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Customers who need quick resolutions for their temporary problems are increasingly seeking help in large-

scale, Web-based service marketplaces. Due to the temporary nature of the relations between customers

and service providers (agents) in these marketplaces, customers may not have an opportunity to assess the

ability of an agent before their service completion. On the other hand, the moderating firm has a more

sustained relationship with agents, and thus it can provide customers with more information about the

abilities of agents through skill screening mechanisms. The main goal of this paper paper is to explore how

the moderating firm may use its skill screening tools while making skill and capacity management decisions.

Surprisingly, we show that the dynamics of the service marketplace may force the moderating firm to limit

the potential service capacity even when supply is significantly scarce. We also show that the impact of

the marketplace dynamics is alleviated when the firm can isolate its business with one particular customer

type from the other customer types, especially when skills required to serve di↵erent customer needs are

correlated. Thus, the firm prefers to utilize the potential service capacity if skills of an agent are correlated.

Key words : Service marketplaces; fluid models; skill management; flexible resources; non-cooperative game

theory; large games.

1. Introduction

Large-scale, Web-based service marketplaces have, recently, emerged as a new resource for cus-

tomers who need quick resolutions for their temporary problems. In these marketplaces, many

small service providers (agents) compete among themselves to help customers with diverse needs.

Typically, an independent firm, which we shall refer to as the moderating firm, establishes the

infrastructure for the interaction between customers and agents in these marketplaces. In partic-

ular, the moderating firm provides the customers and the agents with the information required

to make their decisions. Besides their essential role, moderating firms can introduce operational

tools which specify how the customers and the agents are matched together. For instance, some of

the moderating firms allow customers to post their needs and let service providers apply, postpon-

ing the service provider selection decision of the customers until they obtain enough information
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about agents’ availability. Moreover, moderating firms can provide strategic tools which allow com-

munication and collaboration among the agents. These di↵erent involvements result in di↵erent

economic and operational systems, and thus vary in their level of e�ciency and the outcomes for

both customers and service providers.

A notable example among many existing online marketplaces is oDesk.com. The web-site hosts

around 2,000,000 programmers competing to provide software solutions. Considering such large-

scale marketplaces, it is not surprising to see that the ability of agents to serve customers with

a particular need varies significantly. Naturally, customers prefer to be serviced by a more skilled

agent because a more capable agent is likely to generate more value for customers. Unfortunately,

customers may not have an opportunity to assess the ability of an agent before their service

completion because most of the relations between customers and providers are temporary in these

marketplaces. On the other hand, the moderating firm has a more sustained relationship with

agents, and thus it can obtain more information about their abilities. Particularly, the firm can

constitute a skill screening mechanism. In general, these mechanisms take the form of skill tests

and/or certification programs that are run by moderating firms. For instance, oDesk.com o↵ers

various exams to test the ability of the candidate providers. In fact, being successful in these exams

is the first requirement for providers to be eligible to serve customers in the marketplace. oDesk.com

(or any other moderating firm) freely decides on how comprehensive the exams are. The more

comprehensive the exams become, the more value customers expect from the service. If necessary,

oDesk.com can use these exams to disqualify some of the agents, and thus control the portfolio

of di↵erent agent types (e.g., flexible, dedicated) and the service capacity in the marketplace. We

use the term skill-mix structure to denote the portfolio of di↵erent agent types. oDesk.com, like

many other online service marketplaces, receives 10% of the revenue obtained by the providers at

service completion. Therefore, it is in great interest of oDesk.com to intervene in the marketplace

by using its skill test in order to make sure that the “right” prices and customer demand emerge

as the outcome in the marketplace.

Motivated by these online service marketplaces, we aim to study the impact of the moderating

firm’s skill screening mechanism on the behavior of the customers and the providers in a service

marketplace where the objective of each individual player is to maximize his/her own utility. We

use a game theoretical framework to study the interaction between the customers and the agents.

Specifically, each agent announces a price for his service, and customers request service from agents

based on the price and the expected waiting time. We focus on the setting where the moderating

firm provides both an operational and a strategic tool. The operational tool introduced by the

moderating firm e�ciently matches customers interested in purchasing the service at a particular
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price with the agents charging that or a lower price, while the strategic tool allows limited pre-

play communication among agents within a noncooperative structure. As we mention above, the

moderating firm can use its screening mechanism as a tool to shape the skill-mix structure of the

marketplace. Therefore, we are also interested in how the firm can use this mechanism to maximize

its own profit, which is a predetermined share of the total revenue generated in the marketplace.

In this paper, we consider a service marketplace with two groups of customers, each of which has

di↵erent needs. We use the term class to identify the group of customers with similar needs. On

the supply side, we assume there is a finite but large number of agents, who are homogeneous in

their service capacity and heterogeneous in the value that their services generate for each customer

class. Specifically, the service of an agent generates a random value (with a known distribution) for

each customer class. We refer to the vector that represent these two random values as the skills of

an agent. In this setting, we study the moderating firm’s decisions when customers cannot observe

agent skills but the firm can assess whether the value that an agent generates for a given class is

above a certain threshold through an exam. We characterize the equilibrium outcome of the game

between customers and agents for any given pair of exam thresholds and find the pair of exam

thresholds that maximizes the profit of the moderating firm.

In analyzing the model described above, we observe that the dynamics of the arising system

are too complex for exact analysis, and thus we resort to asymptotic analysis. In particular, we

study the fluid approximation of our model while characterizing the equilibrium outcome of the

marketplace for any given skill-mix structure. We also observe that the optimization problem of the

firm becomes analytically intractable when the skills of an agent follow a general joint probability

distribution. Thus, we obtain the optimal skill-mix structure and capacity decisions of the firm

under three di↵erent scenarios based on the relationship of agent skills: (a) perfectly positive

correlation, (b) perfectly negative correlation, and (c) independence among the skills of an agent.

We next state our key findings along with the contributions of the paper:

1. Fixing the skill-mix structure in the marketplace, we show that when the service capacity

allocated to a customer class is less then its demand rate, the competition among providers serving

this class is mitigated and agents can agree on a price which extract all of the customer surplus. On

the contrary, the competition is intensified when the service capacity exceeds the demand, and this

leads to arbitrarily low profits for both the agents and the firm. Hence, if the total service capacity

of candidate agents exceeds the total demand rate, the firm always fails some of the candidate

agents to make sure the service capacity is not abundant. However, it is not obvious whether the

firm would limit the service capacity by failing candidate agents when the total service capacity of

candidate agents are initially lower than the total demand rate.
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2. The moderating firm always trades o↵ between the service capacity and the value of the

service because customers expect more value when there are fewer eligible agents. We show that

the gains from increasing the service capacity allocated to a customer class outweighs the losses

from reducing the expected value of the service. Therefore, the firm’s profit from a customer class

increases in the service capacity allocated to this class.

3. In the cases of correlated agent skills, the service capacity allocated to a customer class a↵ects

only the firm’s profit from this class. In other words, the capacity allocation problem of the firm

can be de-coupled. As the firm’s profit from a customer class increases in the capacity, the firm does

not benefit from reducing the service capacity allocated to one class while keeping the capacity

for the other class unchanged. Hence, the firm always lets all candidate agents be eligible to serve

customers if agent skills are correlated and the service capacity is initially scarce. This translates

into not failing any agent in both exams at the same time.

4. Unlike when agent skills are correlated, changing the service capacity allocated to one class

a↵ects the profit from the other class if the skills of an agent is independent. In fact, when the

demand rate from one class is su�ciently low, we show that reducing the capacity allocated to

the high-demand class (while not changing the capacity for the low-demand class) may improve

the total profit of the moderating firm even though such a change deteriorates the profit from the

high-demand class. Based on this observation, we show that the firm may need to fail some of

the candidate agents in both exams in order to maximize its profit. The key insight of this result

is that the dynamics of the service marketplace force the moderating firm to limit the potential

service capacity even when supply is scarce.

2. Literature Review

Our paper lies in the intersection of various streams of research. The first line of papers related

with our paper studies the applications of queueing theory in service systems. Service systems with

customers who are both price and time sensitive have attracted the attention of researchers for

many years. The analysis of such systems dates back to Naor’s seminal work (See Naor, 1969),

which analyzes customer behavior in a single-server queueing system. Motivated by his work, many

researchers study the service systems facing price- and delay-sensitive customers in various settings.

We refer the reader to Hassin and Haviv (2003) for an extensive summary of the early attempts in

this line of research. More recently, Cachon and Harker (2002) and Allon and Federgruen (2007)

studies the competition between multiple firms o↵ering substitute but di↵erentiated services by

modeling the customer behavior implicitly via an exogenously given demand function. An alterna-

tive approach is followed in Chen and Wan (2003), where authors examine the customers’ choice
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problem explicitly by embedding it into the firms’ pricing problem. Other notable examples focus-

ing on the customers’ demand decision in competition models are Ha et al. (2003), and Cachon

and Zhang (2007).

Our paper is also related to the papers focusing on the economic trade-o↵s between investing

on flexible resources, which provide the ability to satisfy a wide variety of customer needs, and

dedicated resources, which can respond to only a specific demand type. This line of literature

studies a two-stage decision problem with recourse, which is also known as the Newsvendor Network

problem, and dates back to Fine and Freund (1990). Fine and Freund (1990) considers a firm that

invests in a portfolio of multiple dedicated resources and one flexible resource in the first stage

where the market demand for its products is uncertain. After making the capacity investments,

the demand uncertainty is resolved, and the firm makes the production decisions to maximize its

profits. Fine and Freund (1990) argues that the flexible resource is not preferred when demand

distributions are perfectly and positively correlated. Gupta et al. (1992) studies a similar model

where the firm initially has some existing capacity and presents results parallel to Fine and Freund

(1990). Contrary to the examples provided in these two papers, Callen and Sarath (1995) and

Van Mieghem (1998) show that it can be optimal for a firm to invest in a flexible resource even if

demand distributions are perfectly and positively correlated. Recent papers extends the model in

Fine and Freund (1990) by studying the optimal pricing decision of a monopolist (See Chod and

Rudi (2005) and Bish and Wang (2004)), competition between two firms (See Goyal and Netessine

(2007)), and more detailed configurations of flexibility (See Bassamboo et al. (2010)). In all of

these papers, the firm chooses its price and allocates its flexible capacity in order to maximize its

profits. However, in the service marketplaces we consider, the (moderating) firm does not have a

direct control over the pricing and the service decisions of the service providers.

The pricing and the capacity planning problem of the service systems can easily become ana-

lytically intractable when trying to study more complex models, such as a multi-server queueing

systems. Recognizing this di�culty, many researchers seek robust and accurate approximations to

analyze multi-server queues. Halfin and Whitt (1981) is the first paper that proposes and ana-

lyzes a multi-server framework. This framework is aimed at developing approximations, which

are asymptotically correct, for multi-server systems. It has been applied by many researchers to

study the pricing and service design problem of a monopoly in more realistic and detailed settings.

Armony and Maglaras (2004), and Maglaras and Zeevi (2005) are examples of recent work using

the asymptotic analysis to tackle complexity of these problems. Furthermore, Garnett et al. (2002),

Ward and Glynn (2003), and Zeltyn and Mandelbaum (2005) extends the asymptotic analysis of

markovian queueing system by considering customer abandonments.



6 Allon et.al.: Skill and Capacity Management in Large-scale Service Marketplaces

The idea of using approximation methods can also be applied to characterize the equilibrium

behavior of the firms in a competitive environment. To our knowledge, Allon and Gurvich (2010)

and Chen et al. (2008) are the first papers studying competition among complex queueing systems

by using asymptotic analysis to approximate the queueing dynamics. There are two main di↵er-

ences between these two papers and our work. First, both of them study a service environment

with a fixed number of decision makers (firms) while the number of decision makers in our mar-

ketplace (agents) is infinite. Second, they only consider a competitive environment where the firms

behave individually. In contrast, we study a marketplace where the agents have a limited level of

collaboration. Another recent paper that studies the equilibrium characterization of a competitive

marketplace using asymptotic analysis is Allon et al. (2012). Like our paper, Allon et al. (2012)

studies a service marketplace with large number of service provider. However, it focuses on a mar-

ketplace with a fixed skill-mix structure without incorporating the skill and capacity management

decisions of the moderating firm.

In the field of operations management (OM), the majority of the papers employing game-

theoretic foundations study non-cooperative settings. For an excellent survey, we refer to Cachon

and Netessine (2004). There is also a growing literature that studies the OM problems in the

context of cooperative game theory. Nagarajan and Sosic (2008) provide an extensive summary

of the applications of cooperative game theory in supply chain management. Notable examples

are the formation of coalitions among retailers to share their inventories, suppliers, and marketing

powers (See Granot and Sosic (2005), Sosic (2006), and Nagarajan and Sosic (2007)). This body

of research is related with our work as we look for the limited collaboration among agents.

Our work may also be viewed as related to the literature on labor markets that studies the wage

dynamics (See Burdett and Mortensen (1998), Manning (2004), and Michaelides (2010)). In our

model, service seekers trade-o↵ the time they need to wait until their job starts and the price,

the phenomenon generally disregarded in labor economics literature. Further, our focus is on a

market for temporary help, which means that the engagement between sides ends upon the service

completion. This stands in contrast to the labor economics literature in which the engagement is

assumed to be permanent. Our paper also di↵ers from the literature on market microstructure. This

body of literature studies market makers who can set prices and hold inventories of assets in order

to stabilize markets (See Garman (1976), Amihud and Mendelson (1980), Ho and Stoll (1983),

and a comprehensive survey by Biais et al. (2005)). However, the moderating firm considered in

our paper has no direct price-setting power and cannot respond to customers’ service requests.

Furthermore, papers studying market microstructure disregard the operational details such as

waiting and idleness.
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3. Model Formulation

Consider a service marketplace where agents and customers make their decisions in order to max-

imize their individual utilities. There are two groups of customers, each of which has di↵erent

needs. We use the term “class” to identify the group of customers with similar needs. We refer

to one customer class as class-A and the other one as class-B. Class-I customers’ need for the

service is generated according to a Poisson process with rate ⇤
I

for all I 2 {A,B}. This forms the

“potential demand” for the marketplace. A customer decides whether to join the marketplace or

not. The customers who join the marketplace form the “e↵ective demand” for the marketplace. If

a customer decides not to join the system, her utility is zero. If she joins the system, she decides

who would process her job. The exact nature of this decision depends on the specific structure

of the marketplace decided upfront by the moderating firm. We shall elaborate on the choices of

customers while we discuss the role of the moderating firm. We assume that service time required

to satisfy the requests of a given customer is exponentially distributed with rate µ. Without loss of

generality, we let µ= 1. When the service of a class-I customer is successfully completed, she pays

the price of the service, earns a reward, which depends on the skills of the agent serving her, and

incurs a waiting cost of c
I

per unit time until her service commences for all I 2 {A,B}. Because

the customers who visit the marketplace seek temporary help, a customer joining the system may

become impatient while waiting for her service to start and abandon. The abandoning customer

does not pay any price or earn any reward but she incurs a waiting cost for the time she spends in

the system. We assume that customers’ abandonment times are independent of all other stochastic

components and are exponentially distributed with mean m

a

. Customers decide whether to request

service or not and by whom to be served according to their expected utility. The expected utility

of a customer is based on the reward, the price and the anticipated waiting time.

The above summarizes the demand arriving to the marketplace. Next, we discuss the capacity

provision in the marketplace. There are k candidate agents endowed with di↵erent processing

skills. Particularly, the value that an agent’s service generates for a class-I customer is S

I

for all

I 2 {A,B}. S
A

and S

B

are random variables with a joint probability density function f

A,B

(·, ·) on

the support [0, R̄
A

]⇥ [0, R̄
B

]. We refer to (S
A

, S

B

) as the skills of an agent. The skills of an agent

are not observable but the moderating firm can verify whether the value generated by an agent is

above a certain threshold through a skill screening process. The decisions of an agent are to set

a price for his service and choose the customer class to serve among the classes he is allowed to

serve; each agent makes these decisions independently in order to maximize his expected revenue.

The expected revenue of an agent depends on the price he charges and his demand volume. We

normalized the operating cost of the agents to zero for notational convenience.
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We refer to the ratio ⇤
I

/k as the demand-supply ratio of class-I and denote it by ⇢

I

> 0 for all

I 2 {A,B}. The demand-supply ratio is a first order measure for the mismatch between aggregate

demand and the total processing capacity. We broadly categorize marketplaces into two: Buyer’s

market where ⇢

A

+ ⇢

B

< 1, and seller’s market where ⇢

A

+ ⇢

B

� 1.

4. The Role of the Moderating Firm

The essential role of the moderating firm in a large scale marketplace is to construct the infras-

tructure for the interaction between players. This is crucial because all players have to be equipped

with the necessary information, such as prices to make their decisions, yet individual players can-

not gather this information on their own. There are also other ways for moderating firms to be

involved in a marketplace. For instance, moderating firms can provide mechanisms, which improve

the operational e�ciency of the whole system by e�ciently matching customers and agents. They

may also complement their operational tools with strategic tools, which enable communication

among agents. Furthermore, because agents’ skills are not observable to the customers, moderating

firms may provide customers with further information about the candidate agents by screening

agents’ abilities. In this section, our goal is to build a model where we capture these di↵erent roles

of the moderating firms. To this end, we first introduce a screening mechanism which consists of

skill tests determining whether a candidate agent is eligible to serve customers. Next, we provide

a detailed description of the interaction between customers and agents in a marketplace when

operational ine�ciencies are minimized and agents are allowed to communicate.

4.1. Setting up the Skill-Mix

As we mentioned in the introduction, moderating firms can obtain more information about the

ability of candidate agents through a screening process. We model this by assuming that the

moderating firm runs two skill tests on each candidate agent, say Exam-A and Exam-B, in order

to screen his abilities. In particular, in Exam-I, the firm picks a threshold level !
I

(a measure

for comprehensiveness) and test whether the value that an agent’s service generate for class-I is

above !

I

for all I 2 {A,B}. The firm publicly announces the results of the tests, and a candidate

agent will be eligible to serve customers if he passes at least one exam. Candidate agents, who pass

both exams, will be eligible to serve both classes of customers. We refer to this type of agents as

flexible agents, and denote the fraction of flexible agents by ↵

F

. Since a flexible agent can serve

both classes, he makes a service decision by choosing which customer class he serves in addition to

his pricing decision. On the other hand, an agent who passes only Exam-J , for some J 2 {A,B},
will be eligible to serve only class-J , and thus his only decision will be to set a price for his service.

We refer to this type of agents as dedicated agents, and denote the fraction of dedicated agents

for class-I by ↵

I

, for all I 2 {A,B}. Once the firm chooses a pair of exam thresholds (!
A

,!

B

),
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the fraction of flexible and dedicated agents in marketplaces with large number of agents can be

approximated as follows:

↵

F

(!
A

,!

B

)'

¯

RA
Z

!A

ds

A

¯

RB
Z

!B

f

A,B

(s
A

, s

B

)ds
B

and ↵

I

(!
A

,!

B

)'

¯

RI
Z

!I

ds

I

!J
Z

0

f

A,B

(s
I

, s

J

)ds
J

, (1)

for all I, J 2 {A,B} with J 6= I. Throughout the paper, we use the term skill-mix structure to

denote the portfolio of di↵erent agent types in the marketplace. For instance, a marketplace may

consist of all three types of agents: flexible agents, and dedicated agents for each class. We refer to

such a skill-mix structure as “M-Network”. On the other hand, there may be only flexible agents

in a marketplace. This skill-mix structure will be referred to as “V-Network”. In addition to these

two, there may be other skill-mix structures such as “N-Network” and “I-Network”. We illustrate

these di↵erent structures in Figure 1. The moderating firm can set up various skill-mix structure

by changing the threshold levels !
A

and !

B

.

Class-A
(⇤A)

Class-B
(⇤B)

? ?? �

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

↵A ↵F ↵B

(M-Network)

Class-A
(⇤A)

Class-B
(⇤B)

?�

✓⌘
◆⇣
↵F

(V-Network)

Class-A
(⇤A)

Class-B
(⇤B)

? ??

✓⌘
◆⇣

✓⌘
◆⇣

↵A ↵F

(N-Network)

Class-A
(⇤A)

Class-B
(⇤B)

? ?

✓⌘
◆⇣

✓⌘
◆⇣

↵A ↵B

(I-Network)

Figure 1 Di↵erent skill-mix structures that can be set up by the moderating firm.

In addition to changing the skill-mix structure, exam thresholds impact the expected reward

that a customer earns upon her service completion. If there is no further information about the

agents’ skills, a class-I customer expects to earn the average value that agents generate for her

class, which can be approximated by E[S
I

], for all I 2 {A,B}. However, after customers learn

the exam results, they update the reward that they expect from agents who are eligible to serve

them. More specifically, for any exam threshold pair (!
A

,!

B

), the expected reward that a class-I

customer earns from a dedicated agent becomes E[S
I

|S
I

� !

I

, S

J

< !

J

] can be written as follows:

R

I

(!
A

,!

B

) =
�

Z

¯

RI

!I

ds

I

Z

!J

0

s

I

f

A,B

(s
I

, s

J

)ds
j

��

↵

I

(!
A

,!

B

), (2)

for all I, J 2 {A,B} with I 6= J . Likewise, a class-I customer expects to earn R

IF

(!
A

,!

B

) from a

flexible agent given the exam thresholds (!
A

,!

B

), where
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R

IF

(!
A

,!

B

) =
�

Z

¯

RI

!I

ds

I

Z

¯

RJ

!J

s

I

f

A,B

(s
I

, s

J

)ds
J

��

↵

F

(!
A

,!

B

), (3)

4.2. Operational E�ciency

In addition to setting up the skill-mix, the moderating firm provides a mechanism that improves

the operational e�ciency of the whole system by e�ciently matching customers and agents. This

mechanism aims at reducing ine�ciency due to the possibility of having a customer waiting in

line for a busy agent while an agent who can serve her is idle. For instance, oDesk.com achieves

this goal by allowing customers to post their needs and allowing service providers to apply to

these postings. When a customer posts a job at oDesk.com, agents that are willing to serve this

customer apply to the posting. Among the applicants charging less than what the customer wants

to pay, the customer will favor agents based on their immediate availability. The main driver of the

operational e�ciency in this setting is the fact that customers no longer need to specify an agent

upon their arrival because the job posting mechanism allows customers to postpone their service

request decisions until they have enough information about the availability of the providers. Thus,

we assume that the mechanism introduced by the moderating firm ensures that customers do not

stay in line when there is an idle agent willing to serve them for a price they want to pay or less.

Note that the expected utility of a customer will depend on both the price and the type of the

agent who serves her because each agent type may provide a di↵erent expected reward. To account

for that, we define the “net reward” of a class-I customer from a dedicated and a flexible agent

charging p as R
I

(!
A

,!

B

)�p and R

IF

(!
A

,!

B

)�p, respectively, for all I 2 {A,B} and any given pair

of thresholds (!
A

,!

B

). Then, we model the e�ciency improvement in the system by considering the

marketplace as a queuing network where the agents announcing the same net reward and serving

the same customer class are virtually grouped together, regardless of their types. We assume that

customers decide which agents to choose based on the net reward and they treat all agents as the

same when they o↵er the same net reward because the nature of the tasks is simple, benefits are

tangible, features are clear, and thus rewards are easily quantifiable.

Once each agent announces a price per customer to be served, we can construct a resulting net

reward vector (r
In)

NI
n=1

for class-I where N

I

 k is the number of di↵erent net rewards announced

by the agents serving class-I for all I 2 {A,B}. We refer to the agents announcing the net reward

r

In as sub-pool-I
n

and denote the number of agents in the sub-pool-I
n

by y

In . Hence, the vectors

(r
A

,y
A

)⌘ (r
An , yAn)

NA
n=1

and (r
B

,y
B

)⌘ (r
Bn , yBn)

NB
n=1

summarizes the strategy of all agents.

Under the mechanism provided by the moderating firm, we model the customer decision making

and experience as follows: If there are di↵erent net rewards announced by the agents serving class-

I, i.e. N
I

> 1, a class-I customer chooses a sub-pool from which she requests the service for all

I 2 {A,B}. We refer to the net reward o↵ered by this sub-pool as the “preferred net reward.” Each
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customer who decides to join the system enters the service immediately if there is an available

agent either in the sub-pool she chooses or any sub-pool announcing a net reward more than the

sub-pool she chooses. Moreover, the customer is served by the sub-pool o↵ering the highest net

reward among all available sub-pools. Otherwise, she waits in queue in front of the sub-pool she

chooses until an agent who o↵ers a net reward higher than or equal to her preferred net reward

becomes available. We denote the fraction of customers requesting service from sub-pool-I
n

by

D

In and summarize the decisions of the class-I customers by the vector D
I

⌘ (D
In)

NI
n=1

for all

I 2 {A,B}. In this model of customer experience, there are two crucial features: 1) The service of

an arriving customer commences immediately when there are available agents o↵ering higher than

or equal to her preferred net reward, 2) If they have to wait, customers no longer wait for a specific

agent rather for an available agent.

As we model the marketplace as a queuing network, the operations of each sub-pool depend on

the operations of the other sub-pools. For instance, each sub-pool may handle customers from the

other sub-pools (giving priority to its own customers) while some of the other sub-pools are serving

its customers. Therefore, given the strategies of agents, (r
I

,y
I

), and the service request decisions

of class-I customers, D
I

, the expected utility of a class-I customer choosing the sub-pool-I
`

, for

all `2 {1, . . . ,N
I

} and I 2 {A,B}, depends on all of these given decisions, and can be written as:

P

I``

⇥

(r
I`
+ cm

a

)(1��

I`
)� cm

a

⇤

+
X

m 6=`

P

I`m
r

In , (4)

where �

I`
(r

I

,y
I

,D
I

) denotes the probability of abandonment for customers choosing the sub-pool-

I

`

given that they are not served by another sub-pool, and P

I`m
(r

I

,y
I

,D
I

) denotes the probability

that a customer choosing the sub-pool-I
`

is served by the sub-pool-I
m

for all m 2 {1, . . . ,N
I

}.

We want to note that for any sub-pool-I
`

, P
`m

= 0 for any m such that r

Im < r

I`
since customer

choosing sub-pool-I
`

cannot be serve by a sub-pool o↵ering less than r

I`
, which is their preferred

net reward. Furthermore, given the exam thresholds (!
A

,!

B

), the revenue of a dedicated agent in

the sub-pool-I
`

is
⇥

R

I

(!
A

,!

B

)� r

I`

⇤

�

I`
(r

I

,y
I

,D
I

), (5)

where �

I`

(r
I

,y
I

,D
I

) is utilization of agents in sub-pool-`. Similarly, the revenue of a flexible agent

in the sub-pool-I
`

is
⇥

R

IF

(!
A

,!

B

)� r

I`

⇤

�

I`
(r

I

,y
I

,D
I

). (6)

After describing the operational tool provided by the moderating firm, we now discuss the

moderating firm’s strategic tool which changes the nature of the competition among agents. In

a marketplace such as oDesk.com, service providers are o↵ered discussion boards where they are

allowed to exchange information. Moreover, the firm supports the creation of a�liation groups,
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which are self-enforcing entities. Motivated by these examples, we assume that the moderating

firm allows agents to make non-binding communication prior to making their decisions, so that

they can try to self-coordinate their actions in a mutually beneficial way despite the fact that

each agent selfishly maximizes his own utility. As it is discussed in Allon et al. (2012), this can be

modeled by using an equilibrium concept, which allows several agents to deviate together. Since the

marketplaces we consider tend to be large, the size of the group deviating together is restricted. We

denote the largest fraction of agents that is allowed to deviate together by � such that 1/k < � 1.

Given the setup of Section 3, along with the above mentioned roles of the moderating firm,

we model the strategic interaction between the agents and the customers as a sequential move

game. The agents first make their service and pricing decisions. Then, in the second stage, each

arriving customer observes these decisions and decides whether to request service or not. Moreover,

customers specify the sub-pool from which they request service. Customers make their service

request in order to maximize their utility. Therefore, in the equilibrium of the second stage, a class-

I customer, for all I 2 {A,B}, chooses a sub-pool only if the utility she obtains from this sub-pool

(weakly) dominates her utility from any other sub-pool. On the other hand, the equilibrium of

the first stage requires that service and pricing decisions of the agents should be immune to any

deviations formed by a group with less than or equal to �k agents. In other words, any group of

agents with less than or equal to �k agents should not have any incentive to change their service

and/or pricing decisions.

In analyzing the equilibrium outcome of marketplaces with finite number of agents, we would

like to highlight the following two observations: 1) The arising system dynamic is too complex for

the exact analysis. 2) Asymptotic analysis is applicable since these marketplaces tends to be large.

Thus, in the next section, we shall approximate the original system in a parametric regime, where

the demand and the number of agents are large.

5. Fluid Model

In this section, we consider a sequence of marketplaces indexed by the number of agents, i.e. there

are k agents in the k

th marketplace. The arrival rate of class-I in the k

th marketplace is assumed

to be ⇤k

I

= ⇢

I

k. This ensures that the demand-supply ratios are constant along the sequence of

marketplaces. Furthermore, instead of characterizing the behavior of the equilibrium along the

sequence of marketplaces as in Allon et al. (2012), we describe the limiting game formally, and

characterize the behavior of the equilibrium in the limiting game. We will also show that the equi-

librium characterization in the limiting game constitutes a precise approximation for the behavior

of the equilibrium along the sequence of marketplaces.

To describe our limiting game, we assume that the number of agents k goes to infinity, and we

consider our original model defined in the previous sections as a fluid model. Note that in the
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limiting game, we can summarize the strategy of all agents by (p
n

, y

n

)N
n=1

where y
n

is the fraction of

the agents in sub-pool-n instead of the number of agents. The benefit of using a fluid model is that it

provides an accurate yet simple approximation for the abandonment and utilization functions which

helps us to derive the utility of the customers and agents in simple form. In particular, denoting

the probability of abandonment as �M(�, k) and agent utilization as �M(�, k) in an M/M/k+M

system with arrival rate �, service rate 1, and abandonment rate 1/m
a

, Whitt (2006) shows that

these two functions can be approximated as follows:

�

M(�, k)'
(

0 if � k

(�� k)/� if �>k.
, �

M(�, k)'
(

(�)/k if � k

1 if �>k.

In the limiting game, we replace each sub-pool of agents o↵ering the same net reward by a

fluid model where the arrival and service rates depend on the strategies of customers and agents.

However, we cannot use the results in Whitt (2006) directly because the sub-pools in our model

are interdependent. Particularly, a sub-pool can serve customers from other sub-pools as long as

there are idle agents in the sub-pool, and customers requesting service from a sub-pool can be

served by other sub-pools o↵ering a higher net reward. Figure 5 illustrates an example sub-pool

where the fraction of agents is y, the rate of customers who request service from this sub-pool is

�, the probability that its customers are served by other sub-pools is p, and the rate of customers

coming from other sub-pools is �0.

Customers preferring
the sub-pool

(�)

- - ��
⌫

y

-

Customers from other sub-pools (�0)

- Customers served by other pools (�p)

Figure 2 An example sub-pool.

Note that the queue accumulated in front of the above sub-pool depends only on the rate of

customers requesting and getting the service from the sub-pool because customers coming from

other sub-pools never queue in front of it. Therefore, the fluid approximation of this sub-pool

operates as a system where the arrival rate is �(1� p) and the service capacity is y. Using Whitt

(2006), the rate at which customers abandon such a system is max{�(1� p)� y,0}. Based on this

observation, the probability of abandonment for customers choosing the above sub-pool given that

they are not served by another sub-pool is:

�(�, p, y) =

(

0 if �(1� p)< y

[�(1� p)� y]/[�(1� p)] if �(1� p)� y,
(7)
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Similarly, the utilization of the agents can be written as:

�(�,�0
, p, y) =

(

[�(1� p)+�

0]/y if �(1� p)+�

0
< y

1 if �(1� p)+�

0 � y.
(8)

Using these probability of abandonment and utilization functions, we can simplify the expected

utility and the revenue function described in (4)-(6). Given the strategies of agents, (r
I

,y
I

), and

the service decisions of class-I customers, D
I

, the expected utility of a class-I customer choosing

the sub-pool-I
`

, for `2 {1, . . . ,N
I

} and I 2 {A,B} can be written as:

U

I`
(r

I

,y
I

,D
I

) = P

I``

⇥

(r
I`
+ cm

a

)(1��(⇢
I

D

I`
, P

I``
, y

I`
))� cm

a

⇤

+
X

m 6=`

P

I`m
r

In ,

where P

I`m
(r

I

,y
I

,D
I

) denotes the probability that a customer choosing the sub-pool-I
`

is served

by the sub-pool-I
m

for all m2 {1, . . . ,N
I

}. Moreover, the utilization of agents in sub-pool-` can be

written as

�

I`
(r

I

,y
I

,D
I

) =

(

⇢

I

�

P

NI
n=1

P

In`
D

In

�

/y

I`
if ⇢

I

P

NI
n=1

P

In`
D

In < y

I`

1 if ⇢
I

P

NI
n=1

P

In`
D

In � y

I`
.

Finally, given the exam thresholds !

A

and !

B

, the revenue of a dedicated agent in the sub-pool-

I

`

is [R
I

(!
A

,!

B

) � r

I`
]�

I`
(r

I

,y
I

,D
I

), while the revenue of a flexible agent in the sub-pool-I
`

is

[R
IF

(!
A

,!

B

)� r

I`
]�

I`
(r

I

,y
I

,D
I

).

Now, using these utility and revenue functions, we introduce the definitions of customer and

market equilibrium. We first start with the equilibrium among customers given the strategy of

agents.

Definition 1 (Fluid Customers Equilibrium). Given any (r
I

,y
I

) for I 2 {A,B}, we say

thatD
I

⌘ (D
In)

NI
n=1

is a Fluid Customers Equilibrium (FCE) if the following conditions are satisfied:

1. For any ` with D

I`
> 0 and for all nN

I

, we have that U
I`
(r

I

,y
I

,D
I

)�U

In(rI,yI

,D
I

)� 0.

2. If U
In(rI,yI

,D
I

)> 0 for some nN

I

, then
P

NI
n=1

D

In = 1.

3. If U
In(rI,yI

,D
I

) = 0 and ⇢D

In < y

In for some nN

I

, then
P

NI
n=1

D

In = 1.

The first condition of the FCE requires that customers request service from a sub-pool in equilib-

rium only if that sub-pool maximizes their expected utility. Moreover, the second condition ensures

that all customers join the system if it is possible to earn strictly positive utility by requesting

service from a sub-pool. Finally, the last condition states that all customers join the system when

there is an under-utilized sub-pool even if the expected utility of customers is not strictly posi-

tive. Note that an underutilized sub-pool should be o↵ering zero net-reward if the expected utility

of customers is zero. Therefore, customers are indi↵erent between requesting service from such a

sub-pool and leaving the system immediately. This condition essentially breaks ties for a customer

who is indi↵erent between joining the system and leaving immediately in favor of joining.

Using Rath (1992) and the fact that utility functions are continuous imply that a FCE always

exits. However, the uniqueness of a FCE is not guaranteed for a given strategy of agents. Despite
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the fact that there may be multiple FCE for a given strategy of agents, Proposition 1 proves that

the equilibrium utilization of an agent can be characterized irrespective of the multiplicity in FCE.

Proposition 1. Given any (r
I

,y
I

) such that r
In > r

In+1

for all n2 {1, . . . ,N
I

} and I 2 {A,B},

let �FCE

I`
(r

I

,y
I

) be the utilization of an agent in sub-pool-I
`

in a Fluid Customer Equilibrium for

all `2 {1, . . . ,N
I

}. Then, we have that

�

FCE

I`
(r

I

,y
I

) =

8

>

<

>

:

1 if ⇢
I

> ⇢

0

`

+ y

I`
,

(⇢
I

� ⇢

0

n

)/y
In if ⇢2 [⇢0

`

,⇢

0

`

+ y

I`
],

0 if ⇢
I

< ⇢

0

`

.

Here, we let ⇢0
`

=
P`�1

n=1

(rIn+cIma)yIn
rI`

+cIma
, and ⇢

0

1

= 0.

The above proposition shows that agents in a sub-pool can earn a strictly positive revenue only

if the demand from the customer class they serve is greater than a critical demand level. The

critical demand level for each sub-pool depends only on the decisions of the sub-pools o↵ering a

net reward that is higher than what the given sub-pool o↵ers. Furthermore, Proposition 1 shows

that a sub-pool can be fully utilized when demand rate exceeds the critical demand level for this

sub-pool by at least its capacity. In Proposition 1, we focus only on the utilization of the agents in

the customer equilibrium. We can also characterize the fraction of customers choosing each sub-

pool explicitly (See Proposition 3 in Appendix A). The main driver of the result in Proposition 1

is that customers are either always or never served by sub-pools other than their preferred one in

equilibrium. This establishes that the interdependency between the sub-pools announcing di↵erent

net rewards is minimal in a FCE. In fact, the marketplace operates “almost like” the combination

of independent sub-pools.

Once we characterize the equilibrium among customers and derive the revenues of agents in

this equilibrium, we now focus on the game among the agents. As we mentioned before, agents

simultaneously make their service and pricing decisions in the first stage of the game. In the game

among agents, we need to account for two types of agent deviations: Agents can either choose to

deviate by joining an existing sub-pool or announce a new price. Furthermore, a limited size of

agents are allowed to deviate together since the moderating firm enables communication among

agents. Therefore, an equilibrium in the first stage should be immune to any of these two types of

deviations formed by at most � fraction of agents. In the large-scale marketplace we study, it is

possible that a small group of agents can find profitable deviation from every price in some cases.

However, the gains from some deviations may be arbitrarily small. As in Allon et al. (2012), we

ignore deviations which result in small gains by employing a somewhat weaker notion of equilibrium,

which allows us to characterize the market outcome in the fluid game even when a Nash equilibrium

does not exist. To be more specific, we focus on an equilibrium concept, which requires immunity
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against only deviations that improve the revenue of an agent by at least ✏> 0 as formally stated

in Definition 2 (see below). We refer to ✏ as the level of equilibrium approximation and suppose

it is arbitrarily close to zero. To ease notation, we denote R

I

(!
A

,!

B

) and R

IF

(!
A

,!

B

) by R

I

and

R

IF

, respectively, for any given exam threshold pair (!
A

,!

B

) and any I 2 {A,B}. We also let

e
I

x ⌘ (ex
In
)NI
n=1

denote the N

I

-dimensional vector with a 1 in the x

th coordinate and 0 elsewhere.

Definition 2 (Fluid Market Equilibrium). Let (r
I

,y
I

) ⌘ (r
In , yIn)

NI
n=1

summarize the

strategy of all agents in the marketplace for any I 2 {A,B}. Then, (r
I

,y
I

) is a (✏, �)-Fluid Market

Equilibrium ((✏, �)-FME) if the following conditions are satisfied.

1. For any `N

I

, mN

I

, 0< dmin{y
I`
, �}, and I 2 {A,B}, we have that

[R
I

� r

`

]�FCE

I`
(r

I

,y
I

) � [R
I

� r

m

]�FCE

Im
(r

I

,y0
I

)� ✏ (9)

[R
IF

� r

`

]�FCE

I`
(r

I

,y
I

) � [R
IF

� r

m

]�FCE

Im
(r

I

,y0
I

)� ✏, (10)

where y0
I

= y
I

� de
I

` + de
I

m.

2. For any `N

I

, 0< dmin{y
I`
, �}, I 2 {A,B}, and r

0 6= r

In for all nN

I

, we have that

[R
I

� r

`

]�FCE

I`
(r

I

,y
I

) � [R
I

� r

0]�FCE

INI+1

(r0
I

,y0
I

)� ✏, (11)

[R
IF

� r

`

]�FCE

I`
(r

I

,y
I

) � [R
IF

� r

0]�FCE

INI+1

(r0
I

,y0
I

)� ✏, (12)

where r0
I

= (r
I

, r

0), and y0
I

= (y
I

, d).

3. For any `N

I

, mN

J

, 0< dmin{y
I`
, �}, I, J 2 {A,B}, and I 6= J , we have that

[R
IF

� r

`

]�FCE

I`
(r

I

,y
I

) � [R
JF

� r

m

]�FCE

Jm
(r

J

,y0
J

)� ✏, (13)

where y0
J

= y
J

+ de
J

m.

4. For any `N

I

, 0< dmin{y
I`
, �}, I, J 2 {A,B}, I 6= J , r0 6= r

Jn for all n,N

J

, we have that

[R
IF

� r

`

]�FCE

I`
(r

I

,y
I

) � [R
IJ

� r

0]�FCE

JNJ+1

(r0
J

,y0
J

)� ✏, (14)

where r0
J

= (r
J

, r

0), and y0
J

= (y
J

, d).

Moreover, (r
I

,y
I

) is a Fluid Market Equilibrium (FME) if there exists a sequence (r
I

k

,y
I

k) such

that (r
I

k

,y
I

k) is a (✏k, �k)-FME for any k= 1,2, . . . where ✏

k ! 0, �k ! 0, and (r
I

k

,y
I

k)! (r
I

,y
I

)

for all nN

I

as k!1.

(9) and (11) in the (✏, �)-FME definition state that dedicated agents have no incentive to deviate.

Note that dedicated agents cannot change the customer class they serve. Therefore, (✏, �)-FME

accounts for two possible deviations for dedicated agents: joining an existing sub-pool or creating

a new one. On the other hand, flexible agents have the option of changing the customer class they

serve. Thus, (✏, �)-FME ensures that flexible agents cannot improve their revenues whether they

change the customer class they serve or not. In particular, (10) and (12) focus on flexible agent

deviations when they keep the customer class they serve the same, whereas (13) and (14) consider

deviations where flexible agents change the class they serve. Finally, we conclude that a strategy
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profile is a Fluid Market Equilibrium (FME) if it is the limit of (✏, �)-FME as both ✏ and � becomes

arbitrarily small.

The above definition of the market equilibrium has no restriction on the structure of the emerging

equilibrium outcome. Particularly, we do not rule out an asymmetric equilibrium outcome, where

the same type of agents (dedicated or flexible) charge di↵erent prices to serve the same customer

class. Despite the quite general equilibrium definition, we show that the possibility of asymmetric

equilibrium is very limited. Proposition 2 proves that the same type of agents serving the same

customer class in any asymmetric FME must earn zero revenue. In other words, any asymmetric

FME is outcome-equivalent (from the agents’ point of view) to a symmetric FME where the same

type of agents serving the same customer class charge their operating costs, which is normalized to

zero. It also shows that the equilibrium revenues of flexible agents must be the same regardless of

the customer class they serve. Hence, Proposition 2 establishes that the same type of agents earn

the same revenue in any FME. This nice property of the equilibrium eases our analysis significantly.

Proposition 2. Given any FME (r
I

,y
I

), let V
FME

IDn
and V

FME

IFn
be the equilibrium revenue of a

dedicated and a flexible agents in sub-pool-I
n

for all I 2 {A,B}, respectively.
1. If the number of di↵erent prices announced by the dedicated (flexible) agents serving class-I is

two or more for some I 2 {A,B}, then we have that V
FME

IDn
= 0 (V

FME

IFn
= 0) for all n2 {1, . . . ,N

I

}.
2. V

FME

AFn
= V

FME

BFm
for any n2 {1, . . . ,N

A

}, m2 {1, . . . ,N
B

}.

We next start to characterize the equilibrium outcome in a marketplace with a special market

structure, namely one customer class and two types of agents. This structure constitutes the build-

ing block of a marketplace with two classes. Carrying out our analysis in this building block model

is a fundamental step towards finding the equilibrium outcome of the whole marketplace. It also

allows us to discuss the intuition behind our results in a more clear way.

5.1. A Special Marketplace Structure

As we mentioned before, the moderating firm may set up the skill-mix structure in the marketplace

(i.e., the capacity of dedicated and flexible agents) by changing the thresholds levels in each exam.

We illustrate the possible skill-mix structures that can arise after the firm’s choice of exam threshold

pair in Figure 1. We observe that “Inverted V-Network,” where there is only one customer class and

two types of agents, is the key to characterize the equilibrium outcome in any skill-mix structure.

For instance, once the agents make their service decisions in an M-Network, we need to analyze

two separate Inverted V-Networks, in each of which one customer class can be served by both

dedicated and flexible agents. Similarly, we can obtain the equilibrium outcome in other skill-mix

structures by analyzing two separate Inverted V-Networks. Therefore, in this section, we study the

equilibrium outcome of this special market structure, the Inverted V-Network.
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We consider a marketplace, where there is only one class of customers, but there are two types

of agents, say dedicated and flexible, who can serve these customers. We assume that the arrival

rate of customers is ⇢. As we have two types of agents, we let ↵

D

be the capacity of dedicated

agents, and ↵

F

be the capacity of flexible agents. Furthermore, we assume that customers earn

a reward of R
D

when their service is completed by a dedicated agent, and they earn R

F

when a

flexible agent serves them. Finally, we denote the waiting cost by c. We keep all other assumptions

we made in Section 3, and we will use the equilibrium concepts introduced in Section 5. We refer

to the marketplace as buyer’s market if ⇢< ↵

D

+↵

F

and seller’s market otherwise.

As we show in Proposition 2, agents in the same pool (dedicated or flexible) earn zero revenue

in any asymmetric Fluid Market Equilibrium (FME ). In other words, any emerging asymmetric

FME should be outcome-equivalent to a symmetric FME, where agents in the same pool charge

the same price and earn zero revenue in equilibrium. Based on this relationship, our approach

to characterize the equilibrium outcome is as follows: We first derive the equilibrium revenues of

agents in any symmetric FME, where all dedicated agents charge the same price p
D

, and all flexible

agents charge p

F

. If there is a symmetric equilibrium where the equilibrium revenue of agents in a

pool (dedicated or flexible) is zero, we can ignore any asymmetric equilibrium where agents in this

pool charge di↵erent prices because such an asymmetric equilibrium will not provide any further

information about the revenues of the agents. Otherwise, we will check if there is any asymmetric

equilibrium, where agents in this pool charge di↵erent prices.

As a first step towards characterizing the symmetric equilibrium, we derive the revenue of agents

when all the agents in the same pool charge the same price as follows:

Corollary 1. Let V
FCE

D

(p
D

, p

F

) and V

FCE

F

(p
D

, p

F

) be the revenue of a dedicated and a flexible

agent, respectively, when all the dedicated agents charge p

D

and all flexible agents charge p

F

. If

R

D

� p

D

6=R

F

� p

F

, then we have that

V

FCE

h

(p
D

, p

F

) =

(

p

h

(⇢/↵
h

) if ⇢ ↵

h

p

h

if ⇢> ↵

h

,and V

FCE

l

(p
D

, p

F

) =

8

>

<

>

:

0 ⇢< ⇢

0

l

p

l

(⇢� ⇢

0

l

)/↵
l

⇢2 [⇢0
l

,⇢

0

l

+↵

l

]

p

l

⇢> ⇢

0

l

+↵

l

,

where ⇢

0

l

= Rh�ph+cma
Rl�pl+cma

↵

h

h= argmax
i2{D,F}(Ri

� p

i

), and l= argmin
i2{D,F}(Ri

� p

i

).

The above corollary, which follows as an implication of Proposition 1, establishes that the agent

pool o↵ering the higher net reward (dedicated or flexible) will always be “over-utilized” as long

the total demand exceeds their capacity. On the other hand, the pool o↵ering the lower net reward

will be “under-utilized” unless ⇢ is su�ciently high.

Using the above result, the agent pool o↵ering the lower net reward will always be “under-

utilized” in a buyer’s market since we have that ⇢0
l

+↵

l

> ↵

D

+↵

F

. In other words, the demand rate,

⇢, cannot be high enough to let the agent pool o↵ering the lower net reward be “over-utilized.” We
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show that this will create an opportunity for the members of that pool to improve their revenue

by slightly decreasing their price. Hence, in a buyer’s market, we can only have a symmetric

equilibrium where only one of the agent pools (dedicated or flexible) earn positive revenue. In fact,

Theorem 1 below establishes that the pool generating higher customer reward can earn positive

revenue in a buyer’s market once the demand exceeds their capacity.

The above corollary also states that both pools can be over-utilized in a seller’s market. In this

case, cutting the price does not help the agents to improve their revenues. However, we show that

in this setting, a small fraction of agents from the group o↵ering the higher net reward will have

an opportunity to increase their prices and improve their revenues. Thus, in a seller’s market, all

agents, regardless of their group, o↵er the same net reward in a symmetric equilibrium. We formally

present these observations in the following result:

Theorem 1. Let V
FME

D

and V

FME

F

be the revenue of a dedicated and a flexible agent, respec-

tively, in a FME of a marketplace with one customer class and two agent pool. Then, letting

h= argmax
i2{D,F}

R

i

, and l= argmin
i2{D,F}

R

i

, we have that:

1. If ⇢< ↵

h

, then we have that V
FME

h

= V

FME

l

= 0.

2. If ⇢= ↵

h

, then we have that V
FME

h

R

h

�R

l

, and V

FME

l

= 0.

3. If ↵
h

< ⇢< ↵

h

+↵

l

, then we have that V
FME

h

=R

h

�R

l

, and V

FME

l

= 0.

4. If ⇢= ↵

h

+↵

l

, then we have that V
FME

h

= V

FME

l

+(R
h

�R

l

), and V

FME

l

R

l

.

5. If ⇢> ↵

h

+↵

l

, then we have that V
FME

h

=R

h

, and V

FME

l

=R

l

.

When we focus on the case where customers earn more reward from the dedicated agents (which

reduces to the setting h=D and l= F in Theorem 1), the above theorem shows that the dedicated

agents can only charge their operating costs in a symmetric equilibrium when demand is low, and

in such a setting, only the dedicated agents can serve customers. Thus, all agents earn zero in

equilibrium when demand is low in a buyer’s market. Once the demand rate exceeds the capacity

of dedicated agents, ↵
D

, the revenues of the dedicated agents in a buyer’s market can be positive,

yet below R

D

� R

F

, the di↵erence between the customers rewards generated by di↵erent types

of agents. When demand is equal to ↵

D

, there are multiple equilibria and dedicated agents may

charge any price less than or equal to R

D

�R

F

in equilibrium. However, they can agree on charging

R

D

�R

F

in equilibrium when demand rate is strictly greater than their capacity. Dedicated agents

are fully utilized in such an equilibrium and thus earn R

D

�R

F

. The intuition behind this result is

the following: The rate of customers requesting service from the dedicated agents will exceed their

processing capacity when dedicated agents charge a price lower than R

D

�R

F

. Therefore, customers

experience significant waiting times and incur a strictly positive waiting cost. Using the fact that

customers pay an extra cost, a small group of agents can increase their prices while ensuring that
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they are still over-utilized after the price increase. Since this small group of agents increases their

prices without hurting their utilization, this deviation clearly improves their revenues.

Theorem 1 also shows that flexible agents can earn a strictly positive revenue only in a seller’s

market. When the demand rate is equal to the total processing capacity, there are multiple equilibria

and the equilibrium revenue of flexible agents can be any value below R

F

. However, once the

demand rate is strictly greater than the total service capacity, revenues of both dedicated and

flexible agents must be equal to the customer reward they generate in a symmetric equilibrium. In

such an equilibrium, agents charge their highest prices, and the rate of customers requesting service

is equal to the total capacity, ↵
D

+ ↵

F

. In other words, the equilibrium behavior of the agents

avoids any congestion in the system while extracting all of the customer surplus. The main driver

of this result is similar to the intuition given above: There is congestion in the system when all

agents earn less than the reward they generate, and this creates an incentive for agents to increase

their prices. Once we obtain the revenues of agents in any symmetric equilibrium, we now discuss

asymmetric equilibria. As we mentioned before, we only need to pay attention to asymmetric

equilibria when agents in a pool earn strictly positive revenues in any symmetric equilibrium. In

the proof of Theorem 1, we show that an asymmetric FME cannot emerge in such a circumstance.

Particularly, we rule out the possibility of asymmetric equilibrium, where the dedicated agents

charge di↵erent prices, for any demand rate ⇢ > ↵

D

. Similarly, there cannot be any asymmetric

equilibrium, where the flexible agents charge di↵erent prices, when ⇢> ↵

D

+↵

F

.

After characterizing the equilibrium outcome in our building-block model, we next turn our

attention to the moderating firm’s skill-mix and capacity decisions.

Remark 1. The marketplace we consider in this section is similar to the one with noniden-

tical agents studied in Allon et al. (2012). Allon et al. (2012) develops an asymptotic theory to

understand the behavior of the equilibrium along the sequence of marketplaces growing in size.

The methodology developed in Allon et al. (2012) can easily become analytically intractable while

analyzing more complex problems such as the moderating firm’s skill and capacity management

problem. Thus in this paper, we focus directly on the limiting game, whose results are easy to incor-

porate into the moderating firm’s problem while capturing the main managerial insights obtained

from an asymptotic analysis. Furthermore, given that we use a fluid model in the limiting game,

we also investigate the outcomes of asymmetric equilibria, which are ignored in Allon et al. (2012).

6. The Skill-Mix and Capacity Management of the Moderating Firm

As we mentioned in the Introduction, the profit of the moderating firm is a share of the total revenue

generated in the marketplace. Therefore, in order to maximize its profit, the firm has to maximize

the total revenue in the marketplace by choosing the appropriate exam threshold pair (!
A

,!

B

).
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Once the firm chooses the exam thresholds, a Fluid Market Equilibrium will emerge, and using

the outcome of this equilibrium one can calculate the revenue generated in the marketplace. We

denote the total revenue in the marketplace by ⇧(!
A

,!

B

) given any exam threshold pair (!
A

,!

B

).

Notice that while Theorem 1 shows that there might be multiple equilibria, this multiplicity

happens only if a given exam threshold pair (!
A

,!

B

) leads to a knife-edge case, i.e., the demand

rate of a class is equal to the capacity of the dedicated and/or the flexible agents serving this

class. For mathematical convenience, we will be focusing on the equilibrium generating the highest

possible revenue among all possible equilibria1. We let V

F

(!
A

,!

B

) be the highest equilibrium

revenue of a flexible agent, and V

ID

(!
A

,!

B

) be the highest equilibrium revenue of a dedicated

agent serving class-I for all I 2 {A,B}2. Then, we write the total revenue in the marketplace as

⇧(!
A

,!

B

) =
P

I2{A,B}
�

V

ID

(!
A

,!

B

)↵
I

(!
A

,!

B

)
�

+V

F

(!
A

,!

B

)↵
F

(!
A

,!

B

).

We need to characterize the profit function ⇧(!
A

,!

B

) for any given exam threshold pair (!
A

,!

B

)

to find the optimal skill-mix and capacity decision of the moderating firm. Based on our results

in Theorem 1, we know that the equilibrium revenue of an agent can change significantly even

after the firm slightly modifies the exam thresholds in a marketplace. For instance, the revenue

of an agent may go down from his highest price to zero when the moderating firm increases the

service capacity available to the customer class he is serving by a small amount. Therefore, the

firm’s profit function has di↵erent functional forms in di↵erent regions of exam threshold space

[0, R̄
A

]⇥ [0, R̄
B

]. Finding the optimal exam threshold pair requires comparing all these di↵erent

functional forms, which is analytically intractable when the skills of an agent, S
A

and S

B

, follow

a general joint probability distribution. To have a tractable problem, in this section, we study the

skill-mix and capacity decision of the firm by imposing three di↵erent conditions on S

A

and S

B

:

1. S

A

and S

B

are perfectly positively correlated: P ({S
A

= S

B

}) = 1,

2. S

A

and S

B

are perfectly negatively correlated: P ({S
A

+S

B

= 1}) = 1,

3. S

A

and S

B

are independent and identically distributed.

We also restrict our attention to a seller’s market, where the total demand rate exceeds the total

service capacity of candidate agents. We provide a brief discussion on the firm’s optimal decisions

when this assumption is relaxed.

1 When there are multiple equilibria in a marketplace, the moderating firm can sustain the equilibrium with the
highest revenue by perturbing the thresholds levels (!A,!B) slightly. For instance, if the marketplace were in a knife-
edge case described in Theorem 1.4, the firm could increase the exam threshold by an arbitrarily small amount and
move the marketplace to the case described in Theorem 1.5. Such a change would make sure that there is a unique
equilibrium and the total revenue in the marketplace is arbitrarily close to the highest level among the multiple
equilibria before the change.

2 Proposition 2 shows that the same type of agents (dedicate or flexible) must earn the same revenue for any given
equilibrium even if they charge di↵erent prices. Therefore, we can denote the revenues of the same type of agents in
any given equilibrium by a unique value.
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6.1. Positively Correlated Skills

We start with studying the skill-mix and capacity decision of the firm in a marketplace where

S

A

= S

B

and S

A

is random with continuous distribution F (·) on the support [0,1]. We denote

the mean of S
A

by µ. Given this structure, we can derive the capacity of dedicated and flexible

agents for any pair of thresholds (!
A

,!

B

) using (1). Similarly, the reward that a customer expects

from a certain pool of agents can be calculated using (2)-(3). As we have S

A

= S

B

, the expected

reward from flexible agents is the same for both classes of customers, and thus will be denoted by

R

F

(!
A

,!

B

) in this subsection.

When the skills of an agent are positively correlated, the moderating firm can create three

di↵erent skill-mix structures: a) one with only flexible agents, the so-called V-Network, (by set-

ting !

A

= !

B

), b) one with flexible agents and dedicated agents only for class-A, the so-called

N-Network, (by setting !

A

> !

B

), c) one with flexible agents and dedicated agents only for class-B

(by setting !

A

< !

B

). In a marketplace with only flexible agents, agents can extract all of the

customer surplus as discussed in Theorem 1 since the total demand rate is higher than poten-

tial service capacity, i.e., ⇢
A

+ ⇢

B

� 1. Therefore, the total revenue generated in a V -Network is

R

F

(!
A

,!

B

)↵
F

(!
A

,!

B

). On the other hand, agents may not extract all of the customer surplus in

an N -Network because they may not charge the highest price that they can charge in equilibrium.

In fact, we show that even if they extract all of the customer surplus, the total revenue generated in

a marketplace with dedicated agents cannot exceed the revenue in a marketplace with only flexible

agents keeping the capacity of eligible agents constant. Thus, keeping the total service capacity

constant, the moderating firm is (weakly) better o↵ having only flexible agents.

Once we establish that the firm prefers V -Network over N -Network, it is su�cient to focus on

the firm’s profit on skill-mix structures with only flexible agents. When there are only flexible

agents in the marketplace, i.e., !
A

= !

B

= ! for some ! 2 [0,1], the total service capacity, ↵
F

(!,!),

decreases in ! whereas higher threshold levels lead to higher expected reward, R
F

(!,!). Thus,

the firm has to trade-o↵ between the total service capacity and the equilibrium revenue of agents.

It turns out, the firm strictly prefers higher capacity since R

F

(!,!)↵
F

(!,!), which is equal to
R

1

!

sf(s), is decreasing in !. This implies that the moderating firm always chooses to use all of its

available service capacity. Specifically, it sets the exam threshold pair to (0,0), i.e., all agents pass

both exams. The following theorem formally presents these results.

Theorem 2. When S

A

= S

B

and S

A

is random with continuous distribution F (n) on support

[0,1], we have that

1. ↵

A

(!⇤
A

,!

⇤
B

) + ↵

F

(!⇤
A

,!

⇤
B

) + ↵

B

(!⇤
A

,!

⇤
B

) = 1 for any threshold levels (!⇤
A

,!

⇤
B

) that maximize

the total revenue in the marketplace.

2. The exam threshold pair (0,0) maximizes the total revenue in the marketplace.
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6.2. Negatively Correlated Skills

After studying the positively correlated skills, we now characterize the optimal skill-mix and capac-

ity decision of the moderating firm in a setting where S
A

+S

B

= 1 and S

A

is random with continuous

distribution F (·) on support [0,1]. We denote the mean of S
A

by µ. For any given pair of threshold

levels (!
A

,!

B

), the capacity of each agent pool and the reward that a customer expects from a

certain pool can be calculated using (1)-(3).

In a marketplace where an agent’s skills are negatively correlated, there are two di↵erent skill-mix

structures that can arise: a) one with only dedicated agents for each class, the so-called I-Network,

(by setting !

A

+ !

B

� 1), and b) one with flexible agents and dedicated agents for each class,

the so-called M-Network, (by setting !

A

+!

B

< 1). In a marketplace with only dedicated agents,

there is a separate marketplace for each customer class. Then, by Theorem 1, the equilibrium

revenue of an agent serving class-I is the expected reward his pool generates, R
I

(!
A

,!

B

), if the

marketplace for class-I is a seller’s market, i.e., ↵
I

(!
A

,!

B

)  ⇢

I

, and zero otherwise for all I 2
{A,B}. Therefore, the firm never creates a marketplace where the service capacity of a dedicated

pool exceeds its demand. Furthermore, the revenue generated in each separate seller’s market

increases by its service capacity, as we discuss in Section 6.1. Thus, the moderating firm always

prefers to increase the service capacity in each separate marketplace while making sure that the

dedicated capacity for each customer class is less than their demand. In fact, among all exam

threshold pairs resulting in a skill-mix structure with only dedicated agents, the firm prefers the

ones which use all candidate agents and create two separate seller’s markets, i.e. any (!
A

,!

B

) with

!

A

+ !

B

= 1 and F

�1(1� ⇢

A

) !

A

 F

�1(⇢
B

). Note that the firm uses all of its available service

capacity for any exam threshold pair resulting in a marketplace with both flexible and dedicated

agents. Therefore, the moderating firm always uses all of its available service capacity to maximize

its profits as in the case of positively correlated skills. This finding is summarized in Theorem 3.1.

We also show that the revenue generated in a marketplace with both flexible and dedicated agents

cannot exceed the revenue in a marketplace where the firm utilizes all candidate agents and creates

two separate seller’s markets. Hence, in a marketplace with negatively correlated agent skills, the

moderating firm can maximize its profits by creating two separate seller’s markets and using all of

its available service capacity.

After showing that creating two separate seller’s market maximizes the profits of the firm, the

question that still remains is how the firm divides the service capacity between these two market-

places. As the firm prefers to use all of its available service capacity, an increase in the capacity

allocated to one class decreases the capacity for the other one. Since more capacity means higher

revenue in a seller’s market, the moderating firm trades-o↵ between the gains from increasing the

capacity for one class and the losses from decreasing the capacity for the other one. Also, note
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that some of the customers from a class do not request service when the capacity allocated to this

class is strictly less than its demand rate as discussed before in Theorem 1. Therefore, the service

capacity allocated to a class should not be less than its demand rate if the firm wants to serve

all customers from this class. We say the firm favors a class when it allocates enough capacity to

serve all customers from this class.

It turns out that the gains from increasing the service capacity for class-A dominate the firm’s

losses in the marketplace for class-B when the demand from class-A is lower than a critical demand

level, which is 1 � F (1/2). Thus, if ⇢
A

< 1 � F (1/2), the moderating firm increases the service

capacity for class-A until the capacity equals the demand from this class and allocates the rest of

the agents to class-B. As a result of this skill-mix structure, all of the class-A customers obtain

service whereas some of the class-B customers do not request service since the demand from class-

B is more than the service capacity allocated to this class. In other words, the moderating firm

favors class-A when ⇢

A

< 1�F (1/2). Similarly, the firm maximizes its profits by favoring class-B

when the demand from class-B is lower than the critical demand level of F (1/2). As a customer

class is favored when its demand rate is lower than a critical level, the firm favors a class if its

demand rate is too low. The driver of this result is the fact that only the agents generating very

high customer rewards can serve the class with too low demand even if all of the customers from

this class are served. Then, one may expect that the firm always favors the customer class with

lower demand rate because the expected reward of the customers from this class is always higher

but this intuition is not true. For instance, when F (1/2)< 1/2, the firm may favor class-A even

if ⇢
A

> ⇢

B

. This, actually, proves the significance of the skill distribution function in the firm’s

skill-mix and capacity allocation problem.

It is also possible that the demand from both classes exceed the corresponding demand thresholds

discussed above. In such a case, the moderating firm maximizes its profits at a pair of threshold

levels where the marginal gains from increasing the service capacity for one class is equal to the

marginal loss from decreasing the capacity for the other class. This happens when the firm allocates

F (1/2) fractions of agents to class-B and the rest to class-A. Under such a screening mechanism,

the firm rejects customers from both classes.

Besides the optimal exam threshold pair that creates a marketplace with only dedicated agents,

the firm may maximize its profits by using exam threshold pairs which lead to a marketplace with

flexible agents. We show that the flexible agents prefer to serve the same customer class when the

firm uses such an optimal exam threshold pair. Therefore, even though there are flexible agents in

the marketplaces, the firm ensures that they behave as if they are dedicated agents to maximize its

profits. Furthermore, the firm allocates enough capacity to serve all customers from class-A when

⇢

A

< 1� F (µ) and class-B when ⇢

B

< F (µ) under any optimal pair of exam thresholds allowing

for flexible agents. We formally present the above results in Theorem 3.
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Theorem 3. When S

A

+S

B

= 1 and S

A

is random with continuous distribution F (n) on support

[0,1], we have that

1. ↵

A

(!⇤
A

,!

⇤
B

) + ↵

F

(!⇤
A

,!

⇤
B

) + ↵

B

(!⇤
A

,!

⇤
B

) = 1 for any threshold levels (!⇤
A

,!

⇤
B

) that maximize

the total revenue in the marketplace.

2. The threshold levels (!⇤
,1�!

⇤) maximize the total revenue in the marketplace, where

!

⇤ =

8

<

:

F�1(1� ⇢A) if F�1(1� ⇢A)> 1/2

1/2 if F�1(1� ⇢A) 1/2 F�1(⇢B)

F�1(⇢B) if F�1(⇢B)< 1/2.

3. If ↵

F

(!⇤
A

,!

⇤
B

) > 0 for a pair of threshold levels (!⇤
A

,!

⇤
B

) that maximize the total revenue

in the marketplace, then all of flexible agents serve the same customer class in the equilibrium.

Furthermore, the firm favors class-A when ⇢

A

< 1�F (1/2) and class-B when ⇢

B

<F (1/2).

Up to here, we have considered the firm’s skill-mix and capacity decisions when the skills of each

agent are perfectly correlated. We, now, turn to discuss marketplaces where an agent’s skills are

independent.

6.3. Independent Skills

In the previous subsections, we focus on marketplaces where an agent’s skills are perfectly corre-

lated. Now, we study the moderating firm’s problem in a setting where the skills of an agent are

independent and identically distributed. Particularly, we assume that both S

A

and S

B

are random

with continuous distribution F (·) on the support [0,1]. We denote the mean of S
A

and S

B

by µ.

As in the previous cases, we can derive the capacity of each agent pool and the reward that a

customer expects from a certain pool using (1)-(3) for any given exam threshold pair (!
A

,!

B

).

Recall from Sections 6.1 and 6.2 that at the optimal skill-mix structure, the moderating firm

utilizes all of its available capacity when agent skills are perfectly correlated in a seller’s market.

This is somewhat expected given the fact that total demand exceeds the available service capacity.

The main driver of this result is that the moderating firm has no incentive to reduce the service

capacity allocated to one customer class while keeping the capacity allocated for the other one

unchanged. However, we show that the firm may benefit from limiting the capacity allocated to

one class while keeping the capacity for the other class constant in a marketplace where an agent’s

skills are independent. This can be graphically illustrated by using Curve A and B in Figure 3.

For any threshold pair (!
A

,!

B

) on Curve A, we have that (i) the skill-mix structure is an M -

Network with dedicated agents for each class and flexible agents, (ii) the capacity of dedicated

agents for class-A is constant and equal to the demand rate of class-A, ⇢
A

, (iii) all flexible agents

choose to serve class-B in equilibrium, and (iv) all agents charge the highest price they can charge.

As the firm moves on Curve A in the direction pointed by arrows (which could be achieved by

increasing both of the exam thresholds), it faces a trade-o↵: The profit from class-A increases
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-
!A

6
!B

1

1

F

-1(⇢A)

-

Curve A: Any (!
A

,!

B

)
with F (!

A

) = 1� ⇢A
F (!B)

F

-1(⇢B)

-

Curve B: Any (!
A

,!

B

)
with F (!

B

) = 1� ⇢B
F (!A)

Figure 3 Curve A (B): Threshold pairs (!A,!B) where the capacity of dedicated agents for class-A (class-B) is

equal to the demand rate of class-A (class-B), ⇢A (⇢B).

because the average skill of a dedicated agent serving class-A increases whereas the profit from

class-B decreases because the service capacity allocated to this class decreases. When the demand

from class-A is less than the critical demand level of F (µ), we show that the gains from class-A

outweighs the losses from class-B on Curve A for exam threshold pairs with zero or low thresholds

in Exam-A. Thus, the firm is better o↵ increasing the threshold levels rather than letting all agents

pass Exam-A, which implies that there is an interior exam threshold pair that maximizes firm’s

profit on Curve A. We also show that this interior threshold pair generates more profit than any

exam threshold pairs allowing all candidate agents to pass Exam-A, i.e., exam threshold pairs with

!

A

= 0. Similarly, the firm does not allow all candidate agents to pass Exam-B when the demand

from class-B is less than F (µ). Hence, when both demand rates are less than F (µ), it is not optimal

to allow all candidate agents in the marketplace to serve customers. In other words, the firm has

to fail some of the candidate agents in both exams in order to maximize the revenue generated

in a marketplace where agent skills are independent when both demand rates are lower than the

critical demand level of F (µ).

Having both demand rates less than F (µ) is possible only if the mean of the skill distribution

is greater than its median, i.e. F (µ)� 1/2. If F (µ) is less than 1/2, the higher of the two demand

rates is greater than the threshold F (µ) since we consider a seller’s market with ⇢

A

+ ⇢

B

> 1. We

assume the higher demand rate corresponds to ⇢

A

for ease of explanation. As ⇢
A

>F (µ), the firm’s

gains fall short of its losses when the firm increases the exam thresholds on Curve A, and thus the

threshold pair (0, F�1(⇢
A

)) maximizes firm’s profit on Curve A. On the other hand, the demand

rate of class-B can still be less than F (µ). If the demand rate of class-B is less than F (µ), the

firm will be better o↵ choosing an interior point on Curve B rather than allowing all agents to
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pass Exam-B. Thus, the firm compares its profits under two exam threshold pairs: one lets all

candidate agents pass Exam-A whereas the other one fails some of the candidate agents in both

exams. We show that if the skill distribution function F (·) is convex3, the firm’s profits from the

threshold pair failing agents outweigh its profits from the one letting all agents serve customers4.

Hence, even if the mean of the skill distribution is less than its median, the optimal exam threshold

pair prescribes to limit service capacity in a seller’s market. We formally present these results in

the following theorem.

Theorem 4. When S

I

is random with continuous distribution F (·) on support [0,1] for all

I 2 {A,B} and ⇢

A

� ⇢

B

, we obtain the following:

1. If ⇢

A

< F (µ), then we have that ↵A(!⇤
A,!

⇤
B) + ↵F (!⇤

A,!
⇤
B) + ↵B(!⇤

A,!
⇤
B) < 1 for any threshold

levels (!⇤
A

,!

⇤
B

) that maximize the total revenue in the marketplace. Furthermore, the threshold level
⇣

F

�1

⇣

1� ⇢A
F (!̂(⇢A))

⌘

, !̂(⇢A)
⌘

maximizes the total revenue in the marketplace.

2. If ⇢
B

< F (µ) and F (·) is convex, then we have that ↵A(!⇤
A,!

⇤
B) + ↵F (!⇤

A,!
⇤
B) + ↵B(!⇤

A,!
⇤
B)< 1

for any threshold levels (!⇤
A

,!

⇤
B

) that maximize the total revenue in the marketplace. Furthermore,

the threshold level
⇣

!

⇤
, F

�1

⇣

1� ⇢B
F (!⇤

)

⌘⌘

maximizes the total revenue in the marketplace, where

!

⇤ =min{!, !̂(⇢
B

)}.

Here, !̂(⇢) is the unique solution to
1

R

F�1(1� ⇢
F (!) )
[1 � F (s)]ds = ! for any ⇢ < F (µ), ! = min{! : F (!)[1 �

F (!)] = ⇢B} when ⇢

B

< 1/4, and != 1 when ⇢

B

� 1/4.

Besides the conditions under which the firm fails some of the candidate agents in a seller’s

market, the above theorem also describes the optimal skill-mix decision under these conditions.

The first claim of Theorem 4 shows that the exam threshold pair that maximizes firm’s profit on

Curve A is, in fact, the optimal skill-mix decision among all exam threshold pairs. At this optimal

exam threshold pair, the marginal gain from increasing the expected reward for class-A (while

keeping the capacity of their dedicated agents at ⇢
A

) is equal to the marginal loss from reducing the

available capacity for class-B. Since the optimal exam threshold pair in on Curve A, the optimal

skill-mix structure is an M -Network with dedicated agents for each class and flexible agents. The

optimal capacity of dedicated agents serving class-A is equal to the demand from this class. In

the Fluid Market Equilibrium emerging at the optimal skill-mix structure, all agents charge the

highest price that they can charge, and all flexible agents serve class-B.

3 Note that convex F (·) implies that F (µ) 1/2 (See Proposition 3 in Caplin and Nalebu↵ (1991)).

4 To prove this result, we actually need to have that f(F�1(s)) f(F�1(1� s)) for any s 1/2, which is a weaker
condition than convex F (·). It is shown that this condition holds for any Beta distribution with shape parameters ↵

and � (i.e., f(s) = s↵�1
(1�s)��1

B(↵,�) ) as long as ↵� � � 1 (See Runnenburg (1978) and Zwet (1979)). For simplicity of
our expressions, we do not state our results using this condition.
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Figure 4 Threshold pairs (!A,!B) where the capacity of dedicated agents for class-B is equal to the demand

rate of class-B, ⇢B.

The second claim of the above theorem, similar to the first one, establishes that the firm maxi-

mizes its profits by choosing an exam threshold on Curve B when F (·) is convex and ⇢

B

<F (µ).

The optimal skill-mix structure is also an M -Network, and the optimal capacity of dedicated agents

serving class-B is ⇢
B

. Moreover, all agents charge the highest price that they can charge. However,

in contrast to the first claim of Theorem 4, it is possible that the marginal gain from increasing

the expected reward for class-B exceeds the marginal loss from reducing the capacity of flexible

agents. This means that the firm would benefit from an increase in both exam thresholds. However,

the firm cannot improve its profits by failing more agents because such a change would cause a

significant shift in the equilibrium behavior of the agents, namely, some of the agents would not

charge their highest price. This can happen when the demand rate of class-B is less than 1/4. If

⇢

B

< 1/4, Curve B intersects with the 45o-line as in Figure 4. At any exam threshold pair on Curve

B and above the 45o-line, dedicated agents serving class-B charge strictly lower than the highest

price they can charge.

Note that unlike the first part of Theorem 4, where it is required to have both demand rates

lower than a critical level, the condition in the second claim of Theorem 4 requires only the demand

rate of class-B to be less than a critical level. Therefore, it may be optimal for the firm to fail

candidate agents even when the demand from class-A is very high.

We performed a numerical study to gain further insight about the firm’s optimal decisions.

We present the optimal skill-mix decision in terms of the percentage of pass and fail in each

exam in Table 1. In our numerical study, we observe that the firm may utilize 93% of the total

service capacity even though the demand from class-A solely exceeds the total available capacity.

Furthermore, the fraction of candidate agents passing a particular exam can be as low as 50%
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according to the optimal exam threshold pair. Considering the exams which test fairly independent

skills in oDesk.com, these results are consistent with the percentage of agents passing5 a test in

oDesk.com as presented in Table 2.

⇢B = 0.1 ⇢B = 0.2 ⇢B = 0.3 ⇢B = 0.4

Pass Exam-A 88.73 % 72.86 % 64.46 % 56.94 %
Pass Exam-B 88.73 % 73.70 % 84.40 % 92.90 %
Fail in both 1.27 % 7.14 % 5.55 % 3.06 %

(a)

⇢B = 0.1 ⇢B = 0.2 ⇢B = 0.3 ⇢B = 0.4

Pass Exam-A 88.73 % 77.35 % 68.38 % 59.52 %
Pass Exam-B 88.73 % 88.32 % 94.87 % 98.81 %
Fail in both 1.27 % 2.65 % 1.62 % 0.48 %

(b)

Table 1 The pass and fail percentages according to the optimal skill-mix decision when ⇢A = 1 and (a)F (s) = s,

(b) F (s) = s3/2.

Test ID Test Title Category # of Provider Passing Rate

Taken the Test

584 Windows XP Test Computer Skills 92530 72.11 %
681 Book keeping Test Finance and Accounting 9651 64.22 %
518 HTML 4.01 Test Web Designing 38746 63.61 %
692 English To Spanish Translation Skills Test Translation Skills 4244 89.80 %
474 Adobe Photoshop 6.0 Graphics Designing 10998 72.00 %
561 Programming with C++ Test General Programming 10143 37.96 %
571 Telephone Etiquette Certification O�ce Skills 35703 92.81 %

Table 2 The passing rates in a set of exams that test independent skills in oDesk.com.

For the cases, which are not discussed in Theorem 4, we can show that the optimal skill-mix

and capacity decisions of the firm fall into two cases: 1) the firm utilizes all candidate agents, and

2) the optimal decisions depend on the comparison between two exam threshold pairs. The second

case arises when the boundary threshold pair (0, F�1(⇢
A

)) maximizes firm’s profit on Curve A

from Figure 3 and the firm’s profit is maximized on Curve-B from Figure 3 at an interior point.

The description of this interior point is given in Theorem 4.2. Then, the firm has to compare

two exam threshold pairs one of which utilizes all candidate agents and the other does not. Note

that Theorem 4.2 shows that the one that maximizes the firm’s profit among the two is the

interior optimal on Curve-B when the skill distribution F (·) is convex. However, if F (·) is not

convex, comparing these two exam threshold pairs becomes analytically intractable. For instance,

when ⇢

B

<min{F (µ),1� F (µ)} and F (·) is not convex, we need to compare the threshold pair

(0, F�1(1� ⇢

B

)), which lets all agents pass Exam-A, and the optimal threshold pair described in

Theorem 4.2, which does not utilize all candidate agents. As we numerically illustrate in Figure 5,

either of these two pairs of exam thresholds can be optimal. We denote the firm’s profit under the

threshold pair utilizing all candidate agents by ⇧ac and the profit under threshold pair limiting the

service capacity by ⇧lc. Figure 5 depicts ⇧lc relative to ⇧ac displaying the values as percentages.

The details are omitted due to the space constraints.

5 In oDesk.com, service providers must obtain a score of 2.5 out of 5.0 to “pass” a test for most of the tests.
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Figure 5 The firm’s profit under the threshold pair described in Theorem 4.2 relative to its profit under the

threshold pair (0, F�1(1� ⇢B)) when ⇢A = 1, (a) SA ⇠Beta(0.5,0.8) and (b) SA ⇠Beta(0.5,0.6).

7. Conclusion

In this paper, we study a marketplace in which many small service providers, who are distinguished

with respect to their service skills, compete with each other in providing service to two groups of

self-interested customers, each of which has di↵erent needs. An important aspect of these mar-

ketplaces that our model captures is that customers cannot learn the skills of a provider before

the completion of the service. However, the moderating firm, which sets up the marketplace, may

help customers by providing them with further information about the ability of candidate agents

through a skill screening mechanism. Such a screening mechanism consists of skill tests determin-

ing whether a candidate agent is eligible to serve customers and helps the firm to create di↵erent

skill-mix structures in the marketplace. The main focus of this paper is on how the moderating firm

uses the skill tests while making skill and capacity management decisions. To this end, we explore

the optimal skill-mix and capacity decisions of the firm by considering three di↵erent structures

for the correlation between the skills of an agent.

The firm faces a natural trade-o↵ while setting up the skill tests: As the tests become more

comprehensive, agents who pass the exams generate more value whereas the marketplace has less

eligible agents. It turns out the firm is better o↵ increasing the eligible service capacity when it

focuses on the profits from only one customer class. This implies that the firm has an incentive

to utilize all candidate agents if it can isolate its business with one class from the other one. We

show that such an isolation is possible when an agent’s skills are perfectly correlated, and thus

the optimal skill-mix and capacity decision of the firm utilizes all candidate agents. On the other

hand, the firm’s profit from one class depends highly on the capacity allocated to the other class

when agent skills are independent. As a result of this interdependence, we show that the firm

benefits from limiting the capacity allocated to one class while keeping the capacity for the other
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one unchanged if the demand rate from one class is low enough. Therefore, the optimal skill-mix

decision of the firm may not utilize all candidate agents even in a seller’s market, where service

capacity is scarce.

The decision of limiting the potential service capacity might also be optimal in other (more

general) correlation structures. We identify some correlation structures where the firms optimal

skill-mix decision is narrowed down to selecting between two candidate exam threshold pairs one

of which utilizes all candidate agents and the other does not. Despite the fact that comparing these

thresholds becomes analytically intractable, we numerically observe that the firm’s profits under

the exam threshold pair which limits the available capacity might outweigh its profits under the

exam threshold utilizing all candidate agents.

In this paper, we study the moderating firm’s skill and capacity management problem in a

marketplace where the service capacity is scarce but our key findings would continue to hold in a

buyer’s market, where the service capacity is ample. We first note that in a buyer’s market, the

firm would always choose to limit the service capacity up to a level where the capacity of eligible

agent is equal to the total demand rate because the ample capacity would make service providers

charge very low prices due to the intensified competition. However, the moderating firm would

not fail more agents than that when an agent’s skills are correlated. Along the same lines with

our findings in Theorems 2 and 3, the firm’s profit from one class would be independent from its

decisions regarding the other class. On the other hand, in a marketplace with independent skills,

the optimal skill-mix might limit the potential service capacity even further by making the eligible

service capacity strictly less than the total demand similar to our results in Theorem 4.
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Appendix A: Proofs in Section 5

A.1. Proof of Proposition 1

Below, we state and prove an extended version of Proposition 1. Proposition 1 is a direct implication of

Proposition 3. When ⇢I > ⇢

0

` +yI` , the result holds since ⇢D

FCE
I`

> yI` by parts 2 and 3. When, ⇢I 2 [⇢0` ,⇢
0

` +

yI` ], this time the result holds by part 1. Finally, when ⇢I < ⇢

0

` , the result holds again by part 1.
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Proposition 3. Given any (rA,yA), let D

FCE
An

be the fraction of customers choosing sub-pool-An in a

customer equilibrium, we obtain the following:

1. If ⇢A 2 [⇢0` ,⇢
0

` + yA`
] for some ` 2 {1, . . . ,NA}, then we have that DFCE

An
=
�

(rAn + cAma)yAn

�

/

�

(rA`
+

cAma)⇢A

�

for any n< `, and
P

n�`D
FCE
An

= (⇢A � ⇢

0

` )/(⇢A).

2. If ⇢A 2 (⇢0` + yA`
,⇢

0

`+1

) for some ` 2 {1, . . . ,NA � 1}, then we have that D

FCE
An

=
�

(rAn +

cAma)yAn

�

/

�

P`

m=1

(rAm + cAma)yAm

�

for any n `, and D

FCE
An

= 0 for any n> `.

3. If ⇢A 2 (⇢0NA
+ yANA

,1), then we have that D

FCE
An

= (rAn +

cAma)yAn/

�

max
�

PNA

m=1

(rAm + cAma)yAm ,⇢AcAma

 �

for any nNA.

Proof: 1. We first show that the expected utility of customers in the equilibrium, say CU

FCE
A , is rA`

in

this case. To do this, we first suppose CU

FCE
A < rA`

. Then, by Lemma 1.2, we have that
PNA

n=1

D

FCE
An

> 1.

However, this is clearly a contradiction since
PNA

n=1

D

FCE
An

cannot exceed 1. Similarly, CU

FCE
A > rA`

leads to a

contradiction because it implies that
PNA

n=1

D

FCE
An

< 1 despite customer utility is strictly positive. As a direct

implication of CU

FCE
A = rA`

, we have ⇢AD
FCE
A1

= (rA1 + cAma)yA1/(rA`
+ cAma). Furthermore, sub-pool-1

serves only its customers. Therefore, customers picking sub-pool-2 can only get their service from sub-pool-2,

and because of that we should ⇢AD
FCE
A2

= (rA2
+ cAma)yA1

/(rA`
+ cAma). We can apply this argument to

any sub-pool-n for n< `, and conclude that ⇢AD
FCE
An

= (rAn +cAma)yAn/(rA`
+cAma) and sub-pool-n serves

only its own customers for any n < `. Finally, since ⇢A � ⇢A

P`�1

n=1

D

FCE
An

= ⇢A � ⇢

0

`  yA`
, we should have

that
PNA

n=1

D

FCE
An

= 1. Thus, we have that
PNA

n=`D
FCE
An

= (⇢A � ⇢

0

A`
)/⇢.

2. Similar to the proof in Part 1, we can argue that CU

FCE
A 2 (rA`+1

, rA`
) in this case. Let u=CU

FCE
A . Then,

we have that that ⇢AD
FCE
An

= (rAn + cAma)yAn/(u+ cAma) and sub-pool-n serves only its own customers for

any n `. Therefore, customers choosing sub-pool-n for any n> ` cannot earn more than rA`+1
, and we should

have that DFCE
An

= 0 for any n> `. Finally, since u> rA`+1
� 0, we have that

P`

n=1

D

FCE
An

= 1, and this implies

that ⇢A(u+ cAma) =
P`

n=1

(rAn + cAma)yAn . Thus, we have that DFCE
An

= (rAn + cAma)yAn/

�

P`

m=1

(rAm +

cAma)yAm

�

. The proof of Part 3 is very similar to Part 2 and can be seen in Appendix S.1.2 in the Supporting

Document.

A.2. Proof of Proposition 2

WLOG we assume rIn > rIn+1
for all n<NI . for notational convenience. Since (rI,yI) is an FME, there exists

a sequence of (✏k, �k)-FME, say (rIk,yI
k), such that (rI,yI) = limk!1(rIk,yI

k) where limk!1(✏k, �k) = (0,0).

1. In this proof, we focus only on class-A and dedicated agents. Let NAD =
�

n :

9 dedicated agents in sub-pool-n, nNA

 

and n=min{n : n2NAD}. We prove our claim by contradiction.

Therefore, we suppose V ADn̂
> 0 for some n̂ 2NAD and find a contradiction for ⇢A � ⇢

0

n+1

and ⇢A < ⇢

0

n+1

,

where ⇢0` is defined as in Proposition 1 for all `2 {1, . . . ,NA}. When ⇢A � ⇢

0

n+1

, a small fraction of dedicated

agents from sub-pool-An can improve their revenues after increasing their prices by an arbitrarily small ⇣

This contradicts with the definition of (✏, �)-FME. On the other hand, when ⇢A < ⇢

0

n+1

, we should have

that V ADn = 0 for all n2 {n+1, . . . ,NA}. Then, a small fraction of dedicated agents from sub-pool-An can

improve their revenues after charging a strictly positive price p

0 = (RA � rAn)/2 for some n 2 NAD with

n 6= n. This also contradicts with the definition of (✏, �)-FME.
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2. Let V IF (!A,!B) be the equilibrium revenue of a flexible agent serving class-I. We prove our claim by

contradiction. Thus, we suppose V AF 6= V BF . When V AF > V BF � 0, a small fraction of flexible agents

serving class-B can improve their revenues by charging p

0 = (V AF + V BF )/2. This contradicts with the

definition of (✏, �)-FME. Similarly, when V BF >V AF � 0, a small group of flexible agents serving class-A can

improve their revenues.

A.3. Proof of Theorem 1

Let (pD, pF ;↵D,↵F ) be a symmetric FME in a marketplace with one customer class and two agent pools.

Since (pD, pF ;↵D,↵F ) is an equilibrium, there exists a sequence of (✏k, �k)-FME, say (pk
D, p

k
F ;↵D,↵F ), such

that (pD, pF ) = limk!1(pk
D, p

k
F ) where limk!1(✏k, �k) = (0,0). We let V

FME

D (k) and V

FME

F (k) be the revenue

of a dedicated and a flexible agent, respectively, according to (pk
D, p

k
F ;↵D,↵F ). Then, we have that V

FME

i =

limk!1 V

FME

i (k) for all i2 {D,F}. We suppose RD �RL in this proof without loss of generality.

1 We show that V
FME

D = V

FME

F = 0 by contradiction. Thus, we suppose that either V
FME

D > 0 or V
FME

F > 0

is true on the contrary and find a contradiction for any possible price pair (pD, pF ) satisfying either of these

conditions. To this end, we follow a case-by-case analysis:

i. (RD �pD =RF �pF): Notice to that dedicated agents are under-utilized since ⇢< ↵D, and thus

their revenue is at most (⇢pk
D)/↵D. When a small fraction of dedicated agents deviate and cut their prices

by an arbitrarily small ⇣, the revenue of deviating agents will be p

k
D � ⇣ for large k by Proposition 1. As

this deviation improves the revenue of deviating agents, any (pD, pF ) satisfying RD � pD =RF � pF cannot

emerge as an equilibrium price pair.

ii. (RF �pF >RD �pD): Let ⇢0D = RF�pF+cma

RD�pD+cma
↵F . In this case, we have two sub-cases: a) (⇢ ⇢

0
D):

By Corollary 1, we have that lim
k!1

V

FME

D (k) = 0 since ⇢ ⇢

0

D. We also should have that V

FME

F > 0, which

implies that pF > 0. Then, when a small fraction of dedicated agents deviate and charge p

0 with 0< p

0
< pF ,

the revenue of deviating agents will be p

0 for large k by Proposition 1. b) (⇢> ⇢

0
D): By Corollary 1, we have

that lim
k!1

V

FME

D (k)< p. Then, as in Part 1.i, a small group of dedicated agents can improve their revenues

by cutting their price.

iii. (RD �pD >RF �pF): By Corollary 1, we have that lim
k!1

V

FME

D (k) = ⇢pD and lim
k!1

V

FME

F (k) = 0.

We should have that pD > 0 to make sure V
FME

D > 0. Then, as in Part 1.i, a small group of dedicated agents

can improve their revenues by cutting their price.

2. We suppose that either V

FME

D > RD � RF or V

FME

F > 0 on the contrary and follow a case-by-case

analysis:

i. (RD �pD =RF �pF): Notice that the utilization of at least one group of agents, say group-i where

i 2 {D,F}, should be less than the demand rate over total capacity, i.e. ⇢/(↵D +↵F ). Then, when a small

fraction of group-i agents deviate and cut their prices by an arbitrarily small ⇣, the revenue of deviating

agents will be p

k
i � ⇣ for large k by Proposition 1.

ii. (RF �pF >RD �pD): The proof is the same as in Part 1.

iii. (RD �pD >RF �pF): By Corollary 1, we have that lim
k!1

V

FME

D (k) = pD and lim
k!1

V

FME

F (k) = 0.

We should also have that pD >RD �RF to make sure that V
FME

D >RD �RF . Then, when a small fraction

of flexible agents deviate and charge p

0 with 0< p

0
< (RF �RD + pD), the revenue of deviating agents will

be p

0 for large k by Proposition 1.
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3. We suppose that either V

FME

D 6= RD � RF or V

FME

F > 0 on the contrary and follow a case-by-case

analysis:

i. (RD �pD =RF �pF): If pF > 0, the proof is very similar to the proof of Part 2.i. If pF = 0,

we have that V

FME

F = 0 and pD = RD � RF . We should also have that V

FME

D < RD � RF and RD > RF

because otherwise we could not satisfy V

FME

D 6= RD � RF condition. Then, a small fraction of dedicated

agents deviate can improve their revenues after cuting their prices by an arbitrarily small ⇣.

ii. (RF �pF >RD �pD): The proof is the same as in Part 1.

iii. (RD �pD >RF �pF): When a small fraction of dedicated agents increase their price by ⇣ =

min
n

(RD � pD)� (RF � pF ),
⇣

1� ↵D
⇢

⌘

(RD � pD + cma)
o

/2, their revenue will be p

k
D + ⇣ for large k by

Proposition 1 by the choice of ⇣. The proofs for Parts 4 and 5 are similar to Part 3.

Asymmetric equilibria: The possibility of asymmetric equilibrium does not a↵ect our results for the

revenue of dedicated agents in parts 1 and 2 and for the revenue of flexible agents in parts 1-4 because we

do not exclude the possibility of zero revenue in these cases. In the remaining cases, we can show that there

is not any asymmetric equilibrium as follows: Suppose there is an asymmetric equilibrium, where dedicated

agents charge di↵erent prices, when ⇢> ↵D and RD >RF . By Proposition 2, we should have that all of the

dedicated agents earn zero in the equilibrium. However, a small group of dedicated agents can guarantee

a strictly positive revenue by charging a very low price ⇣ since ⇢ > ↵D. Similarly, we can rule out any

asymmetric equilibrium where flexible agents charge di↵erent prices if ⇢> 1.

Appendix B: Proofs in Section 6

B.1. Proof of Theorem 2

1. Note that we have ↵A(!A,!B)+↵F (!A,!B)+↵B(!A,!B)< 1 only if !I > 0 for all I 2 {A,B}. Therefore,

it is su�cient to show that ⇧(!A,!B)<⇧(0,0) for any (!A,!B) with !I > 0 for all I 2 {A,B}. We consider

two di↵erent regions: 1) !A � !B, and 2) !B > !A.

Region-1 (!A � !B): Note that for any (!A,!B) in this region, we have that ↵A = 0. Furthermore,

the equilibrium revenue of flexible agents and dedicated agents for class-B cannot exceed RF and RB,

respectively. Hence, for any (!A,!B) in this region with !I > 0 for all I 2 {A,B}, we have that ⇧(!A,!B)

RB↵B +RF↵F =
R

1

!B
sf(s)ds <

R

1

0

sf(s)ds=⇧(0,0), where the inequality holds since ⇧(!A,!B) decreasing

in !B, and the last equality holds because ↵F (0,0) = 1 and the equilibrium revenue of agents is RF (0,0) by

Theorem 1 and the fact that ⇢A + ⇢B > 1 (Otherwise, we would have that �A � ⇢A and 1� �A � ⇢B, where

�A is the fraction of agents serving class-A. This would imply ⇢A + ⇢B  1.)

Region-2 (!B > !A): As in Region-1, for any (!A,!B) in this region with !I > 0 for all I 2 {A,B}, we

have that ⇧(!A,!B)RA↵A +RF↵F =
R

1

!A
sf(s)ds <

R

1

0

sf(s)ds=⇧(0,0).

2. By part 1, any (!A,!B) with !I > 0 for all I 2 {A,B} is dominated by (0,0). Furthermore, we have that

⇧(!A,!B)
R

1

!I
sf(s)ds=

R

1

0

sf(s)ds for any (!A,!B) with !I = 0 for some I 2 {A,B}.
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Figure 6 Di↵erent regions that a given (!A,!B) falls when the skills of an agent are negatively correlated.

B.2. Proof of Theorem 3

1. Let ⇡NC(!) =
R

1

!
sf(s)ds+

R !

0

(1�s)f(s)ds. We will show that ⇧(!A,!B)<⇧(!⇤
,1�!

⇤) for any (!A,!B)

with !A +!B > 1. We follow a case-by-case analysis based on the regions described in Figure 6.

Region-1: In this region, we have that the equilibrium revenue of agents serving class-I is RI for I 2 {A,B}

by Theorem 1. Thus, for any (!A,!B) in this region with !A+!B > 1, we have that ⇧(!A,!B) =
R

1

!A
sf(s)ds+

R

1�!B

0

(1� s)f(s)ds <max{⇡NC(!A) : F�1(1� ⇢A) !A  F

�1(⇢B)}= ⇡

NC(!⇤) =⇧(!⇤
,1�!

⇤).

Region-2: In this region, we have that the equilibrium revenue of agents serving class-A is RA, and

the equilibrium revenue of agents serving class-B is 0 by Theorem 1. Thus, for any (!A,!B) in this region

with !A + !B > 1, we have that ⇧(!A,!B) =
R

1

!A
sf(s)ds 

R

1

F�1
(⇢B)

sf(s)ds < ⇡

NC
�

F

�1(⇢B)
�

 ⇡

NC(!⇤).

Region-3: As in Region-2, we have that ⇧(!A,!B)< ⇡

NC
�

F

�1(1�⇢A)
�

 ⇡

NC(!⇤) for any (!A,!B) in this

region with !A +!B > 1.

2. We will show that ⇧(!A,!B)  ⇡

NC(!⇤) for any (!A,!B) with !A + !B  1. Then, our claim holds

since ⇧(!⇤
,1�!

⇤) = ⇡

NC(!⇤). As in part 1, we follow a case-by-case analysis focusing on di↵erent regions

Region-6: We first note that the equilibrium revenue of flexible agents cannot exceed min{RAF ,RBF}.

Furthermore, the equilibrium revenue of dedicated agents serving class-I cannot exceed RI by definition.

Then, for any (!A,!B) in this region, we have that ⇧(!A,!B)  RA↵A + RAF↵F + RB↵B = ⇡

NC(!A) 

max!F�1
(1�⇢A)

⇡

NC(!) and ⇧(!A,!B)RA↵A +RBF↵F +RB↵B = ⇡

NC(1�!B)max!�F�1
(⇢B)

⇡

NC(!).

Thus, ⇧(!A,!B)min{⇡NC
�

F

�1(1� ⇢A)
�

,⇡

NC
�

F

�1(⇢B)
�

}< ⇡

NC(!⇤) for any (!A,!B) in Region-6.

Region-4: We first note that the equilibrium revenue of flexible agents cannot exceed RAF in this region.

Hence, for any (!A,!B) in this region, we have that ⇧(!A,!B)  RA↵A + RAF↵F + RB↵B = ⇡

NC(!A) 

max{⇡NC(!) : F�1(1� ⇢A) ! F

�1(⇢B)}= ⇡

NC(!⇤).

Region-5: As in Region-4, we have that the equilibrium revenue of flexible agents cannot exceed RBF in

this region since ↵A+↵F > ⇢A. Hence, for any (!A,!B) in this region ⇧(!A,!B)RA↵A+RBF↵F +RB↵B =

⇡

NC(1�!B)max{⇡NC(!) : F�1(1� ⇢A) ! F

�1(⇢B)}= ⇡

NC(!⇤).

Region-7: For any (!A,!B) in this region, we have that ↵I + ↵F  ⇢I for all I 2 {A,B}. Let Î =

argmaxI2{A,B}RIF . As ↵

ˆI + ↵F  ⇢

ˆI , the equilibrium revenue of flexible agents serving class-Î is R

ˆIF by

Theorem 1 even when all of the flexible agents choose to serve class-Î. Thus, all of the flexible agents choose
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to serve class-Î in equilibrium because they cannot improve their revenue by serving the other class. Fur-

thermore, the equilibrium revenue of dedicated agents serving class-I is RI by Theorem 1. Therefore, for any

(!A,!B) in this region ⇧(!A,!B) =max{⇡NC(!A),⇡NC(1�!B)} ⇡

NC(!⇤).

3. In Parts 1 and 2, we show that ⇧(!A,!B)< ⇡

NC(!⇤) for any (!A,!B) in Regions 2, 3, and 6. Therefore,

we have that !⇤
A  F

�1(⇢B) and !

⇤
B  1�F

�1(1� ⇢B). We also have that !⇤
A +!

⇤
B < 1 as ↵F (!⇤

A,!
⇤
B)> 0.

Felxible agents serve the same class: We prove our first claim by contradiction. Thus, we suppose

there are flexible agents serving each customer class for some (!⇤
A,!

⇤
B). Then, by Proposition 2.2, the equi-

librium revenue of all flexible agents is less than or equal to min{RAF ,RBF}. This implies that ⇧(!⇤
A,!

⇤
B)

min{⇡NC(1�!

⇤
B),⇡

NC(!⇤
A)}. Consider the case where !⇤ = 1/2. We should have either !⇤

A < 1/2 or !⇤
B < 1/2

for any (!⇤
A,!

⇤
B). This implies that ⇧(!⇤

A,!
⇤
B)< ⇡

NC(!⇤), which clearly contradicts with the optimality of

(!⇤
A,!

⇤
B). Now, we consider the case where !

⇤ = F

�1(1� ⇢A). For any (!⇤
A,!

⇤
B) with !

⇤
B < 1�F

�1(1�⇢A),

we have that ⇧(!⇤
A,!

⇤
B)  ⇡

NC(1� !

⇤
B) < ⇡

NC(!⇤). For any (!⇤
A,!

⇤
B) with !

⇤
B =1�F

�1(1�⇢A), we have

that the equilibrium revenue of all flexible agents is zero, which implies that ⇧(!⇤
A,!

⇤
B)

R

1

1�!⇤
B
sf(s)ds+

R !⇤
A

0

sf(s)ds < ⇡

NC(!⇤). These two observations clearly contradict with the optimality of (!⇤
A,!

⇤
B). Similarly,

our assumption that flexible agents serve both classes leads to ⇧(!⇤
A,!

⇤
B)< ⇡

NC(!⇤) when !

⇤ = F

�1(⇢B).

The firm favors Class-A if ⇢A < 1�F(1/2): Note that (!⇤
A,!

⇤
B) is in either of the Regions 4, 5, and

7. For any (!⇤
A,!

⇤
B) that is in Region-5, we should have that !

⇤
B = 1 � F

�1(1 � ⇢A), which implies that

↵A(!⇤
A,!

⇤
B) = ⇢A. For any (!⇤

A,!
⇤
B) that is in Region 4 or 7, we should have that !

⇤
A = F

�1(1� ⇢A), which

implies that ↵A(!⇤
A,!

⇤
B) + ↵F (!⇤

A,!
⇤
B) = ⇢A. Moreover, all flexible agents serve class-A since RAF > RBF .

Similarly, we can show that the firm favors class-B when ⇢B <F (1/2)

B.3. Proof of Theorem 4

1. Let ⇡̂(!,⇢) =
R

1

!
sf(s)ds+F (!)

�R

1

wc
(!,⇢)

sf(s)ds
�

where w

c(!,⇢) = F

�1

⇣

1� ⇢
max{⇢,F (!)}

⌘

. We will show

that ⇧(!A,!B) ⇡̂(!̂(⇢A),⇢A) for any (!A,!B) and ⇧(!A,!B)< ⇡̂(!̂(⇢A),⇢A) for any (!A,!B) with !I = 0

for some I 2 {A,B}. Note that ↵A(!A,!B)+↵F (!A,!B)+↵B(!A,!B) = 1 only if !I = 0 for some I 2 {A,B}.

We follow a case-by-case analysis based on the regions described in Figure 7.a.
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Figure 7 Di↵erent regions that a given thresholds decision (!A,!B) falls when the skills of an agent are

independent and (a) ⇢A <F (µ), (b) ⇢B <F (µ) and F (·) is convex.
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Region-1: For any (!A,!B) in this region, we have thatRA RB since !A  !B. Therefore, the equilibrium

revenue of flexible agents cannot exceed RB. Furthermore, the equilibrium revenue of dedicated agents

serving class-I cannot exceed RI for all I 2 {A,B}. Thus, for any (!A,!B) in this region, we have that

⇧(!A,!B)  RB[↵B + ↵F ] + RA↵A =
R

1

!B
sf(s)ds + F (!B)

R

1

!A
sf(s)ds  ⇡̂(!B,⇢A)  ⇡̂

�

!̂(⇢A),⇢A

�

, where

the second inequality holds since
R

1

!A
sf(s)ds is decreasing in !A. Furthermore, we have that ⇧(0,!B) <

⇡̂

�

!̂(⇢A),⇢A

�

for any !B  F

�1(⇢A) because ⇡̂(!B,⇢A) is increasing in !B by Lemma 2 in Appendix S.2.2.

Now we show the optimality of (!̃⇤
A, !̃

⇤
B) with !̃

⇤
A = F

�1

⇣

1� ⇢A
F (!̂(⇢A))

⌘

and !̃

⇤
B = !̂(⇢A). Notice that

↵̃

⇤
B + ↵̃

⇤
F > ⇢B, ↵̃⇤

A = ⇢A. As ↵̃⇤
B + ↵̃

⇤
F > ⇢B and R

⇤
A R

⇤
B, all of the flexible agents choose to serve class-B in

equilibrium. Furthermore, all agents charge the highest price they can charge in equilibrium. Thus, we have

that ⇧(!̃⇤
A, !̃

⇤
B) = R̃

⇤
B[↵̃

⇤
B + ↵̃

⇤
F ] + R̃

⇤
A↵̃

⇤
A =

R

1

!̃⇤
B
sf(s)ds+F (!̃⇤

B)
R

1

!̃⇤
A
sf(s)ds= ⇡̂

�

!̂(⇢A),⇢A

�

.

Region-2: For any (!A,!B) in this region, we have that ↵A > ⇢A, and thus, the equilibrium revenue of

dedicated agents serving class-A is zero by Theorem 1. Hence, for any (!A,!B) in this region, we have that

⇧(!A,!B)RB[↵B +↵F ] =
R

1

!B
sf(s)ds

R

1

F�1
(⇢A)

sf(s)ds < ⇡̂

�

F

�1(⇢A),⇢A

�

.

Region-3-4: The proof is very similar to the proofs for Region 1 and 2, respectively.

2. We will show that ⇧(!A,!B) ⇡̂(!⇤
A,⇢B) for any (!A,!B) and ⇧(!A,!B)< ⇡̂(!⇤

A,⇢B) for any (!A,!B)

with !I = 0 for some I 2 {A,B}. We follow a case-by-case analysis based on regions described in Figure 7.b.

Region-1: As in Part 1, we have that ⇧(!A,!B) ⇡̂(!B,⇢A) for any (!A,!B) in this region. Furthermore,

we have that ⇡̂(!B,⇢A) ⇡̂(F�1(1�⇢B),⇢A) since ⇡̂(!B,⇢A) is decreasing in !B for any !B >µ by Lemma 2.2

in Appendix S.2.2 and the fact that ⇢A � F (µ). Finally, we have that ⇡̂(F�1(1�⇢B),⇢A) ⇡̂(F�1(⇢B),⇢B)<

⇡̂(!⇤
A,⇢B), where the inequalities hold by Lemma 2.4 in Appendix S.2.2.

Region-2: The proof is very similar to the proof for Region-2 in Part 1.

Region-3: As in Region-1 in Part 1, we have that ⇧(!A,!B) ⇡̂(!A,⇢B) for any (!A,!B) in this region.

Let ! =max{! : F (!)[1� F (!)] = ⇢B} for any ⇢B < 1/4, and ! = 1 for ⇢� 1/4. Notice that (!A,!B) with

!A 2 (!,!) is not Region-3 even if !A > F

�1(⇢B) (which can only be possible when ⇢B < 1/4). Using this

observation, for any (!A,!B) in this region, we have that ⇧(!A,!B)  max! 62(!,!)

⇡̂(!,⇢B). We also have

that ⇡̂(!,⇢B) is increasing in ! for any !<min{!, !̂(⇢B)} by Lemma 2.1. Combining these two observation,

we have that max! 62(!,!)

⇡̂(!,⇢B) = ⇡̂(!⇤
A,⇢B) and ⇧(!A,0)< ⇡̂(!⇤

A,⇢B) for any !A  F

�1(⇢B). Finally, note

that we have ↵

⇤
A +↵

⇤
F > ⇢A, ↵⇤

B = ⇢B. Then, as we show in Region-1 in Part 1, ⇧(!⇤
A,!

⇤
B) = ⇡̂

�

!

⇤
A,⇢A

�

.

Region-4: Similar to Region-2, we have that ⇧(!A,!B) ⇡̂(F�1(⇢B),⇢B) for any (!A,!B) in this region.

Furthermore, we have that ⇡̂(F�1(⇢B),⇢B)< ⇡̂

�

!

⇤
A,⇢A

�

as we show in Region-3.

Region-5: For any (!A,!B) in this region, we have that ↵B + ↵F > ⇢B and RB � RA. Therefore, the

equilibrium revenue of flexible agents cannot exceed RA. This implies that the revenue of dedicated agents

serving class-B is also RA by Theorem 1. Hence, for any (!A,!B) in this region, we have that ⇧(!A,!B)
RA[↵A + ↵B + ↵F ] =

1�F (!A)F (!B)

1�F (!A)

R

1

!A
sf(s)ds. Notice that for any (!A,!B) with !A 62 (!,!), we have

that ⇧(!A,!B) 
⇥

1 + F (!A)
⇤ R

1

!A
sf(s)ds  ⇡̂(!A,⇢B). For any (!A,!B) with !A 2 (!,!), we have that

⇧(!A,!B)
⇥

1+ ⇢B
1�F (!A)

⇤ R

1

!A
sf(s)ds ⇡̂(!,⇢B), where the last inequality holds by Lemma 3 in Appendix

S.2.2. Finally, we have that ⇧(0,!B)  µ = ⇡̂(0,⇢B) < ⇡̂(!⇤
A,⇢B), where the strict inequality holds since

⇡̂(!,⇢B) is increasing in !.


