Torture*

Sandeep Baliga † Jeffrey C. Ely ‡

August 27, 2013

Abstract

We study torture as a mechanism for extracting information from a suspect who may or may not be informed. We show that a standard rationale for torture generates two commitment problems. First, the principal would benefit from a commitment to torture a victim he knows to be innocent. Second, the principal would benefit from a commitment to limit the amount of torture faced by the guilty. We analyze a dynamic model of torture in which the credibility of these threats and promises is endogenous. We show that these commitment problems dramatically reduce the value of torture and can even render it completely ineffective. We use our model to address questions such as the effect of enhanced interrogation techniques, rights against indefinite detention, and delegation of torture to specialists. Keywords: commitment, waterboarding, sleep deprivation, ratchet effect.

*We thank many seminar audiences and especially Nageeb Ali, Simon Board, Navin Kartik, Roger Lagunoff and Pierre Yared for useful comments. We also thank the Editor, Francesco Caselli, and four referees for helpful suggestions.

†Kellogg Graduate School of Management, Northwestern University. baliga@kellogg.northwestern.edu

‡Department of Economics, Northwestern University. jeffely@northwestern.edu
1 Introduction

A major terrorist attack is planned for some time in the future. A suspect with potential intelligence about the impending attack awaits interrogation. Perhaps the suspect was caught in the wrong place at the wrong time and is completely innocent. He may even be a terrorist but have no useful information about the imminent attack. But there is another possibility: the suspect is a senior member of a terrorist organization and was involved in planning the attack. If the suspect yields actionable intelligence, the terrorist attack can be averted or its impact reduced. In this situation, suppose torture is the only instrument available to obtain information.

Uncertainty about how much useful intelligence a prisoner possesses is commonplace,\(^1\) and there is a lively debate about whether torture should be used to extract information. There is a dilemma: the suspect’s information may be valuable but torture is costly and abhorrent to society. Walzer (1973) famously argues that a moral decision maker facing this dilemma should use torture because the value of saving many lives outweighs the costs.\(^2\) Dershowitz (2002) goes further and argues torture should be legalized.

If this rationale can be used to justify starting torture in the first place, it can also be used to justify continuing or ending torture once it has begun. Then, two commitment problems arise. First, if torture of a high value target is meant to stop after some time, there is an incentive to renege and continue in order to extract even more information. After all, innocent lives are at stake and if the threat of torture saves more of them, it is right to continue whatever promise was made.\(^3\) Second, if after enough

\(^{1}\)For example, in many interrogations in Iraq a key question is whether a detainee is a low level technical operative or a senior Al Qaeda leader (see Alexander and Bruning (2008)).

\(^{2}\)“[C]onsider a politician who has seized upon a national crisis—a prolonged colonial war—to reach for power.....Immediately, the politician goes off to the colonial capital to open negotiations with the rebels. But the capital is in the grip of a terrorist campaign, and the first decision the new leader faces is this: he is asked to authorize the torture of a captured rebel leader who knows or probably knows the location of a number of bombs hidden in apartment buildings around the city, set to go off within the next twenty-four hours. He orders the man tortured, convinced that he must do so for the sake of the people who might otherwise die in the explosions...”

\(^{3}\)For example, as commentator Liz Cheney asks, “Mr. President, in a ticking time-
resistance we learn that the suspect is likely a low value target, there is an incentive to stop. With limited personnel to carry out interrogation and verify elicited information, it is better to redeploy assets to interrogate another suspect who might be informed rather than continue with one likely to have no useful intelligence.\(^4\) And since torture is abhorrent, to inflict it on an uninformed suspect cannot be justified. Both of these commitment problems encourage the informed suspect to resist torture. The first problem discourages early concession because the suspect anticipates that it would only lead to further torture. The second problem encourages silence as an attempt to hasten the cessation of torture.

What is the value of torture to a principal when these two commitment problems are present? We study a dynamic model of torture where a suspect/agent faces a torturer/principal. The agent may have information that is valuable to the principal – he might know where bombs are hidden or locations of various persons of interest. We study the value of torture as an instrument for extracting that information. This information extraction rationale is invoked to justify torture in contemporary policy debates and hence this is the scenario on which we focus. We emphasize that we are not studying torture as a means of terrorizing or extracting a confession for its own sake. While it is clear that torture has been used throughout history for these means, and even as an end in itself, the purpose of our study is to focus on the purely instrumental value of torture.

Each period, the principal decides whether to demand some information from the agent backed by the threat of torture. The suspect either reveals verifiable information or suffers torture. For example, an agent can offer a location of a target such as bomb or a wanted terrorist and the principal can check whether there is in fact a target at the reported address. An informed agent can always reveal a true location while an uninformed

\(^4\)In the report on the prison at Abu Ghraib, Major General George Fay (Fay, 2004, p37) reports, “Large quantities of detainees with little or no intelligence value swelled Abu Ghraib’s population and led to a variety of overcrowding difficulties. Already scarce interrogator and analyst resources were pulled from interrogation operations to identify and screen increasing numbers of personnel whose capture documentation was incomplete or missing.” Hence, supply of experienced personnel is a binding constraint on interrogation.
agent can at best give a false address. The principal is not seeking unverifiable cheap talk concessions: those extracted through torture will never be of any value because both the uninformed and the truly informed would only choose to make false or irrelevant statements.

We study two versions of this model. In the first, there is a “ticking time-bomb”: the principal wants to extract as much information as possible prior to a fixed terminal date when the attack will take place. The interrogation process continues until either all of the information is extracted or time runs out. In the second scenario, there is an infinite horizon and the terrorist event can occur with positive probability at any time.

The ticking time bomb scenario has a unique equilibrium. The informed suspect reveals information gradually, initially resisting and facing torture but eventually he concedes. The value of torture is determined by the equilibrium rate of concession, the amount of information revealed once a concession occurs, and the total length of time that the suspect is tortured along the way.

A number of strategic considerations play a central role in shaping the equilibrium. First, the rate at which the agent can be induced to reveal information is limited by the severity of the threat. If the principal demands too much information in a given period then the agent will prefer to resist and succumb to torture. Second, as soon as the suspect reveals that he is informed by yielding to the principal’s demand, he will subsequently be forced to reveal the maximum given the amount of time remaining. This makes it costly for the suspect to concede and makes the alternative of resisting torture more attractive. Thus, in order for the suspect to be willing to concede the principal must also torture a resistant suspect, in particular an uninformed suspect, until the very end. Finally, in order to maintain principal’s incentive to continue torturing the informed suspect must, with positive probability, make his first concession anywhere between the time the principal begins the torture regime and the very end.

These features combine to give a sharp characterization of the value of torture and the way in which it unfolds. Because concessions are gradual and torture cannot stop once it begins, the principal waits until very close to the terminal date before even beginning to torture. Starting much earlier would require torturing an uninformed suspect for many periods in return for only a small increase in the amount of information extracted from the informed. Hence, the principal tortures for a finite number of periods and receives a finite amount of information with positive probability in each
of those periods. This limits the value of torture for the principal.

If there is an infinite horizon and the terrorist event can occur with positive probability at any time, there are multiple equilibria including one where the principal never tortures. We focus on the best equilibrium for the principal. In all equilibria, there is a finite number of periods after which the principal gives up and stops torturing. Since information is most likely to be valuable the earlier it comes, the best equilibrium has the principal commence torturing in the very first period. We show that these two properties imply that the value of torture in any equilibrium is bounded by the value of torture in the ticking time bomb scenario. Hence, by identifying the value of torture in the ticking time bomb scenario, we can also find an bound its value in the infinite horizon model.

The principal’s equilibrium payoff is bounded because the informed suspect’s rate of concession is constrained by the need to give the principal the incentive to continue torturing. In fact we obtain a strict upper bound on the principal’s equilibrium payoff by considering an alternative problem in which the suspect’s concession probability is maximal subject to the principal’s incentive constraint. This bound turns out to be useful for a number of results. For example it allows us to derive an upper bound on the number of periods of torture that is independent of the total amount of information available. We use this result to show that the value of torture shrinks to zero when the period length, i.e. the time interval between torture decisions, shortens. In addition it implies that laws preventing indefinite detention of terrorist suspects entail no compromise in terms of the value of information that could be extracted in the intervening time.

To understand the result on shrinking the period length, note that additional opportunities to torture come at the cost of reducing the principal’s temporary commitment power. There are more points in time for the principal to re-evaluate his torture decision and more points where he must be given the incentive to continue. In any time interval, the informed suspect’s equilibrium concession rate must slow down in order to maintain the principal’s incentive to continue torturing. Over any time interval, we show that as the frequency of decision opportunities increases, the rate of information revelation grinds to a halt. Then, as the frequency of torture opportunities becomes large, the value of torture goes to zero.

This is reminiscent of results like the Coase conjecture for durable goods bargaining but the logic is very different. In our ticking time bomb model, there is no discounting and a fixed finite horizon. In this setting a durable
goods monopolist could secure at least the static monopoly price regardless of the way time is discretized (see for example Horner and Samuelson (2009)). The key feature that sets torture apart is that the flow cost to the agent limits the amount of information he is willing to reveal in any given segment of real time. As the period length shortens, the principal may torture for the same number of periods but this represents a smaller and smaller interval of real time. The total threat over that vanishing length of time is itself vanishing and hence so is the total amount of information the agent chooses to reveal.\footnote{Suppose that the two parties are bargaining over the rental rate of a durable good which will perish after some fixed terminal date. As the terminal date approaches and no agreement has yet to be reached, the total gains from trade shrinks.}

In reputation models, it is possible to obtain a lower bound on a long-run player’s equilibrium payoff (see Kreps and Wilson (1982) and Fudenberg and Levine (1992, 1989)). Our model is distinguished from standard reputation models in two important respects. First, in our model there are two long-run players. Thus our conclusions do not follow from arguments based on learning rates as in Fudenberg and Levine (1992) which are the basis of most of the reputation results in the literature. An important exception is Myerson (1991) who studies an infinite horizon alternating-offer bargaining with two long run players. One player may be a commitment type who accepts an offer if and only if it is greater than some fraction of the surplus.

Unlike the bargaining game in Myerson (1991), torture is a dynamic game where the state variable is the amount of information yet to be revealed. This is the second key difference with the standard reputation literature. To see its role note that in any reputational bargaining model with a finite deadline (as we have in the ticking time bomb scenario) the payoff of the uninformed player (the principal in our model) is bounded below by the payoff he would get by waiting until the deadline and making a final offer that will be accepted by the uncommitted type of opponent. When the probability of the uncommitted type is large, this lower bound is large and unaffected by the length of the period between offers. By contrast in our model, regardless of the type distribution, the principal’s payoff shrinks to zero as the length of the period decreases.

Our paper is also related to work in mechanism design with limited commitment. If the principal discovers the agent is informed, he has the
incentive to extract more information. This is similar to the “ratchet effect” facing a regulated firm which reveals it is efficient and is then punished by lower regulated prices or higher output in the future (we offer a discussion of the connections in Section 9). A principal’s inability to commit can also dramatically affect incentives in a moral hazard setting. Padro i Miquel and Yared (2010) study a dynamic principal-agent model where jointly costly intervention is the only instrument the principal can utilize to give an agent incentives to exert effort. The principal must also be given incentives to carry out the punishment as there is limited commitment. Mialon, Mialon, and Stinchcombe (2012) study how the availability of torture as a mechanism creates commitment problems in other areas, specifically alternative counter-terrorism methods. They do not model the interrogation process or study the effectiveness of torture as a mechanism.

Lastly, the “deadline effect” in finite-horizon bargaining models with incomplete information (see Hart (1989), Ausubel and Deneckere (1992), and more recently Fuchs and Skrzypacz (2011)) bears some resemblance to our result that interrogation is delayed until near the terminal date. An important novelty in our model is that even in the absence of discounting this delay is costly to the principal because it limits the amount of time he has to extract valuable information from the suspect.

We consider two extensions of the model. First, the principal may need to know all the agent’s information before it is useful. We capture this by allowing the principal’s value of information to be convex in the quantity extracted. We show this can only reduce the value of torture to the principal. Second, to evaluate the use of “enhanced interrogation techniques” we study a model in which the principal can choose either a mild torture technology (“sleep deprivation”) or a harsher one (“waterboarding”). The mild technology extracts less information per period but is less costly so that in some cases the principal may prefer it over the harsh technology. We show how the existence of the enhanced interrogation technique compromises the use of the mild technology. Once the suspect starts talking under the threat of sleep deprivation, the principal cannot commit not to increase the threat and use waterboarding to extract more information. This reduces the suspect’s incentive to concede in the first place lowering the principal’s overall payoff.

Finally, we discuss the difficulties with standard solutions to the commitment problem. For example, delegation can often solve commitment problems and we have identified two that limit the value of torture. In-
Indeed, delegating torture to a specialist with a preference for torture ameliorates one commitment problem: he is willing to continue even if the probability the suspect is informed is zero. This means the informed suspect can concede information with probability one in equilibrium. On the other hand the specialist cannot commit to limit torture. Indeed, the specialist will torture the agent in all periods which are not utilized for information extraction. If the time horizon is long, the value of torture to the principal is lower with delegation than without. Moreover, there is a fundamental problem with using delegation to resolve commitment problems particularly in the torture environment: As torture is carried out in secret and is unverifiable, the principal cannot commit to keep the specialist employed. As soon as the agent does not yield information, the principal intervenes and stops torture. Then, the commitment problem reappears.

Before turning to the formal model, we take the opportunity to discuss anecdotal evidence and some conceptual issues.

An Al Qaeda manual describes torture techniques and how to fight them (Post (2005)):

“The brother may think that by giving a little information he can avoid harm and torture. However, the opposite is true. The torture and harm would intensify to obtain additional information, and that cycle would repeat. Thus, the brother should be patient, resistant, silent, and prayerful to Allah, especially if the security apparatus knows little about him.”

The credible revelation of information leads to yet more intense torture while the only chance of escape comes from dissembling. This echoes not only the implications of the two basic commitment problems we study but implies a ratchet effect if the suspect talks.

Our analysis predicts that once an agent reveals information, torture is not utilized on the equilibrium path unless the agent stops cooperating. This policy is recommended in a C.I.A. interrogation manual:6

“Once a confession is obtained, the classic cautions apply. The pressures are lifted enough so that the subject can provide information as accurately as possible. In fact, the relief granted the subject at this time fits neatly into the “questioning” plan.

He is told that the changed treatment is a reward for truthfulness and evidence that friendly handling will continue as long as he cooperates [our emphasis].”

If the suspect never cooperates at all, the canonical procedure is described by Alexander and Bruning (2008) which is based on the experience of an interrogator in Iraq (see pages 188-189 or 218 for example). After every period of interrogation when no credible information has been extracted, the key decision is whether to “retain and extract” or “transfer” the suspect out of the facility. These qualitative features also fit the predictions from our model. Moreover, the principal’s strategy described in these sources dovetails with the suspect’s strategy recommended in the Al Qaeda training manual and vice versa.

An age-old and yet contemporary argument warns of false confessions as suspects attempt to escape torture. In our model, false confessions are equivalent to revealing no useful information at all. The concern about false confessions does not undercut the case against torture if only uninformed suspects make up evidence while informed suspects reveal it truthfully. But we show that when the principal has a commitment problem, both informed and uninformed players will yield false information. Thus, our model helps to clarify the logic of the common argument against torture and shows that it hinges on limited commitment.

We assume torture is costly. This cost can arise from a number of channels. First, the classical argument sees a moral cost arising from the repugnance of torture. Second, the fact that torture is considered morally reprehensible begets laws against torture. Professional interrogators even

7Fifteen hundred years ago the Roman jurist Ulpian warned that torture might not generate truthful evidence for this reason (Corpus Juris Civilis, Dig. 48.18.1.23.) Lawrence Wilkerson, the former chief of staff at the State Department, reveals that the evidence linking Saddam to Al Qaeda was extracted by waterboarding suspect al-Libi (Wilkerson (2009).) He adds, “Of course later we learned that al-Libi revealed these contacts only to get the torture to stop. There in fact were no such contacts.”

8For example, St. Augustine (Augustine, 1825, Book 19, Chapter 6), “Of the error of human judgments when the truth is hidden. What shall I say of torture applied to the accused himself? He is tortured to discover whether he is guilty, so that, though innocent, he suffers a severe punishment for crime that is still doubtful, not because it is proved that he committed it, but because it is not known that he did not commit it. And through this ignorance of the judge, the innocent man suffers... And the judge thinks it not contrary to divine law that innocent witnesses are tortured in cases dealing with the crimes of others... or that the accused are put to the torture and, though innocent,
if they face no moral qualms themselves may fear prosecution if they actually use illegal methods rather than just threaten to use them. The U.S. policy of extraordinary rendition which brought terrorist suspects to neutral countries for interrogation is evidence of these types of costs and the incentive to reduce them. Third, using an interrogation technology - the interrogator, the holding cell etc. - on one suspect is costly if it precludes its use on someone else. This appears to be a significant practical concern.9

Our approach is normative - we assume players are maximizing their payoffs. There is some evidence that both interrogators and suspects do try to optimize. American military schools train soldiers how to resist torture. There is also an effort to optimize torture techniques: teachers from military schools helped to train interrogators at the Guantánamo Bay detention center (Mayer (2005)). The captures some of the ideas in Myerson’s (1999) argument for the importance of rational choice analysis and hence Nash equilibrium “to analyze social institutions and evaluate proposals for institutional reform” (p. 1069). If an individual is not optimizing, the proper response is not institutional reform but better education of the individual. The Al Qaeda training manual and the American military schools are both attempting to perform this kind of education. Many years of experience have taught them the optimal strategy of interrogators and suspects. But then this implies that trained subjects of torture are not forthcoming with useful intelligence even if they are informed. And then in turn we are forced to conclude that torture as an instrument for information extraction has little or no value. To the extent that torture is being conducted currently to extract information, it is an argument for reform.

2 Model

We begin with the ticking time-bomb model. There is a principal (torturer) and an agent (suspect). There will be a terrorist attack at time T and the make false confessions regarding themselves, and are punished; or that, though they be not condemned to die, they often die during the torture.” Here St. Augustine identifies the asymmetry of information between the principal and the agent as well as the moral repugnance of torture.9(Alexander and Bruning, 2008, p. 43) report “[The supervisor] is not going to keep him and Abu Ali around much longer… They are not giving us anything, and the [Special Forces] guys bring in new catches every night.”
principal will try to extract as much information as possible prior to that date in order to avert the threat. Time is continuous and torture imposes a flow cost of Δ on the suspect. We assume that torture entails a flow cost to the principal of $c > 0$ so that torture will be used only if it is expected to yield valuable information.

The suspect might be uninformed, for example, a low value target with no useful intelligence about the terrorist attack, or an innocent bystander captured by mistake. On the other hand the suspect might be an informed, high value target with a quantity x of perfectly divisible, verifiable (i.e. “hard”) information. The principal doesn’t know which type of suspect he is holding and $\mu_0 \in (0,1)$ is the prior probability that the suspect is informed.

If the suspect reveals the quantity $y \leq x$ and is tortured for time t, his payoff is

$$-y - \Delta t$$

while the principal’s payoff in this case is

$$y - ct.$$

When the suspect is uninformed, y is necessarily equal to zero because the uninformed has no information to reveal.

2.1 Full Commitment

With full commitment, torture gives rise to a mechanism design problem with hard information which is entirely standard except that there is no individual rationality constraint.

With verifiable information, the only incentive constraint is to dissuade the informed suspect from hiding his information. It goes without saying that a binding incentive-compatibility constraint is a feature of the optimal use of torture.

The principal demands information $y \leq x$ from the suspect. If he does not reveal this amount of information, he tortures him for $t(y) \leq T$ periods where $t(y) = \frac{y}{\Delta}$. This gives the incentive for the informed suspect to reveal information y at the cost of torturing the uninformed suspect for $t(y)$ periods. The principal’s payoff is

$$y\mu_0 - (1 - \mu_0)ct(y) = y\left(\mu_0 - \frac{(1 - \mu_0)c}{\Delta}\right)$$
and we have the following solution:

Theorem 1. At the full commitment solution, if \(\mu_0 \Delta - (1 - \mu_0) c \geq 0 \), the principal demands information \(\min\{ x, T \Delta \} \) and inflicts torture for \(\min\{ \frac{x}{\Delta}, T \} \) periods if any less than this is given. If \(\mu_0 \Delta - (1 - \mu_0) c < 0 \), the principal does not demand any information and does not torture at all.

3 Limited Commitment

We model limited commitment by dividing the real time interval \(T \) into periods of discrete time whose length we normalize to 1. There are thus \(T \) periods in the game. We assume that the principal can only commit to torture for a single period. The form of commitment in a given period is also limited. The principal can demand a (positive) quantity of information and commit to suspend torture in the given period if it is given. Formally, a pure strategy of the principal specifies for each past history of demands and revelations the choice of whether to threaten torture in the current period, and if so, what quantity \(y \geq 0 \) of information to demand. Note that a demand of \(y = 0 \) (which is the only demand that can be met by both the informed, costlessly, and uninformed suspect) is equivalent to pausing torture during the current period. For the informed agent, a pure strategy specifies for each past history and the present demand by the principal, the quantity of verifiable information to yield. The uninformed agent has no option but to reveal nothing every period. We study the perfect Bayesian equilibria of this game.

If there are \(k \) periods remaining in the game, the maximum cost that can be threatened is \(k \Delta \). This is therefore also the maximum amount of information that the informed suspect can be persuaded to reveal. To avoid a trivial case, we assume that \(\Delta < x \), i.e. that a single period of torture is not a sufficient threat to induce the agent to divulge all of his information. We measure time in reverse, so “period \(k \)” means that there are \(k \) periods remaining. But “the first period” or “the last period” means what they usually do.

We begin with an observation that plays a key role in the proof and also in subsequent results. Once the suspect reveals some information, say in period \(k \), the continuation game is one of complete information. As the principal cannot commit, the game reduces to a sequence of take-it-or-leave-it offer games where the principal demands \(\Delta \) and tortures if it
is not forthcoming. Therefore, as shown in the following lemma, in all equilibria of the continuation game beginning in period $k - 1$, the suspect “spills his guts,” i.e. he reveals all of his remaining information, up to the maximum torture he can be threatened, $(k - 1)\Delta$. The straightforward backward-induction proof is in Appendix B.

Lemma 1. In any equilibrium, at the beginning of the complete information continuation game with k periods remaining and a quantity \tilde{x} of information yet to be revealed, the suspect’s payoff is

$$- \min \{\tilde{x}, k\Delta\}$$

Since an informed agent faces a large punishment as soon as he starts conceding, he must face an equivalent threat if he reveals nothing. Thus, if the agent is going to concede at all, the principal must also be expected to torture a suspect who reveals nothing. To ensure that the principal is willing to carry out this threat, an informed agent must randomize and concede with only positive probability in every period after the torture begins. To see this, suppose the agent’s concession probability is high in the current period. Then conditional on the agent not conceding the principal believes with high probability that the agent is not informed and therefore stops torturing. Below we derive the maximum rate at which the agent can concede and still maintain the principal’s incentive to torture a resistant suspect. We will show that this is the concession rate in the unique equilibrium.

We begin by defining some quantities. Suppose that μ is the current probability that the suspect is informed and q is the probability that he reveals information in the current period. Then the posterior probability that the suspect is informed conditional on not revealing information is given by

$$B(\mu; q) = \frac{\mu(1-q)}{1-\mu q}. \quad (1)$$

Define \bar{k} to be the largest integer strictly smaller than x/Δ. Thus, $\bar{k} + 1$ measures the minimum number of periods the principal must threaten to torture in order to induce revelation of the quantity x (if the principal were able to commit.) Throughout we will refer to the phase of the game in which there are \bar{k} or fewer periods remaining as the **ticking time-bomb** phase. In the ticking time-bomb phase, the limited time remaining
is a binding constraint on the amount of information that can be extracted through torture.

Next define

$$V^1(\mu) = \Delta \mu - c(1 - \mu)$$

and define μ_1^* by

$$V^1(\mu_1^*) = 0.$$

The function V^1 represents the principal’s continuation payoff in period 1 (the last period of the game) when μ is the posterior probability that the (heretofore resistant) suspect is informed. The suspect is threatened with cost Δ. Hence, the informed agent is willing to give up at most Δ in period 1. As the principal does not have to be given incentives after period 1, the rate of concession in the last period $q_1(\mu)$ can be set to one. The uninformed agent suffers torture which costs the principal c. Finally, a posterior μ_1^* makes the principal indifferent between torturing or not in period 1.

To find the rate of concession in period 2, we define a function $q_2(\mu)$ by

$$B(\mu; q_2(\mu)) = \mu_1^*$$

i.e.

$$q_2(\mu) = \frac{\mu - \mu_1^*}{\mu(1 - \mu_1^*)}.$$

Suppose the suspect has kept silent up to period 2 and the probability he is informed, μ, exceeds μ_1^*. Then by conceding Δ in period 2 with probability $q_2(\mu)$, he insures that, in the $1 - q_2(\mu)$-probability event that he does not concede, the principal is indifferent between torturing or not in the final period. Any larger concession probability would leave the principal with insufficient incentive to continue torturing a suspect who resists.

To extend the analysis to earlier periods, we inductively define functions $V^k(\mu)$ and $q_k(\mu)$ and probabilities μ_k^*:

$$V^k(\mu) = \mu q_k(\mu) \min\{x, k\Delta\} + (1 - \mu q_k(\mu)) \left[V^{k-1}(\mu_{k-1}^*) - c\right].$$

(2)

$$V^k(\mu_k^*) = V^{k-1}(\mu_k^*)$$

(3)

$$B(\mu; q_k(\mu)) = \mu_{k-1}^*.$$

(4)
These equations will define the value functions and concession probabilities in periods $k = 2, \ldots, \bar{k} + 1$ along the equilibrium path. Equation 4 identifies the rate of concession in period k that implies the principal’s posterior is μ_{k-1}^* in period $k - 1$. Equation 2 defines the principal’s continuation payoff in period k. Finally, Equation 3 defines the posterior μ_k^* which makes the principal indifferent between demanding Δ in period k and torturing if this information is not forthcoming and waiting till period $k - 1$. The first task is to show that these quantities are well-defined. Figure 1 illustrates.

![Figure 1: An illustration of the functions V^k and the thresholds μ_k^*. Here $\bar{k} + 1 = 3$. The upper envelope shows the value of torture as a function of the prior μ_0.](image)

Lemma 2. The above system uniquely defines for each $k = 2, \ldots, \bar{k} + 1$ the value μ_k^*, and the functions $q_k(\cdot)$ and $V^k(\cdot)$ over the range $[\mu_{k-1}^*, 1]$. The functions $V^k(\cdot)$ are linear in μ with slopes increasing in k, and $V^k(\mu_k^*) > 0$ for all $k = 2, \ldots, \bar{k} + 1$

We now describe an equilibrium of the game and calculate its payoffs. Subsequently we will show that all equilibria must give the principal the same payoff.
The principal picks the time period $k^* \in \{1, \ldots, \bar{k} + 1\}$ that maximizes $V^k(\mu_0)$.\footnote{Throughout the description we will ignore cases where multiplicity arises due to knife-edge parameter values.} The principal delays torture, i.e. sets $y = 0$, until period k^*. In period k^*, with probability 1, the principal demands $y = \Delta$.

In any subsequent period, if the agent has revealed himself to be informed by agreeing to a (non-zero) demand, and if the total quantity x has not yet been revealed, the principal demands Δ (or the maximum amount of information the agent has yet to reveal if that amount is smaller than Δ). If the entire x has already been revealed, the principal stops torturing.

On the other hand, if the agent has resisted torture through period $k < k^*$, and if $k < \bar{k}$ then the principal tortures with probability 1 and sets $y = \Delta$.\footnote{If $k = \bar{k}$ and the agent refused the principal’s demand in period $\bar{k} + 1$, then the principal must randomize. With probability $\rho := \frac{x - \bar{k}\Delta}{\Delta}$ the principal demands $y = \Delta$, and with the remaining probability the principal does not torture, i.e. sets $y = 0$.}

Next we describe the behavior of the informed agent. (Recall the uninformed agent has no choice to make because he has no verifiable information.) In periods $k = k^*, \ldots, 1$, if he has yet to give in to a positive demand, he will randomize between making his first concession, yielding Δ to the principal, and resisting for another period. The probability of a concession in periods $k < k^*$ is given by $q_k(\mu_k^*)$, and the probability of concession in period k^*, the first period of torture, is $q_{k^*}(\mu_0)$. Finally, in any period in which the informed agent has previously revealed himself to be informed, he agrees, with probability 1, to the principal’s demand of Δ.

We have described the following path of play. In period k^* the principal begins torturing with probability 1 and making the demand $y = \Delta$. The informed agent yields Δ with probability less than 1, after which he subsequently reveals an additional Δ in each of the remaining periods until either the game ends or he reveals all of x. With the complementary probability, he remains silent. As long as the agent has remained silent, in particular if he is uninformed, the torture continues with demands of Δ until the end of the game. The principal demands Δ with probability 1 in periods $k < \bar{k}$ and with a probability less than one in period \bar{k} (if
In Appendix A, the complete description of equilibrium strategies is given, including off-path beliefs and behavior, as well as the verification of sequential rationality. Here we calculate the payoffs and show the sequential rationality along the path of play.

First, since the informed agent concedes in period k^* with probability $q_{k^*}(\mu_0)$, the posterior probability that he is informed after he resists in period k^* is $\mu_{k^*-1}^*$ by Equation 4. In all periods $1 < k < k^*$, if he has yet to concede, he makes his first concession with probability $q_k(\mu_k^*)$. Hence again by Equation 4, the posterior will be μ_k^* at the beginning of any period $k < k^* - 1$ in which he has resisted in all periods previously.

In period 1, if the suspect has yet to concede the principal tortures with probability 1 and the informed agent yields with probability 1. If μ is the probability that the agent is informed, the principal obtains payoff Δ with probability μ and incurs cost c with probability $1 - \mu$. Thus the principal’s payoff in period 1, the final period, is

$$V^1(\mu) = \Delta \mu - c(1 - \mu).$$

Since in equilibrium the posterior probability will be μ_1^*, the principal’s payoff continuation payoff is $V^1(\mu_1^*)$ which is zero by the definition of μ_1^*.

By induction, the principal’s continuation payoff in any period $k \leq k^*$ in which the agent has yet to concede is given by

$$V^k(\mu) = \mu q_k(\mu) \min\{x, k\Delta\} + (1 - \mu q_k(\mu)) \left[V^{k-1}(\mu_{k-1}^*) - c \right]$$

if the posterior probability that the agent is informed is μ. This is because the informed agent concedes with probability $q_k(\mu)$ and subsequently gives Δ in all remaining periods until x is exhausted. In the event the agent does not concede, the principal incurs cost c and obtains the continuation value $V^{k-1}(\mu_{k-1}^*)$. In equilibrium in period k the probability that the agent is informed conditional on previous resistance is μ_k^* for $k < k^*$ and μ_0 in period k^*. Since prior to period k^*, the principal obtains no information and incurs no cost of torture, his equilibrium payoff is $V^{k^*}(\mu_0)$, and his continuation payoff after resistance up to period $k < k^*$ is $V^k(\mu_k^*)$.

When the suspect resists torture prior to period k and the posterior is μ_k^*, by definition $V^k(\mu_k^*) = V^{k-1}(\mu_k^*)$. This means that the principal is indifferent between his equilibrium continuation payoff $V^k(\mu_k^*)$, and the
payoff he would obtain if he were to “pause” torture for one period (set \(y = 0 \)) and resume in period \(k - 1 \). Moreover, by Lemma 2, this payoff is strictly higher than waiting for more than one period (this is illustrated in Figure 1.) Thus the principal’s strategy to demand \(y = \Delta \) with probability 1 in periods 1, \ldots, \(k - 1 \) is sequentially rational.

When the suspect has revealed himself to be informed, the principal in equilibrium extracts the maximum amount of information \(k\Delta \) given the remaining periods.

Turning to the suspect, in periods 1, \ldots, \(k \), his continuation payoff is \(-k\Delta\) whether he resists torture or concedes. This is because by conceding he will eventually yield a total of \(k\Delta \), and by resisting he will be tortured for \(k \) periods which has cost \(k\Delta \). His strategy of randomizing is therefore sequentially rational in these periods.

The first main result is that the equilibrium is essentially unique.

Theorem 2. The unique equilibrium payoff for the principal is

\[
\max_{k \leq \bar{k} + 1} V^k(\mu_0).
\]

4 **Bounding the Value and Duration of Torture.**

In this section we develop two important properties of equilibrium which illustrate the limits of torture. First, we establish an upper bound on the principal’s equilibrium payoff by considering an additional commitment problem that arises in equilibrium: the principal would like the power to commit to halt torture altogether. In equilibrium this commitment cannot be sustained and so once the torture begins it must continue until the very

12 Period \(\bar{k} + 1 \) is a special case. In this period yielding will give the suspect a payoff of \(-x\) (the time constraint is not binding). If instead he resists, his payoff is

\[
-\Delta - \rho k\Delta - (1 - \rho)(\bar{k} - 1)\Delta
\]

because the principal randomizes (see footnote 11) between continuing torture in the following period and waiting for one period before continuing. By the definition of \(\rho \) (see Equation 5) this payoff equals \(x \) and so the suspect is again indifferent and willing to randomize.

13 There is some multiplicity in off-equilibrium behavior, and when \(k^* = \bar{k} + 1 \) it is possible to construct a payoff-equivalent equilibrium in which the torture planned in period \(\bar{k} + 1 \) alone is moved earlier and behavior at all other periods is the same.
end. This leads to our second result: the principal will not begin the torture until close to the end. In fact we obtain an upper bound on the number of periods of torture that is independent of the length of the game and the total amount of information available.

Intuitively, if the principal is expected to continue torturing a resistant suspect, the suspect must be conceding at a slow enough rate to ensure that the principal’s continuation payoff from torturing is high. On the other hand if the principal had the ability to stop the torture not just for one period, but for the rest of the game, then the suspect could concede with a probability so large as to drive the principal’s continuation value to zero. Such an increase in the concession rate would raise the principal’s payoff.

In equilibrium however, such a commitment is never credible. Even if the agent were to increase his concession rate and drive the principal’s continuation value to zero, the principal could simply pause the torture for a single period. Beginning in the next period the principal’s continuation value is positive and he would strictly prefer to resume the torture. This is illustrated in Figure 2 below.

![Figure 2: Concession rates would be higher if the principal could commit in period 3 not to torture in periods 2 or 1.](image)

With three periods remaining, at the posterior $\tilde{\mu}_3$ the principal would
have a continuation payoff of zero. He would be indifferent between continuing to torture and halting altogether. Being indifferent, he would randomize in such a way as to maintain the suspect’s equilibrium payoff. This would enable the suspect to concede with such a probability as to move the principal’s posterior from μ_0 to $\tilde{\mu}_3$. In terms of the value of torture, this would improve upon the equilibrium because this represents a higher concession rate than the equilibrium rate which only moves the posterior to μ^*_3. However, without the ability to commit, the principal would prefer to pause torture just in period 3 and then resume in period 2 because his continuation value $V^2(\tilde{\mu}_3)$ is positive.

In addition to illustrating a further commitment problem impeding torture’s effectiveness, this observation will provide a useful upper bound on the principal’s payoff in equilibrium.

To see this, consider an alternative sequence of functions $\tilde{V}_k(\mu)$ and $\tilde{q}_k(\mu)$ and probabilities $\tilde{\mu}_k$ as follows. First, $\tilde{V}_1(\mu) \equiv V^1(\mu)$, $\tilde{q}_1(\cdot) \equiv q_1(\cdot) \equiv 1$ and $\tilde{\mu}_1 = \mu^*_1$, but for $k \geq 2$,

$$\tilde{V}_k(\mu) = \mu\tilde{q}_k(\mu)k\Delta - c(1 - \mu\tilde{q}_k(\mu)).$$ \hspace{1cm} (6)

$$\tilde{V}_k(\tilde{\mu}_k) = 0$$ \hspace{1cm} (7)

$$B(\mu; \tilde{q}_k(\mu)) = \tilde{\mu}_{k-1}.$$ \hspace{1cm} (8)

Following the logic of the equilibrium construction, it is easy to see that these functions define the principal’s payoff in an alternative setting in which at each stage the principal either makes a demand $y > 0$ or ends the game.14 In particular, note that the condition in Equation 7 defines a posterior at which the principal is indifferent between continuing torture and stopping once and for all. As we show in the following theorem, the function $\tilde{V}_k(\cdot)$ gives an upper bound on the principal’s equilibrium payoff $V^k(\cdot)$ when there are k periods remaining in the game, and the bound is strict when $k \geq 3$.

Theorem 3. For all k, and for all μ,

1. $\tilde{q}_k(\mu) \geq q_k(\mu)$

2. $\tilde{V}_k(\mu) \geq V^k(\mu)$.

14And also in which x is large enough that more than $k\Delta$ units of information can still be extracted.
with a strict inequality for \(k \geq 3 \).

All proofs in this section are in Appendix C

4.1 Bounding the Duration of Torture

We have shown that once torture begins it must continue until the end. In addition, in order to maintain the principal’s incentive to torture, concessions by the suspect must be gradual and spread out over the entire process. Together these properties imply that the longer the principal tortures the slower the concession rate will be. Therefore it is optimal for the principal to wait until very near the end before even beginning to torture. In this section we show how long he will wait.

Suppose the informed suspect’s information \(x \) is large and the terminal date \(T \) is within the ticking time-bomb phase. The rate at which the agent concedes is then a function of the flow costs of torture \(c \) and \(\Delta \). These determine the costs and benefits of torture for the principal and posterior necessary to give the principal the incentive to continue. The earlier the principal begins torture, the higher must the posterior be. In fact, given the principal’s prior \(\mu_0 \), before a certain time, the posterior is so high, it is better to simply wait to begin torture. For a prior \(\mu_0 \), using the results from the previous section, it is easy to find such a bound \(K(\mu_0) \) on the duration of torture even if the agent has a large amount of information.

Theorem 4. Fix the prior \(\mu_0 \) and define let \(K(\mu_0) \) to be the largest \(k \) such that the sum

\[
\sum_{j=1}^{k} (1 - \mu_0) \left(\frac{c}{j\Delta + c} \right)
\]

is no larger than \(\mu_0 \).

1. Regardless of the value of \(x \), the principal tortures for at most \(K(\mu_0) \) periods.

2. Regardless of the value of \(x \), the principal’s payoff is less than

\[
\max_{k \leq K(\mu_0)} \tilde{V}_k(\mu_0).
\]
3. In particular, the value of torture is bounded by

\[K(\mu_0) \Delta \]

Note that for any given \(\mu_0 \), the displayed sum converges to infinity in \(k \) and therefore \(K(\mu_0) \) is finite for any \(\mu_0 \).

Theorem 4 implies that, for a fixed torture technology and for a given prior \(\mu_0 \), there is a time \(T \) such that no matter how large \(x \) is, there is never any loss to the principal to restricting the length of the game to \(T \). Thus, laws which guarantee prisoner’s rights against indefinite detention do not undermine the captor’s ability to get the most from torture. Also, Theorem Section 4.1 shows that there is an upper bound on the amount of information that can be extracted through torture even if the amount of information actually held is arbitrarily large. In particular, the value of torture as a fraction of the first-best value \(x \) shrinks to zero as \(x \) becomes large\(^{15}\).

5 Infinite Horizon

The ticking time-bomb model has a unique equilibrium owing to the fact that torture will end after period \(T \) and the optimal demands for the principal can be derived working backwards from that point. In this section we analyze the model with an infinite horizon. The principal and agent apply a discount factor \(\delta \in (0, 1) \) when evaluating future payoffs either because of literal impatience or because the attack is planned for an unknown date and can occur with positive probability in any period. As is typical of such games, there is a large multiplicity of equilibria. At one extreme, because the infinite horizon removes one important source of commitment power from the principal, there are now equilibria that are even worse for the principal. For example there is an equilibrium where there is never any torture and hence zero information extraction.\(^{16, 17}\) These equilibria can be

\(^{15}\)Since the second-best value (see Theorem 1) is linear in \(x \), the fraction of the second-best value also shrinks to zero.

\(^{16}\)This is supported with the following strategies if the discount factor is close enough to 1. If the victim ever confesses, the principal continues torturing long enough to extract all of \(x \). On the other hand if ever the principal threatens torture and the victim resists, the principal never tortures again. With these strategies it is optimal for the victim to resist and therefore never optimal for the principal to torture.

\(^{17}\)Indeed this would be the unique equilibrium if it were the case that the victim spills his guts after confessing. However in the infinite horizon model, Lemma 1 does not hold
bootstrapped to create other equilibria. For example there are equilibria in which the total amount of information extracted is the same as in the finite-horizon model, but with long delays between rounds of confession, thereby lowering the payoff to the principal.

As these examples suggest, removing the terminal date and the implied commitment to stop the interrogation can only lower the value of torture. Indeed as we show in this section, the principal’s payoff across all equilibria of the infinite horizon model is subject to the same bound as we demonstrated for the case with a ticking time-bomb.

A key step in the argument is to show that despite the infinite horizon, any equilibrium necessarily has a last period of torture. To see why this is, note that as long as the victim resists torture, the probability that he is informed declines monotonically and therefore converges to some limit. Once the posterior is sufficiently close to that limit it means that the total probability of a confession in the remainder of the game is so small that the expected value of any information extracted will be too low to justify the cost of torture and therefore the principal stops.\(^{18}\)

Consider the victim’s incentives in the last period of torture. By resisting he can avoid conceding any information and there is no threat of any future torture. Thus, his continuation payoff is at least \(-\Delta\). This means that he cannot be induced to concede more than a quantity \(\Delta\) of information were he to confess. In the terminal period of the finite horizon model this was guaranteed to be the case because the game would end with or without a confession. Now, in the infinite horizon model we must incentivize the principal to stop torturing after the agent resists. This is done by bootstrapping the no-torture equilibrium described above.\(^{19}\) The result is that an upper bound for the principal’s continuation payoff is \(\Delta\).

The remainder of the proof works backward through the equilibrium, successively bounding the principal’s continuation payoff at earlier and earlier histories until we have a bound at the initial history. That bound and it is possible to construct continuation equilibria after a confession in which the agent concedes less than \(x\).

\(^{18}\)This sketch implicitly assumes the principal is using a pure strategy. Accounting for mixed strategies, as we do in the formal proof, is straightforward.

\(^{19}\)Note in particular that the “spill-your-guts” result Lemma 1 does not hold in the infinite-horizon model. Indeed if it did the victim would strictly prefer not to concede in the last period, the principal would therefore not torture in the last period and the equilibrium would unravel.
is shown to coincide with the finite-horizon bound given in Theorem 4, uniformly for all discount factors. The formal proof can be found in Appendix D

Theorem 5. In the infinite-horizon model with prior \(\mu_0 \), for any discount factor and for any \(x \), the principal’s payoff in any equilibrium is bounded above by \(K(\mu_0) \Delta \).

6 Shortening The Period Length

Up to now we have modeled the principal’s limited commitment by supposing that decisions to continue torturing are revisited after every discrete torture “episode.” The principal may be able to revisit his strategy almost continuously, reducing his power to commit. To what extent is the value of torture dependent on the implicit power to commit to carry out torture over a discrete period of time? To answer this question we now consider a model in which the period length is parameterized by \(l > 0 \).

The model analyzed until now corresponds to the benchmark in which \(l = 1 \). We study the value of torture to the principal as the period length shrinks.

A given torture technology is parameterized by its flow cost to the suspect (\(\Delta \)) and to the principal (\(c \)). When the period length is \(l \), this means that the total cost of a single period of torture is \(\Delta' = l \Delta \) to the suspect and \(c' = lc \) to the principal. The finite-horizon model now has \(T/l \) periods in the game and the ticking time-bomb phase consists of \(k' = x/(l \Delta) \) periods (or the largest integer smaller than that.) In the infinite-horizon model the the discount factor is adjusted appropriately so that if \(\delta = e^{-r \Delta} \) for some real-time discount rate \(r \), the new discount factor is \(\delta^l \).

With these modifications in place we can characterize the equilibrium for any \(l > 0 \) using Theorem 2-Theorem 4 in the case of a finite horizon and Theorem 5 in the infinite-horizon case. We are interested in the limit of the principal’s payoff as the period length shortens. To obtain a bound, it will be convenient instead to use the upper bound value functions \(\tilde{V}(\mu|l) \), now parametrized by \(l \) because as we now show these functions are homogenous in \(l \). To see this, recall that

\[
\tilde{V}^k(\mu|l) = \mu \tilde{q}_k(\mu|l)k \Delta' - (1 - \mu \tilde{q}_k(\mu|l))c'
= l \left[\mu \tilde{q}_k(\mu|l)k \Delta - (1 - \mu \tilde{q}_k(\mu|l))c \right].
\]
The threshold posterior \(\tilde{\mu}_1 \) is defined in Equation 7 by
\[
\tilde{V}^1(\tilde{\mu}_1 | l) = 0
\]
so that \(\tilde{\mu}_1 \) is independent of \(l \). Now by induction, for \(k > 1 \), \(\tilde{q}^k(\mu | l) \) defined in Equation 7 by
\[
B(\mu; \tilde{q}^k(\mu | l)) = \tilde{\mu}_{k-1}
\]
is independent of \(l \) and hence \(\tilde{V}^k(\mu | l) \) is linear in \(l \), i.e.
\[
\tilde{V}^k(\mu | l) = l\tilde{V}^k(\mu | 1) = l\tilde{V}^k(\mu)
\]
for all \(k \).

It follows from Theorem 3 that \(l\tilde{V}^k(\mu) \) is an upper bound on the principal’s continuation payoff when there are \(k \) periods remaining and the period length is \(l \). It follows from Theorem 4 that, regardless of the period length, \(K(\mu_0) \) is an upper bound on the number of periods of torture and \(lK(\mu_0) \) is therefore an upper bound on the real-time duration of effective torture. In particular, the principal’s payoff is bounded by \(l\Delta K(\mu_0) \). The same bound applies to the infinite-horizon model regardless of the discount factor by Theorem 5. Noting that \(K(\mu_0) \) depends only on the the prior \(\mu_0 \) and the flow costs of torture \(c \) and \(\Delta \), we have established the following.

Theorem 6. When the time interval between decisions to continue torture approaches zero, the real-time duration of effective torture shrinks to zero and the value of torture shrinks to zero.

\[
\lim_{l \to 0} \max_{l \leq k + 1} V^k(\mu_0 | l) = 0
\]

There are two sources of commitment power for the principal: the end-point of the game and the discrete intervals of torture. The principal’s use of torture leverages both of these. The principal leverages the endpoint by waiting until close to time \(T \) before beginning to torture. Nevertheless the results in this section show that the ultimate source of the value of torture is the temporal commitment power given by discrete torture episodes. When these discrete periods are short, the victim’s rate of concession slows down to maintain the principal’s incentive to torture for more discrete periods. The principal is left with only the terminal date as a source of commitment power and he therefore waits until closer and closer to \(T \) before beginning to torture. But this necessarily shrinks his payoff to zero because the threat of torturing for a vanishing length of time can induce revelation of only a vanishing amount of information.
7 Enhanced Interrogation Techniques And The Ratchet Effect

Up to now, we have taken the torture technology as given. Instead suppose the principal has a choice of torture instruments, including a harsh enhanced interrogation technique. Perhaps the technology was considered illegal before and legal experts now decide that its use does not violate the letter of the law. Or in a time of war, norms of acceptable torture practices are relaxed. Enhanced interrogation techniques increase both the information that can be extracted every period and the cost to the principal. For example, sleep deprivation is less costly both to the suspect and the principal than waterboarding.

Let \((\Delta', c')\) denote the cost to the suspect and principal from the harsher technology. A tradeoff arises when the enhanced threat \(\Delta' > \Delta\) comes at the expense of a more-than-proportional increase in the cost to the principal: \(c'/\Delta' > c/\Delta\). In that case, the relative effectiveness of the two methods will depend on parameters. This can be seen in a simple example.

Figure 3: Enhanced interrogation methods undermine the principal’s commitment power.

In the figure we have plotted the upper envelope of the \(V^k\) functions.
for the milder technology in blue. In red is the function V^1 for the harsher technology. The relative positions of the two values of μ^*_1 follows from the definition

$$\mu^*_1 = \frac{c}{\Delta + c}.$$

As can be seen from the figure, for low priors μ_0, the principal prefers to use the milder technology for multiple periods whereas for greater priors the principal prefers to take advantage of the harsher technology and torture for fewer periods.

However, because of an important caveat it does not follow that the principal benefits from an array of technologies from which to choose depending on the context. To see why, recall that for any given technology the equilibrium is predicated on the principal’s commitment to use that same technology for the duration. Making available the harsher technology comes at a cost even when the principal prefers not to use it because it can undermine this commitment.

To illustrate, refer again to figure Figure 3. Suppose that the prior probability of an informed suspect is μ_0. In this case the value of torture is maximized by using the milder technology for 2 periods. Consider how the corresponding equilibrium will unfold. In the first period of torture, the principal demands the quantity of information $y = \Delta$. The informed suspect expects that by yielding Δ, he will reveal himself to be informed and be forced to give an additional Δ in the final period. He accepts this because he knows that his payoff would be the same if he were to refuse: he will incur a cost of torture Δ in the current period and then accept the principal’s demand of Δ in the last period.

But if the enhanced interrogation technique is available, this equilibrium unravels. Once the suspect reveals himself to be informed in period 2, the principal will then switch to the harsher technology for the last period in order to extract an additional Δ' from the suspect. This means that the suspect’s payoff from yielding in period 2 is $-(\Delta + \Delta')$. On the other hand, if the suspect resists in period 2, his payoff remains -2Δ. This can be seen from Figure 3. In equilibrium after resistance in period 2 the posterior moves to the left to μ^*_1 and the principal will optimally continue with the milder technology.

This commitment problem arises due to the ratchet effect. The principal benefits from a commitment to a milder technology. This allows him to convince the informed suspect that torture will be limited. However,
once the suspect has revealed himself to be informed, the principal’s incentive to ratchet-up the torture increases. When the enhanced interrogation method is available the principal cannot commit not to use it and his preferred equilibrium unravels. Indeed, without a commitment not to use the harsher technology, the equilibrium will be worse for the principal. The suspect will refuse any demand in period 2 and the principal will be forced to wait until the last period and use the harsher technology.

8 Divisibility of Information

We have assumed that the information held by the informed detainee is a perfectly divisible quantity \(x \) and that the value to the principal of acquiring any portion \(y \leq x \) is linear and equal to \(y \) itself. We can generalize this model by supposing that the value of an quantity \(y \) of information is given by some increasing function \(v(y) \) where \(v(0) = 0 \) and \(v(x) = x \) (the latter being mere normalizations which maintain as much consistency as possible with the preceding analysis.)

For example, it might be natural under some interpretations to assume that \(v(y) \) is convex. This would model a situation in which multiple pieces of information have complementary value. An extreme example would be where \(x \) represents the combination required to defuse the ticking time-bomb. Knowing anything less than the full combination would be of zero value to the Principal and therefore \(v(\cdot) \) would be a step function where

\[
v(y) = \begin{cases}
0 & \text{if } y < x \\
x & \text{otherwise}
\end{cases}
\]

More generally, we may take \(w(y) \) to be some increasing function representing the probability that the attack can be averted when the principal has extracted the quantity \(y \) of information, and set

\[
v(y) = x \cdot w(y)
\]

so that \(x \) is the value of averting the attack. Then the principal’s payoff from extracting \(y \) and torturing for a length of time \(t \) is

\[
v(y) - ct
\]
while the agent’s is

\[-v(y) - \Delta t\]

Regardless of the interpretation, or the details, as long as \(v(\cdot)\) is a continuous function, all of the preceding analysis goes through unchanged when we simply re-normalize the units in which information is measured. In particular the principal demands information in units of \(v(\cdot)\). Initially the principal demands \(y = v^{-1}(\Delta)\), then proceeds by extracting pieces whose incremental value is \(\Delta\), i.e. next \(v^{-1}(2\Delta) - v^{-1}(\Delta)\), then \(v^{-1}(3\Delta) - v^{-1}(2\Delta)\), etc.

A continuous \(v\) represents information whose value is not linear in the quantity but which is nevertheless infinitely divisible. Divisibility of information only helps the principal because it enables him to fine-tune his demands in order to maintain incentives for the agent to confess. To see this, consider now the case of perfectly indivisible information where \(v\) takes the step-function form given above. In this case, once the time-period is short enough so that \(\Delta < x\), the unique equilibrium has zero information revealed and therefore no torture at all.

To see why, consider the last period of the game and suppose the agent has thus far conceded \(y < x\) to the principal. The agent can refuse any demand and secure a continuation payoff of at least \(-\Delta\) by withstanding the last period of torture. In order for the principal to obtain a non-negative payoff he must demand the entire remaining quantity of information since any less has zero value. But since such a concession gives the agent \(-x < -\Delta\) he would refuse.

In equilibrium, there will be no torture in the last period of the game no matter how much information has been conceded previously. By induction then there will be no torture in the penultimate period or in any period at all.

9 Difficulties with Commitment

The normative rationale for torture generates commitment problems. One important problem arises because the principal incurs a cost \(c > 0\) from torturing. Because of this cost, the principal cannot commit to torture a victim who is almost certain to be uninformed. If the principal can resolve this issue somehow, he can implement the second-best solution identified in Theorem 1.
The full commitment solution can be implemented by a contract that specifies a verifiable action by the principal as a function of a verifiable report by the agent. The agent escapes torture if and only if he releases the information the principal demands. There is a third party, “the court”, that enforces the contract and imposes a punitive fine on the principal should he deviate from the prescription of the contract. Alternatively, the full commitment solution can be implemented in a repeated game. Suppose the principal faces torture environments repeatedly, facing a different agent in each environment. If the principal deviates from the commitment solution with one agent, he loses his reputation and is punished by a switch to a punishment phase in future interactions. A sufficiently patient principal does not deviate. Both implementations face significant hurdles in the torture environment.

The contracting implementation is difficult even in economic environments. Suppose that a seller faces a buyer whose valuation is private information. If the buyer reveals he is low valuation by choosing to buy low quantity at the full commitment solution, the seller and the buyer can renegotiate to a mutually beneficial new allocation. They can rip up the old contract and renegotiate to a new one. Exactly the same incentive arises in the torture environment. If the agent does not release information, the principal learns he is uninformed. Torture is costly for both the principal and the agent and they “renegotiate” to a Pareto dominant allocation where torture is suspended.20

There is an even more significant problem in the torture environment. Once the buyer purchases at a high price and reveals he is high value, the seller cannot renege and demand an even higher price. The buyer is protected by the terms of the sales contract. When the principal is the government, the situation is different. The government has the power to change the law. This can create the “ratchet effect” in regulation: if the principal learns a regulated firm has a low cost of production, he increases the firm’s production target.21 The same incentive arises in the torture environment. Once the agent starts revealing useful information, there is an incentive to demand yet more. If a law stands in the way, it can

be changed, just as in the regulation environment. Moreover, the law is ambiguous and subject to multiple interpretations. A court is unlikely to rule against a principal’s interpretation of the legality of interrogation techniques in a time of war.

These standard difficulties with the contractual solution are compounded by another feature of the torture environment: Torture is carried out in secret so it is impossible to determine if the principal deviated from the terms of the contract or not. The terms of trade are verifiable in the buyer-seller setting but unobservable principal moral hazard undermines the optimal contract in the torture environment. The same issue compromises the implementation of the optimal contract via a repeated game. Players in future interactions with the principal cannot know whether the principal deviated from the optimal contract in the past with another player.

Making torture verifiable does not help. The principal will be vilified by domestic and international audiences and run the risk of prosecution. Moreover, the basic commitment problems can be aggravated by making torture verifiable. If torture is verifiably suspended on an informed agent, the public pressure to continue and extract yet more will be overwhelming. If torture continues on an innocent suspect, the public pressure to suspend torture will be overwhelming. Voters make their decisions based on short run considerations and so do politicians facing re-election. Neither courts nor politicians will be able to withstand the public’s demands and the two commitment problems that underlie our analysis reappear when torture is verifiable.

As contractual and reputational solutions are problematic, the principal can try to delegate torture to a specialist. In the model, the period-by-period decision whether to continue torture is governed by the principal’s perceived cost of torturing c. If the principal is representative of the public at large then c reflects the public’s moral objection to torture. Alternatively, c can stand for the opportunity cost of waiting to begin torturing the next victim. While the ultimate performance of the mechanism should be measured by comparing the information revealed with these true costs of torture, it is possible that the overall efficiency can be improved by employing a specialist who perceives a lower cost c'. Such a specialist will be prepared to torture more and as a result may be required to torture less.

Indeed, a specialist who is a sadist and has a small negative “cost” of torture $c' < 0$, can extract the entire quantity x of information from the informed. A sadist is willing to torture a silent suspect even if there is zero
probability he is informed. The informed can give up all his information without compromising the incentive of the specialist to continue to torture a suspect who does not yield anything. It is still the case that in equilibrium the informed suspect must yield a quantity Δ of information units per period. Otherwise, once the suspect has yielded x, the specialist will continue torture for pleasure not for information. The agent can do better by slowing down the release of information and keeping some in hand to buy off the specialist. In this sense, delegation to a specialist with a small benefit to torture can alleviate one of the commitment problems inherent in torture.

But this solution creates other problems. First, there is a difficulty if the specialist is a strong sadist with $\Delta < -c'$ and gets too much enjoyment from torture. A strong sadist has no incentive to demand information and he simply tortures every period. A contractual solution via monetary incentives for the specialist is difficult because torture is unverifiable. The specialist is left to his own devices and a sufficiently strong sadist is impossible to control. Hence, it is important to screen specialists effectively to identify that their incentives are aligned sufficiently with the principal’s preferences.

Even if $c' < 0$ is small, the specialist will torture the agent in all periods when he is not extracting information. For example, suppose the specialist demands information during the ticking-time bomb phase. He will torture the agent in all the time outside this phase. Hence, an upper bound on the principal’s payoff is

$$\mu x - \frac{c (1 - \mu)}{\Delta} - c \left(T - \frac{x}{\Delta} \right)$$

which is negative when the ticking time-bomb explodes far enough in the future.\footnote{Choosing a specialist with $c = 0$ is also problematic. This creates multiple equilibria including equilibria in which there is too much torture. Finally, a specialist with a cost c' arbitrarily close to zero, could effectively commit to torture innocent suspects and thereby extract immediately the entire quantity x of information from the informed. We have shown above that regardless of the value of c, torture does not commence until the ticking time-bomb phase, a time interval x/Δ that is independent of c. Thus, even a specialist with a low c will delay torture, possibly for a long time, and this itself could be costly if there are costs incurred each period the agent is detained whether he is tortured or not.} It might seem as if the problem can be resolved by hiring and sacking the specialist at the appropriate time. But this uncovers the deepest problem with the delegation strategy whenever the cost of torture to
the specialist differs from the cost to the principal: As torture is unverifiable, the principal can always terminate the specialist at any point in time. In fact, as soon as the agent does not yield information, the principal intervenes, replaces the specialist and stops torture. Then, one of the key commitment problems with torture reappears and our basic analysis is relevant again.

In short, the commitment problems we study are also present in economic environments. They are magnified in the torture environment by the fact that torture is unverifiable.

10 Conclusion

Under the threat of an imminent attack, a simple cost-benefit calculation recommends torture: the cost of torture pales in comparison to the value of lives saved by using extracted information. We show that this conclusion depends crucially on the assumption that it is possible to commit to a torture incentive scheme. When the principal can revisit his torture strategy at discrete points in time, the informed agent must concede slowly in equilibrium. We show that there is then a maximum amount of time torture will ever be used. This reduces the value of torture and when the principal can revisit the torture decision frequently, the value disappears.

We have made some simplifying assumptions to keep our model tractable and simple. For example, we have only allowed for variable costs to torture but there might be fixed costs. Perhaps there is a psychological cost to even beginning torture. There are additional fixed costs to incarceration in an interrogation facility whether the agent is tortured or not. The marginal decisions of the principal and the agent do not depend on fixed costs and our equilibrium characterization is unchanged. But the principal value of torture is negative as the period length becomes small and hence it is better never to begin. Adding additional elements such as costs of verification reduces the value of torture yet further.

Also, we only allow a high value suspect to have a known quantity of information. Realistically, the quantity of information held by a target may also be unknown. In a natural model, there is positive probability that the agent is uninformed and, if he is informed, his information is drawn from some bounded interval. The value of torture to the principal is lower in this continuum model than in the two type case. This is because the
agent captures more information rents. As the principal does not know the quantity of information an informed agent has, he asks for less information than in the two type case after the agent has not conceded. Then, to give the principal the incentive to torture such an agent, the rate of concession must be lower than in the two type case. This means the value of torture is lower in the continuum model. Intuitively, the principal is at an informational disadvantage when he knows less about the information in the hands of the agent and this can only reduce his welfare.

Torture can be contrasted with alternative mechanisms. One possibility is to pay suspects for information. To citizens, this might seem as abhorrent as torture. It also creates perverse incentive effects and encourages crime. Setting these objections aside, suppose payments are allowed but are also subject to lack of commitment - the principal can renege on future payments perhaps because of the political difficulties associated with payment. If the principal faces a choice between payments and torture, once the agent starts talking and the principal knows he is informed, the principal’s trade-off changes and he favors torture over payments. This is because he will never actually use torture on the equilibrium path so it is costless while transfers are costly. Now the agent faces a ratchet effect if he talks because instead of getting a “carrot” of a monetary transfer to compensate him for giving up information, he faces a “stick”. This in turn implies he must be tortured if he does not concede information, otherwise he will never talk. So, the possibility of payments does not eliminate the costs or the use of torture.

Of course, if all forms of torture or costly interrogation can be made illegal, monetary payments would be only instrument for information extraction and the ratchet effect would not arise. But since the principal can renege on payments, the value of torture is still compromised. Suppose the principal at most credibly hand over $s > 0$ each period. Then, the agent would only hand over s units of information every period to ensure a stream of payments in return for evidence. Information would flow out in dribs and drabs as in our current model. As s becomes smaller to capture the idea of less commitment power, the time it would take to extract information would become longer and, with discounting, the value of torture would again go to zero.
References

A Full Description And Verification of the Equilibrium

Proof of Lemma 2. By Equation 1 and Equation 4,

\[\mu q_k(\mu) = \frac{\mu - \mu_{k-1}^*}{1 - \mu_{k-1}^*} \]

and hence we can write \(V^k(\mu) \) as follows

\[V^k(\mu) = \frac{\mu - \mu_{k-1}^*}{1 - \mu_{k-1}^*} \left(\min\{x, k\Delta\} + c - V^{k-1}(\mu_{k-1}^*) \right) + V^{k-1}(\mu_{k-1}^*) - c \]

showing that \(V^k(\cdot) \) is linear in \(\mu \). Evaluating at \(\mu = \mu_{k-1}^* \) and \(\mu = 1 \), we see that

\[V^k(\mu_{k-1}^*) < V^{k-1}(\mu_{k-1}^*) \quad V^k(1) \geq V^{k-1}(1) \]

and therefore the value \(\mu_{k}^* \) defined in Equation 3 is unique. This in turn implies that the functions \(q_{k+1}(\cdot) \) and \(V^{k+1}(\cdot) \) are uniquely defined. \(\square \)

We have already described the behavior on-path. Now we describe the behavior after a deviation from the path. If the victim has revealed information previously then he accepts any demand for information less than or equal to the amount he would eventually be revealing in equilibrium. That is, if there are \(k \) periods remaining and \(z \) is the quantity of information yet to be revealed, he will accept a demand to reveal \(y \) if and only if \(y \leq \min\{z, k\Delta\} \). The principal ignores any deviations by the victim along histories where the victim has already revealed information. If no
information has been revealed yet, then behavior after a deviation by the principal depends on whether $k^* < \bar{k} + 1$ or $k^* = \bar{k} + 1$ and on the value of the current posterior probability μ that the victim is informed. (Note that this posterior is always given by Bayes’ rule because the presence of an uninformed type means that no revelation is always on the path.) First consider the case $k^* < \bar{k} + 1$. Suppose $k \leq k^* + 1$ then the victim refuses any demand y greater than Δ. On the other hand if the principal deviates and asks for $0 < y \leq \Delta$, then the victim concedes with the equilibrium probability $q_k(\mu)$. To maintain incentives the principal must then alter his continuation strategy (unless $k = 1$ in which case the game ends.) In particular, after deviating and demanding $0 < y \leq \Delta$, if the victim resists, then in period $k - 1$, the principal will randomize with the probability $\rho(y) = \rho/\Delta$ that ensures that the agent was indifferent in period k between conceding (eventually yielding $y + (k - 1)\Delta$) and resisting:

$$y + (k - 1)\Delta = \Delta + \rho(y)\Delta + (k - 2)\Delta.$$

If instead $k > k^* + 1$ then the victim refuses any demand and the principal reverts to the equilibrium continuation and waits to resume torture in period k^*. Next suppose $k^* = \bar{k} + 1$. If $k \leq \bar{k} + 1$ then deviations by the principal lead to identical responses as in the previous case of $k \leq \bar{k} + 1$ when $k^* < \bar{k} + 1$. The last subcase to consider is $k > \bar{k} + 1$. If $y > x$ then the victim refuses with probability 1. If $y \leq x$ then the deviation alters the continuation strategies in two ways. First, the informed victim yields to the demand with probability $q_{\bar{k} + 1}(\mu)$. If he does concede, he will ultimately yield all of x because there will be at least $\bar{k} + 1$ additional periods of torture to follow. Second, the principal subsequently pauses torture until period \bar{k} at which point he begins torturing with probability ρ (see Equation 5.) Effectively, this deviation has just shifted the torture that would have occurred in period $\bar{k} + 1$ to the earlier period k.

B Proof of Theorem 2

Proof of Lemma 1. First suppose that $k = 1$ so that there is a single period remaining and assume that the victim has revealed all but the quantity \tilde{x} of information. Suppose that he is asked to reveal $y \leq \tilde{x}$ or else endure torture. Since there is a single period remaining, the principal is threatening to inflict Δ on the victim. If $y > \Delta$ the victim will refuse, if $y < \Delta$,
the victim strictly prefers to reveal y and if $y = \Delta$ he is indifferent. The unique equilibrium is for the principal to ask for $y = \min\{\tilde{x}, \Delta\}$ and for the victim to reveal y. This gives the victim a payoff of $-\min\{\tilde{x}, \Delta\}$. Now to prove the lemma by induction, suppose that in all equilibria, the complete information continuation game beginning in period $k-1$ with \tilde{x} yet to be revealed yields the payoff

$$-\min\{\tilde{x}, (k-1)\Delta\}$$

to the victim and $\min\{\tilde{x}, (k-1)\Delta\}$ for the principal and assume that there are k periods remaining and \tilde{x} has yet to be revealed. Suppose the victim is asked in period k to reveal $y \leq \min\{\tilde{x}, \Delta\}$ or else endure torture. If the victim complies he obtains payoff

$$-\left[y + \min\{\tilde{x} - y, (k-1)\Delta\}\right]$$

and if he refuses his payoff is

$$-\left[\Delta + \min\{\tilde{x}, (k-1)\Delta\}\right]$$

which is weakly smaller and strictly so when $y < \Delta$. So the victim will strictly prefer to reveal if $y < \Delta$ and he will be indifferent when $y = \Delta$. It follows that for any $\epsilon > 0$, if the principal asks for $\min\{\tilde{x}, \Delta\} - \epsilon$, sequential rationality requires that the victim complies. By the induction hypothesis this leads to a total payoff of $\min\{\tilde{x}, k\Delta\} - \epsilon$ for the principal. Since $\min\{\tilde{x}, k\Delta\}$ is the maximum payoff for the principal consistent with feasibility and individual rationality for the victim, it follows that all equilibria must yield $\min\{\tilde{x}, k\Delta\}$ for the principal. Any strategy profile which gives this payoff to the principal must involve maximal revelation ($\min\{\tilde{x}, k\Delta\}$) and no torture. Thus, all equilibria give payoff $-\min\{\tilde{x}, k\Delta\}$ to the victim. □

The following simple implication of Bayes’ rule will be useful.

Lemma 3. For any $\mu \in (0, 1)$ and $q \in (0, 1)$,

$$q + (1 - q)q_k(B(\mu; q)) = q_k(\mu). \quad (9)$$

\[23\] In fact if $k\Delta > \tilde{x}$ then there are multiple equilibria all yielding this payoff, corresponding to various sequences of demands adding up to \tilde{x}.
Proof. The equality follows immediately from the fact that $B(\mu; \cdot)$ applied to either side yields μ_{k-1}^*. Intuitively, no matter what the probability of revelation in period $k + 1$, the function q_k adjusts the probability of revelation in period k so that the posterior probability of an informed victim conditional on no revelation in either period will equal μ_{k-1}^*. On the left-hand side the probability of revelation in period $k + 1$ is q and on the right-hand side it is zero. An explicit calculation follows. $B(\mu; \cdot)$ applied to the right-hand side of (9) gives μ_{k-1}^*. Applying $B(\mu; \cdot)$ to the left-hand side gives

$$B(\mu; q + (1-q)q_k(B(\mu; q))) = \frac{\mu \left(1 - [q + (1-q)q_k(B(\mu; q))]\right)}{1 - \mu \left[q + (1-q)q_k(B(\mu; q))\right]}$$

$$= \frac{\mu(1-q) [1 - q_k(B(\mu; q))]}{1 - \mu(1-q)q_k(B(\mu; q))}$$

$$= B(\mu; q) [1 - q_k(B(\mu; q))]$$

$$= B(\mu; q)q_k(B(\mu; q))$$

$$= B_{k-1}.$$

The Lemma follows from the fact that $B(\mu; q)$ is invertible.

Proof of Theorem 2. Because Lemma 1 characterizes continuation equilibria following a concession, the analysis focuses on continuation equilibria following histories in which the victim has yet to concede, and the posterior probability of an informed victim is μ. So when we say that “there is torture in period k” we mean that upon reaching period k without a concession, principal demands $y > 0$. The proof has three main parts. We first consider continuation equilibria starting in a period $k \leq \bar{k}$ in which there is torture in period k. We show that the unique continuation equilibrium payoff for the principal is $V_k(\mu)$. The second step is to consider continuation equilibria starting in a period $k > \bar{k}$. We show that if there is torture in period k then k is the only period earlier than \bar{k} in which there is torture and the principal’s payoff is $V_{k+1}(\mu)$. The final step uses these results to show that in the unique equilibrium of the game, the principal begins torturing in the period \bar{k} which maximizes $V_{\bar{k}}(\mu_0)$. For the first step, we will show by induction on $k = 1, \ldots, \bar{k}$ that if there is torture in period k, then the principal’s continuation equilibrium payoff beginning from period k
is $V^k(\mu)$. We begin with the case of $k = 1$. Suppose that the game reaches period 1 with no concession and a posterior probability μ that the victim is informed. In this case the continuation equilibrium is unique. Indeed, any demand $y < \Delta$ will be accepted by the informed and any demand $y > \Delta$ would be rejected. If the principal makes any positive demand he will therefore demand $y = \Delta$ and the informed agent will concede. This yields the payoff $\mu\Delta - (1 - \mu)c$. In particular, when $\mu > \mu_1^*$, the unique equilibrium is for the principal to demand $y = \Delta$ and when $\mu < \mu_1^*$ the principal demands $y = 0$. In the former case the agent’s payoff is $-\Delta$ and in the latter zero. In the case of $\mu = \mu_1^*$ there are multiple equilibria which give the principal a zero payoff and the agent any payoff in $[0, -\Delta]$. Next, as an inductive hypothesis, we assume the following is true of any continuation equilibrium beginning in period $k - 1 < \bar{k}$ with posterior μ.

1. If $\mu > \mu_{k-1}^*$ and there is torture with positive probability in period $k-1$ then the principal’s payoff is $V^{k-1}(\mu)$ and the agent’s payoff is $-(k-1)\Delta$.

2. If $\mu = \mu_{k-1}^*$ and there is torture with positive probability in period $k-1$ then the principal’s payoff is $V^{k-1}(\mu)$ and the agent’s payoff is any element of $[-(k-2)\Delta, -(k-1)\Delta]$.

3. If $\mu < \mu_{k-1}^*$ then there is no continuation equilibrium with torture with positive probability in period $k-1$.

Now, consider any continuation equilibrium beginning in period k with a positive demand $y > 0$. First, it follows from Lemma 1 that $y \leq \Delta$. For if the informed victim yields $y > \Delta$ in period $k \leq \bar{k}$ his payoff would be smaller than $-k\Delta$ which is the least his payoff would be if he were to resist torture for the rest of the game. The victim will therefore refuse any demand $y > \Delta$ and such a demand would yield no information and no change in the posterior probability that the agent is informed. Because torture is costly and the induction hypothesis implies that the principal’s payoff is determined by the posterior, the principal would strictly prefer $y = 0$ in period k, a contradiction. Assume that the informed concedes with probability q. If $q > q_k(\mu)$ then $B(\mu; q) < \mu_{k-1}^*$ and the induction hypothesis, there will be no torture in period $k - 1$ if the victim resists in period k. This means that a resistant victim has a payoff no less than $-(k-1)\Delta$. But if the victim concedes in period k, by Lemma 1, his payoff will
be $-y - (k - 1)\Delta$. The informed victim cannot weakly prefer to concede, a contradiction. Thus, $q \leq q_k(\mu)$. Now suppose $y < \Delta$. In this case we will show that $q \geq q_k(\mu)$ so that $q = q_k(\mu)$. For if $q < q_k(\mu)$, i.e. $B(\mu; q) > \mu^*_{k-1}$ then by the induction hypothesis the continuation equilibrium after the victim resists gives the victim a payoff of $-(k - 1)\Delta$ for a total of $-k\Delta$. But conceding gives $-y - (k - 1)\Delta$ by Lemma 1 and thus the victim strictly prefers to concede, a contradiction since $q < q_k(\mu)$ requires that the victim weakly prefers to resist. We have shown that if $y < \Delta$ then the informed victim concedes with probability $q_k(\mu)$. This yields payoff to the principal

$$W(y) = \mu q_k(\mu) [y + (k - 1)\Delta] + (1 - \mu q_k(\mu)) \left[V^{k-1}(\mu^*_{k-1}) - c \right]$$

because a conceding victim will subsequently give up $(k - 1)\Delta$, because $B(q_k(\mu); \mu) = \mu^*_{k-1}$, and because the induction hypothesis implies that the principal’s continuation value is given by V^{k-1}. Since this is true for all $y > 0$ and in equilibrium the principal chooses y to to maximize his payoff, it follows that the principal’s equilibrium payoff is at least

$$\sup_{y < \Delta} W(y) = W(\Delta) = V^k(\mu).$$

Moreover, since $W(y)$ is strictly increasing in y, it follows that the principal must demand $y = \Delta$. We have already shown that the informed victim concedes with a probability no larger than $q_k(\mu)$. We conclude the inductive step by showing that he concedes with probability equal to $q_k(\mu)$ (this was shown previously only under the assumption that $y < \Delta$) and therefore that the principal’s payoff is exactly $V^k(\mu)$. Suppose that the informed victim concedes with a probability $q < q_k(\mu)$. Then, conditional on the victim resisting, the posterior probability he is informed will be $B(\mu; q) < \mu^*_{k-1}$. By the induction hypothesis, the principal’s continuation payoff is $V^{k-1}(B(\mu; q))$ and his total payoff is

$$k\Delta \mu q + (1 - \mu q) \left[V^{k-1}(B(\mu; q)) - c \right]$$

(applying Lemma 1.) Note that this equals $V^k(\mu)$ when $q = q_k(\mu)$. We will show that the expression is strictly increasing in q. Since the principal’s payoff is at least $V^k(\mu)$, it will follow that the victim must concede with
probability $q_k(\mu)$. Let us write $Z(q) = B(\mu; q)q_{k-1}(B(\mu; q))$, and with this notation write out the expression for $V^{k-1}(B(\mu; q))$.

$$V^{k-1}(B(\mu; q)) = (k-1)\Delta Z(q) + (1 - Z(q)) \left[V^{k-2}(\mu^*_{k-2}) - c \right].$$

Substituting into Equation 10, we have the following expression for the principal’s payoff.

$$k\Delta \mu q + (1 - \mu q) \left[(k-1)\Delta Z(q) + (1 - Z(q)) \left[V^{k-2}(\mu^*_{k-2}) - c \right] - c \right]$$

This can be re-arranged as follows.

$$\mu q \left[k\Delta + V^{k-2}(\mu^*_{k-2}) + 2c \right] + (1 - \mu q)Z(q) \left[(k-1)\Delta - V^{k-2}(\mu^*_{k-2}) + c \right] + V^{k-2}(\mu^*_{k-2}) - 2c \quad (11)$$

Now, by Lemma 3,

$$q + (1 - q)q_{k-1}(B(\mu; q)) = q_{k-1}(\mu)$$

If we multiply both sides by μ

$$\mu q + \mu(1 - q)q_{k-1}(B(\mu; q)) = \mu q_{k-1}(\mu)$$

and then multiply the second term on the left-hand side by 1,

$$\mu q + \frac{\mu(1 - q)q_{k-1}(B(\mu; q))(1 - \mu q)}{(1 - \mu q)} = \mu q_{k-1}(\mu)$$

we obtain

$$\mu q + (1 - \mu q)B(\mu; q)q_{k-1}(B(\mu; q)) = \mu q_{k-1}(\mu)$$

or

$$\mu q + (1 - \mu q)Z(q) = \mu q_{k-1}(\mu)$$
Thus, the coefficients in Equation 11, μq and $(1 - \mu q)Z(q)$ sum to a constant, independent of q. It follows that the principal’s payoff is strictly increasing in q. We have shown that if there is torture with positive probability in period k then the principal’s payoff is $V^k(\mu)$. If $\mu > \mu_k^*$ then $V^k(\mu) > V^l(\mu)$ for all $l < k$ and therefore the principal strictly prefers to begin torture in period k than to wait until any later period. Hence the victim faces torture for k periods and his payoff is $-k\Delta$. If $\mu = \mu_k^*$ then $V^k(\mu) = V^{k-1}(\mu)$ and the principal can randomize between beginning torture in period k and waiting for one period. The victim’s payoff is therefore any element of $[-(k-1)\Delta, -k\Delta]$. Finally if $\mu < \mu_k^*$, then $V^k(\mu) < V^{k-1}(\mu)$ and the principal strictly prefers to delay the start of torture for (at least) 1 period. Hence in this case the probability of torture in period k is zero. These conclusions establish the inductive claims and conclude the first part of the proof.

For the second step, begin by considering continuation equilibria beginning in period $\bar{k} + 1$. Then we can follow the same argument from the preceding inductive step to show that the principal demands $y = x - \bar{k}\Delta$, the informed agent concedes with probability $q_{\bar{k}+1}(\mu)$ and then subsequently (by Lemma 1) yields the entire quantity x. Furthermore:

1. If $\mu > \mu_{\bar{k}+1}^*$ and there is torture with positive probability in period $\bar{k} + 1$ then the principal’s payoff is $V^{\bar{k}+1}(\mu)$ and the agent’s payoff is $-x$.

2. If $\mu = \mu_{\bar{k}+1}^*$ and there is torture with positive probability in period $\bar{k} + 1$ then the principal’s payoff is $V^{\bar{k}+1}(\mu)$ and the agent’s payoff is any element of $[\bar{k}\Delta, x]$.

3. If $\mu < \mu_{\bar{k}+1}^*$ then there is no equilibrium with a positive probability of torture in period $\bar{k} + 1$.

We now consider by induction on j continuation equilibria beginning in period $\bar{k} + j$. In this case we show that the conclusions of three claims above are unchanged:

1. If $\mu > \mu_{\bar{k}+1}^*$ and there is torture with positive probability in period $\bar{k} + j$ then the principal’s payoff is $V^{\bar{k}+1}(\mu)$ and the agent’s payoff is $-x$.

44
2. If \(\mu = \mu_{k+1}^* \) and there is torture with positive probability in period \(k + j \) then the principal’s payoff is \(V^{k+1}(\mu) \) and the agent’s payoff is any element of \([k \Delta, x]\).

3. If \(\mu < \mu_{k+1}^* \) then there is no equilibrium with a positive probability of torture in period \(k + j \).

(In other words, equilibria with torture in period \(k + j \) are payoff equivalent to equilibria with torture in period \(k + 1 \).)

Suppose the claim is true for \(j \geq 1 \). Consider an equilibrium in which torture begins in period \(k + j + 1 \). If there is no other period of torture between \(k + j + 1 \) and \(k \), then the equilibrium is payoff equivalent to one in which the torture begins instead in period \(k + 1 \) and we are done.

We will now show that there can be no other period of torture between \(k + j + 1 \) and \(k \). Let \(z \) be the earliest such period in which there is torture. If the informed victim concedes with positive probability in period \(k + j + 1 \) then his total payoff from conceding is \(-x \) by Lemma 1. On the other hand, his total payoff from resisting is \(-\Delta - \tau \) where \(\tau \) is some element of \([k \Delta, x]\). This follows from the induction hypothesis since \([k \Delta, x]\) is the set of possible continuation values for the victim if he has yet to concede by period \(z \). We can rule out \(\tau = x \) because then the victim would strictly prefer to concede. That is impossible because then the posterior after resistance in period \(k + j + 1 \) would be 0 and there would be no torture in period \(z \). So \(\tau \in [k \Delta, x] \) which implies by the induction hypothesis that the posterior in period \(z \) must be \(\mu_{k+1}^* \). Therefore the informed victim concedes in period \(j + k + 1 \) with the probability \(q \) such that \(B(\mu; q) = \mu_{k+1}^* \), call it \(q_{k+2}(\mu) \). Note that \(q_{k+2}(\mu) < q_{k+1} \).

The principal’s payoff is

\[
mq_{k+2}(\mu)x + (1 - mq_{k+2}(\mu)) \left[V^{k+1}(\mu_{k+1}^*) - c \right].
\]

Since \(V^{k+1}(\mu_{k+1}^*) = V^k(\mu_{k+1}^*) \), this is strictly smaller than \(V^{k+1}(\mu) \). This is impossible in equilibrium because then the principal would prefer not to torture in period \(k + j + 1 \) and instead begin the torture in period \(k + 1 \) and obtain his continuation equilibrium payoff of \(V^{k+1}(\mu) \).

That concludes the second step of the proof. To complete the proof, note that we have shown that any equilibrium that commences torture in
period \(j \leq \bar{k} \) has payoff \(V^j(\mu_0) \) and any equilibrium that commences torture in period \(j > \bar{k} \) has payoff \(V^{\bar{k}+1}(\mu_0) \). Since the principal can demand \(y = 0 \) until the period \(k \) that maximizes this payoff function, his equilibrium payoff must be \(\max_{k \leq \bar{k}+1} V^k(\mu_0) \). \(\square \)

C Proofs for Section 4

Lemma 4. For any \(\mu \in (0, 1) \) and \(q \in (0, 1) \),

\[
q + (1 - q)\tilde{q}_k(B(\mu; q)) = \tilde{q}_k(\mu).
\] (12)

Proof. The lines of the proof are identical to those in Lemma 3 and are therefore omitted. \(\square \)

Lemma 5. For all \(k \) and for any \(\mu \), the expression

\[
k\Delta \mu q + (1 - \mu q) \left[\tilde{V}^{k-1}(B(\mu; q)) - c \right]
\] (13)

is strictly increasing in \(q \).

Proof. (The proof follows the similar manipulations of Equation 10 in the proof of Theorem 2.) Define \(Z(q) = B(\mu; q)q_{k-1}(B(\mu; q)) \), and substitute into the definition of \(\tilde{V}^{k-1}(B(\mu; q)) \):

\[
\tilde{V}^{k-1}(B(\mu; q)) = Z(q)(k - 1)\Delta - c(1 - Z(q))
\]

Substituting into Equation 13, we have

\[
k\Delta \mu q + (1 - \mu q) \left[Z(q)(k - 1)\Delta - c(1 - Z(q)) - c \right]
\]

This can be re-arranged as follows.

\[
\mu q [k\Delta + 2c] + (1 - \mu q)Z(q) [(k - 1)\Delta + c] - 2c
\] (14)

Now, by Lemma 4,

\[
q + (1 - q)\tilde{q}_{k-1}(B(\mu; q)) = \tilde{q}_{k-1}(\mu)
\]
Which as in the proof of Theorem 2 is equivalent to
\[\mu q + (1 - \mu q)Z(q) = \mu \tilde{q}_{k-1}(\mu) \]

Thus, the coefficients in Equation 14, \(\mu q \) and \((1 - \mu q)Z(q) \) sum to a constant, independent of \(q \). Since the coefficient on \(\mu q \) is larger, the expression is strictly increasing in \(q \).

\[\square \]

Proof of Theorem 3. The proof is by induction on \(k \). First, the claim holds by definition for \(k = 1 \). For \(k = 2 \), note that \(\mu^*_1 = \tilde{\mu}_1 \) and \(V^1(\mu^*_1) = 0 \), so that \(q_2(\cdot) = \tilde{q}_2(\cdot) \) and \(V^2(\cdot) \equiv \tilde{V}^2(\cdot) \). Now assume that \(\tilde{V}^{k-1} \geq V^{k-1} \). Since the principal’s continuation payoff must be non-negative and the functions \(V^k \) and \(\tilde{V}^k \) are strictly increasing,

\[0 \leq V^{k-2}(\mu^*_2) < V^{k-2}(\mu^*_2) = V^{k-1}(\mu^*_2) \leq \tilde{V}^{k-1}(\mu^*_2), \]

which by the definition of \(\tilde{\mu}_{k-1} \) implies \(\mu^*_k = \tilde{\mu}_{k-1} \). This yields the first conclusion \(\tilde{q}_k(\cdot) > q_k(\cdot) \). By the definition of \(V^k \),

\[V^k(\mu) = \mu q_k(\mu) \min\{x, k\Delta\} + (1 - \mu q_k(\mu)) \left[V^{k-1}(\mu^*_{k-1}) - c \right] \]

which by the induction hypothesis is bounded by

\[V^k(\mu) \leq \max_{q \leq \tilde{q}_k(\mu)} \left\{ \mu q k \Delta + (1 - \mu q) \left[\tilde{V}^{k-1}(B(q_k(\mu)) - c) \right] \right\} \]

since \(q_k(\mu) \) satisfies the constraint and \(\mu^*_{k-1} = B(q_k(\mu); \mu) \). By Lemma 4 the maximand is strictly increasing in \(q \) and therefore since \(q_k(\mu) < \tilde{q}_k(\mu) \) we have

\[V^k(\mu) < \mu \tilde{q}_k(\mu) k \Delta + (1 - \mu \tilde{q}_k(\mu)) \left[\tilde{V}^{k-1}(B(\tilde{q}_k(\mu); \mu)) - c \right] \]

and since \(B(\tilde{q}_k(\mu); \mu) = \tilde{\mu}_{k-1} \) we have \(\tilde{V}^{k-1}(B(\tilde{q}_k(\mu); \mu)) = 0 \) and the right-hand side equals \(\tilde{V}^k(\mu) \).

\[\square \]

Proof of Theorem 4. If the principal begins torturing in period \(k \), then his payoff \(V^k(\mu_0) \) must be non-negative. By Theorem 3 \(\tilde{V}^k(\mu_0) \geq V^k(\mu_0) \geq 0 \)
and therefore \(\mu_0 \geq \tilde{\mu}_k \). Since \(\tilde{\mu}_j \geq \tilde{\mu}_{j-1} \) for all \(j \), we have \(\mu_0 \geq \tilde{\mu}_j \) for all \(j = 1, \ldots, k \). By the definition of \(\tilde{V}^j(\tilde{\mu}_j) \),

\[
0 = \tilde{V}^j(\tilde{\mu}_j) = \tilde{\mu}_j \tilde{q}_j(\tilde{\mu}_j) j \Delta - c (1 - \tilde{\mu}_j \tilde{q}_j(\tilde{\mu}_j))
\]

Re-arranging and using the definition of \(\tilde{q}_j(\mu_j) \),

\[
\frac{\tilde{\mu}_j - \tilde{\mu}_{j-1}}{1 - \tilde{\mu}_{j-1}} = \tilde{\mu}_j \tilde{q}_j(\tilde{\mu}_j) = \frac{c}{j \Delta + c}
\]

Since \(\tilde{\mu}_j \leq \mu_0 \) for all \(j = 1, \ldots, k \),

\[
\tilde{\mu}_j - \tilde{\mu}_{j-1} \geq (1 - \mu_0) \left[\frac{c}{j \Delta + c} \right]
\]

Thus,

\[
\mu_0 \geq \tilde{\mu}_k \geq \sum_{j=1}^{k} (1 - \mu_0) \left[\frac{c}{j \Delta + c} \right]
\]

and therefore \(k \leq K(\mu_0) \), establishing the first part of the theorem. The second part then follows from Theorem 3. The third part is a crude bound that calculates only the maximum amount of information that can be extracted from the informed in \(K(\mu_0) \) periods. \(\square \)

D Proof of Theorem 5

Any sequentially rational mixed strategy is a probability distribution over a set of sequentially rational pure strategies all of which generate the same payoff for the principal. We will bound the principal’s payoff by establishing a bound on the payoff to any pure strategy in the support of the principal’s mixed strategy.

Let \(\epsilon > 0 \) satisfy

\[
\epsilon x - (1 - \epsilon)c = 0.
\]

Along a history in which the victim has not confessed, the posterior probability that he is informed is declining monotonically. It therefore converges to some limit. In particular there is a period \(n \) after which the posterior \(\mu \) is
within ϵ of its limit. Let q be the total probability that the informed victim confesses throughout the remainder of the game. Then

$$\mu - \frac{(1 - q)\mu}{1 - q}\mu < \epsilon$$

because the second term on the left-hand side is the conditional probability that a resistant victim is informed if the total concession probability is q. Simplifying this inequality gives

$$\mu q < \epsilon,$$

and therefore, beginning in period n the principal’s continuation value from carrying on torturing is at most

$$\mu q x + (1 - \mu q)c$$

which is negative. The unique sequentially rational continuation strategy is therefore to halt torture. We have therefore shown that any sequentially rational pure strategy has a last period of torture.

Let μ_1 be the posterior entering the last period of torture. The principal’s continuation payoff entering the last period of torture is at most

$$\mu_1 \Delta + (1 - \mu_1)c.$$

To see why, note that the victim can secure a payoff of $-\Delta$ by resisting torture one last time. Therefore the victim’s payoff from confessing can be no less than $-\Delta$ implying that he concedes at most Δ to the principal. Note that this bound equals $\hat{V}_1(\mu_1)$.

Now let μ_2 be the posterior entering the second-to-last period in which the principal tortures. (Recall that we are considering a pure strategy for the principal so there is a well-defined subsequence of periods in which he makes a non-trivial demand and threatens torture.) Let q be the probability with which the informed victim confesses in that period. The principal’s continuation payoff entering that period is bounded by

$$\mu_2 q 2\Delta + (1 - \mu_2 q) \left[B(q; \mu_2) \hat{V}_1(B(q; \mu_2)) - c \right].$$

To see why note that the victim can secure a payoff of at least -2Δ from resisting torture for the two remaining periods (note that the loss in the final period of torture would be discounted.) Thus the principal can extract
at most 2Δ from a victim who concedes in the second-to-last period of torture. In the event that the agent does not concede, the principal incurs the cost c and later obtains the continuation value from resuming torture which we have already bounded by $\tilde{V}^1(\cdot)$. As this payoff comes later, it would be discounted but that only lowers the principal’s payoff even further.

Because the principal’s strategy prescribes a final period of torture later if the victim does not concede, the continuation value from doing so must be non-negative, i.e. $\tilde{V}^1(B(q; \mu_2)) \geq 0$. Thus, the following constrained maximization represents an upper bound on the principal’s payoff.

$$\max_q \mu_2 q 2\Delta + (1 - \mu_2 q) \left[B(q; \mu_2) \tilde{V}^1(B(q; \mu_2)) - c \right]$$

such that $\tilde{V}^1(B(q; \mu_2)) \geq 0$ (15)

By Lemma 4, the maximand is strictly increasing in q, and since $\tilde{V}^1(B(q; \mu_2))$ is strictly decreasing in q, the constraint binds. Thus the maximum is achieved by the q that satisfies $\tilde{V}^1(B(q, \mu_2)) = 0$, i.e. $\tilde{q}_2(\mu_2)$ and thus the principal’s payoff is bounded by

$$\mu_2 \tilde{q}_2(\mu_2) 2\Delta - (1 - \mu_2 \tilde{q}_2(\mu_2)) c,$$

which is simply $\tilde{V}^2(\mu_2)$.

Continuing in this fashion we show that the continuation payoff of the principal when the posterior is μ there are k periods of torture remaining is bounded by $\tilde{V}^k(\mu)$. In particular if the principal’s strategy prescribes a total number of periods of torture equal to k then the principal’s equilibrium payoff is no larger than $\tilde{V}^k(\mu_0)$. Since the principal’s equilibrium payoff must be non-negative we must have $\tilde{V}^k(\mu_0) \geq 0$ which implies $\mu_0 \geq \tilde{\mu}_k > \tilde{\mu}_{k-1} > \ldots > \tilde{\mu}_1$. We can now follow the argument in the proof of Theorem 4 to show that

$$\mu_0 \geq \tilde{\mu}_k \geq \sum_{j=1}^k (1 - \mu_0) \left[\frac{c}{j \Delta + c} \right]$$

and therefore $k \leq K(\mu_0)$. Hence the principal’s payoff is bounded by $\tilde{V}^k(\mu_0)(\mu_0) < \Delta K(\mu_0)$.