∈ (1, ∞]. Fix P̃ ∈ P. Let c be
defined as follows:

c = lim sup
u→∞

log Ẽ[Z2
u]

−' log u
, (12)

where Zu is defined in (1). Then, there exists a subse-
quence {un : n = 1, 2, . . .} over which c is achieved;

for brevity, simply assume that the limit holds on the
original sequence. Appealing to (5), we have

Ẽ(Z2
u)! (̃E(Zu))

2 = P2(M" > u) ∼ #2e−2*+(u),

hence c cannot be greater than 2. Put

, = min(', ()

'(1 + min(', ())
< 1,

and assume towards a contradiction that in (12), c ∈
(2 −,, 2]. Let B={) : X1()) > u}. Then by Lemma
1 we have

P̃(B)! P2(B)

Ẽ[Z2
uI{B}]

.

Now, using (11) and (12) to lower bound the right-
hand-side above we get that for sufficiently large u,
1−F̃ (u)!e−(2−c′)*+(u) where c′ ∈ (2−,, c). Here we
use the fact that P(B)=1−F(u) and P̃(B)=1−F̃ (u).
Thus, for u sufficiently large,

F̃ (u)"1 − e−(2−c′)*+(u). (13)

Appealing to Lemma 1, and using the definitions
of *+ and *−, and (13) for any 0 < a < b < u and
−a′ < 0 < b′ < u, we have
∫ b

a

dF(s)

dF̃ (s)
dF(s)! (F (b) − F(a))2

F̃ (u)

!(e−*+(a) − e−*+(b))2, (14)

and
∫ b′

−a′

dF(s)

dF̃ (s)
dF(s) ! (F (b′) − F(−a′))2

F̃ (u)

! (1 − e−*+(b′) − e−*−(a′))2

(1 − e−(2−c′)*+(u))

!(1 − 2e−*+(b′) − 2e−*−(a′))(1 + e−(2−c′)*+(u)).
(15)

Now consider the following set C of sample paths,
X1 ∈ [2u1−-, 3u1−-′ ], and Xi ∈ [−u$−-, u$] for i =
2, . . . , '0.5u1−$( and X'0.5u1−$(+1 ∈ [u, ∞), where

- =






( − '
(1 + ')(

if ' < (,

1 − (2 − c′)(1 + ()'
(

otherwise,
(16)

-′ ∈ (0, -), (17)
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$ =






1
1 + '

if ' < (,

1 + -(
1 + (

otherwise.
(18)

Note that on the set of sample paths C, we
have 0 < Sn < u for all n = 1, . . . , '0.5u1−$( and
S'0.5u1−$(+1 > u. Hence, I{M">u} =1 on this set. Then,

Ẽ(Z2
u)!

∫

C

(
dF(x1)

dF̃ (x1)
· · ·

dF(x'0.5u1−$(+1)

dF̃ (x'0.5u1−$(+1)

)2

dF̃ (x1)

. . . dF̃ (x'0.5u1−$(+1)

(a)=
∫

x1∈[2u1−-,3u1−-′ ]

dF(x1)

dF̃ (x1)
dF(x1)

×




'0.5u1−$(∏

i=2

∫

xi∈[−u$−-,u$]

dF(xi)

dF̃ (xi)
dF(xi)





×
∫

x'0.5u1−$(+1∈[u,∞)

dF(x'0.5u1−$(+1)

dF̃ (x'0.5u1−$(+1)

× dF(x'0.5u1−$(+1)

(b)
! (e−*+(2u1−-) − e−*+(3u1−-′ ))2

× [(1 − 2e−*+(u$) − 2e−*−(u$−-))

× (1 + e−(2−c′)*+(u))]'0.5u1−$(

× e−2*+(u) for sufficiently large u,

where (a) follows due to independence of the Xi’s,
and (b) follows from the inequalities (14) and (15) and
the following application of Lemma 1

∫ ∞

u

dF

dF̃
dF ! P2(X1 !u)

P̃(X1 > u)
!P2(X1 !u).

Taking the logarithm of both sides, we have for
sufficiently large u

log(̃E(Z2
u))

!2 log(e−*+(2u1−-) − e−*+(3u1−-′ ))

+ '0.5u1−$([log(1 − 2e−*+(u$
) − 2e−*−(u$−-))

+ log(1 + e−(2−c′)*+(u))] − 2*+(u)

=: I1(u) + '0.5u1−$(I2(u) + I3(u).

Now, using (11) we have

(I1(u) + I3(u))

− log u

= 2*+(2u1−-) − 2 log(1 − e*+(2u1−-)−*+(3u1−-′ )) + 2*+(u)

log u

→ 2'(2 − -) as u → ∞.

Using the choice of -, -′ and $ in (16)–(18), a straight
forward calculation shows that −u1−$I2(u)/ log u →
∞, as u → ∞. Thus, we have, in contradiction, that

lim
u→∞

log(̃E(Z2
u))

− log u
= ∞.

This completes the proof. #

Proof of Theorem 2. Suppose, towards a contradic-
tion, that there exist (F̃ , G̃) ∈ D such that the cor-
responding IS change-of-measure for the probability
P(max0" t "" Q(t) > u) satisfies

lim sup
u→∞

log Ẽ[Z2
u]

−' log u
= c,

and c ∈ (2 − 1/1 + ', 2]. Then, there exists a subse-
quence {un : n = 1, 2, . . .} over which c is achieved;
for brevity, assume the limit holds for the original se-
quence. (Note that c cannot be greater than 2, using
the same reasoning as in the proof of Theorem 1.)
Thus, there exists c′ ∈ (2 − 1/1 + ', c) such that for
sufficiently large u, Ẽ[Z2

u]"e−c′*(u). In what follows,
assume without loss of generality that u is integer val-
ued. We represent the original probability distribution
by P and the IS probability distribution by P̃.

Next we describe another representation of the like-
lihood ratio which will be used in the proof. Consider
any set of sample path B, which can be decomposed
into the sample paths for inter-arrival times, Ba, and
service times, Bs, such that, B=Ba ∩Bs. Since under
the IS distribution the services times and inter-arrival
times are iid random variables, we have
∫

B

dP

dP̃
dP =

∫

Ba

dPa

dP̃
a dPa

∫

Bs

dPs

dP̃
s dPs. (19)

In the above equality, Pa and Ps represent the prob-
ability measure associated with the inter-arrival and
service time process and services, respectively. Hence,
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P = Pa × Ps. We define P̃, P̃
a

and P̃
s

in a similar
manner.

Consider the set of sample paths on which
{S1()) > 2u%−1} and {∑u

i=1 Ai()) < 2u%−1}. Put
Ba = {) : ∑u

i=1 Ai()) < 2u%−1} and Bs = {) :
S1()) > 2u%−1}. Using Markov’s inequality we have
Pa(Ba)! 1

2 . Using Lemma 1, we have

∫

Ba

dPa

dP̃
a dPa ! (Pa(Ba))

2

P̃
a
(Ba)

!(Pa(Ba))
2 !

(
1
2

)2

.

Since the buffer overflows on the set Ba ∩Bs we have

Ẽ[Z2
u]!

∫

Ba

dPa

dP̃
a dPa

∫

Bs

dPs

dP̃
s dPs

!
(

1
2

)2 ∫ ∞

2u%−1

dG(x)

dG̃(x)
dG(x).

Thus, we have for large enough u that

e−c′*(u) ! 1
4

∫ ∞

2u%−1

dG(x)

dG̃(x)
dG(x).

Appealing to Lemma 1 and (6) we have for u suffi-
ciently large

1 − G̃(2u%−1)! e−2*(2u%−1)+c′*(u)

4
.

Thus, for sufficiently large u we have G̃(u$)"1 −
(e−2*(2u%−1)+c′*(u))/4 where $ < 1. Using Lemma 1,
this in turn implies that

∫ 0.5u$%−1

0

dG(x)

dG̃(x)
dG(x)

! (1 − e−*(0.5u$%−1))2

1 − (e−2*(2u%−1)+c′*(u))/4
(20)

!
(

1 + e−2*(2u%−1)+c′*(u)

4

)

× (1 − 2e−*(0.5u$%−1)). (21)

Now, consider the following set of sample paths rep-
resented by B′.

1. The first service time S1 ∈ [2u1−$%−1, 3u1−$%−1].
2. The sum of the first 'u1−$( inter-arrival times is

less than 2u1−$%−1, i.e.,
∑'u1−$(

i=1 Ai "2u1−$%−1.
This ensures that by the end of service of the

first customer at least 'u1−$( customers are in the
queue.

3. The next 'u1−$( − 1 services lie in the interval
[0, 0.5u$%−1]. This ensures that at most 0.5u%−1

time has elapsed before the beginning of service
of customer 'u1−$(.

4. The service time for customer 'u1−$( exceeds
2u%−1.

5. The next '0.6u( arrivals are such that 0.5u%−1 "
∑'u1−$(+'0.6u(

i='u1−$(+1 Ai "0.75u%−1. This ensures that
the buffer does not overflow before the beginning
of service of customer 'u1−$(.

6. The next '0.4u( arrivals are such that 0.3u%−1 "
∑'u1−$(+'u(

i='u1−$(+'0.6u(Ai "0.75u%−1. This ensures that
the buffer overflows during the service of customer
'u1−$(.

The services in condition 3 are assigned sufficiently
less probability under the new measure so that the
second moment of the estimator builds up along such
realizations. The remaining conditions ensures that the
buffer overflows for the paths in this set. Note that
the set B′ can be decomposed into sample paths for
arrivals (satisfying 2, 5 and 6 above), represented by
B′

a and sample paths for service times (satisfying 1,
3 and 4 above), represented by B′

s.
First we focus on the contribution of the arrival

paths in B′
a to the likelihood ratio. Using Markov’s

inequality we have

P




'u1−$(∑

i=1

Ai !2u1−$%−1



 " 1
2

.

By the strong law of large numbers we get for suffi-
ciently large u

P



0.5u%−1 "
'u1−$(+'0.6u(∑

i='u1−$(+1

Ai "0.75u%−1



 ! 1
2

,

P



0.3u%−1 "
'u1−$(+'u(∑

i='u1−$(+'0.6u(
Ai "0.75u%−1



 ! 1
2

.



260 A. Bassamboo et al. / Operations Research Letters 35 (2007) 251–260

Thus, we have Pa(B′
a)! 1

8 , which using Lemma 1
implies that
∫

B′
a

dPa

dP̃
a dPa ! 1

82 . (22)

We now focus on the contribution of the service time
paths in B′

s to the likelihood ratio. In particular, using
(20) we have
∫

B′
s

dPs

dP̃
s dPs

![e−*(2u%−1) − e−*(3u%−1)]2

×
[(

1 + e−2*(2u%−1)+c′*(u)

4

)

×(1 − 2e−*(0.5u$%−1))

]'u1−$(−1

× [e−2*(2u%−1)]. (23)

Combining (22) and (23) with (19), and taking a log-
arithm on both sides we have

log Ẽ[Z2
u]!2 log(e−*(2u%−1) − e−*(3u%−1))

+ [u1−$ − 1]

×
[

log

(

1 + e−2*(2u%−1)+c′*(u)

4

)

+ log(1 − 2e−*(0.5u$%−1))

]

− 2*(2u%−1) − log 64.

Repeating the arguments in the proof of Theorem 1
with the specific choice of c and $, we get the desired
contradiction

lim
u→∞

log(̃E[Z2
u])

− log u
= ∞,

which completes the proof. #
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